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Foreword

In this book, Nesterov and Nemirovskii describe the first unified theory of
polynomial-time interior-point methods. Their approach provides a simple and
elegant framework in which all known polynomial-time interior-point methods
can be explained and analyzed. Perhaps more important for applications, their
approach yields polynomial-time interior-point methods for a very wide variety
of problems beyond the traditional linear and quadratic programs.

The book contains new and important results in the general theory of con-
vex programming, e.g., their “conic” problem formulation in which duality
theory is completely symmetric. For each algorithm described, the authors
carefully derive precise bounds on the computational effort required to solve
a given family of problems to a given precision. In several cases they obtain
better problem complexity estimates than were previously known.

The detailed proofs and lack of “numerical examples” might suggest that
the book is of limited value to the reader interested in the practical aspects
of convex optimization, but nothing could be further from the truth. An
entire chapter is devoted to potential reduction methods precisely because of
their great efficiency in practice (indeed, some of these algorithms are worse
than path-following methods from the complexity theorist’s point of view).
Although it is not reported in this book, several of the new algorithms described
(e.g., the projective method) have been implemented, tested on “real world”
problems, and found to be extremely eflicient in practice.

Nesterov and Nemirovskii’s work has profound implications for the appli-
cations of convex programming. In many fields of engineering we find con-
vex problems that are not linear or quadratic programs, but are of the form
readily handled by their methods. For example, convex problems involving
matrix inequalities arise in control system engineering. Before Nesterov and
Nemirovskii’'s work, we could observe that such problems can be solved in
polynomial time (by, e.g., the ellipsoid method) and therefore are, at least in
a theoretical sense, tractable. The methods described in this book make these
problems tractable in practice.

Karmakar’s contribution was to demonstrate the first algorithm that solves
linear programs in polynomial time and with practical efficiency. Similarly, it
is one of Nesterov and Nemirovskii’s contributions to deseribe algorithms that
solve, in polynomial time and with practical efficiency, an extremely wide class
of convex problems beyond linear and quadratic programs.

Stephen Boyd Stanford, California

vii
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Preface

The purpose of this book is to present the general theory of interior-point
polynomial-time methods for convex programming. Since the publication of
Karmarkar’s famous paper in 1984, the area has been intensively developed
by many researchers, who have focused on linear and quadratic programming.
This monograph has given us the opportunity to present in one volume all of
the major theoretical contributions to the theory of complexity for interior-
point methods in optimization. Qur aim is to demonstrate that all known
polynomial-time interior-point methods can be explained on the basis of gen-
eral theory, which allows these methods to extend into a wide variety of non-
linear convex problems. We also have presented for the first time a definition
and analysis of the self-concordant barrier function for a compact convex body.

The abilities of the theory are demonstrated by developing new polynomial-
time interior-point methods for many important classes of problems: quadrat-
ically constrained quadratic programming, geometrical programming, approx-
imation in L, norms, finding extremal ellipsoids. and solving problems in
structural design. Problems of special interest covered by the approach are
those with positive semidefinite matrices as variables. These problems include
numerous applications in modern control theory, combinatorial optimization,
graph theory, and computer science.

This book has been written for those interested in optimization in gen-
eral, including theory, algorithms, and applications. Mathematicians working
in numerical analysis and control theory will be interested, as will computer
scientists who are developing theory for computation of solutions of problems
by digital computers. We hope that mechanical and electrical engineers who
solve convex optimization problems will find this a useful reference.

Explicit algorithms for the aforementioned problems, along with detailed
theoretical complexity analysis, form the main contents of this book. We hope
that the theory presented herein will lead to additional significant applications.



This page intentionally left blank



Chapter 1

Introduction

1.1 Subject

The introduction of polynomial-time interior-point methods is one of the most
remarkable events in the development of mathematical programming in the
1980s. The first method of this family was suggested for linear programming in
the landmark paper of Karmarkar (see [Ka 84]). An excellent complexity result
of this paper, as well as the claim that the performance of the new method on
real-world problems is significantly better than the one of the simplex method,
made this work a sensation and subsequently inspired very intensive and fruit-
ful studies.

Until now, the activity in the field of interior-point methods focuses mainly
on linear programming. At the same time, we find that the nature of the
methods, is in fact, independent of the specific properties of LP problems, so
that these methods can be extended onto more general convex programs. The
aim of this book is twofold:

e To present a general approach to the design of polynomial-time interior-
point methods for nonlinear convex problems, and

e To illustrate the abilities of the approach by a number of important ex-
amples (quadratically constrained quadratic programming, geometrical
programming, approximation in L, norm, minimization of eigenvalues,
among others).

1.2 Essence of the approach

After the seminal paper of Renegar (see [Re 86]), it became absolutely clear
that the new polynomial-time algorithms belong to the traditional class of
interior penalty methods studied in the classical monograph of Fiacco and
McCormick (see [FMcC 68]). To solve a convex problem

(f) minimize fo(z) s.t. fi(zx) <0, ¢ =1,...,m(f), z € R™Y)

by an interior penalty method, it is first necessary to form a barrier function
for the feasible domain

Gr={z| filz) <0, i=1,..,m(f)}

1



2 INTRODUCTION

of the problem, i.e., smooth and strongly convex on the interior of the domain
function F' tending to infinity along each sequence of interior points converg-
ing to a boundary point of Gy. Given such a barrier, one approximates the
constrained problem (f) by the family of unconstrained problems, e.g., by the
barrier-generated family

(ft) minimize f;(z) = tfo(z) + F(x),

where t > 0 is the penalty parameter. Under extremely mild restrictions, the
solutions z(t) to (f:) tend to the optimal set of (f) as ¢t tends to co. The
classical scheme suggests following the trajectory z(t) along certain sequence
t; — oo of values of the penalty. By applying to (f;) a method for uncon-
strained minimization, one forms “tight” approximations to z(¢;), and these
approximations are regarded as approximate solutions to (f). This scheme
leads to barrier methods.

Another “unconstrained approximation” of the constrained problem (f) is
given by the family

(ff)  minimize fi(z) = ¢(¢ - fo(z)) + F(z),

where ¢ > f* (f* is the optimal value in (f)) and ¢ is a barrier for the nonneg-
ative half-axis. Ast — f* + 0, the solutions z°(t) to the problems (ff) tend
to the optimal set of (f), and one can follow the path z¢(t) along a sequence
t; — f*+ 0 by applying to (ff) a method for unconstrained minimization.
The latter scheme originating from Huard (see, e.g., [BH 66]) leads to what is
called methods of centers.

Note that the above schemes possess two main “degrees of freedom”: First,
it is possible to use various barriers; second, one can implement any method
for unconstrained minimization. Regarding the first issue, the classical recom-
mendation, at least in the case of smooth convex constraints, is to use barriers
that are compositions of constraints,

m(f)
F(z) = ) ¥(~fi(2)),
i=1

where 1(s) is a barrier for the nonnegative half-axis, e.g.,
P(s)=s"" k>0 ¥(s) = —klns, k>0 P(s) = el/®,  etc.

Regarding choice of the method for unconstrained minimization, there were
almost no firm theoretical priorities; the computational experience was in fa-
vor of the Newton method, but this recommendation had no theoretical back-
ground.

Such a background was first given by Renegar in [Re 86]. Renegar demon-
strated that in the case of a linear programming problem (f) (all f;, ¢ =
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1,...,m(f), are linear), the method of centers associated with the standard
logarithmic barrier

m
F(z) = -3 In(-fi(z))
i=1
for the feasible polytope G of the problem and with
&(s) = —wln(s), w>0

allows us to decrease the residual ¢; — f* at a linear rate at the cost of a single
step of the Newton method as applied to (f{). Under appropriate choice of
the weight w at the term In(¢ — fo(z)) (namely, w = O(m(f))), one can force
the residual ¢; — f* to decrease as exp{—0(1)i/m'/2(f)}. Thus, to improve the
accuracy of the current approximate solution by an absolute constant factor, it
suffices to perform O(m!/2(f)) Newton steps, which requires a polynomial in
the size (n(f), m(f)) of the problem number of arithmetic operations; in other
words, the method proves to be polynomial. Similar results for the barrier
method associated with the same logarithmic barrier for a linear programming
problem were established by Gonzaga [Go 87].

We see that the central role in the modern interior-point methods for linear
programming is played by the standard logarithmic barrier for the feasible
polytope of the problem. To extend the methods onto nonlinear problems, one
should understand the properties of the barrier responsible for polynomiality
of the associated interior-point methods. Our general approach originates in
[Ns 88b], [Ns 88c|, [Ns 89]. It is as follows: Among all various properties of
the logarithmic barrier, only two are responsible for all nice features of the
associated with F interior-point methods. These two properties are (i) the
Lipschitz continuity of the Hessian F” of the barrier with respect to the local
Euclidean metric defined by the Hessian itself as

|D3F(z)[h, h, h]] < consti{D*F(z)[h, h]}*/*

for all x from the interior of G and all h € R™; and (ii) the Lipschitz continuity
of the barrier itself with respect to the same local Euclidean structure

|DF(z)[R]| < consta{D?*F(x)[h, h]}1/2

for the same as above x and h.

Now (i) and (ii) do not explicitly involve the polyhedral structure of the
feasible domain G of the problem; given an arbitrary closed convex domain G,
we can consider a interior penalty function for G with these properties (such
a function will be called a self-concordant barrier for G). The essence of the
theory is that, given a self-concordant barrier F for a closed convex domain G,
we can associate with this barrier interior point methods for minimizing linear
objectives over G in the same way as is done in the case of the standard log-
arithmic barrier for a polytope. Moreover, all polynomial-time interior-point
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methods known for LP admit the above extension. To improve the accuracy
of a given approximate solution by an absolute constant factor, the resulting
methods require the amount of steps that depends only on the parameter of
the barrier, i.e., on certain combination of the above const; and consty, while
each of the steps is basically a step of the Newton minimization method as
applied to F.

Note that the problem of minimizing a linear objective over a closed convex
domain is universal for convex programming: Each convex program can be re-
formulated in this form. It follows that the possibility to solve convex programs
with the aid of interior-point methods is limited only by our ability to point
out self-concordant barriers for the resulting feasible domains. The result is
that such a barrier always exists (with the parameter being absolute constant
times the dimension of the domain); unfortunately, to obtain nice complexity
results, we need a barrier with moderate arithmetic cost of computing the gra-
dient and the Hessian, which is not always the case. Nevertheless, in many
cases we can to point out “computable” self-concordant barriers, so that we
can develop efficient methods for a wide variety of nonlinear convex problems
of an appropriate analytical structure.

Thus, we see that there exist not only heuristic, but also theoretical reasons
for implementing the Newton minimization method in the classical schemes of
the barrier method and the method of centers. Moreover, we understand how
to use the freedom in choice of the barrier: It should be self-concordant, and
we are interested in this intrinsic property, in contrast to the traditional rec-
ommendations where we are offered a number of possibilities for constructing
the barrier but have no priorities for choosing one of them.

1.3 Motivation

In our opinion, the main advantage of interior-point machinery is that, in many
important cases, it allows us to utilize the knowledge of the analytical structure
of the problem under consideration to develop an efficient algorithm. Consider
a family A of solvable optimization problems of the type (f) with convex finite
(say, on the whole R™f)) objective and constraints.

Assume that we have fixed analytical structure of the functionals involved
into our problems, so that each problem instance (f) belonging to A can be
identified by a finite-dimensional real vector D(f) (“the set of coefficients of
the instance”). Typical examples here are the classes of linear programming
problems, linearly /quadratically constrained convex quadratic problems, and
so forth. Assume that, when solving (f), the set of data D(f) form the input
to the algorithm, and we desire to solve (f) to a prescribed accuracy ¢, i.e., to
find an approximate solution . satisfying the relations

fO(xE)Sf*+67 f’t(',L'E) SE’ Z=1a7m(f)’

where f* is the optimal value in (f).
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An algorithm that transforms the input (D(f), ) into an e-solution to (f)
in a finite number of operations of precise real arithmetic will be called poly-
nomaal, if the total amount of these operations for all (f) € 4 and all € > 0
is bounded from above by p(m(f),n(f),dim{D(f)}) In(V(f)/e), where p is a
polynomial. Here V(f) is certain scale parameter, which can depend on the
magnitudes of coefficients involved into (f) (a reasonable choice of the pa-
rameter is specific for the family under consideration). The ratio ¢/V(f) can
be regarded as the relative accuracy, so that In(V(f)/¢) is something like the
amount of accuracy digits in an e-solution. Thus, a polynomial-time algorithm
is a procedure in which the arithmetic cost “per accuracy digit” does not ex-
ceed a polynomial of the problem size (m(f),n(f), dim{D(f)}). Polynomiality
usually is treated as theoretical equivalent to the unformal notion “an effective
computational procedure,” and the efficiency of a polynomial-time algorithm,
from the theoretical viewpoint, is defined by the corresponding “cost per digit”
p(m(f), n(f),dim{D(f)}).

The concept of a polynomial-time algorithm was introduced by Edmonds
[Ed 65] and Cobham [Co 65] (see also Aho et al. [AHU 76|, Garey and Johnson
[GJ 79], and Karp [Kr 72|, [Kr 75]). This initial concept was oriented onto
discrete problems; in the case of continuous problems with real data, it seems
to be more convenient to deal with the above (relaxed) version of this concept.

Note that polynomial-time algorithms do exist in a sense, for “all” convex
problems. Indeed, there are procedures (e.g., the ellipsoid method; see [NY 79])
that solve all convex problems (f) to relative (in a reasonable scale) accuracy €
at the cost of O(p(n, m)In(n/e)) arithmetic operations and O(g(n, m)In(n/¢))
computations of the values and subgradients of the objective and the con-
straints, where p and ¢ are polynomials (for the ellipsoid method, p(n,m) =
n3(m + n), g(n,m) = n?). Now, if our class of problems A is such that,
given the data D(f), we can compute the above values and subgradients at a
given point z in polynomial in m(f), n(f), dim{D(f)} number of arithmetic
operations, then the above procedure proves to be polynomial on A.

A conceptual drawback of the latter scheme is that, although from the
very beginning we possess complete information about the problem instance,
we make only “local” conclusions from this “global” information; in fact, in
this scheme, we ignore our knowledge of the analytical structure of the prob-
lem under consideration (more accurately, this information is used only when
computing the values and the subgradients of f;). At the same time, the
interior-point machinery is now the only known way to utilize the knowledge
of analytical structure to improve—sometimes significantly—the theoretical
efficiency of polynomial-time algorithms. Indeed, as already mentioned, the
efficiency of a polynomial-time interior-point method is defined first by the pa-
rameter of the underlying barrier and second by the arithmetic cost at which
one can form and solve the corresponding Newton systems; both these quan-
tities depend more on the analytical structure of the objective and constraints
than on the dimensions m(f) and n(f) of the problem.
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1.4 Overview of the contents

Chapter 2 forms the technical basis of the book. Here we introduce and study
our main notions of self-concordant functions and barriers.

Chapter 3 is devoted to the path-following interior-point methods. In their
basic form, these methods allow us to minimize a linear objective f over a
bounded closed convex domain G, provided that we are given a self-concordant
barrier for the domain and a starting point belonging to the interior of the
domain. In a path-following method, the barrier and the objective generate
certain penalty-type family of functions and, consequently, the trajectory of
minimizers of these functions; this trajectory converges to the optimal set of
the problem. The idea of the method is to follow this path of minimizers:
Given a strictly feasible approximate solution close, in a sense, to the point of
the path corresponding to a current value of the penalty parameter, we vary
the parameter in the desired direction and then compute the Newton iterate
of the current approximate solution to restore the initial closeness between
the updated approximate solution and the new point of the path. Of course,
this scheme is quite traditional, and, generally speaking, it does not result in
polynomial-time procedure. The latter feature is provided by self-concordance
of the functions comprising the family.

We demonstrate that path-following methods known for LP (i.e., for the
case when G is a polytope) can be easily explained and extended onto the case
of general convex domains G. We prove that the efficiency (“cost per digit”)
of these methods is O(9'/2), where ¥ is the parameter of the barrier (for the
standard logarithmic barrier for an m-facet polytope one has ¢ = m).

In Chapter 4 we extend onto the general convex case the potential reduction
interior-point methods for LP problems; we mean the method of Karmarkar
[Ka 84], the projective method [Nm 87], the primal-dual method of Todd and
Ye [TY 87], and Ye [Ye 88a), [Ye 89]. The efficiency of the resulting method
is O(9) (for the generalized method of Karmarkar and the projective method)
or O(9'/2) (the generalized primal-dual method), where 1 denotes the param-
eter of the underlying self-concordant barrier. Thus, the potential reduction
methods, theoretically, have no advantages as compared to the path-following
algorithms. From the computational viewpoint, however, these methods are
much more attractive. The reason is that, for a potential reduction method,
one can point out an explicit Lyapunov’s function, and the accuracy of a fea-
sible approximate solution can be expressed in terms of the potential (the less
the potential, the better the approximate solution). At each strictly feasible
solution, the theory prescribes a direction and a stepsize, which allows us to
obtain a new strictly feasible solution with the value of the potential being
“considerably” less than that at the previous approximate solution. To ensure
the theoretical efficiency estimate, it suffices to perform this theoretical step,
but we are not forbidden to achieve a deeper decreasing of the potential, say,
with the aid of one-dimensional minimization of the potential in the direction



OVERVIEW OF THE CONTENTS 7

prescribed by the theory. In real-world problems, these “large steps” signifi-
cantly accelerate the method. In contrast to this, in a path-following method,
we should maintain closeness to the corresponding trajectory, which, at least
theoretically, is an obstacle for “large steps.”

To extend potential reduction interior-point methods onto the general con-
vex case, we use a special reformulation of a convex programming problem, the
so-called conic setting of it (where we should minimize a linear functional over
the intersection of an affine subspace and a closed convex cone). An important
role in the extension is played by duality, which for conic problems attains
very symmetric form and looks quite similar to the usual LP duality. Another
advantage of the “conic format” of convex programs, which is especially im-
portant to the design of polynomial-time methods, is that this format allows us
to exploit the widest group of transformations preserving convexity of feasible
domains; we mean the projective transformations (to subject a conic problem
to such a transformation is basically the same as to intersect the cone with
another affine subspace).

As already mentioned, to solve a convex problem by an interior-point
method, we should first reduce the problem to one of minimizing a linear
objective over convex domain (which is quite straightforward) and, second,
point out a “computable” self-concordant barrier for this domain (which is the
crucial point for the approach). As shown in Chapter 2, every n-dimensional
closed convex domain admits a self-concordant barrier with the parameter of
order of n; unfortunately, the corresponding “universal barrier” is given by a
multivariate integral and therefore cannot be treated as “computable.” Nev-
ertheless, the result is that there exists a kind of calculus of “computable”
self-concordant barriers, which forms the subject of Chapter 5. We first point
out “simple” self-concordant barriers for a number of standard domains aris-
ing in convex programming (epigraphs of standard functions on the axis, level
sets of convex quadratic forms, the epigraph of the Euclidean norm, the cone
of positive semidefinite matrices, and so forth). Second, we demonstrate that
all standard (preserving convexity) operations with convex domains (taking
images/inverse images under affine mappings and projective transformations,
intersection, taking direct products, and so forth) admit simple rules for com-
bining self-concordant barriers for the operands into a self-concordant barrier
for the resulting domain. This calculus involves “rational linear algebra” tools
only and, as applied to our “raw materials” —concrete self-concordant barriers
for “standard” convex sets—allows us to form “computable” self-concordant
barriers for a wide variety of convex domains arising in convex programming.

In Chapter 6 we illustrate the abilities of the developed technique. Namely,
we present polynomial-time interior-point algorithms for a number of classes of
nonlinear convex programs, including quadratically constrained quadratic pro-
gramming, geometrical programming (in exponential form), approximation in
Ly-norm, and minimization of the operator norm of a matrix linearly depend-
ing on the control vector. An especially interesting application is semidefinite
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programming, i.e., minimization of a linear functional of a symmetric matrix
subjected to positive semidefiniteness restriction and a number of linear equal-
ity constraints. Note that, first, semidefinite programming is a nice field for
interior-point methods (all path-following and potential reduction methods can
be easily implemented for this class); second, semidefinite programming cov-
ers many important problems arising in various areas, from control theory to
combinatorial optimization (e.g., the problem of minimizing the largest eigen-
value or the sum of k largest eigenvalues of a symmetric matrix). We conclude
Chapter 6 with developing polynomial-time interior-point algorithms for two
geometrical problems concerning extremal ellipsoids (the problems are to in-
scribe the maximum volume ellipsoid into a given polytope and to cover a given
finite set in R™ by the ellipsoid of minimum volume). The first of these is espe-
cially interesting for nonsmooth convex optimization (it arises as an auxiliary
problem in the inscribed ellipsoid method (see Khaciyan et al. [KhTE 88])).
Chapter 7 is devoted to variational inequalities with monotone operators.
Here we extend the notion of self-concordance onto monotone operators and
develop a polynomial-time path-following method for inequalities involving op-
erators “compatible,” in a sense, with a self-concordant barrier for the feasible
domain of the inequality. Although the compatibility condition is a rather se-
vere restriction, it is automatically satisfied for linear monotone operators, as
well as for some interesting nonlinear operators (e.g., the operator arising, un-
der some natural assumptions, in the pure exchange model of Arrow-Debreu).

In Chapter 8 we consider possibilities for acceleration of the path-following
algorithms as applied to linearly constrained convex quadratic (in particular,
LP) problems. Until now, the only known acceleration strategies were more
or less straightforward modifications of the Karmarkar speed-up (see [Ka 84])
based on recursive updatings of approximate inverses to the matrices arising
at the sequential Newton-type steps of the procedure under consideration. We
describe four more strategies: Three are based on following the path with the
aid of (prescaled) multistep methods for smooth optimization; in the fourth
strategy, to find an approximate solution of a Newton system, we use the
prescaled conjugate gradient method. All our strategies lead to the same worst-
case complexity estimates as the known ones, but the new strategies seem to
be more flexible and therefore can be expected to be more efficient in practice.

We conclude the exposition with Bibliography Comments. It seems to
be impossible to give a detailed survey of the activity in the very intensively
developing area of polynomial-time interior-point methods. Therefore we have
restricted ourselves only with the papers closely related to the monograph.
We realize that the “level of completeness” of our comments is far from being
perfect and apologize in advance for possible lacunae.

The methods presented in the book are new, and we believe that they are
promising for practical computations. The very preliminary experience we now
possess supports this hope, but it in no sense is sufficient to make definite con-
clusions. Therefore our decision was to completely omit any numerical results.
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Of course, we realize that it is computational experience, not theoretical re-
sults alone, that proves practical potential of an algorithm, and we hope that,
by the methods presented in this book, this experience can soon be gained.

1.5 How to read this book

Basically, there are two ways of reading this book, depending on whether
the reader is interested in the interior-point theory itself or its applications to
concrete optimization problems. The theoretical aspect is detailed in Chapters
2-5, while applications of variational inequalities, in addition to the theory, can
be found in Chapter 7 (it is possible to exclude Chapters 4 and 5 here). For
specific explications of the theory of linear and linearly constrained quadratic
programming, refer to Chapter 8.

Chapters 2 and 3 deal in general theory rather than in concrete applications;
the reader interested in applications is expected to be familiar with the main
concepts and results found there (with the exception of §2.5 and possible §2.4),
but not necessarily with the proofs. Note that, for some applications (e.g., ge-
ometrical programming, approximation in Ly-norm, and finding extremal el-
lipsoids), only path-following methods are developed, and, consequently, those
interested in these applications may move from chapter 3 directly to Chap-
ter 6. Quadratically constrained quadratic problems, especially semidefinite
programming with applications to control theory, can be found in §2.4 and
Chapter 4 (at the level of concepts and schemes). If one wishes to deal with
concrete applications that are not explicitly presented in this book and would
like to attempt to develop new interior-point methods, refer to Chapter 5 for
the techniques of constructing self-concordant barriers.
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Chapter 2

Self-concordant functions and Newton
method

All interior-point algorithms heavily exploit the classical Newton minimization
method as applied to “unconstrained smooth approximations” of the problem
under consideration. To be successful, this scheme requires approximations
that can be effectively minimized by the Newton method. The approach pre-
sented in this book deals with a special class of functions used in these approx-
imations, namely, self-concordant functions and barriers.

In this chapter, which forms the technical basis for the book, we introduce
and study the notions of a self-concordant function (§2.1) and a self-concordant
barrier (§2.3). We demonstrate (§2.2) that self-concordant functions form a
nice field for the Newton method, which allows us to develop general theory
of polynomial-time path-following algorithms (Chapter 3); as demonstrated
by the general existence theorem (§2.5), the related methods in principle can
be used to solve an arbitrary convex problem. Section 2.4 is devoted to the
Legendre transformation of self-concordant functions and barriers. The re-
sults of this section form the background for potential reduction methods
(Chapter 4).

2.1 Self-concordant functions

To motivate the notion of self-concordance, let us start with analyzing the
traditional situation in which, given some strongly convex function F : R"® —
R, one desires to minimize it by the Newton method. In its classical form, the
method generates the iterates

Tip1 = T — (F"(2:)) " F'(23).

It is well-known that, under mild regularity assumptions, this scheme locally
converges quadratically. The typical result here is as follows: If F is strongly
convex with some constant m, i.e.,

WCF'(@h>m | k|3,  zheR"
and F” is Lipschitz continuous with constant L, i.e.,

I (F(z) = F'W)h lz< Lz —yll2ll hll2,  z,y,h €R?,

11
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then I
| F'(zig1) |J2< o3 | F'(z) |I3 .

In particular, in the region defined by the inequality

L

o2 | F'(z:) ll2< 1,

the method converges quadratically.

Note that the above sufficient condition for quadratic convergence of the
Newton method involves an Euclidean structure on R™; one should choose such
a structure to define the Hessian matrix and consequently the constants m and
L. Thus, the description of the region of quadratic convergence depends on an
ad hoc choice of Euclidean structure, which, generally speaking, has nothing
in common with F. The resulting uncertainty contradicts the affine-invariant
nature of the Newton method.

Now note that the second-order differential of F' induces an infinitesimal
Euclidean metric on R™, intrinsically connected with F. The result is that the
Lipschitz continuity of F” with respect to this metric implies very interesting
results on the behaviour of the Newton method as applied to F'. This property
is called self-concordance. The precise definition is as follows.

Definition 2.1.1 Let E be a finite-dimensional real vector space, Q be an open
nonempty convez subset of E, F': Q — R be a function, a > 0. F is called
self-concordant on @ with the parameter value a (a-self-concordant; notation:
F € 8,(Q,E)), if F € C? is a convex function on Q, and, for all x € Q and
all h € E, the following inequality holds:

(2.1.1) | D3F(x)[h, h, h] |< 20~ Y2(D?F(z)[h, h])*/?

(D*F(x)[ha, ..., hx) henceforth denotes the value of the kth differential of F
taken at x along the collection of directions hy, ..., hy).

An a-self-concordant on Q function F is called strongly a-self-concordant
(notation: F € S}(Q,E)) if the sets {x € Q | F(z) < t} are closed in E for
each t € R.

Remark 2.1.1 Note that a self-concordant on Q function F is strongly self-
concordant on Q if and only if Q is the “natural domain” of F, i.e., if and
only if F(z;) tends to infinity along every sequence {z; € Q} converging to a
boundary point of Q.

Self-concordance is an affine-invariant property; see the following proposi-
tion.

Proposition 2.1.1 (i) Stability with respect to affine substitutions. Let F €
S,(Q,E) (F € SHQ,E)), let x = A(y) = Ay + b be an affine transformation
from a finite-dimensional real vector space Et into E such that Q* = {y |
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Aly) €Q} #0, and let F+(y) = F(A(y)) : QT — R. Then F* € S,(Q*,E")
(respectively, F* € SHQ™T,E™Y)).

(ii) Stability under summation. Let F; € S,,(Qs, E), p; >0,i=1,2, Q=
1 NQ2 #0, F(z) = p1 Fi(z)+p2Fa(z) : Q — R and let a = min{p1a,,p2a2}.
Then F € S.(Q, E). If under the above assumptions either F; € S} (Qi, E), i =
1,2, or F1 € S} (Q1,E) and Q1 C Q2, then F € SHQ,E).

(ili) Stability with respect to direct products. Let Fi(x) € S.(Q1, E1),
Fz(y) € Sa(QQ,Eg). Then Fl(ilt) + Fz(y) € Sa(Ql X @2, 1 % E2). If Fl(iL‘) €
S;(Ql,El), Fz(y) € S:(QQ,EQ), then Fl(m) +F2(y) € S;(Ql X QQ,El X Eg)‘

The proof is quite straightforward.

Let F be self-concordant on @ with the parameter value a and let z € Q.
The second-order differential D?F(z) defines the Euclidean seminorm on E as
follows:

1/2
10 ler= (GD*F@IAA)

An r-neighbourhood of z in this seminorm, i.e., the set

We(z)={yllz -y llzr<r}

will be called Dikin’s ellipsoid of F centered at z of the radius r.

The following statement is a finite-difference version of the differential in-
equality (2.1.1); this statement is used in what follows as the main technical
tool.

Theorem 2.1.1 Let F be a-self-concordant on Q and let x € ). Then
(i) For each y € Q such thatr =|| z — y ||z,r< 1 we have, for all h € E,

(2.1.2) (1 -7)2D?F(z)[h,h] < D?°F(y)[h, k] < (—1—_1—1)2F(I)[h, hl;

r)?

(ii) If F is strongly self-concordant, then every Dikin’s ellipsoid of F' cen-
tered at x of the radius r < 1 is contained in QQ, namely,

r<l = W,(z)CQ.
Proof. (i) Denote
e=y-z, z(s)=xz+se, 8- {s20]]a(s)—c or<1}.

Let s € 6 be such that z(s) € Q and let h € E. Let A = [0,s] and let the
functions ¥ (p) and ¢(p) be defined for p € A as

Y(p) = D*F(z(p))[e, €],

¢(p) = D*F(z(p))[h, h.
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From (2.1.1) it follows (see §8.4.3) that, for each triple of vectors h; € E, i =
1,2, 3, we have

3
| DF(u)[h1, ha, hg] 1< 267 2T[{D*F(u)[hi, hi]}'?,  weQ.
=1

The latter relation implies that

(2.1.3)  |9'(p) 1< 207 2((p))¥%, | ¢'(p) |< 2072 (9(p)) /% 4(p).

From the first relation in (2.1.3), we have either ¥(p) = 0, p € A, and therefore,
by virtue of the second relation in (2.1.3), ¢(s) = ¢(0), or ¥(p) > 0 on A.!

In the second case, we have | (¥~1/2(p)), |< a=%/2, p € A, which implies
that

(2.1.4) ¥~ 2(p) > ¢71%(0) — pa1/2.
In the latter case, by virtue of ¥(0) =a ||y — z ||§, »= ar?, we obtain
1/2
1/2 < a’'"r

since ¢~ /2(0) > pa~1/2 for p € A C 6. Consequently, the second relation in
(2.1.3) can be written as

2T¢—(—p—) pEA.

Thus, either ¢ =0 on A, or ¢ is positive on A, and in the latter case we have

¢(s) | 1
o) <2
which, by the definition of ¢, leads to (2.1.2). Evidently, (2.1.2) also holds in
the cases where ¥(p) = 0, p € A, and ¢(p) = ¢(0), p € A. Thereby (i) is
proved.
(i) We should prove that, if y € E is such that r =|| y — z ||,r< 1, then
y € Q. Let e, z(s), 6 be defined in the same manner as above and let

o=sup{s € d| z(s) € Q}.

It suffices to prove that o = 1/r (1/0 = 00). Assume that the latter relation
does not hold, so that or < 1. Applying (i) to the points y = z(s), 0 < s < ¢
(these points do belong to @), we conclude that the function g(s) = F(z(s))

1We have used the well-known consequence of the uniqueness theorem for linear differential
equations: If an absolute continuous real-valued function f defined on a segment A C R
satisfies the inequality | f'(t) |< g(¢) | f(¢) |, where g is summable, then either f = 0
identically on A or f does not take zero value on this segment.



DAMPED NEWTON METHOD 15

has a bounded second derivative for 0 < s < ¢ and hence itself is bounded for
these s. Since F' € S}(Q, E), this leads to

z(o) = siif,n_o”’(s) €Q.

Since @ is open, we have z(s) € @Q for some s > 0. The latter inclusion in the
case of or < 1 contradicts the definition of o, and thereby (ii) is proved. a

Corollary 2.1.1 Let F be self-concordant on Q. Then the subspace
{h € E| D®*F(z)[h, h] = 0}
does not depend on x € Q.

Proof. Let us fix h € E. The set X, = {x € Q | D*F(x)[h, h] = 0} is closed
in Q by virtue of the continuity of D2F(x)[h, h] in z and is open in @ by virtue
of (2.1.2). Hence this set is either empty, or coincides with Q. a

The subspace mentioned in Corollary 2.1.1 will be called the recessive sub-
space of F' and will be denoted Er. We call F nondegenerate, if Er = {0}.

2.2 Damped Newton method

In this section, we describe the behaviour of the Newton method as applied to
a self-concordant function.

2.2.1 Newton decrement

Let us start with introducing a convenient accuracy measure—the Newton
decrement A(F, z). Let F be a-self-concordant on Q. We define A\(F,z), z € Q
as

(2.2.1) A(F,z) =inf{\| | DF(z)[h] |< Aa"/*(D*F(z)[h,h))"/? Vhe E}

(if the set on the right is empty, then A(F, 2) = oo by definition). The quantity
A(F, z) can be interpreted as follows. Consider the quadratic approximation

(222)  ®.(y) = F(z) + DF(2)ly — ] + 1D?F(a)ly — =,y — o]
of the function F at the point z. Then we clearly have

(2.2.3) %AQ(F,x) = &, (x) — inf{®,(y) | y € E}

or, which is the same,

(224)  aX}(F,z) = 2sup{DF(z)[h] — $D*F(z)[h, k] | h € E}.
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In the case of nondegenerate F' (i.e., Er = {0}), the Newton decrement can
be expressed in terms of the gradient vector, and the Hessian of F' taken with
respect to (any) Euclidean structure of £ as

N(F,z) = = (F(@))[F"()] " F ().

It is worth noting that A(F,z) is, up to a constant factor, the norm of the
linear form DF(z) in the metric induced by D?F(z).

Proposition 2.2.1 For any F € 5,(Q, E), either A\(F,z) = oo for all ¢ € Q,
or M(F,z) is a finite continuous function on Q. This latter case occurs if and
only if DF(z)[h] =0 for all z € Q and all h € EF.

Proof. Let z € Q. It is clear that
{\F,z) < 0} & {DF(z)[h] =0 Vhe€ Ep}.

Assume that A(F,z) < oo for chosen z and let h € Er. For ¥(y) = DF(y){h],
we have Di(y)le] = D?F(y)lh,e] = 0, so that ¢ is constant on Q; since
¥(z) = 0, we have ¢ = 0. Thus, if A(F,z) < oo, then DF(y)[h] = 0 for all
h € Ep and all y € E, so that

a'/2A(F,y) = max{| DF(y)[h] | (D*F(y)[h, h])™/% | h € EF, h # 0},

where EF is a subspace complement to Er in E. The quadratic form D?F(y)
[h, h] is positive definite on the subspace EF’; therefore the statement follows
from the C3-smoothness of F. O

2.2.2 Preliminary results

Now we are ready to analyze the behaviour of the Newton method as applied
to a self-concordant function.

Let F be a-self-concordant on @, let x € @, and let A(F,x) < co. Then the
form ®,(y) is below bounded in y € E and therefore attains its minimum over
y. Let z*(F,z) be some minimizer of this form and let e(F,z) = z*(F, z) — z.
We clearly have

(2.2.5) DF(z)[h] = —D?F(z)[e(F,z),h] Vh€E,

(2.2.6) D?F(x)[e(F, ), e(F,z)] = aX(F, z).

The point z*(F,x) is called the Newton iterate of z. In the nondegenerate
case, as it should be,

(2.2.7) e(F,z) = —[F"(x)]'F'(z), z*(F,z)=z—[F"(z)] 'F'(z).

The following result describes the behaviour of the quantities A(F,-) and F(-)
on the segment [z, z*(F, z)].
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Theorem 2.2.1 Let F € 5,(Q,E), ¢ € Q, and A\(F,z) < oo. Let
o € (0, min{1, \"1(F, z)}]

be such that the points x(s) = = + se(F, x) belong to Q for all s € A = [0,0).
Then for all s € A we have

1—s—s\A+ 282\

(2.2.8) A(F,z(s)) <A A
(2.2.9) F(z) — F(z(s)) > a\? {sl——;—)\ + % In(1 — s)\)} ,

where A = MF, x).

Proof. Let e = e(F,z). Note that by (2.2.6) A =| e ||o,r. Since 0 < 1/, we
have by virtue of Theorem 2.1.1(i), for all s € A and h € E,

(2.2.10) (1 — sA)?D%F(x)[h,h] < D*F(xz(s))[h,h] < D%F(z)[h, k],

1
(1 —sX)?

whence for s € A
(2.2.11) | D?*F(z)[h, h] — D*F(z(s))[h, h] |< {ﬁ - 1} D*F(z)[h, h].
It follows that

‘%DF(m(s))[h] — D2 F(z)[e, h]‘

(22.12) < {(1——137)7 —

< {(i-—“lsT)? - 1} (D?F(z)[h, h])/%al/?),

1} (D*F(@)lh, ) *(D*F@)le,])

or, in view of (2.2.5),

(2213) | DFG()IH - (1~ )DF@)h) < a2 X (p2R(n, )2

— S
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Now, by definition of A(F,z) combined with (2.2.13) and (2.2.10) we have
2sup{DF(:1:( D[] ——D2 F(a(s))[h, h]) he E}

(8/\)2

2 (D (2)h, b))

< 2sup {(1 — 8)DF(z)[h] + 2

—%(1 —s\)?D*F(z)[h,h] | h € E}
< 2sup {01/2)\(1 — s)(D2F(z)[h, h])"/?

1 2(8/\)2
1—sA

1—5—sA+2s2)
< a)? ,
=4 ( (1 —s\)? )

(D*F(z)[h, h])/% - %(1 — sA)2D2F(z)[h, h]‘h € E}

which, combined with (2.2.1), implies (2.2.8) (note that by definition o < 1
and therefore (1 — s) > 0).

Let f(s) = F(z(s)) — F(x). Relation (2.2.13) with h = e and relation
(2.2.5) lead to

y a'/%(sA)? 2p 1/2
f'(s) = DF(z(s))[e] < (1 — s)DF(z)[e] + ————(D F(z)le,e])
2 !/ 2(3)‘) 2 1/2
~(1- )D*F(2)le, ] + Z—L(D*F@)fe, ]
. o ai(s))?
= —(1 — 8)0)\ + I——K
Hence .
2
£(s) sf(O)—aA2/{1—p— l’iik}dp,
0
which implies (2.2.9). O

The following modification of the above theorem sometimes is more conve-
nient.

Theorem 2.2.2 Let F € S,(Q,E), ¢ € @, and AM(F,z) < 1. Let one of the
sets

X:={yeQ| MFy) <AMF,z)}, Ye={yeQ| F(y) <F(z)}

be closed in E. Then
(i) F attains its minimum over Q : X, = Argming F # §;
(ii) If \(F,z) < A\ = 2 — 3Y/2 = 0.2679..., then z*(F,z) € Q and
M\(F, w) 1
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(iii) For each y € Q such that M(F,y) < 3 and for each z. € X, we have

e215)  {F@)-mpF) < J0E) AN

2 TP — w(ME,y))’
SPAEY) Y’
(2.2.16) D*F(z,)[ly — #s,y — 24| < a (m) ,
(2.2.17) D2F(y)[$* — Y, Tx — y] < a’wz(/\(F’ y))’

where w(\) = 1 — (1 — 3A)1/3;
(iv) For each y € Q such that 62(F,y) = 2a~'{F(y) — ming F} < 4/9, we
have

(2.218) A(F,y) < 248(F, y)

(3 + (9 +126(F,y))/2)((9 — 128(F, y))/2 — 1)
Proof. 1°. Let o(\) = min{1, (1 — A\)/A(3 = A)}, Ax = [0,0(A)], and
e 2
. _3;\;;223 2 s = ‘9(1: 2 (- s)), se

for 0 < A < 1. It is easy to show that in view of choice of o(A) the function
¢x(8) decreases on Ay, and the function ,(s) is nonnegative on A,. Let
X =X,NYz and u € X. Then A = \(F,u) < MF,z) < 1. Let

s' = sup{s € Ay | u+ se(F,u) € Q}.
By virtue of (2.2.8), (2.2.9), for 0 < s < §’, we have
A(F,u + se(F,u)) < Apa(s) < A,
(2.2.19) F(u + se(F,u)) < F(u) — aX?¥x(s) < F(u).

The sets X, and Y; are closed in @ (since A(F,-) and F(-) are continuous on
@), and one of the sets is closed in F; hence X is closed in E. By (2.2.19)
u+ se(F,u) € X, 0 < s < &, and by virtue of closedness of X in E we
have u + s’e(F,u) € X. For continuity reasons, it follows that (2.2.19) holds
for s = . Thus, u + de(F,u) € X C Q. Since Q is open, the inclusion
u + s'e(F,u) € Q is possible only if s’ = o(\) (see the definition of s'). Thus,
we obtain

Pa(s) = !

ue X =>u(u)=ut+o(MFyu))e(F,u) € X

and
(2.2.20) A(F, u*(w)) < MFE, u)dxmu) (0(A(F,v))),
(2.2.21) F(u*(w)) < F(u) — ad*(F, w)pamu) (0 (A(F, 0)))-

20, Assume that u € X is such that A(F,u) < 2—3V2, Then o(A(F,u)) = 1,
whence u*(u) = 2*(F,u) € Q, and, by (2.2.20),

A2(F,u) 2 —31/2

AF,z*(F,u)) < ¢)\(F,u)(1))\(F, u) = A= AF,w) = G217

A(F, u),

which leads to (2.2.14).
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3. Consider the following process:
(2.2.22) To=2, Tiy1= u*(zz) =x; + 0'()\(F, .’II,'))C(F, xi), 120

(the process is well defined by the arguments of 1°, namely, z; € X € Q for all
i > 0). This is the Newton method as applied to F starting at = with special
choice of step length. We shall prove that, for all sufficiently large ¢, we have
o(A(F,z;)) = 1, which means that for those ¢ (2.2.22) is the standard Newton
process.

Let A; = A(F, ;). Then, by virtue of (2.2.20), (2.2.21),

(2.2.23) Aiv1 S Xiga(0(N)),  F(ziv1) < F(zi),

which implies that \; — 0, ¢ — oo (recall that ¢,(s), as a function of s,
decreases on the segment Ay and equals 1 at s = 0). In particular, for all
sufficiently large i, we have \; < A, or o(\;) = 1, as claimed. Let 7, = min{¢ |
Ai < Ac}. Then for i > i, we have, by virtue of (2.2.14),
A2 1
—t < A
TESHERT
Note that the behaviour of \; depends solely on Ay = A(F,z) (this quantity
must be less than 1), and \; quadratically converges to 0 by virtue of (2.2.24).
49, Let us now prove (i). We can assume that \; > 0, i > 0, since otherwise
(i) is evident. Let E¥ be a subspace complement to Er in E. Let

(2.2.24) Aiy1 <

Vi={y € z; + EF | D’ F(z:)ly — z:,y — 2] < 100aA}.

Then V; is a compact set, because D2F(z)[-, ] is positive definite on EF. Let

1o f 4
wig(s)=aq =s"+e¢ )\,-s+/ dp
’ 2 J 1-p

for € = +-1. Assume that an integer ¢ > 2 is such that, for s; = 10A;, we have

8 < 1;

wi—1(8:) > 0; w;1(s) < F(zo) — F(z1), 0<s< s
s+ A; — X8
(1-s5)72
(since \; > 0 and A; — 0, (2.2.25) holds for all sufficiently large 7). Let us
verify that, for the above value of i, the following inclusion holds:

(2225) < )\0, 0<s<s;

(2.2.26) V. c X.
Indeed, let e € E¥ satisfy D?F(x;)[e,e] = a and let

oe =sup{s € [0,1] | z(s,e) = z; + se € Q}.
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By virtue of Theorem 2.1.1, for all s € [0,0,) and h € E we have

1
(1-s)?

D2F(z(s,e))[h, h] > (1 — 8)2D2F(x;)[h, h),

| D2F(2(s,e))[h, h| — D?F(z;){h,h] |< ( - 1) D2F(z;){h, A,

which leads to

S (DF (s, )A) = DF(a)le.l| <0 (g = 1) (DF@)lh )2
Therefore
al/2s2
| DF(s(s, )] ~ sD*F(ai)le, ) — DF (@[] 1< T (D2F(w0) b, )17,

and, by Cauchy’s inequality,

al/242

DF(x(s,e))[h] < a/2s(D*F(x;)[h, h))Y/2+DF (z;)[h]+ -

(D*F(x;)[h, h))*/2.

Hence

25up {DF(:c(s,e))[h] — S D*F(a(s,c))[hh] | he E}

9 1/2
< 2sup {DF(wl)[h] +al/? {s + isTs} {D?F(z;)[h, h]}

g%(l — 5)2D?F(z;)[h,h] | h e E}

S2sup{a1/2 (Ai+ ° )(D2F(wi)[h,h])1/2

1—3s
_%(1 — 5)2D?F(z;)[h,h] | h e E}

< a(s + A — Ns)?
—_ (l _ 3)4 3

which, in view of (2.2.1) and (2.2.25), leads to

(2.2.27) Alz(s,e)) < Ao, 0<s<oe.
Let f(s) = F(x(s,e)) — F(z;). Then, for 0 < s < o, we have

.f”(s) = D2F(m(s,e))[e, e]’

so that, in view of Theorem 2.1.1(i),

| f”(s) — DZF(xi)[e,e] I<a (ﬁ — 1) .
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Since f/(0) = DF(x;)|e], this leads to

2 2 2 F 2
sDF(z;)[e]+a (—2— - / 1p— pdp) < f(s) £ sDF(z;)[e]+a (? +/ lp_ pdp) .
0

0

By virtue of | DF(z;)[e] |< Aia'/?(D?F(z;)[e, €])}/? = a);, we now have
(2.2.28) f(s) Swin(s), f(s) Zwi-1(s), 0<s<oag,

where 0} = min{s;,o.}. By virtue of (2.2.25) and (2.2.23), relations (2.2.27)
and (2.2.28) imply that z(s,e) € X for 0 < s < o}. Since X is closed in E, we
have z(o},e) € X. Since @ is open, it follows from the definition of ¢} that
the latter inclusion holds only if o, > s;. This implies (2.2.26) because e is an
arbitrary vector from EF satisfying D?F(x;)e, €] = a.

Note that the points belonging to the (relative) boundary 8V of V; can be
represented as x; + sie, e € EF, D?F(z;)[e, €] = a. Thus, taking into account
(2.2.28) and (2.2.25), we obtain F(u) > F(xz;), u € dV;. Hence there exists a
point z, € V; such that DF(z,)[h] = 0 for all h € E¥. By virtue of Proposition
2.2.1, under the assumptions of the theorem, we have DF(u)[h] = 0 for all
u € Q and h € Er. Hence DF(z,) =0, and (i) is thereby proved.

50. Let us prove (iii). Let

E=Y—Ts, A= A(F7 y)a w = (DZF(y)[ea e]/a)l/Z,

z(s) = z.+se, y(s) =y—se=z(1-s), f(s)=F(y(s))—F(z.), 0<s<1
We have
(2.2.29) DF(y(s))[e] = —f'(s) >0, 0<s<1.

Let ¢ = min{l,w™!}. Since (d/ds){—DF(y(s))[e]} = D2?F(y(s))le, €], by
virtue of Theorem 2.2.1 we obtain

2 (-DF(s)ll} > (1 - )’ DF(y)le, ] = aw?(1 - sw)’,  0<s<0,

and therefore
DF(y(s))le] < DF(y)[e]—awZO/(l—pw)zdp < aw {)\ — sw (1 —1lsw+ %s%ﬂ)} ,

0 < s < 0. The latter inequality combined with (2.2.29) implies that
(2.2.30) 3X > sw(3 — 3sw + s2w?), 0<s<o.

If w> 1, then 0 = w™! and (2.2.30) holds for s = w™". It follows that A > %,
which contradicts the assumptions of (iii). Hence w < 1, so that o = 1, and
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(2.2.30) implies w(3 — 3w + w?) < 3X. In the latter inequality, the left-hand
side is monotone in w > 0, so that

(2.2.31) w<wA)=1—(1-3))3

(w(X) is the unique root of the equation w(3 — 3w + w?) = 3X). By definition
of w, (2.2.31) is equivalent to (2.2.17). Now let

g9(s) = F(z(s)) — F(«(0))(= F(z(s)) — F(z4)).
Then ¢(0) = ¢’(0) = 0, and, taking into account Theorem 2.2.1, we obtain

1

916) = PRl € s

D2F(y)le,e] for 0<s<1.
Therefore

w

1 s 1
g(1) gauﬂofo/(1_(1_p)w)2dpd3:a{1_w+ln(1—w)}
=a{(w+w2+w3+---)— (w+w—2+w—3+---)}

2 3

2 3 2
cal¥ L@ :aw(l-{-w).
2 1-w 2(1 — w)

Combining this relation with (2.2.31), we obtain (2.2.15). Furthermore, by
virtue of (2.2.31) and Theorem 2.1.1, we have

D2F(z*)[e, e] < DzF(y)[e, el,

(1-w)?

which, combined with (2.2.31), implies (2.2.16). Thereby (iii) is proved.
6°. Let us prove (iv). Let 2, € Argmin F and let y € Q be such that

82 = 2(F(y) — F(a.)) <

O

Let
e=y— ., w= (D F(z.)e, e]/a)l/z, o = min{1,w™ '},
z(s) =z +se, 0<s <1, f(s) = F(z(s)) — F(z.).

By virtue of Theorem 2.1.1, we have f”(s) > aw?(1 — ws)?, 0 < s < ¢. Since
f'(0) =0, it follows that

s t

f(s) > aw2//(1 — 2w)%dzdt =
0

0

aw232

12 (6 — dws + w?s?), 0<s<ao.
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If w> 1, then ¢ = w™!, and we obtain 62 = 2a~1f(1) > % > %, which is

a contradiction. Therefore w < 1, whence ¢ = 1, and the above inequality
implies that

(2.2.32) {126 - 4w +0?) <8} & {w <1}
Hence
(2.2.33) {}?B-w? <8} & {w<1}

For 0 < s <1 and h € E, we have, by virtue of Theorem 2.2.1,

S DF@(&)[hl|- D*F(a(s)lhe] | < (D*F(os))h, H) (D (a(s)) e, )2
1/2

< G P F Gl A,

whence, in view of DF(z,)[h] = 0, we obtain
aw 1/2
| DF(y)[h] |< 7= (D*F(x.)[h, h])'/*.

By virtue of Theorem 2.1.1, we also have D2F(y)[h, h] > (1-w)2D?F(z.,)[h, h).
The above inequalities imply that A(F,y) < w(1 —w)~2, which, combined with
(2.2.33), implies (2.2.18). O

2.2.3 Newton method: Summary

The following theorem provides us with complete description of the behaviour
of the Newton method.

Theorem 2.2.3 Let F € S3(Q,E),z € Q and let the set X = {y € Q |
F(y) < F(z)} be closed in E. Then

(i) F is below bounded on Q if and only if it attains its minimum over Q.
If \(F,z) < 1, then F attains its minimum over Q;

(ii) Let A(F,z) < 00, Aw = 2 — 31/2 = 0.2679... and X € [\, 1).

Consider the Newton iteration starting at z,

(2.2.34) To=x; Tiy1 = T; + o (MF,z;))e(F,z;), i >0,
where

(2.2.35) e(F,z;) € Argmin {DF(z;)[h] + 2D?F(z;)[h, h] | h € E},

e A> N
(2.2.36) a' () = ) N>A> A
e PYCESVE Z A Z Axy

1, A< A
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The iterations are well defined (i.e., for all i we have xz; € X, \; = A(F, z;) <00
and e(F, z;) is well defined), and the following relations hold:

2.2.37
( ) {)\, > /\I} =
= {F(zi+1) < F(z;) — a(Xi —In(1 + X)) < F(z;) —a(N = In(1 + X))} ;

2.2.38
( ) {/\I 2 /\i Z A*} =

o1 Y Y
=>{,\1.+1§6_’§1_4'\z__<xi}&{1_,\i+1254’\(1—,\,-)25 (1—)\,-)};

4
(2.2.39) i< A} => {’\Hl < (1 ii)‘)? < %}
Moreover,
, N aw?(N) (1 + w(N))
(2.2.40) Ai < 1/3 = F(x;) ménF < 200 — ()

Proof. 1°. Let A(F,z) < oo. Let J be the set of all integers j > 0 that
satisfy the following conditions:

(1;) Process (2.2.34) is well defined for 0 < i < j; i.e., for all
these i, we have x; € X, A; < 0o, and e(F, z;) are well defined;
(2;) For 0 < < j, the implications (2.2.38)—(2.2.39) are true.

Let us prove that J = {j > 0}. First, let us show that 0 € J. Indeed,
(20) is evident, and to prove (1) we only must establish that e(F,z) is well
defined. This, however, follows immediately from Proposition 2.2.1 and the
above assumption that A(F,u) is finite for u = z.

It remains to prove the implication j € J = j+ 1€ J. Let 5 € J. Then
z; € X, and e; = e(F, ;) is well defined.

Assume that A; > X'. Let

o =sup{s € [0,0"(\;)] | z(s) = z; + se; € Q}.
Then o < min{1, )\j_l}. Using Theorem 2.2.1 (see (2.2.9)) and the inequality
o <(1+X)=0'(N),
we have in the case under consideration

14+ X 1
—-«/\j J +:\?ln(lfs)\j)> <0

(2.241) F(x(s)) — F(zj) < —aA? (s
for 0 < s < 0. Thus, z(s) € X, 0 < s < o, and since X is closed we have
z(a) € X. By the definition of o, the latter inclusion necessitates o = o'()\;),
which in turn implies that z;.; € X. Hence, in view of (1;) and the above
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remarks on A(F,u) and e(F,u), we are led to (1;41). Since z;41 € X, relation
(2.2.41), by the continuity arguments, holds for s = 0 = ¢/(};). In view of
(2;), this implies that (2;41). Thus, in the case under consideration, we have
j+1leld.

Now let A; < X'. Following the argument of item 1° of the proof of Theorem
2.2.2 with 4 = x = z; (the assumptions of the theorem are satisfied since X,
is closed in E together with X in view of z; € X) and making use of the
fact that o'(A) = o(A) for A < X, we obtain z;4; € X, which combined with
(1;) leads to (1;41). Relations (2.2.36), when applied to the above u, imply
(2.2.38)—(2.2.39) for ¢ = j. These latter relations, combined with (2;), lead to
(2j41). Thus, j+ 1€ J.

20, Now we are able to prove (ii). All statements in (ii), excluding (2.2.40),
follow immediately from the system of implications {(1;),(2;) | j > 0}. Let
us verify (2.2.40). Assume that A; < 1/3. The set

{ye Q| F(y) < F(z:)}

is closed in E together with X, since z; € X. Therefore (2.2.40) follows from
Theorem 2.2.2.(iii), where we set ¢ = x;, y = ;.

30. It remains to prove (i). Under the assumptions of the theorem, the set
{y € Q| F(y) < F(z')} is closed in E for each =’ € X, so that, by Theorem
2.2.2.(i), the implication

(2.2.42) (32’ € X : AM(F,2') < 1) = F attains its minimum over Q

holds. Therefore, to prove (i), it suffices to show that, if F' is bounded from
below, then A(F,z) < oo, and the premise in (2.2.42) is true.

The first statement follows immediately from the fact that, in the case of
A(F,z) = oo, there exists h € E such that D?F(u)[h,h] = 0 for all u € Q,
while DF(z)[h] < 0. This means that, on the intersection of @ and the ray
{z +th | t > 0}, the function F linearly decreases. Since X is closed and Q
is open, the above ray is contained in ¢, and F is not below bounded on Q.
This contradicts the assumption.

Thus, in the case of a below bounded function F', we have A(F,z) < oo.
Consider process (2.2.34). By virtue of (ii) and in view of (2.2.38), the first
stage of this process does terminate, i.e., z; € X and A(F,z;) < X < 1 for
some j. Thus, the premise in (2.2.42) holds. O

When proving (2.2.38), we never used the assumption that A’ > A, and, in
fact, have established the following.

Proposition 2.2.2 Let F € S (Q, E) be such that A\(F,z) < oo for some
(and then, in view of Proposition 2.2.1, for all) z € Q. Let u € Q. Then the
point

e(F,u)

+
uosu 14+ A(F,u)
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belongs to Q, and
F(u®) < F(u) ~ a{MF,u) — In(1 + A(F,u))}.

Comments. Let F be a-self-concordant and below bounded on @ and
let € Q. Assume that the set {y € Q@ | F(y) < F(z)} is closed in E. By
Theorem 2.2.3, F' attains its minimum over @ and Ao = A(F,z) < oo, while the
above-described Newton iterations converge (in the objective) to the minimizer
of F over Q).

Moreover, A; — 0, i — oo. Theorem 2.2.3 shows that the Newton process
can be divided into three sequential stages, each corresponding to one of the
following three conditions on the iteration number i:

i <ie(l)=minfi | A; < X'}

(1) <2 <4 (2) =min{i | A < A}
i > 0(2).

At the first stage, F' decreases at each iteration by a quantity that is not smaller
than a{\ —In(1+ X’)} = a)*; the number of iterations at this stage, i.(1), is
not greater than

t(1) =|(aX*) "V (F(x) — IrgnF) B

At the second stage, the quantities A; decrease, and the quantities (1 — A;)
increase as a geometric progression with the ratio x = (5 — \')/4; the number
of iterations at this stage, i,(2) — i.(1), is not greater than

H2) = 1+Jln‘l(n)ln(11:/;\;> [

At the third stage, the quantities \; decrease quadratically. It is important
that the behaviour of )\; at the second stage depends on )\ only, while at the
third stage it does not depend on any parameter of the objects involved.

The inequality A(F,z) < 1, which under the assumptions of Theorem 2.2.3
ensures the below boundedness of F', cannot be weakened. This is demon-
strated by the example

1
F(z) = ln; € S7((0,),R),
where A(F,z) = 1.

2.2.4 Behaviour of a strongly self-concordant function on its
Lebesgue set

The results on self-concordant functions established so far demonstrate that
such a function in its Dikin ellipsoid of a reasonable (less than 1) radius is fairly
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well approximated by its second-order Taylor expansion, which is the reason for
nice behaviour of the Newton minimization method as applied to the function.
Now, what happens outside the ellipsoid? In a “large” neighbourhood of a
point, the behaviour of a self-concordant function F' may be bad—it can go to
infinity at a finite distance. Nevertheless, it turns out—and this is important
for our further goals—that this is, in a sense, the only bad thing that can
happen. Namely, if F' is below bounded, then its behaviour on any Lebesgue
set {z | F(z) < b} resembles its behaviour on the ellipsoid. We are about to
represent the related properties; to simplify notation, we restrict ourselves to
strongly 1-self-concordant functions, as it always will be the case in our coming
applications.

Let @ be an open convex subset in £ and F be a strongly 1-self-concordant
below bounded function on Q. Since F' is strongly self-concordant, its Lebesgue
sets

J-‘b={:ceQ| F(:c)Sb+i5fF}

are closed in E for any b > 0; this observation and the below boundedness of
F imply that F' attains its minimum on @ (Theorem 2.2.3(i)). Let z(F') be a
minimizer of F' over Q. The results on the behaviour of F on F are as follows.

(i) Boundedness of the Lebesgue set in the “central metric.” For any z € Fy,
we have

(2.2.43) | & = 2(F) logry,r< X 1(b) < 30+ 1,
where x ! is the function inverse to
t s
t2/2 —£3/3+t4/12, 0<t <1,
xt)= [ fa-rparas={ V72 PRTENE 051
Z+§(t—1)’ t>1.
0 0

This is an immediate corollary of the following lower bound, which is useful
in its own right.

Proposition 2.2.3 Let f € S1(Q, E) and x € Q. Then, for every y € Q, we
have

(2.2.44) f) 2 f(z) + Df(@)ly — =]+ x(l ¥ — 2 ||z 5)-

Proof. Taking restriction of f on the line passing through x and y, we imme-
diately reduce the situation to the following one: () is an interval on the axis,
=0, y >0, and f is 1-self-concordant on Q. Assume first that f”(0) = 0;
then (2.2.44) is nothing but convexity of f. Now assume that f”(0) > 0; then,
without loss of generality, we may restrict ourselves to the case of f”(0) = 1
(this requires nothing but scaling of the argument), so that || z ||,¢ is simply
| 2 | and, in particular, || y ||¢,s/=| ¥ |= y. Now, in view of Theorem 2.2.1(i),
from f”(0) =1 it follows that f”(t) > (1 —t)2 for all t € Q, 0 < t < 1, while,
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from convexity of f, it follows that f”(t) >0, t € @, t > 1. Thus,

Yy s
@)= 10 = £ Oy = [ [(1-0ldeas = xtw),
00

as claimed. ]

Note that the final estimate 3b+ ; in (2.2.43) in the case of small b (less
than x(1) = 1) can be improved (in this range of values of b the quantity
x~! is given by another expression), but this is not the issue in which we are
interested now.

(ii) Boundedness of the Newton decrement. For any x € Fp, we have

(2.2.45) A(F,z) < v (b),
where ¢! is the function inverse to
P(A) = A= In(1+ ).

Indeed, since F' € S;(Q, E) is below bounded on Q, its Newton decre-
ment is finite (Proposition 2.2.1; the case of A(F,-) = oo is excluded, since
AF,z(F)) = 0). Now, since A(F,z) < oo, Proposition 2.2.2 tells us that
an appropriate step from z keeps the point in @ and reduces F' by at least
P(A(F,x)), so that Y(A(F,z)) < b, as claimed.

(iii} Compatibility of Hessians. For any x € Fy, we have

a(b)D?*F(z(F))[h, h] < D2F(z)[h, h]
(2.2.46)
< A(b)D?F(z(F))[h,h], h€E,

where L,
a() = (2x b+ 3+ 3uB)

A(b) — 2(1 + ¢~1(b))2+2b/¢(0.06).

Indeed, let W1,y = {y € E | D?F(z)[ly — x,y — z] < i} be the Dikin ellip-
soid of F centered at x of radius % Since F is strongly self-concordant on @,
this ellipsoid is contained in @, and in this ellipsoid we have D2F(y)[h, h] <
4D?F(x)[h, k] (both claims follow from Theorem 2.2.1). We immediately con-
clude that

F(y) - F(z) - DF(z)ly -2l <3,  y€Wip,

whence F(y) < ming F+b+3 +v71(8)/2, y e W, /2 (we have considered that
AMF,z) < ~1(b) and that | DF(z)[y — ] |< AM(F,z) || y — = ||-,r by definition
of A\(F,z)). Thus,

Wija C Foajavp-1(5)/20
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whence, in view of (i), || - ||z(r),F-diameter of W/, does not exceed a~Y2(b),
and we come to the left inequality in (2.2.46).

To prove the right inequality, let us act as follows. Consider the Newton-
type process

To=1z; Tiv1 =i+ (L+MFz)) te(Fz), i=12,....

In view of Proposition 2.2.2, this process is well defined, keeps the iterates in
Fb, and decreases F' at the ith step by at least ¥(\;), A; = A(F,z;). Let i* be
the first 7 such that A; < 0.06. Then

b
<14 —

$(0.06)"

We have || z; — Tit1 ||z, r= Ai/(1 + A;) (since || e(F,u) || F clearly equals
A(F,u)). In view of Theorem 2.2.1,

D?*F(zi)[h,h] < (1— || Tig1 — @i o, F) 2 D*F(zig1) h, h]
= (14 X\)2DF(zi11)[h, h), heE,

and, in view of (2.2.46), we have \; < 1~1(b) (recall that z; € F;), whence
D*F(z;)[h,h] < (1 4+ 47 1(0))2D?*F(ziy1)[h,h], heE.
It follows that
D2F(z)[h, h] = D*F(zo)[h,h] < (1 + 9 1 (b))*D?*F(z;)[h,h], hEE,
whence
D*F(z)[h,h] < (1 + 9~ 1(0)) /4O D2 F (5. ), h], k€ E.

On the other hand, relation A(F,z;») < 0.06 in view of the first inequality in
(2.2.17) ensures that

2(0.06) 1
i F 2 < _w—(—_ <3
| e — 2(F) |30y, #< (1 - w(0.06))? ~ 81’

whence, again in view of Theorem 2.2.1,
D%F(z;)[h,h} < 2D*F(z(F))|h,h}, hE€E.
Thus,
D*F(z)[h, h] < 201 + ¢~ 1(8))> /YOO D2 (2(F))[h,h], h€EE,

as claimed in the right inequality in (2.2.46). O
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Remark 2.2.1 Unpleasant exponential type of the second inequality in (2.2.46)
is inavoidable. Indeed, consider a below bounded 1-strongly self-concordant
function

F(t) =—Int+t, t>0.

Here o(F) = 1 and exp(—b) € F for b > 0, so that the best upper bound for the
ratio f"(t)/ f"(x(F)) = t=2 on Fy is at least exp(2b) and is therefore actually
exponential in b.

The last property we present is a “quantitive” version of the sufficient
condition for below boundedness (see Theorem 2.2.3(i)).
(iv) Let € @ be such that \(F,z) < 1. Then

1
2.2.47 Fi ith b=0.215+1 el I
( ) reF wi + 6(1+10g21—)\(F,x))

To establish (2.2.47), consider the Newton-type process (2.2.34)—(2.2.36) start-
ing at z and set X' = A(F, 1)

o =Ty Tit1 = z; + i€y, t= 1’ 23"'7

where - 12
N !
a,-:{)\i(3—,\i)7 N> x> =2-312
A’ig/\*,

/\i = /\(F, (L‘,‘), €; = e(F, :L‘,)

As we know from (2.2.39), (2.2.39), the process is well defined, keeps the it-
erates in QQ, and decreases A;’s. Consider the stage of the process comprised
of iterations with A; > A, let the corresponding iteration numbers be 0, ..., 7*.
Let us bound from above the quantity by which the objective is reduced at the
stage in question. Since F' is convex, we have

F(ziv1) > F(x;) + 0 DF(x;)[e(F, ;)] = F(z;) — 002 = F(x;) —
> F(:L‘l) - (1 - )\i) = F(l‘z) — Pi

whence

(2.2.48) F(z) = F(zi=41) <Y pi.
=0
On the other hand, in view of (2.2.39), we have

(2.2.49) pir1 > pi+ 3Pl 1=0,.,0" — 1

Let I; be the group comprised of all ¢ < ¢* with p; < 2pg. If there are indices
i :1 < 7* that are not covered by 11, let i(2) be the first of them and let I5 be
comprised of all indices i : i(2) < i < i* with p; < 2p;(). If there are indices
in 1,...,4* that are not covered by I; and I, then let i(3) be the first of them
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and let I3 be comprised of all indices ¢ : i(3) < ¢ < i* such that p; < 2p;),
and so on. After a finite number of steps, the set {1, ...,4*} will be partitioned
into groups I, j =1,...,k, in such a way that

L= {i(§),(G) + 1,3 +1) — 1}, (G(1) =0, i(k+1) =i* + 1),

pi <2p5, 1€
and p;(;11) > 2p;(;)- From the latter relation, it follows that

1 —
(2.2.50) k < log, LI
1- Xo

+1§log21

Furthermore, from (2.2.49), we conclude that the number [; of indices in I;
does not exceed Sp;(]l.), so that 3 ;cr pi < 16 (indeed, we have at most Spi’(;)
terms, at most 2p;(;) each). Thus,

F(zo) — F(zi41) < Epz < Z Z Pi
(2251) j=11€l;

1
<16k <161+ logy————}.
Now, MF,zix41) < A = 0.2679... < 1;, and therefore Theorem 2.2.2(iii) tells

us that
1+w(A)

—w(A)

which, combined with (2.2.51), leads to (2.2.47). i

F(zinyq) - anF < —wz()\*) < 0.215,

2.3 Self-concordant barriers

2.3.1 Definition of a self-concordant barrier

Recall that a self-concordant function is a smooth convex function with the
second-order differential being Lipschitz continuous with respect to the local
Euclidean metric defined by this differential. The functions that, in addition,
are themselves Lipschitz continuous with respect to the above local metric,
are of special interest to us. The latter requirement means precisely that
the Newton decrement of the function is bounded from above. We call these
functions self-concordant barriers. As we shall see later, these barriers play
the central role in the interior point machinery. In this section, we introduce
the notion of a self-concordant barrier and study the basic properties of these
barriers.

As already mentioned, a self-concordant barrier F' should satisfy the fol-
lowing relations:

| D*F(z)[h, h,h] |< consty{D*F(z)[h, h]}*/?,
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| DF(z)[] |< consta{D?F(z)[h, h]}/2.

Thus, generally speaking, there are two Lipschitz constants, const; and const,
responsible for the barrier. Note that a scaling F' — ¢F updates these constants

as follows:

1/2 1/2

const; — ¢ const;, consty — ¢/ consts.

In particular, we can enforce one of the constants to be equal to a prescribed

value; from a technical viewpoint, it is convenient to provide const; = 2. We
now give the precise definition.

Definition 2.3.1 Let G be a closed conver domain in a finite-dimensional
real vector space E and let 4 > 0. A function F : intG — R is called
a V-self-concordant barrier for G (notation: F € B(G,9)) if F is 1-strongly
self-concordant on int G and

H(F) = sup{)\?(F,z) | z € int G} < ¥.
The value ¥ is called the parameter of the barrier F'.

Example 0. The function F(z) = const is a 0-self-concordant barrier
for R™.

Example 1. The function F(t) = —Int is a 1-self-concordant barrier for
the nonnegative half-axis.

Remark 2.3.1 As we shall see later, F(z) = const is the only possible self-
concordant barrier for the whole R™ (see Corollary 2.3.1, below), and this is
the only possible self-concordant barrier with the parameter less than 1: If a
closed convex domain G C R" differs from the whole space and F is a U-self-
concordant barrier for G, then ¥ > 1 (see Corollary 2.3.3, below). Henceforth,
we always (unless the opposite is explicitly indicated) deal with barriers for
proper subsets of R™; so the reader should note that the value of the parameter
in question is > 1.

The following statement is almost evident (compare with Proposition 2.1.1).

Proposition 2.3.1 (i) Stability under affine substitutions of argument. Let
G be a closed convex domain in E, F be a 9-self-concordant barrier for G, and
let x = A(y) = Ay + b be an affine transformation from a space Et into E
such that A(ET)(Nint G # 0. Let

Gt =AY @), F(y)=F(A(y)):intG* - R.

Then F* is a 9-self-concordant barrier for G*.
(ii) Stability with respect to summation. Let G;, 1 < ¢ < m be closed

convex domains in E and let F; be ¥;-self-concordant barriers for G;. Assume
m

that the set Gt = () G; has a nonempty interior. Then the function
i=1

Ft=YF:intG* > R
i=1

is a (37, ¥;)-self-concordant barrier for G*.
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(iii) Stability with respect to direct products. Let Fi(z) be a ¥1-self-
concordant barrier for Gy C E; and Fy(y) be a J2-self-concordant barrier for
G2 C Ey. Then Fi(z)+Fa(y) is a (¥1+32)-self-concordant barrier for G X Gs.

Example 2 (the standard logarithmic barrier for a polyhedral set). As we
have already seen, the function (— Int) is a 1-self-concordant barrier for the ray
{t > 0}. From Proposition 2.3.1(i), it follows that the function —In(b — a”'z)
is a 1-self-concordant barrier for the half-space {z € R" | aTz < b}. Now,
from Proposition 2.3.1(ii), it follows that, if G is a convex polytope {z € R™ |
a,Tm < b;, 1 £i < m} and the linear inequalities defining G satisfy the Slater
condition, then the function

F(z)=- iln(bi —al'z)
i==1

is an m-self-concordant barrier for G. This standard logarithmic barrier for a
polytope underlies the pioneer interior-point methods for linear programming.

In what follows (Chapter 5), we shall present a number of self-concordant
barriers for various standard domains arising in nonlinear convex programming,

2.3.2 Basic properties

Self-concordant barriers possess a number of properties that are heavily ex-
ploited by the interior-point machinery. The following statement summarizes
most important of them. Denote by

Ty(x) =inf{t > 0| y+t ' (z —y) € G}
the Minkowsky function of G whose pole is at y. Recall that
We(z)={z € E| D*F(z)[z — 2,2 — 2] < r?}
denotes the Dikin ellipsoid of F' centered at z of the radius r.

Proposition 2.3.2 Let G be a closed conver domain in E and F be a U-self-
concordant barrier for G. Then

(1) Let z,y € int G. Then

(i.1) The unit Dikin ellipsoid Wy (z) belongs to G;

(i.2) The following inequalities hold:

(23.1) DF@)e 4] < {20
(232) DF(z)fy — ] < 0;
(23.3) F(z) < F(y) +9dIn T_—_}r—(x—);
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234)  F(®)2 F)+ DF@le~1] +In s — my(o);

235) | DF@H < T ADFWI Y, heE
2
(236) DPF(z)[h, ] < (11%”,%) D2 (y)[h,h].

Moreover, if z € 8G and m,(z) < (9Y2 +1)72, then
(2.3.7) DF(z)[z — z] > 1 — (9% + 1)%1,(x).

(ii) G = G+ EF (cf. Corollary 2.1.1) and F is constant along the directions
parallel to Ep.

Moreover, F' is bounded from below on int G if and only if the image of G
in the factor-space E/Eg is bounded.

If F is bounded from below, then it attains its minimum over int G at any
point of the set Xr that is a translation of Er : Xp = z(F)+ Ep, where z(F)
is (any) minimizer of F, and the (1 + 39)-enlargement of the Dikin ellipsoid
Wi(x(F)) contains G

233) {x € E| D*F(z(F))[z — z(F),z —2(F)| <1} C G
7 C{zeE| D*F(e(F))z - z(F),z — 2(F)] < (1+39)%}.

(iii) Let z € int G, h € E and gz(h) =sup{t | z £ th € G}. Then
(2.3.9)  {D?*F(z)[h, h]} /% < gu(h) < (1 + 39){D?*F()[h, h]} /2,

so that the diameter of the unit Dikin ellipsoid W1(z) in a direction h is at
least twice and at most 2(1 + 319) times the smaller of the distances from x to
the boundary of G in the directions +h.

(iv) The function

fla) = —ewp{~5F (@)}
is convez on int G.
Proof. (i) Relation (i.1) follows from Theorem 2.1.1(ii). It remains to verify
(i.2). Let
A={teR|y+tlzr—y)eitG}=(-T.T), T'>0, T>1.

Let
¢t)=Fy+tlz—y)): A—R.

By Proposition 2.3.1(i), we have ¢ € B(clA,d). It is possible that ¢ is a
constant function; then relations (2.3.1)-(2.3.3) for z and y under consideration
are evident. Moreover, in this case, z—y € Ep; thus, either x = y, or the whole
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line (z,y) is contained in Wj(z) and therefore in G ((i) is already proved!). In
both cases, we have m,(z) = 0, so that (2.3.4) holds.

Now assume that ¢ is not a constant function. Since ¢ is a barrier for
clA, we have ¢”(t) > 0 (Corollary 2.1.1) and (¢/(t))?/¢"(t) < ¥, t € A, or
"(t) > 97(¢'(t))%. Let 9(t) = ¢/(t) and assume that 1(¢p) > 0 for some
to € A. By the comparison theorem for differential equations as applied to

B d1(to)
10 = 5= o)

(note that ' = 97102, n(te) = ¥(to)), we have 9(t) > n(t) for each t > to such
that ¢ and 7 are well defined at ¢t. Thus, T — to < 9/¢(ty). We obtain the
following result:

If tg € A is such that ¢¥(tp) = ¢'(to) > 0, then T — ty < 1&(—1:05'

Let us verify (2.3.1). This relation is evident in the case of DF(z)[z—y] < 0.
Assume that DF(z)[z — y] > 0. Since DF(z)[z — y] = ¢'(1) = (1), we have
T —1 < 9/¢(1), so that (2.3.1) holds. It is clear that (2.3.1) holds also for
y € 0G.

Now let us prove (2.3.3). Relation (2.3.1) as applied to the barrier ¢ for
cl A leads to inequality ¢'(t) < 9/(T —t) for 0 <t < T < oo. Thus,

1
7 T
—_ < —_— =

F(z) = $(1) < $(0) +O/T_ dt = Fly) +91n —,
which implies (2.3.3). If T = o0, or if my(x) = 0 (which is the same), we have,
by applying (2.3.1) to ¢, ¢'(t) <0, t € A, so that (2.3.3) is evident.

Now let us prove (2.3.2). Since ¢ is convex, we have ¢'(t) > ¢/(0),0<t<T,
and, as it was already proved, in the case of T' < co, we have ¢'(t) < 3/(T —1t).
Thus,

#(0) < 2 = bmy(x) < 0,
or DF(y)[z —y] < 9. If T = oo, then, by (2.3.1), ¢'(t) <0, ¢t > 0, so, in this
case again, DF(y)[z —y] < ¥. The inequality obtained differs from (2.3.2) only
in notation.
Let us prove (2.3.4). The function ¢ is a barrier for cl A; thus, in the case of
T < 00, the relation 0 <t < T implies, by (i.1), the inequality ¢+ (4"()) /2 < T,
or the inequality ¢”(t) > (T —t)~2. Thus,

1
F(z) = $(1) = 6(0) + #/(0) + [ #"()1 - )t
0

1
> Fly) + DF@ls -] + [(1- (T - )2t
0

= F(y) + DF(y)z — y] — In(1 — my(z)) — my(x),
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which is required in (2.3.4). In the case of T = oo, we have my(z) = 0, and
(2.3.4) is an immediate consequence of the convexity of F.

Let us prove (2.3.5). The situation in an evident way can be reduced to
the case of Er = {0}. Let us introduce a scalar product on E as (h,s) =
D?F(y)[h,s] and let | - || be the corresponding norm. Let us identify the
first- and second-order differentials with the gradients and the Hessians. We
have F"(y) = I; thus, the open unit ball V' centered at y is contained in int G
((i.1)). Let 3 be the point on the ray [y, z) such that z lies between y and 3/’
and let V' be the image of V under the dilatation with the center at ¢’ and
the coefficient a =|| z~ % || /|l y =¥ |I. Then V' C intG is an open ball
centered at x with radius a. Let o' be such that 0 < o < a, h be the unit
normalization of F'(z) and let z = £ — o’h. Then z € intG and 7.(z) < 3,
which, by (2.3.1), gives (F'(z),z — z) < 9, or || F'(z) ||< 9/a’. The quantity
¥/c’ tends to #/(1 — my(x)) along an appropriately chosen sequence of values
of ¥ and o'; thus, || F/(z) ||< 9/(1 — my(x)). The latter inequality, by virtue
of choice of the scalar product, is (2.3.5).

Let us prove (2.3.6). Since Wi(y) C G, the set

V={z€E| D*F(y)[z —z,2 — 2] < (1 — m())?},

which is a union of the images of int W;(y) under dilatations with the centers
in int G, is contained in int G. It suffices to prove (2.3.6) under the assumption
that D2F(z)[h, h] = 1; moreover, we can assume that DF(x)[h] > 0 (otherwise,
we can replace h by —h). Under the notation

z(t) =z +th, ¢(t)=DF(z(t))[h], 0<t<T=sup{t| z(t) € intG},

we have 7' > 1 ((i.1)) and ¢'(¢) > (1 — )%, 0 < t < 1 (the latter relation
holds by virtue of Theorem 2.2.1 and the equality D?F(z)[h,h] = 1). These
relations combined with the inequality ¢(0) > 0 lead to the inequality ¢(¢) >
t(3 — 3t +12)/3, 0 <t < 1, or to the relation

DF(z(t))[z(t) — ] = té(t) > t3(1 — t + 3t%) = a(t).
By (2.3.1), the latter inequality means that 7. (x(¢)) > a(t)/(9+ a(t)). Taking
limit as ¢ tends to 1, we obtain my(z + h) > (1 + 39)~!, so that the point

z + (1 + 39)h does not belong to int G and hence does not belong to V. The
latter statement means that

(14 39)2D*F(y)[h, k] > (1 - my(z))? = (1 — my(z))*D?*F(x)[h, b},

which is required in (2.3.6).
Let us prove (2.3.7). Let A = {t| 2+ t(x — z) € int G}. Then

A=(0,T), T=m;z)>(1+9%2
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Let ¢(t) = F(z + t(z — z)). Then ¢(t) is a barrier for cl A, so that ¢"(t) >
t72, t € A ((i.1)). When 1 < t < T, we have, by (2.3.1),
9t

t'(t) < e

(we set 1/(T —t) =0 when T = 00). Thus,

or
9 1
"< ——-14= 1<t<T.
dW<F-+yp st<

If T < oo, then we can take in the above inequality t = (1 + 91/2)"1x;1(x)
(under the premise of (2.3.7) this value of ¢ is > 1), which leads to

¢(1) < -1+ (1 + 9" m.(2).

In the case of T = oo, the latter relation follows from the above inequality as
t — o0. Thus,

DF(z)[z — z] = —¢/(1) > 1 — (1 + 9V2)%x,(x).

Thereby (i) is proved.

(ii) The fact that F is constant along the intersections of int G with Ep+z,
z € int G, is evident because A(F,:) < oo; since F' tends to oo as the argu-
ment approaches a boundary point of G, the sets z+ Ep, with z € int G are con-
tained in int G. To prove the remaining statements of (i), we can assume
that Er = {0} (otherwise, we can consider the restriction of F onto the inter-
section of G and a subspace complement to Er). Since in the case of Ep = {0}
the function F is strongly convex, it is clear that in the case of bounded G
the function F' attains its minimum over int G at a unique point. Now as-
sume that G is unbounded; let us prove then that F' is unbounded from below.
Indeed, int G contains a ray L = [y,z), y,= € intG. By (2.3.1), we have
DF(2)[xt —y] < 0,z € L; if mx(y) = 0, then int G contains the ray [z,y);
hence DF(z)[y — z] < 0,z € L, or D?F(2)[y — z] = 0. The latter relation
contradicts the assumption that Er = {0}. Thus, n;(y) > 0, and hence, for
z =y + t(z — y), we have lim;_,o 7, (y) = 1. By (2.3.4), we have

F(y) 2 F(21)+DF (2t)[y— 2] —In(1 =7, (y)) =72 (y) = F(2)—In(1—-mz(y)) -1
(since DF(z;)[y — zt] > 0 by the above arguments), which implies that
F(z) < F(y) +In(1 — 7, (y)) +1 — —o0, t — 00.

It remains to verify (2.3.8). The left inclusion follows from (i.1). To prove
the right inclusion, it suffices to show that, if z(F') is the minimizer of F' over
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int G and h € E is such that D2F(z(F))[h,h] = 1, then the point z(F) +
ph, p = 1 + 39, does not belong to intG. Let z(t) = z(F) + th and let
@(t) = DF(z(t))[h]; then ¢(0) = 0. Then, by choice of h and Theorem 2.2.1,
we have ¢/(t) > (1 —t)?, so that ¢(t) > t(3 — 3t +12)/3, 0 < t < 1. At the
same time, by (2.3.1), we have

Ome(ry (@ ()
PO G ®)

These results imply that

1
To(ry(2(1)) > 1339’

which leads to the right inclusion in (2.3.8). Thereby (ii) is proved.

Let us prove (iii). The left inequality in (iii) follows from (i.1). To prove the
right inequality, it suffices to consider the case of D?F(z)[h, h]=1,DF(x)[h] >0
and to verify that the point z + (1 + 39)h does not belong to int G. The latter
statement can be proved in the same way as used in the proof of the right
inclusion in (2.3.8).

To prove (iv), it suffices to note that

D*f(z)[h, h] = %f (2)(9D*F(z)[h, h] - {DF(z)[h]}?) 20. O

Corollary 2.3.1 Let F be a 9-self-concordant barrier for a closed convex do-
main G C E and let h be an element of the recessive cone of G, i.e., x+th € G
forallz € G and all t > 0. Then, for all x € int G, we have

{D*F(2)[h, h]}'/* < ~DF(x)[h].

In particular, if int G contains a line xg + Rh, then F is constant along this
line.

Proof. For z € intG, let L = {t | = +th € G}. Then L is a ray of the form
[~a, 00), where 0o > a > 0, and the function f(¢) = F(z+th), —a <t < 00, is
a ¥-self-concordant barrier for L (Proposition 2.3.1(i)). We should prove that

{7 (0} < —£'(0).

It is possible that f”(0) = 0. In this case, Ey = R, and therefore (see Proposi-
tion 2.3.2(ii)) L = R and f is constant, so that the statement is evident. Now
let f(0) > 0, so that E; = {0}. In view of Proposition 2.3.2(ii), f does not at-
tain its minimum over int L. At the same time, (2.3.2) means that f'(0)7 <9
for all 7 from the interval (—a, 00), and therefore f(0) < 0. To complete the
proof, it suffices to note that A(f,0) = (/(0))2/f"(0) > 1, since otherwise f
would attain its minimum on int L (Theorem 2.2.3(i)). m]
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2.3.3 Logarithmically homogeneous barriers

Now let us introduce a special class of self-concordant barriers for convex cones.
This class is closely related to potential reduction interior-point methods (see
Chapter 4).

Definition 2.3.2 Let K be a closed conver and proper (i.e., K # E,) cone
with a nonempty interior in a finite-dimensional real vector space E, let 9 > 1,
and let F : int K — R be a function. F is called 9-logarithmically homoge-
neous barrier for K (notation: F € By(K)) if F is a C®-smooth convez function
on int K such that F(z;) — oo for each sequence {z; € int K} that converges
to a boundary point of K, and, for each x € int K and each t > 0, we have

(2.3.10) F(tz) = F(z) - ¥1nt.

If F € By(K) and F 1is 1-self-concordant on int K, then F is called 9-normal
barrier for K (notation: F € NBy(K)).

Example 3. The standard logarithmic barrier (see Example 2) for the
nonnegative orthant R’

F(z)=- Zln(m,-)
i=1

is an n-normal barrier for this cone.
The following statement is evident (compare with Proposition 2.3.1).

Proposition 2.3.3 (i) Stability with respect to linear homogeneous substi-
tutions of argument. Let K C E, F € By(K) and let A: H — E be a
linear homogeneous mapping from a finite-dimensional linear space H into
E such that A(H)(\int K # ® and A7L(K) # H. Then the set A"}(K) is a
closed and proper conver cone with a nonempty interior in H, and the function
®(u) = F(Au) : int A"Y(K) — R belongs to By(A~Y(K)). If F € NBy(K),
then also ® € NBy(A~1(K)).

(ii) Stability with respect to summation. Let K; C E, 1<% < m be such
that the cone K = (i~, K; has a nonempty interior and let F; € By, (K;), 1<
i < m. Then the function F(z) = Y i, Fi(z) : int K — R belongs to
By(K), 9= Sy 9. If F; € NBy,(K;) for all i, then also F' € NBy(K).

(iii) Stability with respect to direct products. Let K; and Ky be closed
convez cones with nonempty interiors in the spaces Fy, Es, respectively, Ky #
El, K, 7é E,. Let F; € Bgi(Ki), i=1,2. Then F](.’L’) +F2(y) € Bgl+192(K1 X
K»), and, if F; € NBy,(K;), i = 1,2, then also Fi(z)+ F2(y) € NB191+,92(K1 X
Ky).

A logarithmically homogeneous barrier satisfies a number of useful identi-
ties.
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Proposition 2.3.4 Let F' be a ¥-logarithmically homogeneous barrier for a
cone K. Then for each x € int K, h € E and each t > 0,

(2.3.11) DF(tx) =t 'DF(z),
(2.3.12) DF(z)[h] = —D*F(z)[z, h),
(2.3.13) DF(z)[z] = -9,
(2.3.14) D*F(z)[z,z] =¥,
(2.3.15) A(F,z) = 0.

Proof. Differentiation of (2.3.10) in « leads to (2.3.11), and differentiation of
(2.3.10) in t at the point ¢t = 1 leads to (2.3.13). Differentiation of (2.3.13) in =
in the direction h leads to (2.3.12); substituting h = x into (2.3.12), we obtain
(2.3.14).

It remains to prove (2.3.15). We have

A2(F, ) = sup{2DF(z)[h] — D*F(z)[h,h] | h € E}
= sup{2D?F (x)[—z, h] — D*F(z)|h,h]} = D*F(2)[z,z] = ¥
(we have used (2.3.12) and (2.3.14)). a

Corollary 2.3.2 A ¥-normal barrier for K is a ¥-self-concordant barrier
for K.

This is an immediate consequence of the definitions and relation
(2.3.15). O

Proposition 2.3.5 Let K C FE be a closed convex cone and let F be a ¥-
logarithmically homogeneous barrier for K. Let E(K) be the mazimal subspace
of E contained in K. Then F is constant at each set of the form z+E(K), = €
int K. If F is normal, then also D?F(z)[h, h] # 0 for each h € E\E(K).

Proof. Let h € E(K) and z € int K. We wish to prove that DF|z][h| = 0.
Otherwise, we can assume that DF(z)[h] > O (replacing, if necessary, h by
—h). Let ¢(s) = DF(x + sh)[h]. Since the line {z + sh} belongs to int K (the
definition of E(K)), the function ¢ is well defined and continuously differen-
tiable on the half-axis {s > 0}. We have ¢(0) > 0 and

¢ (s) = D*F(z + sh)[h, h] > A\"%(F, z + sh){DF(z + sh)[h]}?
(the definition of A(F,-)). By (2.3.15), we conclude from the above inequality
that ¢/(s) > 97 1¢?(s), whence ¢(s) > #(0) > 0, s> 0, and (¢71(s)) < —971,
or ¢ (s) < ¢71(0) — ¥~ Ls, s> 0; the resulting relation

0<¢(s) <97 (0)—07"s, >0,
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is impossible. Thus, DF(z)[h] =0, z € int K,h € E(K), and F is constant
along z + F(K).

It remains to prove that, if F € NBy(K), then D2F(m)[h, h] > 0 for each
z € int K and each h € E\E(K). Since F is a J-self-concordant barrier for K
(Corollary 2.3.1), the statement under consideration follows from Proposition
9.3.2(i). O

2.3.4 Bounds on the parameter of a self-concordant barrier

It will be demonstrated (and this is the essence of the book) that it is possible
to associate a self-concordant barrier for a closed convex domain with a number
of interior-point methods minimizing linear and convex quadratic forms over
the domain. The result is that the parameter of the barrier is responsible for
the rate of convergence of these methods (the less the parameter, the better
convergence). Therefore, we are interested in possible values of the parameter.
As we demonstrate, for an n-dimensional domain, there always exists an O(n)-
self-concordant barrier, and, generally speaking, the parameter cannot be less
than n. The latter statement will be proved immediately; the former one,
i.e., the existence, for an arbitrary closed convex domain in R", an O(n)-self-
concordant barrier, is the subject of §2.5.

The lower bound for the value of the parameter is given by the following
proposition.

Proposition 2.3.6 Let G be a convezx polytope in R™ such that certain bound-
ary point of G belongs exactly to k of (n — 1)-dimensional facets of G, with
the normals to these facets being linearly independent. Then the value of the
parameter ¥ of any 9-self-concordant barrier F' for G cannot be less than k.
In particular, the n-dimensional nonnegative orthant, simplex, and cube do not
admit barriers with the parameter less than n.

Proof. Under an appropriate choice of the coordinates, we can assume that
the boundary point mentioned in the statement is 0 and that in a neighborhood
of this point G is defined by inequalities z; <0, 1 <i < k. Let

k
{E(t) =t Z €5,
i=1

gDty =—t Y e 1<i<k
1<k, ji#i

(e; are the unit vectors of the axes). Then, for all sufficiently small ¢ > 0, the
points z(¢) belong to int G, the points x(* (¢) belong to 4G and Tai () (2(t)) — 0
as t — 0. The latter fact, by virtue of (2.3.7), implies that

lim inf DF(2(t))[z () - 2(8)] > 1;
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hence
k
k < lim inf; DF(z(t))|zP(t) — z(t)] = lim inf DF (x(£))[0 — z(t)] < ¥

(the latter inequality holds by (2.3.2)). ]

Corollary 2.3.3 If G C R" is a closed convex domain that differs from R™
and F is a 9-self-concordant barrier for G, then 9 > 1.

Proof. Since G is a closed convex domain that differs from R", its inverse
image under certain affine embedding A : R — R™ such that A(R) intersects
int G is the nonnegative ray {¢t > 0}. From Proposition 2.3.1(i), it follows that
&(t) = F(A(t)) is a J-self-concordant barrier for the latter ray, so that ¢ > 1
in view of Proposition 2.3.6. O

2.4 Self-concordance and Legendre transformation

In what follows, we demonstrate that the Legendre transformation of a strongly
self-concordant function is strongly self-concordant with the same parameter
value. Similarly, the Legendre transformation of a normal barrier for a cone is
a normal barrier with the same parameter value for the anti-dual cone. The
latter fact will be heavily exploited in Chapter 4 in connection with potential
reduction interior-point methods.

2.4.1 Legendre transformation of a strongly self-concordant
function

Let E be a finite-dimensional real vector space and E* be the space conjugate
to E. The value of a form s € E* at a vector z € E will be denoted by (s, z).
If F is a C?smooth convex function defined on a convex domain G C E,
then F'(z) and F"(z) for z € G will denote the element of E* and the linear
mapping from E into E*, respectively, uniquely defined by the relations

DF(z)h) = (F'(z),h), D?F(z)[h,e] = (F"(z)h,e), h,ecE.
Note that, since F is convex, F" is symmetric positive-semidefinite,
(F"(z)h,e) = (F"(z)e,h); (F"(x)h,h) > 0.
Note also that, if F” nondegenerate, then
(2.4.1) A(F,z) = <F'(x), (F”(z))~1F'(z)> .

Let a > 0. A pair (Q, F) comprised of a nonempty open convex set Q) C
E and a nondegenerate (i.e., with a nondegenerate Hessian) strongly a-self-
concordant on @ function F will be called an (a, E)-pair. The Legendre trans-
formation of an (a, E)-pair (Q, F) is defined as the pair (Q, F)* = (Q*, F*),
where

Q" =9(Q), @(z)=DF(z)[]:Q— E,
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F*(£) = sup{{¢,z) - F(z) | z € Q}.

Theorem 2.4.1 Let (Q,F) be an (a, E)-pair and (Q*, F*) be its Legendre
transformation. Then (Q*, E*) is an (a, E*)-pair and

Q* ={¢ € E*| the function F¢g(z) = F(z) — (£,z) is below bounded on Q}.
Moreover, (Q*, F*)* = (Q, F) (as usually, the space (E*)* is identified with E).

Proof. Let

Q' = {€ € E*| the function F¢(z) = F(z) — (£,z) is below bounded on Q}.

We will prove that Q' = Q*. Since the inclusion Q* C @’ is evident, we have
to establish the inverse inclusion. Let £ € @', so that F¢(z) is below bounded
on Q. It is clear that a linear form is a’-self-concordant on E for each a’ > 0,
so that F¢ € S7(Q, E) (see Proposition 2.1.1(ii)). Since this function is below
bounded on @, it attains its minimum at a point of this set (Theorem 2.2.3(i)),
which means that £ € ®(Q).

Since D?F(z) is nondegenerate for z € Q, Q* is open, while Q' is clearly
a convex set. Thus, the set Q* is nonempty, open, and convex. In view of
well-known properties of the Legendre transformation, it follows that, if F is
a convex function on @ from C3 such that D?F is nondegenerate, then F* has
the same properties with respect to Q*.

To show that F™ is self-concordant with the parameter value a, we fix a
point z € @ and note that, for all e, h € E, we have

DF(z)[h] = (®(z),h),
DF*(®(x))[s] = (s, 2},
(®'(z)h,e) = D*F(z)[h, ¢,

((@'(2)h)'h, h) = D°F(z)[h, h, h],

and

F*(3(x)) = (2(x),z) — F(z)

((®'(z)h)'h denotes the derivative of ®'(z)h with respect to z in the direc-
tion h; similar notation is used in the remaining formulas).

Taking the derivatives of these identities along the directions h and e, we
obtain
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DF*(®(z))[®'(z)h] = (¥ (z)h,z) = (z)[h, z],
D?F*(®(x))[®'(x)h, ' (z)e] = (DF*(<I>(w))[<I>’(w) h))'e

—DF*(®(x))[(®'(z)h) €]

= ((®'(z)h)e,z) + (¥ (z)h,e)
—{(2'(z)h)'e, z)

= (®/(x)h,e) = D*F(z)[h, €],

D3F*(®(z))[®' (z)h, @' (x)h, @' (2)h] = (D F*(®(x))[®'(z)h, &' (z)R]) A

—2D*F*(9(2))[®' (x)h, (¥'(z)h)'h]

= ((2'(z)h, h))'h
~2D?F*(2(z))(®'(z)h, (' (z)h)'h]

= D3F(z)[h, h, h]
—2D%F*(®(2))[®' (x)h, (®'(x)h)'h]

= D3F(z)[h, h, h]
~2D2F(z)[{®'(z)} ' {(®'(z)h)'h}, h]

= D3F(z)[h, h, h]
~2(®'(x){®'(z)}{(®'(2)h)'h}, k)

= D3F(x)[h, h, b
—2((®'(z)h)'h, hy = —D3F(z)[h, h, ).

Hence, for all z € Q) and h € E, we have

| D*F*(®(x))[®' (z)h, &' (z)h, @' ()h] |
(2.4.2) =| D3F(z)[h, h, b} |< 20 Y2(DF(z)[h, h])*/?
= 20" V2(D?F*(®(2))[®' (x)h, ®'(z)R])>/2.

As (z,h) runs throughout Q x E, (®(z),®(z)h) runs throughout
Q* x E*; therefore (2.4.1) means that F* € S,(Q*, £*). It remains to show that
F*(&;) — oo for each sequence {&; € int Q*} converging to a point £ € 9Q*.
To do this, assume that {F*{¢;)} is bounded from above. Then the functions
F¢,(z) are uniformly in ¢ bounded from below, and the same is true for Fg.
The latter fact, by virtue of the equality @' = Q*, leads to £ € Q*, which
is a contradiction (since Q* is open and & € 8Q*). Thus, F* € SH(Q*, E¥),
which, in view of the above results, means that (Q*, F*) is an (a, E*)-pair.
The equality (Q*, F*)* = (Q, F) follows immediately from the above results
and the standard properties of the Legendre transformation. 0O
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2.4.2 Legendre transformation of a self-concordant barrier

Now let us describe the Legendre transformations of self-concordant barriers.
For this purpose, let us introduce some notation. For a closed convex domain
G C E, let R(G) be the recessive cone of G

R(G)={hecE|z+theG, VzeG Vt>0}

Also, let
R*(G) ={s € E*| (s,h) <0Vh e R(G)}

be the cone anti-dual to R(G). Note that, if G does not contain any straight
line, then R*(G) is a closed convex cone with a nonempty interior in E*.

Theorem 2.4.2 Let G be a closed convex domain in E that does not contain
any straight line and let F be a ¥-self-concordant barrier for G. Then the
Legendre transformation F* of F is defined precisely on the interior of R*(G)
and satisfies the following relations:

(a) F* is strongly 1-self-concordant on int R*(G) and D?F*(s) is nonde-
generate, s € int R*(G);

(b) sup{D?F*(s)[s,s] | s € int R*(G)} < ¥

(c) The support function of G

S(s) = sup{(s,z) | z € G}

satisfies the inequality
S(s) — g < DF*(ts)[s] < S(s), s € int R*(G).

Proof. Since G does not contain straight lines, D?F(z) is nondegenerate,
z € int G (see Proposition 2.3.2(ii)). Therefore (int G, F) is a (1, E)-pair, so
that its Legendre transformation is an (1, E*)-pair (Theorem 2.4.1). Let us
prove that the domain G* of F* is precisely the interior of R*(G). As we
have seen in Theorem 2.4.1, G* is the image of int G' under the transformation
z — DF(z). If x € intG and h € R(G), then z + th € intG, t > 0, and
therefore DF(z)[h] < 0 (see (2.3.2)). Thus, G* is contained in R*(G), and
since G* is open, G* C int R*(G). Let us verify the inverse inclusion. Assume
that s € int R*(G). In view of Theorem 2.4.1, to prove that s € G*, it suffices
to establish that the function f(z) = (s,z) — F(z) is above bounded on int G.

Let | - | be some Euclidean norm on E. Since s € int R*(G), we have for some
a>0:
(2.4.3) (s,h) < —a| b}, h € R(G).

Assume that there exists a sequence {z; € int G} such that f(z;) — o0, i — oo.
In particular,

(2.4.4) | z; |— 00, 1 — 00
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(recall that F is a barrier). Let y be some point of int G. In view of (2.3.3),
we have

(2.4.5) f(zs) < (s,z:i) — F(y) — 9 1In(1 — 7z, (y))-

From (2.4.3) and (2.4.4) it follows that (s,z;) < —(a/2) | z; | for all large
enough . At the same time, since y is an interior point of GG, we clearly have
7z, (y) < 1—c|x; |71 for some positive c and all large enough 4. Thus, (2.4.5)
implies that
a | z; |
flzi) < 3 | z: | —F(y) +191nT
for all large enough i, so that f(z;) — —oo, ¢ — oo. The latter relation
contradicts the origin of {z;}.
Thus, G* = int R*(G). This combined with Theorem 2.4.1 proves the
statement concerning the domain of F* and (a).
Let us prove (b). By virtue of the standard properties of the Legendre
transformation, we have (F*)"(F'(z)) = (F"(z))™!, z € int G, so that

D*F*(F'(2))[F'(z), F'(2)] = (F'(z), (F"(2)) "' F'(2)) = X*(F,)

(see (2.4.1)). Since F'(int G) = int R*(G), (b) follows.
It remains to prove (c). In view of the standard properties of the Legendre
transformation, we have, for s € int R*(G),

z(t) = (F*)(ts) € int G; F'(z(t)) = ts;

(24.6) DF*(ts)le] = {e,a(t)), e€ E".

From the first relation in (2.4.6) and the definition of the support function, it
follows that DF*(ts)[s] < S(s). On the other hand, (2.4.6) implies that, for
z € GG, we have

(5,2 = $({ts,2(0) + (15,2 — (1)

- %DF*(ts)[ts] + % (F'(2(t)), @ — o(t)) < DF*(ts)[s] +

|

(the latter inequality follows from (2.3.2)). Thus,
04
S(s) =sup{(s,z) | x € G} < DF*(ts)[s] + e

and (c) follows. a
The arguments used in the proof of (a) and (b) admit a straightforward
inversion, which leads to the following result.

Theorem 2.4.3 Let K be a closed convex cone with a nonempty interior in E*
and let F* be strongly 1-self-concordant on int K function with nondegenerate
second-order differential such that ¥ = sup{D?F*(s)[s,s] | s € int K} < oo.
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Then there exists a closed convex domain G C E that does not contain any
straight line and a 9-self-concordant barrier F' for G such that K = R*(G) and
F* is the Legendre transformation of F. G is uniquely defined by its support
function S(s) = sup{(s,z) | * € G}, which can be found from the relation

S(s) = tlg& DF*(ts)[s], s € int R*(G).

2.4.3 Legendre transformation of a self-concordant logarithmically
homogeneous barrier

This transformation proves to be a barrier of the same type, as it is demon-
strated by the following theorem.

Theorem 2.4.4 Let K be a closed convex pointed (i.e., K((—K) = {0}) cone
with a nonempty interior in E and let F' be a ¥-logarithmically homogeneous
self-concordant barrier for K. Then the Legendre transformation F* of F is
a 9-logarithmically homogeneous self-concordant barrier for the cone R*(K)
anti-dual to K.

Proof. Since K is a pointed cone, it does not contain any straight line. There-
fore, from Theorem 2.4.2 it follows that F* € S; (int R*(K), E*), and, to prove
the theorem, it suffices to verify that F™* is ¥J-logarithmically homogeneous as
follows:

F*(ts) = F*(s) —JInt, se€intR*K), t>0.

‘We have

F*(ts) = sup{(ts,z) — F(z) | z € int K} = sup{({s,z) — F(t ') | z € int K}
= sup{(s,z) — F(z) + 9Int™! | z € int K} = F*(s) — dInt. O

From the definition of the Legendre transformation F* of a function F, it
follows that F(z) + F*(z) — (s,z) > 0, and the infinum of the right-hand side
of the latter inequality over z, as well as over s, equals zero. In the case when
F is a self-concordant logarithmically homogeneous barrier for a cone, we can
establish another inequality of this type.

Proposition 2.4.1 Let K be a closed convexr pointed cone with a nonempty
interior in E, let F' be a 9-logarithmically homogeneous self-concordant barrier
for K, let K~ = R*(K) be the cone anti-dual to K, and let F* be the Legendre
transformation of K. Let

V(s,z) = F(z) + F*(s) + ¢In(— (s,z)) : int K~ x int K — R.

Then
(2.4.7) V(rs,tz) =V (s, ), T,t >0,
(2.4.8) V(s,z) > ¥Ind -9,

and the above inequality is an equality if and only if s = tF'(z) for some t > 0.
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Proof. Relation (2.4.7) is evident, since F* and F are ¥-logarithmically ho-
mogeneous (Theorem 2.4.3). Let us fix so € int K,z € int K, and let p =
— (80, Z0). The function f(s) = F(zo) + F*(s) +¥Inp: int K~ — R is strictly
convex. Since F* is logarithmically homogeneous, we have f'(ts) = t 1 f/(s)
(see (2.3.11)), and since F* is the Legendre transformation of F, we have
(F*)(F'(x9)) = zo. Combining these two observations, we conclude that the
derivative of f at the point s(z¢) = (p/9)(F)'(zo) € int K equals (9/p)zo; see
below:

v .
(2.4.9) Df(s(xg))le] = . (e, o) , ec E”.
In addition, in view of (2.3.13), we have

(2.4.10) — {s(z0), zo) = p.

Equations (2.4.9) and (2.4.10) mean that s(zp) is the minimizer of f(-) over
the set {s € int K~ | — (s,zq) > p} as follows:

(2.4.11) se€int K~ ,—(s,zo) 2 p = f(s) > f(s(xg)).

Moreover, since f is strictly convex, the above minimizer is unique. Now note
that s satisfies the premise in (2.4.11) (the origin of p), so that

(2.4.12) V(s0,20) > f(s(z0)),
and the equality in (2.4.12) implies that

(2.4.13) so = s{zg) = —@if—(ﬁF'(xg).

We also have

f(s(20)) = F(z0) + F*((p/9)F'(z0)) + d1np
— Flxo) + F*(F'(20)) — 9lu(p/8) + O1np

=99 + F(zo) + F*(F'(20))

(we have considered that F* is ¥-logarithmically homogeneous). In turn,
since F™* is the Legendre transformation of F', we have F(xzg) + F*(F'(zg)) =
(F'(xp), o), and the latter quantity, in view of (2.3.13), equals —9. Thus,
f(s(zg)) = 9Ind¥ —¥. Now (2.4.12) can be rewritten as V (sg,z¢) > JdInd — 9,
and (2.4.8) is proved. From the above remarks it follows that the equal-
ity in (2.4.8) implies that s = tF'(z) for some ¢ > 0. Conversely, if
s = tF'(z), t > 0, then the above calculations immediately prove that (2.4.8)
is an equality. a
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2.5 Universal barrier

In this section, we demonstrate that an arbitrary n-dimensional closed convex
domain admits an O(n)-self-concordant barrier. This barrier is given by cer-
tain universal construction and, for this reason, will be called universal. In
fact, the universal barrier usually is too complicated to be used in interior-
point algorithms, so that what follows should be regarded as nothing but an
existence theorem. At the same time, this existence theorem is very important
theoretically, since it means that the approach we are developing in principle
can be applied to any convex problem.

Theorem 2.5.1 There exists an absolute constant C such that each closed
convez domain G in R™ admits a (Cn)-self-concordant barrier. If G does not
contain any one-dimensional affine subspace of E, then we can take as the
above barrier the function

(2.5.1) F(z)=0(1)In| G*(z) |: int G — R,
where O(1) is an appropriately chosen absolute constant;
G'(z)={peR"| ¢"(y—2) <1Vy € G}

is the polar of G with respect to the point z; and | - | denotes the Lebesgue
n-dimensional measure.

Remark 2.5.1 Note that, if G in the above theorem is a cone, then the barrier
defined in the theorem ts logarithmically homogeneous.

Proof. Without loss of generality, we can restrict ourselves to the case when
G does not contain any straight line.

1%, For z € intG, the polar G*(z) clearly is a bounded closed convex
domain (note that int G*(z) # @ since G does not contain lines and that the
boundedness of G*(z) follows from the inclusion z € int G). Hence the function

f(z) =| G*(z) |

is well defined and positive on int G. If z; € int G and z; — x € 3G, then all
of the sets G*(z;) contain certain fixed open nonempty set (since the sequence
{z;} is bounded), and, at the same time, these sets are not uniformly bounded
(since limz; € 8G). Since G*(-) is a convex set, we have f(z;) — oco. Thus,
the function

3(z) = In ()

is well defined on int G and tends to oo as the argument belonging to int G
approaches a point from 0G.
20, Let S be the unit sphere in R™ and let

p(¢) =sup{¢”y | y € G} : R* - R| J{+o0}
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be the support function of G. For z € int G, we have
1
G*m:{r €850<7<r, E*————},
whence

£@) = = [(v(9) - 672) "as(6)

([ denotes the integral over the unit sphere in R™; dS(¢$) means the element
of the Lebesgue area; of course, (+00)™™ = 0). It is clear that f (and hence
®) is C*°-smooth on int G; moreover,

1) (n+1-1)
D s@th, . b = ORI [ 509) — g7y -mas(o)

_ (—1)l£::+z)! / (ThYdy = (—1)l§:+z)lll(h)
G*(a)

(we have used the description of G*(z) in terms of r;(¢)). A straightforward
computation leads to the following expressions (where z € int G and I does
not depend on h):

D&(2)[k] = ~(n+ DL (W),

D*®(z)[h,h) = (n+ 1)(n + 2)b(W)Ig ' — (n + 1)*{L(A)I5'}?,
D%®(2)[h, b, k] = —(n +3)(n+ 2)(n+ DI3(R) ;"
+3(n + 2)(n + 1)2L(h) (k)12 — 2(n + 1)’ (R)I53.
Let us fix z € int G and h € R™ such that || & []=1 and let
A={teR|yeG(z):yTh=t},

Y(t) = (mesn_l{y eG* =) | y'h= t})l/(n—l)

where mes, 1 denotes the (n — 1)-dimensional Lebesgue measure. Then,
clearly,

?

LW = / (8 dt,
A

~1/(n—1)
mn=wa(/w*vwﬂ ;

A

hence n(t) > 0, t € A, and [7™ 1(t)dt = 1. Note that the function n(t) is
concave on the segment A (the latter is the Brunn-Minkowsky theorem; see
[GR 60].

We see that the differentials of ® can be expressed in terms of the quantities
I;(h)I;*. These quantities can be thought of as the moments of certain random
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variable £ (taking values in A with the probability density n*~1(¢)). Let us
express the initial moments in terms of central moments; i.e., let us denote (£
means the averaging operator)

p=nhLI" =&
o = b(h)Iy*' - p* = £{¢ - £}
0 =£{¢ - £€)°.
A straightforward computation leads to
Do(z)[h] = —(n + 1)p;
D2®(z)[h,h] = (n+ 2)(n + 1)o® + (n + 1)?;
D3®(z)[h,h,h] = —(n+3)(n+ 2)(n+ 1)0 — 6(n + 2)(n + 1)o’p — 2(n + 1)1°.
Thus, ® is convex and
| D®(z)[h] |< (n+ 1)Y2{D?®(z)[h, h]}\/2.

Considering the results of 19, we see that, to prove the theorem, it suffices
to verify that ® is self-concordant with an appropriate absolute constant as
the parameter value. In other words, it suffices to prove the inequality

| (n+3)(n+2)(n+1)0+6(n+2)(n+ Do’u+2(n+1)u |
< O{(n +2)(n+ 1)o® + (n + 1)p2}3/2.
The latter inequality, in turn, would follow from the inequality
|6 |< O(1)a®.

3%, Thus, we have reduced our problem to the problem as follows. We
are given a segment § = [—a,b] C R, a,b > 0 and a continuous concave
nonnegative function ¢(t) on é such that

b

(2.5.2) / tym1 (8)dt = 0,
b

(2.5.3) / Y™ (t)dt = 1.

Let

1/2

b b
6= / t3y"l(t)dt and o= { / t2¢"—1(t)dt}

—a
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We should prove that, under an appropriate choice of an absolute constant
O(1), we have 6 < O(1)o3. This inequality is evident in the case of n = 1; so
let us assume that n > 1.

First, let
oL
ag
a=Xi, b=,
- [t
£) — \/(n=1) (_)
: g
n 3,7n—1 — \3p
9_/t¢ ()t =30 = —,
i 1/2
&= /t%/?"—l(t)dt =i =1
Note that

b

b
[iwa=1,  [wriwa=o.

—Q

Thus, our problem can be reduced to the case when a,b,v satisfy (2.5.2),
(2.5.3) and the condition

b

(2.5.4) / t2Y"(t)dt = 1,

-a
under these assumptions, we wish to prove that
(2.5.5) 161< O(1).
It is convenient to introduce the body
G*={(t,u) eRxR"| t e, ||ul<v(t)}

Taking the volume of the unit ball in R™ ! as the unit of volume in this space,
we have the facts that G* is a convex compact body of unit volume (see (2.5.3)),
and the center of gravity of this body is at the origin (see (2.5.2)).

Without loss of generality, we can assume that

b
|6 |< /t3¢"‘1(t)dt = 6"
0

Thus, it suffices to evaluate from above the quantity 6*.



54 SELF-CONCORDANT FUNCTIONS AND NEWTON METHOD

Each hyperplane passing through the gravity center of a convex compact
body of unit volume divides this body into parts with the volumes of the parts
being more than 1/e [GR 60]. In particular,

b
(2.5.6) 1- % < /w“‘l(t)dt =V< %
0
Let 7 be such that
b n
(2.5.7) V' = / I (t)dt = (ﬁi—l> V.

r

In view of (2.5.4), (2.5.6), and (2.5.7), we have (“the Tchebyshev inequality”)
(2.5.8) T<0(1)

(henceforth, all the constant factors in O(-) are absolute constants). Therefore
(2.5.4) implies that

(2.5.9) / 3y (t)dt < O(1).
0

Now let us introduce a linear function ¢(f) and a positive real h satisfying
the relations

h

(25100 4 =0; () =w(r) [#" M=V

T

i.e., let us replace the part of G* situated to the right of the hyperplane t = 7 by
the cone of the same volume and of the same intersection with this hyperplane.
It is clear that the graph of ¢ is a secant of the graph of 1, and the t-coordinates
of the intersection points of these graphs are 7 and 7’ > 7. In addition, h > b.

Note that N

b h

/ 3y (t)dt — / 3" 1 (t)dt = / 3(t)dt,
T T T

where v is a function with the zero value of the integral over the segment [, h],

such that -y is nonnegative on [7, s] and nonpositive on (s, h] for an appropriate

s (we have considered the convexity of ¢ and the linearity of ¢). In view of

these properties, we have

h
/ 3y(t)dt < 0.
Thus,

r

h p
6* < / 671 (8)dt + f By (1) dt = 6 + O(1),
T 0
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h

0** = / 3" 1(t)dt

T

(see (2.5.9)). Thus, it suffices to prove that 6** < O(1).
Let us verify that A < nr. Indeed, consider the cone

K={(tu)] 0<t<h [ul£o@)}

The part of this cone situated between the hyperplanes ¢t = 0 and ¢t = 7
contains similarly defined part of G*, and the part K’ of the cone K, which is
situated to the right of the hyperplane ¢ = 7, has the same volume V' as the
corresponding part of G*. Therefore

h \" h \" h \"/n-1\"
VL K|={— Kl=(—) V= ( ) ( ) | %4
<IK| (h—7'> | | (h—T) h—r n
(the latter equality holds by virtue of the definition of V'), which implies that

h < nr. Thus, we have

(2.5.11) h=mnr, n<1, 7<0(Q)

and

2.5.12 o — s [ r_Loo
(2.5.12) sfe(=r) @ vi=.sh-n,

where S = ¢"~!(7). We have
nn _
6** = 574/13 (-’Z"——Z>n r
m—1
1
St4 e
= / {n®n® — 3n2n?s + 3nns? — s3}s" " 'ds

_1n—1
(nn—1) ]

s 3n’nP(np—1)  San(nn—1)?%  (np-— 1)3)

:S4 -1 2
7 (nn )("" n+1 n+2 n+3

_1y3

n+3 n+1 n+2

3 [3n2n2(nn —1)  3nn(nn— 1)2} )
1 2

Since V' < 1 and 7 < O(1), it suffices to verify that the expression denoted
by []i1 — []2 does not exceed O(n~!) (this will lead to the desired estimate
g** < O(1)). A straightforward computation, which takes into account the
relation 0 < 5 < 1, leads to

= 3n3n%(n + 1) — 3nn? Lo (1) ’

n2 +3n
3n*n?(n +1) — 3ny 1
[2= n?+3n+2 +O(ﬁ)’

hence [-]; — [-]2 is of the desired order. ]
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Chapter 3

Path-following interior-point methods

In this chapter, we develop a general approach to the design of polynomial-
time interior-point methods. In the previous chapter, we demonstrated that,
to effectively minimize a (strongly) self-concordant function, we can use the
Newton minimization method. In what follows, we explain how to exploit this
observation to solve a general type convex programming problem. The general
strategy is as follows.

A. Consider a minimization problem in the form

(f): f(z) > min| z€GCE,

where f is a convex function and G is a closed convex subset of E. It is well
known that, without loss of generality, we can assume f to be linear. Of course,
we can think of G as being full-dimensional (otherwise, we could replace E by
the affine span of G). Thus, from the theoretical viewpoint, we can restrict
ourselves to standard problems only, i.e., to problems (f) generated by a linear
f(-) and a closed convex domain G.

B. The linear objective involved into a standard problem (f) is, of course,
self-concordant. Nevertheless, we cannot minimize it straightforwardly with
the aid of the Newton method, since the objective is not strongly self-concordant
on (G, while our machinery works only for strongly self-concordant functions.
To overcome this difficulty, we can use the (quite traditional) penalty approach;
i.e., we can regularize the objective to obtain a strongly self-concordant func-
tion that converges in a proper sense to the objective when the parameter
responsible for the regularization is varied in an appropriate manner. In other
words, we can associate with (f) a parameterized family of problems

(Fy): Fiz) > min| z€ Gy CE,

such that the trajectory z*(¢) of minimizers of F; converges to the set of so-
lutions of (f) as the penalty parameter ¢ tends, say, to +oc. Then we can
try to approximate the trajectory z*(t) in an appropriate manner along some
sequence of parameter values tending to +o0o, which gives approximate solu-
tions. The approximation of the trajectory usually is formed according to the
path-following scheme: Given, for the current value ¢ of the penalty parame-
ter, a “close” to z*(t) approximation z(t), we replace t by a larger parameter
value t' and regard z(t) as an approximation of a new minimizer z*(¢'). Then

57
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we improve this latter approximation by some numerical optimization method
to restore the closeness of the improved approximation z(t') to the new point
z*(t') of the trajectory.

In this chapter, we study the above scheme under the assumption that
the family under consideration consists of self-concordant functions and that
current approximations are improved by the Newton method. In §3.1 we in-
dicate conditions on the family that ensure the polynomiality of the resulting
method. The remaining sections are devoted to four path-following methods
associated with concrete families satisfying the conditions described in §3.1.
Namely, §3.2 contains the results on the barrier-generated family and barrier-
generated path-following method; the path-following method of centers and
the underlying family are studied in §3.3. Sections 3.4 and 3.5 present one ad-
ditional family and two additional methods (the dual and the primale parallel
trajectories methods).

3.1 Self-concordant families

In this section, we describe rather general conditions on a family that allow us
to relate the rate of varying the penalty parameter and the amount of Newton
steps sufficient to maintain closeness to the trajectory z*(-). The conditions
might look rather technical; nevertheless, they can be easily implemented in
all our applications and, in these particular cases, save a lot of highly technical
considerations. We therefore believe that the patience of the reader following
the analysis of a general self-concordant family will be more than compensated
by reducing his total effort.

3.1.1 Definition and basic properties

Definition 3.1.1 Let E be a finite-dimensional real vector space,
F ={Q+, Ft, E}ten

be a family of functions defined on nonempty open convex subsets Qy C E, A be
an open nonempty interval on the real azis, and Q. = {(t,z) € E, =R xR" |
te A, ze Q). Let aft), v(t), ut), &(t), n(t) be continuous positive scalar
functions on A, where a, v, p are assumed continuously differentiable, and let
k € (0,\.).} The family F is called self-concordant with the parameters o, 7,
i, &, n, k (notation: F € La(a,~,u,€,n,K)), if the following conditions hold:

(2.1) Convexity and regularity. Q. is an open subset of E; Fi(z) is con-
vex in z, continuous in (t,x) € Q. and has three derivatives in x, D'Fy(z),
continuous in (t,z) € Q« fori = 1,2,3 and continuously differentiable in t for
t=1,2;

(%.2) Self-concordance of members. For any t € A, the function Fy : Q; —
R is self-concordant with the parameter value a(t);

'Recall that A, = 2 — /3.



SELF-CONCORDANT FAMILIES 59

(3.3) Compatibility of neighbours. The set X.(k) ={(¢,z) € Q« | A(Ft,z) <
K}
is closed in En = A x E, and there exists a neighbourhood (in A x E) of
this set X (k) such that, for each (t,z) € X+ (k) and h € E, the following
inequalities hold:

(3.1.1) | {DF(2)[h]}; ~ {Inu(t)}iDF(a)[h] |< E(t)a2()){D* Fy(w)[h, h]}'/?,

(3.1.2) | {D*Fy(x)[h, h]}; — {Iny(O)}{D*Fi(2)[h, h] |< 20(t) D*Fy(=)[h, k]

(henceforth, D and {-}, mean the derivatives in x and t, respectively).

The family F is called strongly self-concordant with the parameters a, v, i1,
&,n (notation: F € L (a,v,1,&,m)) if it satisfies conditions (X.1), (X.2), and
the following:

(X+.3) Inequalities (3.1.1) and (3.1.2) hold for each (t,z) € Q. and h € E,
and the set X*(a) = {(t,z) € Q« | Fi(z) < a} is closed in A x E for each
a € R.

Note that the essence of the definition is in inequalities (3.1.1) and (3.1.2);
these inequalities, roughly speaking, state that the first- and the second-
order derivative of F} in z, taken along a direction h of the unit local length
{D?Fy(x)[h, h|}}/2, vary with ¢ at a rate that is “almost proportional” to the
derivative itself.

Let us outline the basic properties of self-concordant families.

Proposition 3.1.1 Let F = {Qq, F;, E}icn be a family. Then the following
assertions are true:
(i) Strong self-concordance of a family implies its self-concordance,

Fe EZ(a,'y,u,ﬁ,n) = F e Xala,y,1,€,m,8) Vi € (0, A);

(ii) Stability with respect to affine substitutions of “spatial” argument.
Let x = A(y) = Ay + b be an affine transformation of a finite-dimensional
real vector space ET into E, Qf = {y € ET | Ay +b € @i} and F (y) =
F;(Ay +b) : Qf — R. Then the following implications hold:

(ii.1)

F e Zaloyy, € m k), AEY)=E
= ‘7:+ = {Qj_7Ft+1E+}t€A € ZA(O‘;%M,’SJI: ’(‘:)

(ii.2)

Fesilommén), (QF #0Vie )
= ‘7:+ = {Q?’ Ft+7E+}tEA € EX(Q,’)’, Hafa"?)

(iii) Stability with respect to summation. Let

F = {QtaFtaE}tEA € ZX(aa’Y’#’véan))



60 PATH-FOLLOWING INTERIOR-POINT METHODS

={Q}, FY', E}ten € T (a*, v, 11, €%, 1Y),
p, p*>0.

Let Qf = QiNQ; # O for each t € A. Let at be a positive continuously
differentiable function on A such that

o (t) < min{pa(t),p’a’ (1)}, teA

and let
+(t) = max{n(t)v T]*(t)},
£(t) = PEONE max{(pa(t))"/%(t), (p*a* (£))/2¢* (1) }.

Then the family

(o +(t)

Fr={Q}, F =pF +p*F;, E}ien
belongs to =7}, (a €T ).

Proof. (i) It suffices to prove that, if k£ € (0, A\.), then X, (k) is closed in Ea.
For t € A, the function Fi(-), regarded as a function of = € @, clearly belongs
to S (t)(Qt,E), therefore, by Theorem 2.2.2 (see (2.2.15)), we have

te A, A(Fy, z) € k= Fi(z) — ¢(t) < at)g(x),

where ¢(t) = inf{Fi(y) | y € Q:} and g(k) < oo depends on k only. The
function ¢ is upper semicontinuous by virtue of (X.1) and hence is bounded
from above on each compact set AT C A. It follows that

{(t,z) € Xu(k) | te AT} = X(AT, k) C X*(a)

for some a € R. Thus there exists a set Y(A™, ), contained in Q, and closed
in Ep, such that X(A*,x) C Y(A'*, k). By (2.1), the set X.(x) is closed in
A* x E, and therefore X(At, k) is closed in Q.. The latter fact is true for
each compact set AT contained in the interval A, and hence X, (k) is closed
in E.

(i) Under the conditions of (ii.1), as well as those of (ii.2), F* clearly
satisfies (X.1) and (X.2). To verify (£.3), or, respectively, (£7.3), consider the
mapping

w(t,y) = (t, Ay)) : EX — Ea.

Evidently, this mapping is continuous. We have
Xi@={ty | Ky <o} =m""({t,2) | Fz) < a}).

Therefore, under the assumptions of (ii.2), the sets X} (a) are closed in EX for
each a € R. It clearly follows that, if F satisfies (3.1.1) and (3.1.2) for some
(t,z) € Q., then the corresponding inequalities hold for F* at all points (t,y)
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such that 7 (t,y) = (¢,z). Implication (ii.2) is thereby proved. To prove (ii.1)
following the same line of argument, it remains to show that, for any «, the
equality

X} (k) ={(t,y) € QF | MF,y) < &} =17 (Xu(k))

is true. The inclusion X, (k) D 77 1(X.(x)) is straightforward. To prove the
inverse inclusion, we note that, if (¢,y) € X} (k), then

| DFy(A(y))[Ah] |< o!*(t)x{ D*F,(A(y))[Ah, AR}/,

As h runs throughout E*, Ah runs throughout E, since A is an onto mapping.
Thus, we have w(t,y) € X.(k). (ii) is proved.

(iii) All the conditions that must be satisfied by F*,at,y,pu, &1, 71 ac-
cording to (X.1), (X.2), (X*.3) are evident, excluding the closedness of the
sets

Xi(a)={(t,x) e E, | te A,z € Qf ,F(z) <a}, a€R
in Ea. To prove that X7 (a) is closed in Ea, assume that (¢;, 2;) € X7} (a) and
(t,;,.’r,;) — (t,.’l)) S EA\X:_(CE)

Then (¢, ) does not belong to at least one of the sets Q., Q% (otherwise, (¢, )
belongs to Qf, and F'* is continuous on this set). If (t,z) € Q., then Fy,(z;) —
oo for i — 00, owing to the closedness of the sets {(7,u) € Q. | Fr(u) < const}
in Ea, and, if (t,z) € Q«, then {F; (z;)} is bounded from below by virtue of
the continuity of F on Q.. By the same reasons, {F}:(x;)} either is bounded
or tends to +00. Since at least one of the sequences {Fy, ()}, {Fy(x;)} tends
to +o0o and since both of these sequences are bounded from below, we have
F;"(x;) — oo, which contradicts the inclusion (t;,z;) € X% (a), i > 1. O

3.1.2 Metric of self-concordant family

Our final goal is to relate the rate of varying the penalty parameter t in the
path-following scheme and the number of Newton steps sufficient to restore
closeness to the trajectory after a step in t. We are sure about the family
consisting of self-concordant functions and we know the main result concern-
ing the Newton method, applied to such a function in terms of the Newton
decrement, converging quadratically with objective-independent rate from any
point where the Newton decrement is less than an appropriate absolute con-
stant. Thus, the simplest way to control the number of Newton steps in z
per step in ¢ is to maintain a fixed upper bound for the Newton decrement
of the new function of the family at the previous approximation. It turns out
that we can associate with a self-concordant family an explicit metric p on the
parameter space A with the following property: When p-distance between two
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values, t and ¢/, of the penalty is small, then the Newton decrements of F; and
F}: at a point z are close to each other. Thus, the simplest way to control the
magnitudes of the Newton decrements is to perform steps in ¢ of small enough
p-length.

In this section, we introduce the metric p and, in the next, we establish the
relation between the p-length of a step in ¢ and the associated variation of the
Newton decrement.

Assume that F = {Qy, Ft, E}ien € Tala, v, 1,€,1m, 8). We set

L (®)e)?
(3.1.3) WF =

and introduce the following metrics on A depending on a parameter v > 0:

(3.1.4)

f u) 1 T T
pu(Fit, 1) = max{’ln (%)’ | u,v € [t,T]} +- t/é(s)ds t/n(s)ds
The following result, which can be proved by a straightforward computation,
shows that the property of self-concordance and the metrics associated with a

family are invariant with respect to scalings and monotone (nonlinear) substi-
tutions of the parameter.

Proposition 3.1.2 Let F = {Qy, Fi, E}ten € Eala, v, 1,€,m,K). Let AT be
an open interval on the real azis, p(t) be a continuously differentiable positive
Junction on A, and w(7) be a continuously differentiable one-to-one mapping
from AT onto A. Denote

Ft= {Qw(r)vp(W(T))Fr(‘r)aE}T€A+'
Then F+ € Ta+(at,yT,ut, €Y, 0T, k), where
ot (r)=a(x(r))p(n(7)), p(r)=p()p(r(r)), yH(7)=7(x(r))p(n(r)),
Er)y =& |70, 0 () = () |7 ()|,
and, for allv >0, 7, 7 € A", we have

pu(]:+;7', T,) = Pu(]:;Tr(T)”’r(T,))'

+

3.1.3 Main property of self-concordant families

Theorem 3.1.1 Let F = {Q4, Ft, E}sen € Za(a, v, 4,§,m,6). Assume that
(t,z) € Q« satisfies the inequality A(Fy,z) < k and that t' € A satisfies

 A(Fu2)

(3.1.5) pe(Fit, ') <1 "

Then (t',x) € Q«, and
(3.1.6) A(Fy,z) < K.
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Proof. 1°. Let § = {t | 7 € A, (1,2) € X*(k)} (the set X, (k) was
introduced in item (X.3) of Definition 3.1.1). Then 6 is open in A and contains
t. Let us denote by é* the connection component of ¢ in é.

20, Let us fix some h € E and consider the following two functions of
TE O

(3.1.7) a(t) = DE.(z)[h],  b(r) = D*F,(z)[h, hl.
By (2.3), we have (with (-)’ denoting the derivative in 7)
(3.1.8) | a/(7) = (In(u(r))) a(r) |< o/2(r)&(r)b"2(1),
(3.1.9) | 8 (7) — (In(y(7)))'d(1) |< 2n(7)b(7).

By (3.1.9), we have either b(7) = 0, 7 € 6* (case I), or b(r) does not at-
tain the zero value on 6* (case II,). In case I, by virtue of (3.1.8) and the
inequality

| a(t) |< A(Fy, z)a (1) 2(1) = 0,

we have a(7) =0, 7 € §*.
3°. Now assume that Il is the case. Set

a(7)
(a(r)b(r))H/?’

T €.

¢(r) =

Let t” € 6* satisfy
(3.1.10) pr(Fit, t") < po(F;t,t).

Denote by t* the point of the segment [t,t"”], nearest to ¢”, at which ¢ equals
zero, if such a point exists; otherwise, let t* = t. Let 61 be the segment with
the endpoints t* and t’. We have

pr(F;t5,t") < pe(F;t,t);
(3.1.11) $(t*) < X = A(F, z); o(r) #0, 7€ (t*,t") = 6f.

For 7 € 6*, the function ¢(7) is continuous, and, for 7 € 66L , it is continuously
differentiable and does not attain zero value.
For 7 € 67, we have

gy 22O D) @@nEm) |
2T === o) a(r)b(r) ampr) O

where

2a(7)(/(7) — (In(u(7)))'a()) _ a®(r)(¥'(7) — (In(y(7)))'b())
a(7)b(7) a(7)b%(r) '

Since 7 € 6*, we have (7,7) € X (k) and, by (3.1.1) and (3.1.2), we obtain

at2(TVE(T)a(r)bY 2 (1 a?(T)n(T)b(r
Jo(r) | 2RO 0 | 2R sotrseto) + 2n(r)0%0).

w(r) =
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Thus, for T € 6, we have
(3.1.12) | ¢'(1) + {In(&(F; 7)}78(7) |< &(7) + o(r)n(7).
Let ¢* = max{¢(7) | 7 € 61}. By (3.1.12),
(3.1.13) | #'(7) + {In(d(F; 7)}r8(7) [S €(T) + d"™n(T), T €6,

Let ¥- = min{¢(7) | 7 € 6%}, ¥ = max{(r) | 7 € §*}. Then, by (3.1.13)
and the continuity of ¢ on 8%, we have

(3.1.14) T €6 = ¢(1) < {P(t*) + kp2 + P*pa}e’,
where
¢ 1 tl: t“
pr=In"% pp=-— /§(S)ds , p3= /n(S)ds -
P K
t* t*
Thus,
(3.1.15) p1+ p2+ p3 = pe(Fit%,t") <1 - 2

By (3.1.15), we have p; + p3 < 1, so that e’ p3 < 1, which, by (3.1.14), leads

to

* P1

1 — pze”
This inequality, by virtue of (3.1.15) and the first relation in (3.1.11), implies
" < k.

In view of the definition of t*, the latter inequality means that the impli-
cation

[#" €6, pu(Fit,t") < palFit,)} = max{g(r) | 7 € [t,]} <
holds in case II,. By the continuity argument, this proves the implication
(3.1.16) {t" € 6%, pu(F;t,t") < pu(F;t,¥')} = max{¢(7) | 7 € [t,t"]} < &.

Taking into account the definition of ¢, we obtain from (3.1.16) that

{t" € 6%, pu(F;t,t") < pu(F;t, )}

(3.1.17) | DFy(z)[h] |< aY/2(¢")k(D?Fy (z)[h, h]) 2.

Relation (3.1.17) has been proved in case Il; in case I, (where, as we have
seen, DFy(z)[h] = 0, ¢ € §*), it is evident. Thus, we have
(3.1.18) {t" € 6%, pu(F;t,t") < p(F;t,t)} = A(Fpr,z) < K.

4%, To complete the proof, it suffices to show that ¢’ € 6*; it allows us to
take t” =’ in (3.1.18). If ¢’ ¢ *, then there exists t*, which lies between ¢ and
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' and is a boundary point of the interval *. Assume that ¢; lies in 6* between ¢
and t* and tend to ¢1 as i — oo. Each t; satisfies the premise in (3.1.18) (since
t; lies between t and ¢’ and belongs to 6*); hence, by virtue of (3.1.18), the
inclusions (¢;,z) € X.(k) hold. Asi — oo, the points (¢;, z) converge to (t*, z).
The latter point belongs to Ea, since ¢ lies between t* € A and ¢ € A and
hence itself belongs to A. Since X, (k) is closed in Ea, we have (t1,z) € X, (k).
Hence, for all 7 € A that are close enough to t*, the points (7,z) belong to
X*(k); so all these T belong to 8. This contradicts the assumption that t* is
a boundary point of §*. a

Combining Theorem 3.1.1 with the results on Newton’s method from §2.2,
we obtain the following result.

Corollary 3.1.1 Let F = {QtaFt’ E}tEA € EA(OZ, s /1:,5,17, K/)’ let (tO,x—l) €
Q. be a point such that

(3.1.19) MFyp,z-1) < K,

and let k¥ = k2(1 — k)~2. Assume that {t; € A};>¢ satisfies the relations

+
(3.1.20) pe(Fitiytigr) <1— % i > 0.
Let
(3.1.21) i = :v*(Fti,xi_l)

be the Newton iterate of z;_1, the Newton method being applied to Fi,.
Then z; are well defined and belong to Qy,, and

(3.1.22) A(Fy,,2i) < K
for alli > 0.

Thus, given a sufficiently close approximation, z_;, to a Fi,-center of Q4
(that is, to a minimizer of Fy,), we can follow the path z*(¢t) formed by the
minimizers of F};, using a fixed-length steps in ¢ and a single Newton step in
x per each step in ¢ (the length of ¢-steps is measured in terms of the metric
associated with the family).

In the next sections of this chapter, we describe several self-concordant
families and the corresponding polynomial-time algorithms.

3.2 Barrier-generated path-following method
In this section, we present a barrier method for the problem

(f): f(z)—min| z€ GCE.
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3.2.1 Barrier-generated family

Barrier method is a path-following method associated with the family
Fi(z) =tf(z) + F(z),

where F a self-concordant barrier for the feasible region G.

To provide self-concordance of the latter family, we impose certain restric-
tions on f (as we see, these restrictions are satisfied at least by linear and
convex quadratic objectives, so that our approach covers all standard prob-
lems).

Definition 3.2.1 Let G be a closed convex domain in E, let F' be a ¥-self-
concordant barrier for G, and let 9 > 1, > 0. A function f : G —» RJ{+00}
is called 3-compatible with F (notation: f € C(F,B)) if f is lower semicontin-
uous convex function on G, which is finite and C3-smooth on int G and such
that, for all x € int G and h € E, the following inequality holds:

(3.21) | D*f(z)[h, b, k] |< B{3D*f(z)[h, h]}{3D*F(z)[h, h]}*/2.

The following statement quite straightforwardly follows from the definitions
(compare with Proposition 2.3.1).

Proposition 3.2.1 Let G be a closed conver domain in E and let F be a
¥-self-concordant barrier for G. Then

(i) B-compatibility is stable with respect to affine substitutions of argu-
ment. Let A(y) = Ay + b be an affine mapping from E* into E such that
A(ET)NintG # 0 and let G+ = A™Y(G), f € C(F,B), Ft(y) = F(A(y)) :
intGt - R, ft(y) = f(A({y)) : intG* — R. Then F* € B(G",9) and
freC(F+,8);

(ii) A convex quadratic function is 0-compatible with the barrier. If f is a
conver quadratic form on E, then f € C(F,0),

Barrier is O(1)-compatible with itself. F € C(F,2/3%?) (F is extended
onto G by setting F(x) = +oo for z € 8G),

The sum of functions compatible with a barrier is also compatible with it.
If f € C(F, Bi), pi 20, i=1,2, then prf1 + p2fz € C(F,max{f1, B2});

(iii) B-compatibility is stable with respect to summation of barriers. Let
G; be closed convexr domains in E and let F; € B(G;,9;), 1 < i < m be such
that GT = %, G; has a nonempty interior. Then a function from C(F;, )
being reduced onto Gt is 3-compatible with the barrier F+ =Y 1* | F; for Gt.

The following fact underlies our further considerations.

Proposition 3.2.2 Let G be a closed conver domain, let F be a 9-self-
concordant barrier for G, and let f be 3-compatible with F'. Denote A = (0, c0)
and consider the family

F=F(F,f)={Q: =intG, Fiz)=tf(z)+ F(z), E}en.
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The family F is strongly self-concordant with the parameters

o)~ agm MO ==t
9'/2 1

(3.22) &) =0+~ ) =4
In particular,

YFD) = s

(1+8)t1/?

and 12
(3.2.3) p,,(]:;t,T):{l-i—(l-#B)gV—} ln% .

Proof. Let us verify that, under the choice of the parameters described in

(3.2.2), relations (£.1), (£.2), and (X*.3) hold. Relation (X.1) is evident. To
prove (£.2), let us note that, by virtue of F' € Sf (int G, E), we have, for
reimtG, heE,

(3.2.4) | D3F(z)[h, h, k] |< 2{D*Fy(z)[h, h]}*/%.
For given = and h, let
p={D*f()[h,h]}'%,  q={D*F(z)[h,h]}"/%.

Then, in view of f € C(F, 3), we have
33/2
| Df()lh, h,h] | < 8%20p% = 28 (Tp2q>
_ 3 2.1/3 23 (3¢
= 2‘3{(51’ f 27
3/2
2 ([(3\23 , 32 4 31/342/3 3
I 2 /342/9 z
S26{3((2) Pt t3l T
_ 2,1/3
= 2ﬁ {p t / + t2~/§}

= it + 7 = L D R@)lh, WY

This relation, by (3.2.4), implies that
t| D*f(z)[h, h, Bl | + | D*F(z)[h, h, b] |< 201+ B){D*Fi(z)[h, ]},

and the latter relation combined with (3.2.2) leads to the inequality required
in (3.2).
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It remains to verify (¥+.3). The closedness of the sets {(t,z) | t €
A, Fi(z) < a} in Ep is an immediate consequence of the inclusion F €
St(int G, E) and the fact that f is below bounded on each bounded subset
of int G. Let us prove that, for z € intG, h € E, relations (3.1.1), (3.1.2)
hold. By F € B(G,¥) C S (int G, E), we have

(DR@MY, - tDF@H| = | | DF @)k 1< 222 (02 F ()i, by 7

< it/%{D"’Ft(x>[h, B}

191/2
= — (1 +B)a'2($){D*F(x){h, h]}'/*,
which is required in (3.1.1). Furthermore,
1 1 1
{D*Fy(z)[h, h]}, - ZD2Ft(1‘)[h, h)| = -t-DzF (x)[h, h] < ZDth(m)[h, hl,
which leads to (3.1.2). O

3.2.2 Barrier method

Let us fix a bounded closed convex domain G in E, a 9-self-concordant barrier
F for G and # > 0. Our purpose is to describe a method solving (f) under
the assumption that the objective f is -compatible with F.

The method is based on the following ideas.

(A) The trajectory of minimizers

z*(t) = argmin { Fy(z) | = € int G},

i.e., of the points with A(F;, z) = 0, clearly converges to the solution set of (f),
and the error £(t) = f(z*(t)) — ming f is bounded from above by the quantity
9/t. Indeed, we have f'(z*(t)) = —t ' F'(z*(t)) (evident) and (F'(z),y — z) <
9, y € G, x € int G (see (2.3.2)), so that (f'(z*(t)),z*(t) — y) < Y/t. Since f
is convex, it follows that (¢) < ¥/t.

Thus, a point of the trajectory z*(-) associated with large ¢ is a good
approximate solution to (f). As we see below (Proposition 3.2.4), a point
z close enough to z*(¢), namely, such that A(F;,z) < 6 with small enough
absolute constant § (say, § = 0.01) is also a good approximate solution to (f):
It turns out that, for the above z, we have f(z) — ming f < 2¢9/t. Thus, it is
reasonable to follow the trajectory z*(t) as t increases.

(B) Theorem 3.1.1 and Proposition 3.2.2 demonstrate that we can follow
the trajectory z*(¢) along a sequence of values of ¢ increasing at the ratio

_ 0Q)
H—1+;,91/2(1+ﬂ)
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wherein O(1) is an appropriate absolute constant. Namely, given a pair (x,t)
with 2 close enough to z*(t), i.e., such that A(F;,z) < 0.01 and replacing
t by ' = kt, we obtain “an intermediate” pair (z,t'), which is not too far
from z*(¥'): A(Fy,z) < 0.02 (see Theorem 3.1.1 and Proposition 3.2.2). To
restore the initial accuracy 0.01 of approximation of z*(¢'), it suffices to apply
the Newton minimization method to Fy.. By virtue of Theorem 2.2.2(ii), the
Newton iterate z’ of z satisfies the inequality A(Fy,z’) < 0.01, and we are in
the same position as before, but with larger value of ¢.

In view of (A), the above procedure produces approximations, z;, to the
solution of (f), such that

. 1 o) .
flzi) — min f < 2 &P {—W%} ;
where (20, tp) is the initial pair that should satisfy the relation

A(Fig, z0) < 6.

(C) It remains to explain how to find a pair satisfying the latter relation.
Note that, if z¢ is the minimizer z(F) of F' and ¢y = 0, then A\(Fp, zg) = 0, and
therefore A(Fy, z) is small for all = close to x(F') and all small enough positive
t. Thus, it suffices to approximate the F-center z(F) of G. It can be done
by the same path-following technique, provided that we are given an interior
point w of G. Namely, consider the family

®(z) =t (—F'(w),z) + F(z),

which also is self-concordant. The trajectory of minimizers of the latter family
passes through w (the corresponding ¢ is equal to 1) and converges to z(F) as
t — 0. We can follow the trajectory starting with the pair (w, 1) in the manner
described in (A), but now decreasing the parameter at the ratio x instead of
increasing it. It can be proved (see Proposition 3.2.3, below) that, after a finite
number of steps (which is of order of ¥1/2 with the constant factor depending
on w), we obtain a point that, for an appropriately chosen ¢y > 0, can be used
as the above zg (another possibility for initialization of the main stage is to use
primal-dual conic reformulation of the initial problem; see §§4.3.1 and 4.3.5).

Now let us present the detailed description of the method.

Let the functions A*(A) and ¢(A) be defined as

A*()\):<1—i)\—>2, 0< A<,
_ I+ w(N) 1
¢(A) = ony . 0<r<3

(recall that w(X\) =1 — (1 — 3X)1/3; see Theorem 2.2.2).
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Since G is bounded, D?F(z)[,] is a nondegenerate inner product on E
(Proposition 2.3.2(ii)); this product is denoted by (h,e), p, and the corre-
sponding norm, same as in Chapter 2, by || - ||z,7. In these notations we omit
the subscript = in the case when z = z(F) is the minimizer of F' over int G.
Note that this minimizer does exist and is unique (see Proposition 2.3.2(ii)).

Given a norm || - || on a finite-dimensional linear space F, we denote by
| v |* the conjugate norm of a linear functional (y,-) on E, below:

*__
Ily I"= max {y,).

The barrier method is specified by the parameters X}, A1, Az, Aj, A3, such
that

0<AT(A) <AL <A <Az <Ay

(3.2.5) Xl <A1 < Ay )\+()\3) < )\‘{3 < A3;
1
¢(A) < g 18R <X
w(A3) w(X2) 1
2. —_— —=< -
(328) T—w() <" T-uwlg) =3
and by a sterting point
(3.2.7) w € intG.

The method consists of two stages, the preliminary stage and the main
stage.

3.2.3 Preliminary stage

This stage results in an approximation u of z(F) such that AM(F,u) < A2. To
find such an u, the method follows the trajectory of minimizers of the family

FO = F(F,g) = {int G, FV(z) = tg(z) + F(z), E}s>0
as t — 0; herein
(3.2.8) g(z) = —DF(w)|z — w].
Clearly, g is O-compatible with F, so that the family ) is strongly self-
concordant (Proposition 3.2.2). It is important that the trajectory of minimiz-

ers associated with the family passes through the point w (the corresponding
t equals to 1). Note that, for this family, we have

In -

1/2

;
The desired approximation is constructed as follows. We set

PR A= N,
(3.2.10) =K' 120, m = eXP{Al + 191}2} ’
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so that \

(3.2.11) pa (FD st ti) <1 - /\—1 i>0
1

and then compute the points x; according to the relations

(3.2.12) za=w;  zi=z(F,zi), §20

(recall that z*(H, =) denotes the Newton iterate of =, the Newton minimization
method being applied to H; see §2.2).

Process (3.2.12) is terminated at the first moment ¢ = * at which the
relation

(3.2.13) AF,z-1) < A2
holds. The result of the preliminary stage is the point

(3214) U=Tij*_1.

Proposition 3.2.3 (i) The preliminary stage is well defined; i.e., all z; are
well defined and belong to int G, —1 < i < ¢*. Furthermore, i* < 0o, and the
following relations hold:

(3.2.15) @:  AED, zio1) < M,
(3:2.16) J): AED @) <X

(ii) The vector u obtained at the preliminary stage satisfies the relations
(3.2.17) A(F,u) < Ag,

(recall that W.(z) = {y | D*F(z)ly — =,y — x| < r?} is the Dikin’s ellipsoid
of F);

(iii) The number i* of the iterations at the preliminary stage satisfies the
tnequality

A+ 91/2 31 9
3.2.19 <1+ In +In
( ) /\1 —Xl )\2—)\’1 l—wm(p)(w)

(recall that z(F) is the minimizer of F over int G and that m,(-) is the
Minkowsky function of G with the pole at u).

Proof. 1°. Let us prove (3.2.15) and (3.2.16) by induction. By the definitions

of g and ty, we have )\(Ft(ol),z_l) = 0, so that (Jo) holds. Assume that x;_;
are well defined and belong to int G and that relations (I;), 0 < ¢ < k and (J;),
0 <4 < k hold. Relation (I), by virtue of A\; € (0, A,) and Theorem 2.2.2(ii)

(the theorem is applied with F = Ft(: ), T = Xp_1), implies that z; is well
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defined and (Ji) holds. Furthermore, by (3.2.14), (3.2.11), Proposition 3.2.2
and Theorem 3.1.1 (applied with Kk = M\, z =z, t = tg, t' = tgyy, F. = F.(l)),
relation (Ix,1) also holds. The induction is completed.

2%, Let us prove that i* < oo and that (iii) holds. Let us fix ¢ < i* — 1
and denote F." by ®. Then & € S} (int G, E) and A(®,z;) < X} < A, < 1 by
virtue of (I;). In view of (3.2.17), we have

(3.2.20) ®(x;) — ¥(z(F)) < ®(x;) — inf{@(z) | z € int G} < F¢(N)) < %

(we have considered (3.2.5), (3.2.6)). By Theorem 2.1.1 and Proposition
2.3.2(i.1), we have

{llellr=1, t€[0,1)} = {:c(F) +te € int G, %F(w(F) +te) > (1- t)2}

or, in view of (d/dt)F(z(F) + te) |t=0= 0,

lellr=1, t€[0,1) = z(F) + te € int G,

3.2.21 2
( ) F(z(F)+te) — F(x(F)) > (6 — 4t + t2)—1—2,
and hence
lellr=1, t €[0,1) = ®(z(F) + te) — ®(z(F))
(3.2.22) 6 — 4t 1 12
> 2220 4| Dy
12
(recall that, for a norm || - || on E, || y ||* denotes the conjugate norm of a

linear functional y : E — R). By virtue of (2.3.5), we have

| D llf< Q,

— Wz(F)(w)
and hence we obtain
lellFr=1, t€[0,1) = ®(z(F) + te) — ®(z(F))
(3.2.23) o
>(6—4t+t )ﬁ —t- ;8.

Let us verify that

. 1 -
> —_— .
ti 2 min { 2880° 202 }
Indeed, otherwise for € W) ja(x(F)), by virtue of (3.2.23), we would have

B(z) — (z(F)) > 5 — 3% = &,

and (3.2.20) would lead to z; € Wy 5(z(F)). Hence by Theorem 2.1.1 we would
have
| Dgllz, n< 2 || Dg lI7< 29
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or
MF,x;) < AN®,z;) + t; || Dg <AL+ 260 < Ag,

Iz, <

which contradicts the assumption that i < 7* — 1.
The established lower bound for #;, ¢ < i*, combined with (3.2.10), leads

to (3.2.19).
It remains to note that (3.2.17) is equivalent to (3.2.13); relation (3.2.17),
by (2.2.17), (3.2.6), implies (3.2.18). 0

Note that the logarithmic term in (3.2.19) involves the quantity (1 —
T.(r)(w)), which is responsible for the quality of the starting point (the less
it is; i.e., the “closer” to the boundary w is, the worse the efficiency estimate
(3.2.19)). Note that this quantity can be evaluated via the asymmetry coeffi-
cient of G with respect to w. This coefficient a(G : w) is, by definition, the
largest a such that every chord of GG passing through w is divided by this point
in the ratio not less than a,

a(G : w) = max{a | w+ a(w - G) C G}.

Evidently, 1 — 7z(w) > a(G : w) for each z € G, so that (3.2.19) implies the
estimate

, A1+ 91/2 31 9
2. * < .
(3.2.24) <1+ 1 lna(G:w)

3.2.4 Main stage

The main stage consists in minimizing the function f. At this stage, we follow
the trajectory of minimizers of the family

FO = F(F, f) = {int G, P (z) = t(z) + F(x), E}150

along a sequence t; — oo. Note that this family is strongly self-concordant
(Proposition 3.2.2) with the parameters

1
=T B

(3.2.25) pu(FP;1,t) = (1 +(1+ ﬂ)%ﬂ> ln% .

Let

(3.2.26) to = A3 — (14 B)A(F, u)

(A+8)/ | Df(u) I3 r

We assume that D f(u) # 0, since otherwise u is a solution to (f). We set

o A3 — X
R . —
(32.27)  ti=rhto, i20; Ky = eXp{)\g nyypn ﬁ)vw} !
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so that N
(3.2.28) Pag(FD st tiy) =1~ /\_j‘ i>0
3
and then compute the points z; given by
(3.2.29) T 1 =u Ti= m*(Ft(f), zi—1), ©>0.

These points x; are regarded as approximate solutions produced by the barrier
method.

Proposition 3.2.4 (i) The main stage is well defined, i.e., z;, i > —1, are
well defined and belong to int G, and the following inequalities hold:

(3.2.30) (T):  AFD,zim) < A,

(3.2.31) () : AFD, z5) < X
(ii) For every i > 0, we have

flzi) — f(=¥)

9(1 + B) ¢(X3)
(3.2.32) *X-(+PM {2'9 T30 +3ﬂ)2}

Az — Af )
VF(f)exp{ A3 +(1+,B)7-91/2}

where x* is a minimizer of f over G and

(3.2.33) Vr(f) =sup{f(z) | z € Wy o(x(F))} — inf{f(z) | z € W o(x(F))}.
Proof. 1°. By (3.2.5), we have A3(1+3)7! > Ay > A(F,u) (the latter relation
is a consequence of (3.2.17)), so that ¢tg > 0. Let us verify that
to A3 — (1 + ,3)/\2

T 91+ BVr(f)
Indeed, by (3.2.18), we have u € W1/3(m(F)); thus, by Theorem 2.1.1,
I ellr

1

1-3
Hence the ellipsoid Wj/g(u) is contained in Wi o(x(F)), which leads to

| Df(w) |5, p< 9VF(f), and (3.2.34) follows.
20, Let us prove (Z.), (J) by induction. We have

(3.2.34)

Il € llu,r< =35 II ellr, e€E.

ME. 0 = L7z supl] DE )] | {D*F @k, MY ™2 | b #0)
< (1+ B)sup{| DF) (w)[h] | {D*F(u)[h, h]} V2| h # 0}
< (1+ @) sup{{| DF(u)[A] | +to | Df (u)[h] [} (h, h)y ¥° | b # 0}

< (14 B{AMF,w) +to || Df(w) I5r} =23
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(the latter equality holds in view of (3.2.26)), so that (Zp) holds. Assume that
k > 0 is such that relations (Z;) hold for 0 < ¢ < k and that relations (J;)
hold for 0 < ¢ < k. Relation (Z), by Theorem 2.2.2(ii), implies that zj is well
defined, belongs to int G, and that (Jx) holds. Furthermore, relation (J),
combined with Theorem 3.1.1 and (3.2.28), leads to (Zg41). Thereby (i) is
proved.

30. Let us prove (ii). Let us fix i and denote ¢; by t, Ft(f) by ®, z; by z.
In view of (J;), we have A(®,2z) < A; < 1; moreover, ® € S] (int G, E) with
a = (1+8)~2. The function ® attains its minimum over int G (Theorem 2.2.2)
at certain point v, and (2.2.15), (2.2.17), and (3.2.6) imply that

(3.2.35) ®(2) — P(v) < g(( =T, D*®(v)[z — v,z — 1] < a.

Let us verify that
(3.2.36) DF(v)[z —v] > —9.

Indeed, by virtue of the second relation in (3.2.35) and Theorem 2.1.1(ii), the
point 2’ = v+ (v — z) belongs to int G, and (2.3.2), as applied to z = v, y = 2/,
implies (3.2.36).

Let z* be the minimizer of f over G (the minimizer does exist, since G is
bounded and f is lower semicontinuous on G). We have

f(@*) 2 f(v) + Df(v)[z* - v];

furthermore, by definition of v, we have
1
Df(v)lh] = —DF(v)lh],

so that

§@) > f(0) —~ T DF@)a* —u] > f(v) ~

(the latter inequality holds by virtue of (2.3.2)). At the same time, by (3.2.35),
we have

9+
t

£(2) < f@) 4 {F() - F(2)47} < f0) +  {DF@)lo—2]+7) < f(o)+

(the latter inequality holds by virtue of (3.2.36)). The above inequalities imply
that

(3.2.37) o) < flat) + BT

t

Relations (3.2.37) and (3.2.34) prove (3.2.32). O
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3.2.5 Efficiency estimate

As a straightforward consequence of the results stated by Proposition 3.2.3 and
Proposition 3.2.4, we come to the following main proposition (for simplicity,
we restrict ourselves to the case of quadratic f).

Theorem 3.2.1 Let G be a bounded closed convexr domain in E, let F be a
¥-self-concordant barrier for G, and let f be a conver quadratic form (i.e., a
0-compatible with F function). Also, let w € intG and let A1, A|, Az, As,

5 satisfy (3.2.5), (3.2.6) for B = 0. Let the barrier method specified by the
parameters 3 = 0, A1, M|, A2, A3, A\j and by the starting point w be applied
to problem (f). Then, for each € € (0,1), the total number of iterations of
the preliminary and the main stages N () required to obtain an approrimate
solution x. € int G such that

f(e) = min £ < V()

satisfies the inequality

27 20
<o) In —————
e(1 — mymy(w)) ~ ) ea(G : w)

(3.2.38) N(e) < 0(1)9"/%1n

(the constant factor O(1) depends only on the parameters A1, M|, A2, Az, A3).
Each of the iterations reduces to a single Newton step, as applied to a convez
combination of f and F (or that of F' and a linear form).

A theoretically good (approximately optimal for large ¥) choice of the pa-
rameters A1, X', A2, Az, X' in the case of 8 =0 is

A1 =23 =0.193; X} =25 =2"(\1)=0.057; Xy =0.150.
Under this choice, for sufficiently large ¥, the principal term in the asymptotic
(¢ — 0) representation of the right-hand side of (3.2.38) is 7.369'/21n(1/e).
3.2.6 Large-step strategy

Consider the case of a standard problem
(3.2.39) e > min| z€G,

G being a closed and bounded convex domain in £ = R", and let F' be a 9-self-
concordant barrier for G. All we are interested in when solving the problem
by an associated with F' path-following method is maintaining closeness to the
path, i.e., to guarantee the inequality of the type

(3.2.40) A(F,, i) < A

along a sequence {t;} of values of the penalty parameter ¢ varying in certain
ratio x; here the path tolerance A is a given (and not too large) absolute
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constant, and Fy(z) = td*z + F(z) (d = c at the main stage, and —d is the
gradient of F' at the starting point at the preliminary stage). Now “not too
large A" in our previous context was defined, along with other parameters of
the method, by (3.2.5), (3.2.6); since we now deal with linear objective only,
in what follows, it is sufficient to assume that A < 1. The above considerations
demonstrate that, under proper choice of absolute constant A, we can ensure
the ratio o

(3.2.41) o =1+ #

by a single Newton step per a step in ¢t. In the large-scale case (¢ is large),
(3.2.41) results in “small” steps in ¢, and the method will certainly be slow.
From a practical viewpoint, it seems more attractive to use a larger rate of
varying the penalty parameter, say, to choose £ > 1 as an absolute constant,
and to use several Newton steps in = per a step in t. In this section, we
demonstrate that the worst-case number of Newton steps per step in ¢ in
this scheme is bounded from above by O(9¥) with the constant factor in O(-)
depending on & and X only.

Proposition 3.2.5 Let F be a 9-self-concordant barrier for a closed and
bounded convex domain G, let A € (0,1), let d be a vector, and let k > 0.
Consider the family

(3.2.42) Fi(z) =tdTz + F(x)
and let u € int G and t > 0 be such that

(3.2.43) A(F,u) < M.
Set
(3.2.44) T =kt

and let x; be defined as

[F”(:c,-)]'IVIFT(xi).

3.2.45 To = U, Tir) = T; —

gad) T T )
Let i* be the smallest value of 1 for which

(3.2.46) MFr,z;) < A

Then
<O (| k—1|9V24+0(k—1—1nk))+1,

with O(1) depending on X only.

Proof. Let
z(r) = argmin { F-(z) | = € int G},
so that

(3.2.47) F'(z(r)) = —7d.
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Lemma 3.2.1 We have
(3.2.48) Fr(a(t)) — Fr(z(T)) <9 G “1-m %) .

Proof. Let
f(7) = Fr(2(t)) — Fr(z(7)).

Since G is bounded, F” is nondegenerate (Proposition 2.3.2(iii)), whence, by
the implicit function theorem as applied to (3.2.47), z(7) is continuously dif-
ferentiable and

(3249)  2(r) = ~[F"(()]d = ~[F" ()] ()
We have
F(7) = dTa(t) — d¥z(r) — 7dT2' () — (F'(z(r)))Te' (1) = d¥(t) — d¥x(7)
(the latter equality follows from (3.2.47)), whence
(3.2.50) flt)y=0
and
£r) = ~d"2 () = ~d[F" (a(r))] " F ()
= P EO) )] F () = 5X(E ()

(we sequentially used (3.2.49) and (3.2.47)). Since F' is a ¥-self-concordant
barrier, we conclude that

d
0 S f”(T) S ﬁa

which, combined with (3.2.50) and evident relation f(t) = 0, implies relation
(3.248). O
From (3.2.43) and items (iv) and (i) of §2.2.4, it follows that

(3.2.51) | u = 2(t) o), r< OQ1)
(here and henceforth in the proof, all O(1) depend on X only), whence
Fr(u) — Fr(z(t)) = (T - t)d" (u — 2(t)) + Fy(v) - F(z(?))
(3.2.52) <IT -t dllze,.pll w—2@) low,F
+Fi(u) — Fy(z(t)),

where || - ||;(t)’F is the norm conjugate to || - ||z, 7,

| p 2, F= sup{pTh || h |z, < 1}
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By definition of the Newton decrement, we have
A(Fi,2) =|| VE(2) |I7.F -
We have 0 = VF(z(t)) + td, and, at the same time,
92 > A(F,z(t) =|| VF(z(1)) [30).p»

whence
. ,191/2
(3.2.53) M llzwrs ——

Furthermore, from (3.2.43) and item (iv) of §2.2.4, it follows that
(3.2.54) Fy(u) — Fy(z(t)) < O(1).
Relations (3.2.51)-(3.2.54) imply that
Fr(u) — Fr(z(t)) = Fy(u) = Fy(z(t)) + (T - t)d" (u — (1))
SOM+ T —tlll dlz),rll v = 2(2) llew,r

T
<0(1) (,? —1|9¥2% 4 1) ,

which, combined with (3.2.48), implies that

(3.2.55) Fr(u) — Fr(z(T)) < O(1) (l% 1

191/2+1)+19(§—1—ln%).

Now, from Proposition 2.2.2, it follows that, while (3.2.46) is not satisfied,
iterations (3.2.45) decrease Fr at least by O(1), so that (3.2.55) means that
the number of these iterations before termination is bounded from above by

OM(s=1]92+9(k-1-Ink)+1). D

Now consider the method for solving (3.2.39) in which the penalty param-
eter t is varied in aratiok, |k — 1 [> 1+ ¥1/2 and a step in t is accompanied
by the number of steps (3.2.45) sufficient to restore closeness to the trajectory
(i.e., to provide (3.2.40)). Following the same line of argument as in the proofs
of Proposition 3.2.3 and Proposition 3.2.4, we can derive from Proposition 3.2.5
that the method finds an e-solution to (3.2.39) at the total cost of no more
than

(3.2.56) O(1)d1n (E 29 )

(1 = mymy(w))
Newton steps. The constant factor in the latter O(-) depends on x and A only
in such a way that, if kK = 1 £91/2, then O(1) is of order of $9~1/2 and (3.2.56)
becomes the same as (3.2.38); if k and A < 1 are absolute constants, then this
factor is an absolute constant. Thus, from the viewpoint of the worst-case
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behavior, the “optimistic” strategy, where « is chosen as an absolute constant,
is O(9/2) times worse than the strategy with “small” rate (3.2.41) of updating
the penalty. Nevertheless, the results corresponding to the case of “large” rate
of updating ¢ are useful: They demonstrate that the corresponding strategy still
results in a procedure with polynomial worst-case behaviour (i.e., in procedure
converging with an objective-independent linear rate). On the other hand, this
strategy seems to be more flexible than the basic (and optimal in the worst
case) strategy (3.2.41). Indeed, we could hope that standard technique like
line search in the Newton direction would restore the closeness to the path at
a significantly less than O(¥) number of Newton steps, so that the total effort
would be less than that one that is for sure required by the basic strategy.

3.3 Method of centers

In this section, we describe another path-following method generated by a ¥-
self-concordant barrier F for a closed convex bounded domain G in E. In what
follows, we assume that f is a convex quadratic form (so that the method can
solve at least all standard problems).

The method is associated with the following family. Let us choose a con-
stant { > 1 and set

t* = min{f(z) | z € G}, A = (t*, +0),

Q:={zeintG| f(z) < t},
Fi(z) =¢(In(1/(t - f(z))) + F(z) : Q: = R,  (t€ ).
Thus, we have defined the family

F* = ‘F*(F7f) = {Qt,Ft,E}teA-

Note that the path of minimizers for this family is the same path as for the
F-generated barrier family from the previous section, but the parameterization
of the path differs from that one considered in §3.2.

It turns out that the family is self-concordant, as demonstrated in the
following theorem.

Theorem 3.3.1 For each A € (0, \) and &' € (\,\)), and for o, v, u, €1,
chosen as
o) =1 y(t)=1 p)=L k=X

_C1/2ﬂ_ B Q
(3.3.1) €0 =S =
where? 54 , P
Q=14+2""Y §=—" (1430 +-—"_
T l—ﬁ( * +1—ﬁ)’

2Recall that w(A) = 1 — (1 — 3))/3.
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(3.3.2) P =9+ B=w(),

the family F*(F, f) is self-concordant with the above parameters.
In particular, we have

(3.3.3) Plt)=1, teA,
and

¢l t—t*
(3.3.4) AFEE) = Q{14+ ) [Ino—c |

Moreover, the following implication holds:

< Q
t— flz) — t—t*

(3.3.5) telA, z€Qy, MEF,z)<A=

Proof. Let us verify that relations (2.1), (2£.2), (£.3) hold. Relation (X.1) is
evident.
Let us verify that the function

1
filz) =In ———
t( ) t — f((l))
for each t € A is, as a function of z, a 1-self-concordant barrier for the set
R, = {z € E| f(z) < t}. This is an immediate corollary of the following
result.

Lemma 3.3.1 Let s be a conver quadratic form on E such that the set
Q = {z | s(z) < 0} is nonempty. Then the function

S(z) = — In(—s(x))
s a 1-self-concordant barrier for the set cl Q.

Proof of lemma. We should prove that § is strongly 1-self-concordant on Q
and A(S,z) < 1. Clearly, S is C* smooth and tends to infinity along every
sequence of points of ¢} converging to a boundary point of this set; so it remains
to verify 1-self-concordance of § and to evaluate the Newton decrement. For
r e Q,heE, we have

D h

DS()[h] = — 23D
s(x)

_ D?s(z)[h, b . (Ds(a:)[h])2

s(z) ’

3Ds(x)[h|D?s(z)[h, h] Ds(x)[h]\*
5(z)2 -2 ( ) ’

D?S(z)[h,h] =

D38(z)[h, h,h] =
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thus, under the notation ¢ = —s~!(z)Ds(x)[h], p = (—s~(z)D?s(x))/? (recall
that s(-) is negative on @), we obtain

DS(z)[h) =q, D?*S(z)[h,h] =q¢* +p®, D*S(z)[h,h,h] = 3p°q + 2¢°,

and the desired relations between the derivatives of S follows immediately from
the evident inequalities

3/2
20"+ =21 ¢ (1 + (%)2)

(i)

=2 ¢ +3p%| ¢ |2 3p%¢ +2¢° |

N w

22|ql3(1+

(the resulting inequality in the case of ¢ = 0, when the latter computation is
not valid, evidently is also true) and ¢% < p? + ¢2. o

Now we can continue the proof of the theorem.

Since ¢ > 1 and f; is a 1-self-concordant barrier for R;, the function
Cfy is a (-self-concordant barrier for the latter set. Therefore, by virtue of
Proposition 2.3.1(ii), F; is a ¥*-self-concordant barrier for R;. In particular,
F; € 5 (Q:, E), as it is required in (X.2) for @ chosen in accordance with
(3.3.1).

Let us verify (X.3). Let

Xt(k) ={(t,z) € Q. | M(F,,z) < &'}

(we henceforth use the notation from §3.1.1). It is clear that Xt (x) is a
neighbourhood of X, (k) in Q..

Let us verify that the set X, (k) is closed in Ea. Indeed, let (t;, z;) € X (k)
and (t;,z;) *= (t,z), where t € A. By Theorem 2.2.2(iii) and in view of the
fact that F is strongly 1-self-concordant on @, we have

Fi(z;) < p(t;) +c
for certain constant ¢, where
¢(7) = min{F.(z) | z € Q-}, TEA.

The function ¢ clearly is bounded along the sequence {t;} (since this sequence
converges to a point from A), so that {F;,(z;)} is bounded. The latter fact, in
view of definition of F’, implies the inclusion z € @, or (t,z) € Q.. We see
that the closure of X,.(x) in Ea is contained in @.; since X,(k) is evidently
closed in Q., X.(x) is closed in Ex.

It remains to verify that, under the choice of the parameters in accordance
with (3.3.1), relations (3.1.1), (3.1.2) hold for our X* ().
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Let us fix (t,z) € X*(x). Then
(3.3.6) MF,z) < K.
Let
z* = argmin {Fi(y) | y € Q:}

(the existence and the uniqueness of z* follow from Proposition 2.3.2(ii), since
Q: is bounded and F; is strongly 1-self-concordant on @); note that, by the
same reason, D?F; is nondegenerate on Q;). Let us introduce an Euclidean
structure on E by the inner product

(h,s) = D®Fy(z*)|h, s].

Denote the corresponding norm by || - ||. Let W be the open unit ball centered
at z*. By Proposition 2.3.2(ii) and since F; is a ¥*-self-concordant barrier for
cl @, we have

(3.3.7) Wcc{yllly—z"||< (1+39%)}
Furthermore, in view of (3.3.6) and Theorem 2.2.2(iii), we have (8 = w(k’) < 1)

(638)  DR@ -se-d < Jo-a )1

whence, by Theorem 2.1.1,
(3.3.9) D?Fy(z*)[h, k] > (1 — B)2D?Fy(z)[h, h].

In view of (3.3.6) and (3.3.9), we have

F\'/I
1-p
(V denotes the gradient with respect to the Euclidean structure (-,-)). Let u*

be the minimizer of f on cl @; (or, which is the same, on G). Then, taking
into account (3.3.7) and (3.3.6), we obtain

(3.3.10) | VE(z) |I<

¥ . z),r —u"
541_5(1%-319 +1_ﬁ)2(th( )z — )

¢ o)z — ey s @ -t

= @ V@ —u) + (VF(@) o —u) 2 2= = 0.
Thus, f@) 5

)t _6+9

or ) Q
(3.3.12) T

Thereby (3.3.5) is proved.
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Furthermore, we have

2y = SIPR@I | (D f(@)lh, R
I {D-Ft( )[h]}t ,_ t— f((l?) < t— f(.’l))
- (A(D*Fy(z)[h, b))
- t—f(z) ’
which, combined with (3.3.1) and (3.3.12), implies (3.1.1) (we have taken into

account that f; € B({z | f(z) < t},1)).
By the same arguments, we have

2( ‘ szt(l‘)[h, h] l < 2D2Ft(m)[h, h]
t—f(z) T t=flm)

which, in view of (3.3.1) and (3.3.12), implies (3.1.2). O

Now we can present the generated by F method of centers for problem (f)
with convex quadratic f. We restrict ourselves to the description of the main
stage of the method.

Let us fix constants X, X' such that

| {D*Fy(=)[h, R} |<

(3.3.13) AT <N <A< ..
Assume that we are given t) € A and z_; € @, satisfying
(3.3.14) AMFyy,z—1) < A

Let us define a sequence of points z; and numbers ¢; € A as follows:
e Given t; and z;_; such that

(3.3.15) (Ii) : tLEA, x; 1€ Qti; )\(Ft,-afl?i——l) < A
we find a point z; satisfying the relations
(3316) (J,,) : x; € Qti; )\(Fti,.’l,'i) < N,

Note that, under condition (I;), the Newton iterate of z;_; (the Newton method
is applied to Fy,), i.e., the point z; = z*(F},, z;_1) satisfies (J;) (see Theorem
2.2.2(ii));

e After x; is found, we define ¢;{; in accordance with the equation

it = f@) A= X

(3317 - f) | CE+N X

(since z; € Q,, it is clear that ¢; > f(z;); thus, ¢;41 is well defined).
The following lemma demonstrates that the method is well defined.
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Lemma 3.3.2 Relation (J;) implies the inclusion t;iy1 € A, relation (I;11)
and the inequality

(3.3.18) f(a:l) —t' < tiy1 — t* < (tz’ — t*)e_”,
where
In L
v=In————.
Q—1+ex

Proof. We have t; > f(z;) > t*, so that t;1; € A. We also have

tivt —t° _ tip1 — =)
t —t* ti— f(z:)

which, by (3.3.17) and Theorem 3.3.1, leads to

1>

!

PA(F 5t tipr) <1~ 3

The latter relation, by Theorem 3.1.1, implies (L;11).
To verify (3.3.18), we note that (3.3.17) and (3.3.5) imply that

| ex = timtin Ot~ ti)

St fla) T ti-tr
so that o Lo
¢ —e
e A
which leads to the second inequality in (3.3.18). The first inequality in (3.3.18)
follows from the inclusion in (I;41). o

Relation (3.3.18) leads to the accuracy estimate for the method

.+ 1
(3.3.19) flxz:) — mGinf < (to —t")exp {_z t } .
The value of v depends on A, X, and ¢ only. Assume that A and )\ are
absolute constants satisfying (3.3.13). Then, maximizing v over (, we obtain

1
(=0(¥) and 1/=O<W>,
with absolute constant factors in both of the O(-). Thus, the rate of con-
vergence of the method under consideration is the same as that one of the

associated with F' barrier method.
A reasonable choice of the parameters for the method is

A=0136, X =At(A)=0025 (=30

For large v, this leads to
0.011

QL2

[%

14
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To initialize the method of centers, we need a pair (fp,z_1) such that
z_1 € @, and A(Fiy,z—1) < A. To find such a pair, we can first approximate
the F-center of G, for example, with the aid of the preliminary stage of the
barrier method. The stage is terminated when a point = with A(F,z) < A/2
is found. This point can be taken as z_j. Then, clearly, A(F;,z-1) < A for all
sufficiently large ¢, which allows us to choose an appropriate #;.

As we already have mentioned, the path of minimizers of the family F* as-
sociated with the method of centers is, geometrically, the same path as in the
previous section; nevertheless, the method of centers and the barrier-generated
method use different parameterizations of the path and form different approx-
imations to it.

3.4 Dual parallel trajectories method

The method we describe here is associated with the homogeneous self-concor-
dant family. To define the family, let us introduce a special class of self-
concordant functions.

Let E* be the space conjugate to E. Let L(E*,8), ¥ > 1 be the set of all
1-self-concordant on the whole E* functions F™* such that

(3.4.1) 9*(F*) = sup{D*F*(¢)[, 4] | ¢ € E*} < 9.

As we have seen in §2.4, functions of that type with nondegenerate second-
order derivative are precisely the Legendre transformations of J-self-concordant
barriers for bounded closed convex domains in F.

The following statement is evident.

Proposition 3.4.1 Let F} € L(E*,9;), pi > 1,i=1,2. Let z(¢) be an affine
form on E* and let ¢ = Ay be a homogeneous linear transformation from H*
into E*. Then

() L FT (8) + p2F5(9) € L(E*, p1d1 + p2va);
(i) F7(¢) +z(¢) € LIE", D);
(iif) Fy(A¢) € L(H",91).
Let E§ be a hyperplane in E*, codim Ej = 1; let b € E*\E§, A = (0,0)
and F* € L(E*,¥). This data define a family of functions on Ej,

(3.4.2) F** = F(F* E},b) = {Q: = Ej, Fi(¢) = F*(t¢ + tb), E§}ten.

Proposition 3.4.2 For every collection of data {9>1, F* € L(E*,¥), Ej, b}
and, for each k € (0, \y), the family F**(F*, E§,b) is self-concordant with the
parameters
(34.3) at)=1; plt)=t ~@) =t £@t)=q9t) =92t &k

In particular, Y(F**,t) =1 and
t

In -
-

1
(3.4.4) pu(F™*5t,1) = 91/2 (1 + ;)
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Proof. Relation (X.1) is evident; relation (2.2) immediately follows from
the inclusion F* € §,(E*, E*) and Proposition 2.1.1(i). Let us verify (X.3);
namely, let us prove that (3.1.1) and (3.1.2) hold for X*(k) = Q. = A x E}.
Indeed, let us fix ¢ € E§, t € A and let ¢ = tip + tb. Then, for { € Ej, we
have

DF,(¥)[¢) =tDF*(¢)[¢],  D*ER(v)[¢,¢] = *D*F*(¢)[{, ¢,
H{DF,(y)[¢]}; —{In(t) }i DE(¥)[¢] | =| D*F*(¢)[,(] |

(D*F*($)[¢, #1) 2 (2 D*F*(9)[¢, ¢])/?

A
S

IA

LD ), )2

= £(B)a" YD F()I¢, ¢V

Furthermore,
| {D*Fy()[¢, I}y — {In(*) }; D*Fy(¥) |=t | D*F*(¢)[(, ¢, ¢] |
< 2tD*F*()[¢, CJ(D2F* ()]0, ¢1)'/*

1/2
< 22 DRW)IG, = 200 DRG0

Inequalities (3.1.1) and (3.1.2) are proved. 0

Now we describe the dual parallel trajectories method.

Let G be a bounded closed convex domain in R™ and let F' be a 9-self-
concordant barrier for G. Assume that we know the F-center of the G (i.e.,
the minimizer of F' on int G); to simplify the description, let the center be 0.
Let A, Rank A = n be an n X m matrix and let b € R"™. The dual parallel
trajectories method solves problems of the type

(3.4.5) T —max | Az =7b, v € G.

If G is a polytope, then (3.4.5) is an LP problem. Note that the assumption
F’(0) = 0 is not a severe restriction, which is demonstrated by the following
example:

(3.4.6) 7 —max| 2z € R™, Az =7b, ||z ||0< 1,

where G = {z € R" ||| 2 [|0< 1}, ¥ = m and F(z) = — 7 In(1 — 2?) (the
parameter of this barrier does equal to m; see Lemma 3.3.1 and Proposition
2.3.1). Note that (3.4.6) is, in a natural sense, a “universal” format for LP
problems.

Without loss of generality, we can assume that

(3.4.7) AF"(0) AT = I,
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(because the system Az = 7b can be replaced by an equivalent system with
the rows of the matrix being orthonormal with respect to the scalar product
el (F"(0))~1h).

Define the function on R™ X int G,

(3.4.8) L(¢,z) = —F(z) + ¢T Az
and let
(3.4.9) F*(¢) = max{L(¢,z) | = € int G}.

F7* is obtained from the Legendre transformation of the barrier F by a
homogeneous linear transformation of argument, so that

(3.4.10) Ft e L(R™,m)

and D?F7 is nondegenerate. Note that, in the case of problem (3.4.6), F* has
an explicit representation,

e[ @TeR r 2
(34.11) Ft(g)=) TV (T In(1 + [1 + (af ¢)%'/%) ¢,
i=1 t

where a;, 1 < i < m are the columns of A.
Denote the minimizer of L(¢,z) over x € int G by X(¢) (this point is well
defined). For problem (3.4.6), we have

T
az
i ¢ 1<¢<m.

(3.4.12) Xi(9) = 1 T+ @ =

Let F7(¢) = F*(¢) — b7 ¢ for 7 > 0. We use the following result.

Lemma 3.4.1 Let E* =R", t >0, ¢ € Ef = {¢p € R* | ¢Tb = tbTb} and
let F; be the restriction of F* onto E;. Also, let Ap = MF, ¢) < -:1; be such
that, for s = w(Ag)(1 — w(Ag)) ™! and &5 = (p(1 — ()72, we have £y < 1.
Then

(i) The solution, T4, to the problem

7 — max | A(F",9) <1

is well defined and positive, and A\(F™,¢) = 1,

(i) The projection, X*(¢) of the point X (¢) onto the plane E' = {x € R™ |
Az = 14b}, orthogonal with respect to the Euclidean structure on R™ induced
by the inner product (h,e), = D*F(X(¢))[h,e], belongs to G;

(iii) The inequality

9
4.1 Yty < —o
(3 3) t T > thb

holds, where t* is the optimal value of problem (3.4.5).
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Proof. Note that DF+(0) = 0 (since DF(0) = 0) and that F* is strongly
convex (Theorem 2.4.2; recall that A is a matrix of full row rank). Hence
F*(¢) tends to 0o as || ¢ ||— oo, and the minimizers ¢} of F; are well defined.
It is clear that

VFT(47) =7(t)b

for some 7*(t) > 0 and that the function 7*(¢) increases on the positive half-
axis.

Denote ¢} by ¢*, 7*(t) by 7*, and let ®(x) = F" (¢).

(i) Let us provide ET with the scalar product (u,v) = D?®(¢*)[u,v] and let
| - || be the corresponding norm, ®'(u), ®”(u) be the corresponding gradient
and Hessian of ®, respectively. By (3.4.10) and by virtue of the arguments from
the beginning of the proof, ® is strongly 1-self-concordant on E*. Applying
Theorem 2.2.2(iii) to the restriction = of the function ® onto E; and taking
into account that A(Z,¢) = Ay < %, we obtain || ¢ — ¢* ||< (4. Since {3 <1,

we have 1
| 2"(¢" + s(¢ — ¢") I< sy 0S8t

(Theorem 2.1.1). Moreover, ®'(¢*) = 0; thus,

! Cq&
d —
1@ < 122

Applying Theorem 2.1.1, we obtain

G
A@,9) < (T_—?W

By assumption of the lemma, the latter quantity is less or equal 1; thus, 74 is
well defined and positive. Moreover, we have

(3.4.14) s > T(Y).

The latter equality in (i) is evident. Thereby (i) is proved.
(i) Let F*(-) be the Legendre transformation of F'; thus, F'* (1)) = F*(AT%).
Let

z=X(¢), E@)=F'@)-1"9, 7=

Replacing first- and second-order differentials by gradients and Hessians with
respect to the standard Euclidean structure, we obtain, in view of the standard
properties of the Legendre transformation,

{1=XE0)} = {E()Tu < [E"(0)w) u)'/?, ue R
(3.4.15) = {(Az — 70)Tu < [(A(F*)"(AT¢)ATu)Tu)?, w e R}
= {(Az - 0)Tu < [(A(F"(2)) ' ATw)Tu]'/?, u e R™}.
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Let z* be the projection involved into (ii). Then
F'(z)(z — z*) = ATu*
for certain u* € R", and
Az — b= Az — z*).
The latter inequality in (3.4.15), as applied to u = u*, leads to
(A(z —*))Tu* < [(A(e —a*)Tu)/2
In view of F"(z)(x — z*) = ATu*, we obtain
(¢ — ") F"(z)(z - 2*) < [(& — &*)TF"(z)(z — )] /?,
whence (z — z*)T F"(x)(z — z*) < 1. Thus, the ellipsoid
{yeR™| D*F(z)ly—=z,y -2 < 1}

contains z*. This ellipsoid is contained in G (Proposition 2.3.2(ii.1)); hence
z* € G. Statement (ii) is proved.
(iii) By the standard duality arguments, X(¢*) = z* belongs to the set

G'={z e€intG| Az = 7*(t)b}
and minimizes F' over this set, so that
(3.416) (Vw e R™): Aw=0= wTF'(z*) =0; F'(z*) = AT¢".
Let y* be a solution to (3.4.5) and let

* __ t* *

G

Then the premise in (3.4.16) holds for w = y* — u*, which leads to
(3.4.17) (w* —z*)TF (z*) = (v* — «*)TF'(z*) < ¥

(the latter inequality holds by (2.3.2) and since F is a ¥-self-concordant barrier
for G). The equality in (3.4.16), combined with the evident relation

Au* —z*)=(t" —1"(t))b

and with (3.4.17), implies that (t* —7*(t))bT ¢* < ¥, whence, in view of ¢* € E;
(or, which is the same, in view of b7 ¢* = tb7b),

9
* ek < — .
rorl s g

This inequality, combined with (3.4.14), proves (iii). O
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The above results lead to the following method for (3.4.5). Let us choose
A > 0 such that
0<A<A, wd)<3,

wA)(1 - w(N)

4. 1
(3.4.18) (1= 20V
and let ¢y be the solution of the equation
té
4.1 =X, 6= (MTh)V2,
(34.19) i (7h)

belonging to (0,1/4).
Set ¢_1 =tgh € ET = R"™ and let

A=) |
(3420) t; = exp {m} ti 1, i1>0

(recall that AT(X) = A2/(1 — \)?). After ¢;—; € E;! is found, we find ¢} € E,
the Newton iterate of ¢;_; (the Newton method is applied to the restriction of
F* onto E;"), and we then define

My my
L

i+1°

¢ =

Then the next iteration is performed. The approximate solution to (3.4.5)
produced at ith iteration is

(s = X*(s), 7i = 79,)

(this pair is feasible for (3.4.5); see Lemma 3.4.1(ii)).
By virtue of the above-stated properties of the family F**(F*t, Ef,b) (see
Proposition 3.4.2 and (3.4.4)), our standard arguments prove the implication

A(Ftoa¢—1) < A = (VZ) : {’\(th7¢;) < )‘+()‘)}&{/\(th+1’¢1') < /\}
Therefore, by Lemma 3.4.1, we have

A(Frp,0-1) < A

(3.4.21) T A= AT(N))
= (Vi): 7, €G, Az; =1;b, e, =1 — i QeXP“(l MYEIVEL
where
(3.4.22) S
e  t*tobTh

Let us verify that the premise in (3.4.21) is true.
Indeed, we clearly have A(Fy,, ¢ 1) < A(F',¢_1). We have

D*FH(0)[¢,¢) = (T A{(F*)"(0)}AT¢ = ¢TA[F"(0) 'AT ¢ = (¢,
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which implies D?F+(0)[b,b] = 62. Thus, by Theorem 2.1.1, we have, for 0 <

th < 1,
)

(1-
which, combined with the relation DF*(0) = 0, leads to

| DPFH()lb (] IS T (D F (O™,

| DEF()[C] < 71— (DZF ROl

for each ( or, by virtue of Theorem 2.1.1, to

)
(1-t6)?

The latter inequality means that A(F*,tb) < t§(1 — ¢6)~2. This, by virtue of
the choice of o, leads to the relation A(Fy,, ¢—1) < A(Ft,¢_1) < A. Thus, the
premise in (3.4.21) does hold.

To obtain the efficiency estimate for the above method, it remains to eval-
uate ). Let us prove that

S(DFH(EB)[¢, C) V2

| DFT(tb)[¢] <

U/
<2—.
1= A

Indeed, since A(F"(0))~'AT = I,, the point w = (F"(0))~1ATb is the
nearest to 0 point of the plane {z | Az = b} (in the Euclidean metric on R™
induced by the inner product (h,e) = hTF”(0)e). The ellipsoid W = {z €
R™ | 2T F"(0)z < 1} is contained in G (Theorem 2.1.1(ii)), which implies that

1 1
* > = .
Y2 T w2 b

Besides this, tg > A/(26) = A/(2 || b ||2) (evidently); hence
04 J
= —_— < 2—
tto b3~ A

Now we obtain from (3.4.21) the following estimate for the relative accuracy
of z;:

9 -3
4. =1- 2 <2l L2

The optimal choice of A is

A = 0.206...;

under this choice, for each ¢ € (0,1), the inequality ¢; < ¢ holds for all ¢ such
that -
(3.4.24) i>N()=1+12.49Y21n —.
€
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Note that the implementation of the dual parallel trajectories method re-
quires an explicit representation of the Legendre transformation of F. This
requirement is satisfied for LP problems in format (3.4.6).

The arithmetic cost per iteration for the above method as applied to (3.4.6)
is O(mn?). A Karmarkar’s type speed-up for the method that, in the case
of problem (3.4.6), reduces the average (over iterations) arithmetic cost to
O(m'/?n? + mn) is described in [Ns 88a, [Ns 89].

3.5 Primal parallel trajectories method

Consider the following standard problem with linear objective (it is more con-
venient to deal with its maximization formulation instead of the minimization
one):

(3.5.1) e »max| zeG,

where G is a bounded closed convex domain in R™. Assume that we are given
a ¥-self-concordant barrier F' for G and that we know the F-center of G (i.e.,
the minimizer of F on int G); let this center be 0, that is,

(3.5.2) 0€intG, F'(0)=0
(henceforth, F’', F" are the gradient and Hessian of F' with respect to the
standard Euclidean structure on R™). Without loss of generality, assume that

le=1.

In the barrier path-following method, we follow the path of minimizers
£*(s) = argmin {Fy(z) = —scTz + F(z) | z € int G};

in the method of centers, we also follow this path but use another parame-
terization of it. It is important that, in both methods, we use, in a sense,
piecewise-constant (i.e., zero-order) approximations of the path. It is natural
to follow the path using the first-order information on it. Note that the path
is defined by the relation VF,(-) = 0, i.e., by the equation

F'(z*(s)) = sc.

Since G is bounded, F” is nondegenerate, and the implicit function theorem
implies that the path is differentiable and satisfies the differential equation

(z")'(s) = [F"(a"(s))] e

In particular, the derivative of the objective ¢z along the path is positive,
and we can use the value of the objective at a point of the path as our new

parameter,
a*(s) = 27 (t(s)),
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where
cTa?(t) =t

and t varies between 0 (the value of the objective at the F-center of G; see
(3.5.2)) and t*, where
t* = max{cTz | z € G}

is the optimal value in (3.5.1). As we just have seen, the derivative (z#)'(t)
of the path z#(.) at a point ¢, 0 < t < t* is proportional to the direction
[F"(z#(t))]"'c and should satisfy the identity

(=Y (t) =1
(the definition of the parameterization), whence

F” ( x)] -1 c
BY(1) = dat (D), D)= LBl c |
@) =06 W),  0@) = g

Let us follow the path z#(t) using the first-order information. Assume that
we are given, for the current value ¢ of the parameter, a “close” to x#(t) point
z(t). Then the vector ®(z(t)) is “close” to the derivative of the path at ¢.
Having chosen a new value ¢t of the parameter, we can regard the point

st (tT) = 2(t) + (¢ — )P(x(t))

as a natural approximation to the point z#(¢*). Since the errors of approxi-
mation may accumulate, we cannot iterate this process straightforwardly and
need some correction technique. The simplest way to perform the correction is
to accompany each predictor step (t,z(t)) — (t*,z7(t*)) by a corrector step,
which should restore closeness of the updated z to z#(t+). The derivative of
F at z#(t*) is proportional to ¢ and ¢Tz#(t*) = t*, so that x#(t) is the mini-
mizer of F on the intersection (int G) N{z | ¢Tz = t*}. Therefore the simplest
way to restore the closeness to the path is to minimize the restriction of F’
onto the above intersection by a number of Newton steps. In what follows, we
describe a method of this type, which requires a single Newton correction step
per every predictor step—the primal parallel trajectories method. Note that
the idea of the method is close to that one of the predictor-corrector methods
developed for LP by Mizuno, Todd, and Ye [MTY 89] and Mehrotra [Mh 89)].

The primal parallel trajectories method for problem (3.5.1) is defined by
parameters Aj, A2 such that

(3.5.3) 0<A<A; O0<X<i;

A
(3.5.4) XWM)+1_125AAI—Aﬂ

(recall that At (X) = A2(1 — A)72).
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The method is as follows.
1. Initialization. Let

(3.5.5) Ir—1 = TQ€,
where

() e
NGIGCRCIS

Tozma.X{TSII ﬁ*_LTFS/\l},

2. The ith step. Let z;_; € int G be the previous approximate solution.
Denote the set {y € intG | ¢ (y — z) = 0} by E(x) and the restriction of F
onto E(x) by Fy(y). Let (the corrector step) z; € E(z;_1) be the Newton
iterate of x;_1 (the Newton method is applied to F,, ,(-); it is shown that
z] € int G). After z; is found, we define (the predictor step) z; as

F" () e
(" ()] 102

(3.5.6) z; =z} + A2

(it will be shown that z; € int G). The ith step is completed.

Let A = (0,t*) (recall that t* > 0 by (3.5.2)) and let G* = {z € G | Tz >
0}. For each t € A, the set Gy = {z € G | ¢z = t} is nonempty. The
restriction F; of F' onto the relative interior of G}, by virtue of Proposition
2.3.1(i), is a V-self-concordant barrier for G; (the latter set is regarded as a
full-dimensional subset of the corresponding hyperplane). Since G; is bounded,
F} attains its minimum over the relative interior of G; at the unique point z# (t)
(Proposition 2.3.2(ii)). By definition of z#(t), we have

(3.5.7) F'(z*(t)) = s(t)c

for certain (t) (s(t) > 0 by (3.5.2)). The C3-smoothness of F' and the nonde-
generacy of D2F imply that z#(¢) and s(t) are C%-smooth on A.
The main result on the primal parallel trajectories method is as follows.

Proposition 3.5.1 The primal parallel trajectories method is well defined: For
all i, the points xi_1, a:;+ and z; are well defined and belong to int G. Moreover,
for each i > 0, we have

(3.5.8) @) : tioy=clziy >0,
(359) (Jz) : )\(Ftiﬁpmi—l) < Ay,

0
(3.5.10) K):  s(ts) > (1 + W) s(ti 1),
where

Q=3 (1 -(1- 3>\2w(/\1))5/3) )

) =t < — .
(3.5.11) L: £ -t<
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Furthermore, the relative accuracy of ith iterate satisfies the inequality

Tz, 0 0\
(3.512) & = 1-— ch* < ; (1 + m) )

where y depends on A1, Ay only and where * is a solution to (3.5.1).

Proof. Let us establish some properties of 27 (t). Taking the derivative with
respect to ¢ in (3.5.7) and in the identity ¢T ¥ (¢) = ¢, we obtain

[F"(c* () 1e
T @) e

(35.13) §'(t) =T [F"=* ()] ', (a7 (1)) =

Let us choose 7 € A and let
I & ll-= {rTF" (2 (r))R}"/2.
Equation (3.5.13) implies

- 1 e
“ (l’#(T)) “T_ {CT[F”(.'E#(T))]_IC}I/z —¢( )'

(3.5.14)

Moreover, by Theorem 2.1.1 and in view of (3.5.14), we have

(3.5.15)

2* (1) — ot = (1)) %)
| =#(7) ®) o<t = || @ (@) llr< 1o T 2#(7) — 2% (%) 1)

e 70
= || (™(7)) [le< (1— || z#(7) — o#(¢) ||¢)?

By Theorem 2.1.1, the set {y € R™ ||| y — 2#(¢t) ||s< 1} is contained in int G,
which, combined with (3.5.15), proves the implication

0<7—t<(36() !
(35.16) = {re A, | a*(r) —2#(t) [l:< 1 - {1 - 3(7 - t)p(t)}' /%,
§'() 2 $2(O){1 - 3( - )$(8)}*/°}
(we have taken into account (3.5.13) and the implication
| a¥(7) —2®(t) s < 1= " [F"(z#(r)] "e
> {1 || a#(r) — a* (@) |} [F" (a# ()] e

(see Theorem 2.1.1)).
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Now let us prove (I;) — (L;). Let
J={i>0]| (I;), (J;) hold for 0 < j <1, (K;), (Lj) hold for 0 < j < ¢,

€1 €intG, 0<j<i, ¢f €intG, 0<j < i}
We wish to prove that J = {i > 0}; it suffices to verify that 0 € J and that
jeJ = j+1ed

Let us first prove that 0 € J, i.e., that z_; € intG, t_; > 0, and (Jo)
holds. By (3.5.5), we have el F”(0)e = 1, whence Te € intG for 0 < 7 < 1,
and || F'(re) o< 7(1 = 7)7! (in view of Theorem 2.1.1 and the relation
F'(0) =0) or

(1-1)2

whence A\(F,19e) < A;. It is clear that A(F;_,, 70e) < A(F,1oe), which implies
(Jo)- Furthermore,

{RTF"(re)n}'/?,

| WP (re) | 1 (TP (R} 2 <
-7

t_1 = cTrge = ro{ T [F"(0)] " Lc}/?,
which, by virtue of the evident inequality 79 > A1/2, implies that
(3.5.17) t_1 > %{J[F"(O)]”lc}l/?.
In particular, ¢ 1 > 0. Thus, 0 € J.
Now let i € J; let us prove then that ¢ + 1 € J. First, in view of Ay < A,

and the fact that F, | is a barrier for the set Gy,_,, (J;) implies (see Theorem
2.2.3) the relation

(3.5.18 zf crintGy,_, C intG, MF,_,zh) < AT ()
2 3 i—1 2

“rint” denotes the relative interior). Furthermore, let

1

o PEhe
() e 7
Then
(3.5.19) T =z} + Aot el F'(z])e; = 1,

whence, in view of Theorem 2.1.1(ii) and the inclusion Ay € (0,1), z; € int G.
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We have r - -
ti=c T, =c :1:;"+/\2c €;

(3.5.20) = Tz + do{ T [F"(z])] e}/

=t 1+ )\Z{CT[F”(zf)]_lc}l/z-

In particular, ¢; > t;—1, and (I;+1) holds.
By virtue of (3.5.18) and Theorem 2.2.2(iii), we have

(@®(ti-1) — & )F" (a5 (@¥ (ti-1) — 2) <A (A1),
whence, by Theorem 2.1.1,

1—w(At (A1)
#(ti-1)

(see (3.5.14)). Therefore (3.5.20) implies

1
(1 = w(A*(M)))g(ti-1)

<A [F"(@) e} <

A2l ~w(A* (M)
B(ti—1) '

Since Az < 1, relations (3.5.21) and (3.5.16) imply the relations

(3.5.21) ti>Ti=t-1+

(3.5.22) S’(T) > ¢2(t,;_1){1 -3(r— ti_1)¢(ti_1)}2/3, ti 1 <7<LTW,
whence, since s evidently increases,

s(t:) = s(ti1) + Q(ti-1),

(3.5.23)

0 = 3(1 - {1 - 3l — WX ) FF).
Since

1
M @O
_ s() _ 5(0)

{(F"(z# ()T [F"(a# ()] L F(x#(t))}1/2 — 9V/%

we obtain

8(ts) > (tir) (1 + %) .

The latter relation is (K;).
Furthermore, let * be the solution to (3.5.1). Then we have

F'(a?(t))]"(a* —a¥(t)) 9
s(t:) ~ s(t:)

t*r—t; = cT(:c* - ;) = CT(-’E* - $#(ti)) = [

(we have used (2.3.2)), which implies (L;).
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To prove the inclusion i + 1 € J, it remains to verify (J;11). Let ¢Th =0
and let
m(r):zf+re,~, 0<r <.

Then

(P ()T =] T P (a(r)h |< (€] P a(r))ei) (AT F (ol 2

< (1__.17)5{eiTF//(x(O)ei}1/2{hTF//(I(O))h}1/2

= o o)y

(we have taken into account Theorem 2.1.1 and the relation ef F”'(z(0))e; = 1).
By (3.5.18), the relation ¢’k = 0 implies

| ATF'(2(0)) |< AT (A1) {hT F" (z(0))R}'/?,
so that

| F0a)) | < (MO0 + 1250 ) (0T P (a(0)R)?
A () A
= (1-;2 + (1—32)2

) {RTF"(z(A2)R}?

(see Theorem 2.1.1). The inequality obtained means that

AT (A1) A2
AF,, ;) < ,
Feom) < T35 Y T np?
which, by virtue of (3.5.4), leads to (J;+1). The proposition is proved. 0

We see that the rate of convergence of the primal parallel trajectories
method is the same as the rate of convergence of our previous methods: It
needs no more than O(¥'/21n(29/¢)) iterations to produce an approximation
z; such that &; < e € (0, 1); the constant factor in O(-) depends on A;, Az only.

A reasonable choice of the parameters is A\; = 0.266, X, = 0.096. Under
this choice, (3.5.12) leads to

g; < 11.789 (1 + 0'107>

91/2
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Chapter 4

Potential reduction interior-point methods

In the previous chapter, we described a number of polynomial-time interior-
point methods based on following certain path. Below, we present another
family of polynomial-time interior-point methods based on explicit Lyapunov’s
functions. Namely, in what follows, we generalize onto nonlinear convex prob-
lems three potential reduction methods initially developed for LP, specifically,
the famous method of Karmarkar [Ka 84], the similar projective method [Nm
87], and the primal-dual method of Todd and Ye [TY 87], [Ye 88a], |Ye 89).

From a theoretical viewpoint, potential reduction interior-point methods
have no advantages as compared to the path-following procedures. As we have
seen, a path-following method associated with a ¥-self-concordant barrier for
a bounded convex domain minimizes a linear function over this domain to
an accuracy € in O(9'/21n(9/e)) Newton-type steps; the efficiency estimate
of the generalized primal-dual method is the same, and the estimates for the
generalized method of Karmarkar and the projective method are even worse
(O(¥1n(d/¢e))). Nevertheless, the potential reduction methods are very im-
portant because of the following reason. The accuracy attained by such a
method can be estimated in terms of the amount at which the corresponding
Lyapunov’s function (the potential) is reduced during the solution process. At
each step of a potential reduction method, the theory prescribes the direction
and the stepsize, which ensure certain decreasing of the potential, but we are
not forbidden to look for deeper decreasing; say, we can minimize the potential
in the above direction with the aid of line search (this is called “large steps”).
It is well known that, in the case of LP problems, large steps considerably
improve behaviour of the interior-point methods. In contrast, a path-following
method must maintain closeness to the corresponding path, and it is not clear
how to provide this requirement for large steps without violation of the theo-
retical efficiency estimates (cf. §3.2.6).

It turns out that, to apply most of the potential reduction methods, we
should properly reformulate the problem, i.e., transform it into the so-called
conic form (where we should minimize a linear objective over the intersection
of a closed convex cone and an affine subspace). This universal form of a
convex programming problem is introduced and studied in §4.1. Section 4.2 is
devoted to duality for conic problems; the specifics of conic formulation allows
us to develop quite symmetric duality theory for conic problems, which can

101
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be regarded as a very natural extension of the standard linear programming
duality. This duality can be also regarded as a particular case of general duality
theory for problems with “nonnegativity constraints” defined by a convex cone
in a Banach space (see, e.g., [ET 76]); the specifics of the presented duality
results are caused by linearity of the objective and the equality constraints
involved into the problem under consideration. Sections 4.3-4.5 contain the
descriptions of the (generalized) method of Karmarkar, the projective method,
and the primal-dual method, respectively.

4.1 Conic formulation of convex program

4.1.1 Motivations

A usual linear programming problem can be written as

() {d,y) — min,

(%) F(y) € K,

where y € R™, K = RY is the standard cone {z > 0} in R", and F is an
affine mapping from R™ into R"; as always, (d, y) denotes the value of a linear
form d at a vector y. The standard formulation of a nonlinear optimization
problem has basically the same form, but with a nonlinear mapping F' (the
objective, of course, always can be chosen to be linear). Thus, in the usual
formulation of a nonlinear optimization problem, we deal with the standard
“polyhedral” notion of nonnegativity (K is the nonnegative orthant) and a
nonlinear manifold F(R™). At the same time, we can transform (*), (x«) into
a nonlinear problem by replacing the nonnegative orthant with a nonpolyhedral
cone and preserving the linearity of F.

Assume that, in (x), (xx), F' is an affine mapping and K is a closed convex
cone in a finite-dimensional linear space E, int K # (0. We also assume K to
be pointed (i.e., K({—K} = {0}). Note that, in (x), (¥x), we can choose
as the unknown the vector x = F(y) instead of y itself; it suffices to add the
constraint z € L = F(R™) and to express the objective in terms of z instead
of y. The latter can be done if and only if d is constant along the kernel of the
homogeneous part of F; if it is not the case, then (%), (xx) is either inconsistent,
or below unbounded. Thus, at least every solvable problem (x), (**) with an
affine F' can be rewritten as

(P): {¢,z) — min | xeKﬂ(L+b),

where K is a pointed closed convex cone with a nonempty interior in F, ¢
belongs to the space E* conjugate to E, b € F, and L is a subspace of E.
Under these assumptions on the data involved, we call (P) a conic problem.
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4.1.2 Conic and standard problems

A conic problem, of course, is a special convex programming problem. In turn,
each convex problem can be rewritten in the conic form. It clearly suffices to
transform into the conic form a standard convex problem (see Chapter 3), i.e.,
the problem

minimize (¢,y) s.t.y€ G,

where G is a closed convex domain in R™. Without loss of generality, we can
assume that G does not contain straight lines (otherwise, the problem either
is below unbounded, or we can reduce it to an equivalent standard problem
with the feasible domain not containing straight lines; it suffices to replace G
with its cross section by an appropriate subspace of E).

Let us embed R™ into E = R™! as the affine hyperplane {z(®*1) = 1}
and let K be the closed conic hull of the image of G,

K=cl {x e R ™D >, :E(n1+1) (x(l), 2™ ¢ G} .
Clearly, K is a pointed closed cone with a nonempty interior, and G is the
intersection of K and the hyperplane (L +b), L = {x € E | z®t1) = 0},
b= (0,...,0,1)T (more rigorously, G is the inverse image of this intersection
under the above embedding F : R™ — R™"!). The initial objective ¢ can be
thought of as a linear functional ¢ on R"*! independent on the last coordinate;
the conic problem defined by ¢, K and L clearly is equivalent to the initial
problem.

Of course, the above reduction is, in fact, the result of a very liberal usage
of the (unformal) notion of equivalence between optimization problems. From
the algorithmic viewpoint, the possibility to “explicitly” reduce a given convex
problem to a conic problem depends on the form in which the initial problem
is represented. This question is discussed in more detail in Chapters 5 and 6.

4.2 Duality for conic problems

4.2.1 Dual problem

Assume for a moment that (P) is solvable and let z* be an optimal solution to
the problem. Assume also that at this solution the Kuhn-Tucker optimality
condition holds, so that we can add to the objective a linear functional y
constant along L+b in such a way that the resulting linear functional s* = c¢+y
is nonnegative on the set K — r*. What can we say about s* ? First, since K
is a cone, the inequality

(4.2.1) (s*",z —x*) >0, ze K
implies s* € K*, where

K*={se E*|(s,z) >0 Yz € K}
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is the cone dual to K (under our assumptions on K and E, this cone is a
pointed closed convex cone with a nonempty interior in E*). Second, (4.2.1)
holds for z = 0, so that {s*,z*) < 0, and since z* € K and s* € K*, we have
(s*,z*) > 0 as well. It follows that (s*,z*) = 0.

Last, the functional s* — ¢ is constant along L + b, or, which is the same,
s* — ¢ belongs to the subspace L+ C E* formed by the functionals vanishing
on L. Thus, s* is a feasible solution to the problem

minimize (s,z*) s.t.s€ K" ﬂ(LJ’ +c).

Moreover, s* clearly is the optimal solution to this problem (since the objective
of the problem is nonnegative on K™ and equals zero at s*). Note that, if we
replace the objective z* of the latter problem with an arbitrary z € (L + b),
say, with b, the point s* remains optimal for the perturbed problem, since the
quantity (s,z* — z) clearly is constant when s varies along (L* + ¢), provided
that z € (L +b).

Thus, any s* given by the Kuhn-Tucker optimality condition at z* must
belong to the optimal set of the problem

minimize {(s,b) st.s€ K" ﬂ(Ll +c)

as well as must satisfy the complementary slackness relation (s*, z*) = 0.
Note that the resulting problem is again a conic problem.
The above considerations motivate the following definition.

Definition 4.2.1 Let E be a finite-dimensional space and K be a closed convez
pointed cone in E with a nonempty interior; also let b € E and c € E*. The
data E, K, L, b, ¢ define a pair of conic problems

P): mintmize (c,z) s.t.z € Kﬂ(L +b)
and
(D) : minimize (s,b) s.t.se€ K* ﬂ(LJ‘ +¢),

wherein K* C E* is the cone dual to K and L' C E* is the annulator of L.
(P) and (D) are called, respectively, primal and dual problems associated
with the above data.

Note that, in the polyhedral case (K is the standard (dim E)-facet cone
in E), the pair (P), (D) is, in fact, the standard primal-dual pair of linear
programming problems.

In what follows, we try to extend onto our general conic case the standard
relations between the primal and the dual LP problems.

First, our duality is symmetric: (P) can be thought of as the problem
dual to (D) (of course, we use the canonical isomorphism (E*)* = E, so that
(K*)* = K and (L*)* = L). Thus, our duality is quite symmetric, similar
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to the LP duality; the dual problem remembers everything about the primal
problem. Note that the standard Lagrange duality for convex (nonlinear)
programming does not possess such a symmetry. For example, for the primal
problem of the type

fo(z) > min| fi(z) <0, 1<i<m,z€E

where f;, i > 0, are, say, strongly convex functions, the dual problem is
m
maximize ¢(s) = min {fg(a:) + Zsifi(x) | xz € E} s.t. s >0,
i=1
and it is difficult to extract the primal problem from the dual one.

4,2.2 Duality relations

In what follows, we fix a primal-dual conic pair (P), (D). Our aim is to study
the relations between properties of the problems comprising the pair. We
denote by P* the optimal value in the primal problem (P* = 400, if the set
D(P) of primal feasible solutions is empty; otherwise, P* = inf{(c,z) | = €
D(P)}); the set of feasible dual solutions and the corresponding optimal value
are denoted by D(D), D*, respectively.

Preliminary results. Let us start with the following simple statement.

Lemma 4.2.1 For every pair of primal and dual feasible solutions x € D(P),
s € D(D), we have

(4.2.2) (c,b) < {c,b) + (s,z) = (c,z) + (5,b);

in particular, if both of the problems are consistent (D(P) # 0, D(D) # 0),
then

(4.2.3) (c,b) < P*+ D*.

Proof. We have (c,z) + (s,b) — {c,b) — (s,z) = (c— s,z —b), so that, to
establish the equality in (4.2.2), it suffices to prove that {¢c — s,z —b) = 0.
Since z is primal feasible, z — b € L, so that each functional from L' vanishes
at z — b. In particular, {c — s,z — b) = 0, by virtue of ¢ — s € L+ (recall that
s is dual feasible). Inequality (4.2.2) follows from z € K, s € K*. Equation
(4.2.3) is an immediate corollary of (4.2.2). O

Corollary 4.2.1 Assume that x* is primal feasible and s* is dual feasible.
Then the following two conditions are equivalent: (s*,x*) = 0 (complementary
slackness), {(¢,b) = (c,z*) + (s,b*) (zero duality gap), and each of them is
sufficient for * and s* to be primal and dual optimal, respectively.
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The above statements motivate the following definitions. Let us say that
a primal-dual pair of conic problems is normal (= possesses property (N)) if
both of the problems are solvable and, for their optimal values, the equality

(4.2.4) P* +D* = (c,b)

holds. The pair is said to be weakly normal (= possessing property (WN)) if
both of the problems are consistent and (4.2.4) holds.

Dual problem and the cost function for the perturbed primal problem. Asin
the standard duality theory, we can describe the feasible solutions to the dual
problem (D) in terms of support functionals to the optimal value of the primal
problem regarded as a function of b. Let

B=K+L

be the set of all b € F such that the primal problem (P(b)) defined by the data
¢, K, L, bis feasible; B clearly is convex, and int B # @ (recall that int K # ).
Let

P*(b) = inf{(c,z) | z € Kﬂ(L +b)}:B— RU{-—oo}.

Also, let D*(b) be the optimal value in the problem (D(b)) dual to (P(b)).
The function P*(b) clearly possesses the following properties:
(i) P*(b) is convex;
(ii) For each b € B, we have b+ L C B, and P*(b) is constant along b+ L;
(iii) For each b € B and each u € K, we have b + u € B and P*(b+ u) <
P*(b) + {c, u).

Proposition 4.2.1 A functional s € E* is dual feasible if and only if there
exists B = 3(s) € R such that

(4.2.5) B+ (c—s,b) <P*(b) VbeB.

Ifb € B and c — s is the support on B functional to P*(-) at b, then s solves
(D(b)) and (WN) holds for the pair ((P(b)), (D(b))). Conversely, if (WN) holds
for the latter pair and s solves (D(b)), then c— s is a support (on B) functional
to P*(-) at b.

Proof. If s is dual feasible, then (4.2.5) holds with 8 = 0 for each b € B by
virtue of (4.2.2). Conversely, assume that s satisfies (4.2.5). In view of (iii),
we have P*(b) < P*(0) + (c,b), b € K, which, combined with (4.2.5), implies
B —P*(0) < (s,b), b € K, so that s € K*. Furthermore, P*(b) = P*(0),b € L
(see (ii)), which, combined with (4.2.5), leads to (¢ — s,b) = 0, b € L, so that
¢ — s € L. Thus, s is dual feasible.

Now assume that ¢ — s is a support functional to P*(-) at b € B, so that
(4.2.5) holds with 8 = P*(b) — {c — s,b). Since P*(-) admits a support func-
tional, this function is below bounded on bounded subsets of B. We always
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have 0 € B, and clearly P*(0) is either zero or —oo. The second alterna-
tive in our case is excluded, so that P*(0) = 0. Relation (4.2.5) with the
above 3 and with b = 0 therefore leads to P*(b) — {c—s,b) < 0, so that
P*(b) + (s,b) < {c,b). Since, as we have already proved, s is dual feasible, it
follows that P*(b) + D*(b) < P*(b) + (s,b) < (c,b). By virtue of (4.2.3), all the
inequalities in this chain are equalities, so that s is dual optimal and (WN)
holds for the pair ((P(b)), (D(b))).

It remains to prove that, if (WN) holds for the pair ((P(b)), (D(b))) and s
solves (D(b)), then ¢ — s is a support functional to P*(b) at b. From (4.2.2), it
follows immediately that P*(b) > (c — s,b) = (¢ — 5,b — b) + (¢ — s,b). Since
(s,b) = D*(b) = (c,b) — P*(b) (we have taken into account (WN)), we obtain
P*(b) > (¢ — 5,b—b) + P*(b), and ¢ — s proves to be a support functional to
P* at b. a

Relations between properties of primal and dual problems. Let H be a vector
space and let T be a conic problem on H defined by the data r (the objective),
Q (the cone), and the feasible plane (M + d), where M is the corresponding
linear subspace of H. Introduce the following predicates:

e (F): Feasibility (D(T) # 0);
¢ (B): Boundedness of the feasible set (D(T) is bounded, e.g., empty);

¢ (SB): Boundedness of the solution set (the set of optimal solutions to (T)
is nonempty and bounded);

e (R): Recessity (M NQ # {0});

¢ (BO): Boundedness of the objective (the objective is below bounded on
D(T)y c.g., due to D(T) — 0)’

e (I): Existence of a feasible interior point (D(T) intersects int Q);
¢ (S): Solvability ((T) is solvable).

Recall that we have fixed a primal-dual pair (P), (D) of conic problems. In what
follows, the properties of the primal and the dual problems are marked with the
subscripts p and d, respectively; e.g., (Sp) is the abbreviation for the assertion
“the primal problem is solvable.” Our aim is to establish some relations between
the introduced properties of the primal and the dual problems. Note that, in
what follows, the assertions are arranged into “symmetric” pairs (the symmetry
is based on the above-mentioned symmetry between the primal and the dual
problems, and it suffices to prove only the first statement in each pair).

(1) (F,) = (BOW; (Fa) = (BO,).

This is an immediate corollary of (4.2.2).

(2) (Fy) and (By) = (S,); (Fa) and (Bg) = (Sa)-

It is clear, due to the compactness arguments. a
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Remark 4.2.1 In the linear programming case (K is a polyhedral cone), item
(2) can be essentially strengthened: (Fp) and (BOp) = (N); this strong state-
ment cannot be extended onto nonlinear case, as it is could be demonstrated by
simple examples.

The following statements are more encouraging.

(3) (Fp) and (Bp) = (Fgq) and (BOy); (Fg) and (Bg) = (Fp) and (BO,).

In fact, the premise in the first implication implies even (WN); this is
demonstrated in item (7).

Implication (F,) and (Bp) = (BOg) is a consequence of item (1). To
complete the proof of (3), let us first establish the following implication.

(4) 11) = (Ra); 1(1) = (Ry).

The premise in the first implication means that the affine subspace (L + b)
does not intersect the open nonempty convex set int K. Therefore these two
sets can be separated by a nonzero linear functional s,

z€(intK), ye(L+b)= (s,x) > (s,y).

In particular, s is below bounded on K and consequently belongs to K™* and
is above bounded on L, or, s € L*, which is the same. Thus, 0 # s € L+ N K*,
and (Ry) follows. O

Now we can complete the proof of item (3). Assume that the primal prob-
lem is consistent and that its feasible set is bounded. We wish to prove that,
under these assumptions, the dual problem is consistent. Otherwise, ](I;), and
consequently (see (4)) (Rp) would take place. That means that { € K (L for
certain £ # 0. The latter relation, combined with (F}), implies unboundedness
of the primal feasible set, which contradicts the premise in (3).

Remark 4.2.2 In connection with implication (3) it is worth noting that, in
the case of linear programming, this implication can be strengthened: (Fp) and
(Bp) = (Sa) (since, in the case of LP we have (Fp) and (Bp) = (Sp) © (S4))-
In the nonlinear case, it seems to be difficult to strengthen (3), since it can
happen that (Fp) and (Bp) and (],S4).

The following result seems to be closest to the LP Duality Theorem.

(5) (Ip) and (BOp) = (Sq) and (WN); (I3) and (BOg) = (Sp) and (WN).

Under the premise of the first implication, the function P*(-) is finite at
the point b and b € int B. Since F is finite-dimensional and P*(-) is convex
on the convex set B, it follows that the function is finite and continuous at
least on int B and that it admits support functionals at b. It remains to use
Proposition 4.2.1. ]

To make the references more convenient, let us present (5) in “verbal” form.

Theorem 4.2.1 (Duality Theorem) Let (P), (D) be a primal-dual pair of
conic problems defined by the data K, L, c, b and let the pair be such that the
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primal feasible set intersects int K and the objective of the primal problem is
below bounded on the primal feasible set. Then the dual problem is solvable,
and the optimal values of the primal problem P* (min or inf of the primal
objective over the primal feasible set) and the dual one D* satisfy the relation

(4.2.6) P* + D* = (¢,b)

(“zero duality gap”).

If, in addition, the dual feasible set intersects int K*, then both of the prob-
lems are solvable, (4.2.6) holds, and a pair of feasible primal and dual solutions
(z*,8*) is comprised of optimal solutions to the problems if and only if

(4.2.7) (s*,2*) =0
(“complementary slackness condition”).

The first part of the theorem is item (5). The second part is an immediate
consequence of the first part and (4.2.2). 0

(6) (Sy) and (I,) = (N); (Sq) and (I) = (N).

This is an immediate corollary of (5).

Note that the premise in (6) is precisely the standard assumption that jus-
tifies the use of the Kuhn-Tucker optimality condition in the above motivation
of the “conic” duality.

The following statement extends implication (3).

(7) (SB,) = (WN); (SBg) = (WN).

Before proving this implication, we should mention that its conclusion,
generally speaking, cannot be strengthened to (N).

To prove the first implication in (7), assume that the set X* of optimal
solutions of the primal problem is bounded and nonempty and let xy € X*
and z; € int K. Without loss of generality, we can take b = z¢. Indeed, this
substitution does not vary the primal problem and updates only the objective
of the dual problem. The new objective at the dual feasible set is the old one
plus a constant. Clearly, the initial and the updated primal-dual pairs either
both possess, or both do not possess, property (WN).

For € € (0,1), let (P.), (D) be the primal-dual pair defined by the same
data as (P), (D), excluding the value of b, the latter quantity now being replaced
by z(e) = zo + ex1. Note that (Pg), (Do) clearly is the initial pair, while,
for € > 0, problem (P.) possesses property (I) (since x(e) is a feasible interior
solution to the problem). Let us prove that, for all small enough € > 0, problem
(P¢) is solvable. Otherwise, we could find a sequence {g; > 0} tending to 0 and
such that each of the problems (P.,) would admit an unbounded minimizing
sequence with the first element z(e;), so that we could find a sequence {z; €
K}, || i ||— o0, ¢ = oo, with z; being a feasible solution of (P,) such
that (c,z;) < (c,z(e;)). Without loss of generality, we can assume that z; =
tie; + x(&;), t; — oo, where e; — e # 0 as i — oo. For each positive ¢ and
all large enough i, the points z(g;) + te; belong to K, together with z(g;) and
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z;, and therefore the point xg + te also belongs to K. Since z; and z(g;) are
feasible solutions of (P.,), we have e; € L and, consequently, e € L. Last,
(e, z:) < {c,z(e;)) implies (c,e;) < 0, and therefore (c,e) < 0. We see that the
ray {zo+te | t > 0} is feasible for (P), and the objective is nonincreasing along
this ray. It follows that this ray is contained in the set of optimal solutions to
(P), which contradicts the boundedness of the latter set. Note that we have
proved something more strong than the solvability of (P.) for all small enough
g; in fact, we have established that there exist a bounded set ¢ and a positive
€9, such that all the sets

Qe = {z | z is feasible for (P.) and (c,z) < {(c,z(¢))}

for € < ¢ are contained in Q. From the latter statement, it immediately follows
that, if P is the optimal value in (P,.), then liminf ., P} > P*. Also, since

limsup P} < lim (¢, z(¢)} = (¢, zo) = P*,
e—+0 e—0

we conclude that P} — P* ase — 0.
For all small enough ¢ > 0, problems (P.) possess property (I) (since z(g) €
int K, £ > 0) and, as we already have proved, property (S). By virtue of item

(6), it follows that, for the above &, problems (D.) are solvable, and their
solutions s(¢) satisfy the relation

(4.2.8) P: + (s(e), z(e)) = {(c,z(e)) .

The feasible sets of all the problems (D), € > 0 coincide, so that all s(e)
are feasible for (D). Since z(¢) — zp € K and s(e) € K*, we have (s(g),zp) <
(s(€),z(€)), and (4.2.8) implies D* < (s(¢),zo) < (c,z(e)) — P:. The right-
hand side of the latter inequality tends to {c, zo) — P* as ¢ — +0, which results
in D* + P* < {¢,zp). Since we have reduced the situation to the case where
zo = b, the concluding relation combined with (4.2.2) proves that the pair
((P),(D)) possesses property (WN). D

To conclude this section, let us note that, in the nonlinear case, even solv-
ability of the both primal and dual problems does not ensure (N).

4.3 Karmarkar method for nonlinear problems

4.3.1 Formulation of the problem. Assumptions

Consider a conic problem (P). For our purposes, it is convenient to represent
the feasible plane (L + b), which is an affine subspace, as an intersection of
a linear subspace M in E and an affine hyperplane not passing through the
origin. Of course, it can be done quite straightforwardly, provided that (L +b)
does not contain the origin. The case when the latter condition is not satisfied
can be excluded, since, in this case, the feasible set K {(L + b) is a cone, so
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that the problem is either below unbounded or has trivial optimal solution 0.
Thus, in this section (as well as in the next), we deal with the problem

(4.3.1) (c,z) > min| z € KﬂM, (e,z) =1,

where ¢, e € E*, K is a closed convex pointed cone in E with a nonempty
interior and M is a linear subspace in E. In the case of K = RY, (4.3.1) is
precisely the Karmarkar format of an LP problem.

Assume that we are given a ¥-self-concordant logarithmically homogeneous
barrier F' for the cone K. This is the only representation of K used by the
below method.

In the case of K = R}, we could take as F' the standard logarithmic barrier

(4.3.2) F(z)=- ilnwi
i=1

for the nonnegative orthant (¢ = n; see §2.3, Example 2).

In what follows, we describe the (generalized) method of Karmarkar for
(4.3.1). This method, as in the LP case, requires the following three additional
assumptions about the problem:

(K.1) The feasible set K. = {z € KM | (e,z) = 1} is bounded and
intersects int K;

(K.2) An interior feasible solution, zy € rint K, is known (as usual,
“rint” denotes the relative interior);

(K.3) It is known that the optimal value of the objective is 0.

Note that (K.3), in fact, is no more than the assumption that we know
the optimal value of the objective; indeed, if this value is f*, then, replacing
the objective ¢ by ¢ — f*e, we obtain an equivalent problem with zero optimal
value.

Note also that, under assumptions (K.1)-(K.3), we could solve (4.3.1) with
the aid of a path-following method from Chapter 3, with the preliminary stage
of the latter method being eliminated. Indeed, let us replace the functional e
involved into (4.3.1) by the functional &’ = —9~1F’(xq). The resulting problem
can be rewritten as

minimize (¢, )

subject to
(4.3.3) zr€eG= KﬂMﬂ{y | (F'(z0),y — 7o) = 0}.

The restriction F# of F onto the (relative) interior of G is a ¥-self-concordant
barrier for G, and g is the minimizer of F# so that we can immediately apply
to (4.3.3) the main stage of the path-following method associated with F#. On
the other hand, it is easily seen that the optimal value in (4.3.3), the same as
in (4.3.1), is zero, and the transformation z — (e, ) ' & maps strictly feasible
solutions to (4.3.1) into strictly feasible solutions to (4.3.1) of the same (up to
a constant factor depending on the problem) accuracy.
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4.3.2 Generalized Karmarkar method

The method is associated with the potential function

(4.34) V(z) =9%In{c,z) + F(z) : int K — R;

note that, since F is logarithmically homogeneous of the degree ¥, we have
(4.3.5) Vitz)=V(z), ze€intK, t>0.

Let us show that the accuracy of a strictly feasible (i.e., feasible and belong-
ing to int K) solution z can be evaluated via the quantity V(xg)-V(z). Indeed,
since the feasible set K, of the problem is bounded and the restriction of F
onto K, is a self-concordant barrier for this set (see Proposition 2.3.1(i)), F is
below bounded on the relative interior of K. (Proposition 2.3.2(ii)). Therefore
the quantity

R(zp) = F(z¢) — min{F'(u) | w is strictly feasible}
is finite. We have

(c, :1:0)

(c,z)’

V(zo) — V(z) = F(zo) — F(z) + d1ln <<cc’ ”2’)) < R(zo) +9ln

so that we have proved the following result.

Proposition 4.3.1 Let x be a strictly feasible solution to (4.3.1). Then

(c,z) < {¢,z0) R(zq) exp {—%(V(zo) - V(.’E))} ,

R(xzg) = F(zp) — min{F(u) | u is strictly feasible}.

Note that the inequality in Proposition 4.3.1 is an accuracy estimate, since
the optimal value of the objective is zero.

Proposition 4.3.1 demonstrates that an updating rule that transforms a
given strictly feasible solution into a new solution of the same type with by
an absolute constant less the value of the potential, being iterated, reduces
the errors {c, z;) of the successively updated solutions in the ratio 1 — O(971).
The idea of this rule is as follows. Let x be a strictly feasible solution to be
updated. Consider the hyperplane N tangent at x to the corresponding level
set of the barrier and let S be the intersection of this plane with M N K. S
is a convex set, and the reduction of F' onto the relative interior S’ of S is a
¥-self-concordant barrier for S (Proposition 2.3.1(i)). Let us try to find a point
z’ in §’ with the value of the potential being “considerably” less than at x. To
this end, consider the function

(c,u — x)

(4.3.6) 2(w) = F(u) + 922

+JIn{c, ),
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i.e., the result of linearization of the logarithmic term of the potential at z; we
regard ® as a function defined on S’. Since the logarithmic term is concave, we
have F(u) < ®(u), while F(z) = ®(z). We see that, to decrease F, it suffices
to decrease ®. On the other hand, ® is the sum of a self-concordant barrier
and a linear function, and therefore it is strongly 1-self-concordant on S’. Let
us demonstrate that the Newton decrement A(®,z) of ® at z is not small, so
that, to decrease ® “substantially,” it suffices to perform, starting from z, a
step of the Newton-type process described in Proposition 2.2.2. Indeed, F' has
zero derivative at x in each direction from S — z (the origin of S), so that

(4.3.7) A®,z) = (ci’;:c) max{{c,h) | h € Lin{S — z}, (F"(z)h,h) < 1}.
To prove that A(®, z) is not small, note that K contains the ray {tz* | ¢t > 0},
where z* € M\{0} is such that {c,z*) = 0 (indeed, in view of (K.3), we can
take as z* the optimal solution to (4.3.1)). This ray intersects S. Indeed, F
attains its minimum over the intersection of N and K at z (the origin of N)
and is a self-concordant barrier for this set (Proposition 2.3.1(i)), so that this
intersection is bounded (Proposition 2.3.2(ii)). It means that N intersects with
all rays {ty | t > 0}, y € K\{0} and, in particular, with the ray {tz* | t > 0}.
Since the latter ray is also contained in M, it intersects S.

Since, as we have seen, z is the F' |g/-center of S, the latter set is contained
in the ellipsoid

W ={yez+Lin{S-z}| (F'(z)(y — z),(y — x)) < (1 + 3%}

(see (2.3.8)). The linear functional ¢; = ¥ {c,z) ' ¢ equals ¥ at = and equals
0 at certain point u* € S, namely, at the point where the ray {tz* | t > 0}
intersects S. Thus, on the (1 + 3¥)-enlargement, W’ — z, of the ellipsoid

W ={h e Lin{S —z} | (F'(z)h,h) <1}

involved into (4.3.7), ¢, varies by at least 2¢; hence, on W it varies at least by
29(1 + 39)~!, and we conclude that

(4.3.8) AN@,z) > L.

Now let ' be the iterate of x with respect to the Newton-type process
described in Proposition 2.2.2 associated with a = 1, so that

o M@, z)
EE @)
(4.3.9) (= v argmin {(c, h) | h € W}.
{c,x)

From (4.3.8) and Proposition 2.2.2, it follows that

res,
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(4.3.10) V(z) —V(z') > ®(z) — &(z') > &, k=%1-In2

(the first inequality in (4.3.10) follows from V' (-) < &(-), V(z) = ®(z)).

Thus, we have found a point 2’ € S’ with the value of the potential being
“considerably” less than at x. Note that ' € int KM, since S’ is con-
tained in the latter set. Thus, the only possibility for ' not to be a strictly
feasible solution to (4.3.1) is to violate the normalizing constraint (e,-) = 1.
Let us believe for a moment that (e,z’) > 0 (we prove this later). Let us
take z+ = (¢,2') 'z’ as the desired updating of z. This point belongs to
(int K)( M, since =’ belongs to the latter set, (¢, z') > 0, and evidently satis-
fies the normalizing constraint. At the same time, in view of (4.3.5), we have
V(zt) = V(z') and, in view of (4.3.10), we obtain

zt € rint K,

(4.3.11) V(iz)-V()>x=7—-In3.

It remains to verify that (e, z} is positive. Assume that it is nonpositive;
since z is feasible, we have (e, z) = 1, so that there exists # € (0, 1] such that
v(t) = (e,x + t(z’ — z)) is positive for 0 < t < 6§ and is zero for t = 6. Note
that the segment [z, z'] is contained in (int K) () M. It follows that the (clearly
unbounded) curve y~1(t)(z + t(z’ — x)), 0 < t < 8 is contained in the feasible
set of (4.3.1), which is impossible in view of (K.1).

The analytical description of the method is as follows. At ith step of the
method (¢ > 1), the previous approximate solution z;_; € rint K, (z¢ is the
point mentioned in (K.2)) is transformed into a new strictly feasible solution
x; according to the following rules:

(K.1) Compute

e = F’(wi_l) c E*,
c

(¢, z;)

¢ =1
and set
L; ={z € M| {e;,z) =0};

(K.2) Compute the Newton direction of the functional ¢; in the sub-
space L; with respect to the Euclidean structure defined by D2F(z;_,), namely,
set

(i € Argmin {(c;, b) + § (F"(zi—1)h,h) | h € L;},

Ai = <F"($i—1)Ci,Ci>l/2,

G
14+’

(K.3)  Find z € (z;—1 + L;) N(int K) such that

!
T; = -1 +

(4.3.12) V(ai) < V()
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and set

The ith step is completed.

Remark 4.3.1 (1) As we have seen, =, € int K, so that an admissible choice
of 2! is =] = xi; the version based on this choice is called basic.

(2) The simplest way to perform “large steps” is to choose x by minimizing
the potential in the direction (;:

z] = argmin {V(zi—; + ) | £ >0, z;-1 +t(; € int K }.

4.3.3 Rate of convergence

The convergence properties of the above method can be derived immediately
from Proposition 4.3.1, (4.3.11), and (4.3.12) and are as follows.

Theorem 4.3.1 Assume that (K.1)~(K.3) are satisfied. Then the generalized
Karmarkar method associated with a 9-self-concordant logarithmically homo-
geneous barrier for K produces a sequence {x;} of strictly feasible solutions to
(4.3.1), and the relative accuracy of these solutions can be estimated as

h= % —In %’ R(zo) = F(xo) — min{F(z) | = € rint K.}.

The factor R(xo) is responsible for the quality of the initial approximate
solution zy. Note that, in the basic version of the Karmarkar method for an
LP problem (the latter is precisely the above method associated with K = R,
the n-self-concordant barrier (4.3.2)), e = (1,...,1)T, and xo = n"le), we have
R(.’II()) =1.

4.3.4 Karmarkar method and projective transformations

Let us present another interpretation of the above method (for the LP case, it
was found by Bayer and Lagarias; see [BL 91]). For simplicity, let us restrict
ourselves to the “large-step” version. From the description of the updating
rule, it follows immediately that, in fact, the input and the output of the rule
are not strictly feasible solutions, but strictly feasible rays, i.e., rays of the type
{tu | t > 0} associated with u € (int K) () M. These rays are in a one-to-one
correspondence with strictly feasible solutions (such a solution evidently defines
a strictly feasible ray, and, as we have seen, the boundedness of the feasible set
implies that each strictly feasible ray intersects the “normalizing hyperplane”
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{z | {e,z) =1} and therefore corresponds to a strictly feasible solution). The
potential is constant along the rays and therefore can be thought of as the
function defined on the space of rays. The updating rule looks as follows:
Given a strictly feasible ray £ = {tz | ¢t > 0}, we consider the two-dimensional
angle U, which is the intersection of K and the two-dimensional subspace M;
passing through £ and the one-dimensional subspace

n(§) = argmin {(c, h) + 5 (F"(w)h,h) | h € M, (F'(u),h) =0} R,

where u is some point of £ (since F' is logarithmically homogeneous, the sub-
space does not depend on choice of u € £). Then we minimize V over the
rays from the relative interior of U, and this gives us a new strictly feasible
ray £7(£), which is the result of the updating. In the initial description of
the updating rule, we represent £ by a point v € £ and choose as the rep-
resentative of a ray v C rint U the point at which + intersects the interval
A ={u erintU | (F(v),u—v) = 0}, so that to minimize V over U is the
same as to minimize this function over A. Now note that we could choose
representatives of rays vy € rint U in many other ways, e.g., as points at which
these rays intersect the level hyperplane

C=1{u] {u) =1}

of the objective. Thus, minimizing V over the rays belonging to rint U is the
same as minimizing this function over the interval A’ = C'(rint U. On this
interval, however, V coincides with F. Let w be the point at which £ intersects
A’. Tt is not difficult to verify that the direction of A’ is precisely the Newton
direction of F in the affine subspace M (| C (the direction is taken at w),

Lin {A’ — w} = argmin {(F'(z), k) + 1 (F"(z)h,h) | h € M,{c,h) =0} R

(to verify the latter relation, it suffices to use the fact that the Newton direction
of F at w with respect to whole F is collinear to w; see (2.3.12)).

Thus, we can describe the updating rule as follows. Let us identify strictly
feasible rays and their intersections with the hyperplane C; thus, the set of
strictly feasible rays corresponds to the relative interior of the closed convex
set T = C(YM () K. The restriction of the potential onto rint T' coincides with
the restriction of the barrier onto the set and therefore is a self-concordant
barrier for T. The method of Karmarkar is simply the Newton minimization
method as applied to F |;ni: At each step, the Newton direction at the current
point is found, and then F' is minimized in this direction (recall that we consider
the method with large steps). The fact that V = F decreases “substantially”
at each step is an immediate corollary of the fact that T is unbounded (in turn,
the latter property is implied by the fact that the optimal value of the objective
is 0). Since T is unbounded and V = F is a self-concordant barrier for 7', this
function is below unbounded on rint 7" (see Proposition 2.3.2(ii); recall that T
is contained in K and therefore does not contain straight lines). Since V is
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below unbounded, we have A(V,z) > 1 for all x € rint T (see Theorem 2.2.3(i)).
The latter inequality, in view of Proposition 2.2.2, implies that each Newton
step decreases V by at least (1 —In2).

The summary of the above explanation of the method is the following. In
the initial problem, we are given a bounded closed convex feasible domain G
and a hyperplane II, which is known to be support to G (II is the level hy-
perplane of the objective corresponding to its optimal value). The problem is
to find a close to IT point in G. To solve this problem, in Karmarkar method,
we perform the projective transformation that moves II to infinity; this trans-
formation maps G onto an unbounded closed convex domain G (in our conic
representation, G is K, and G* is T'), and in the transformed space the prob-
lem is to find a point of G* far enough from the origin. To this purpose,
we minimize by the Newton method a self-concordant barrier for G (in our
representation, this barrier is the reduction of F' onto rint T'). Each step of the
method decreases the barrier by an absolute constant, and, since the barrier is
below bounded on each bounded subset of int G, the corresponding sequence
does go to infinity at a rate that ensures the polynomiality of the method.

4.3.5 Case of unknown optimal value

From the viewpoint of applications, it might be difficult to provide (K.2) (to
point out an initial strictly feasible solution) and especially (K.3) (to point out
the optimal value of the objective). It is known how to avoid these difficulties
in the case of LP; the same tricks can be used in the general conic case. Let
vs discuss two possibilities of this type.

Primal-dual reformulation of the problem. First, we may simultaneously
solve the primal and the dual problems, i.e., to add to the initial (primal)
conic problem

minimize {¢,z) s.t.z € Kﬂ(L +b)

the dual problem
minimize (s,b) s.t.se K* r)(Ll +e¢).

Under the assumption that the feasible set of the primal problem is bounded
and intersects int K, this pair of problems in view of the duality theorem
(Theorem 4.2.1) is equivalent to the conic problem in the space E x E*,

(PD) : minimize (c,z) + (s,b) s.t. (z,s) € (K x K*) ﬂ(L x Lt + (b,c))

in the sense that optimal solutions to the latter problem are precisely the pairs
comprised of optimal solutions to the primal and to the dual problem. It is
important for us that the Duality Theorem also states that, under the above
assumption, (PD) is solvable and the optimal value of the problem equals {c, b).
Thus, duality reduces the initial problem to an equivalent conic problem with
known optimal value of the objective, so that, for the resulting problem, there
are no difficulties with (K.3).
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Of course, to solve (PD) with the aid of the method of Karmarkar, we need a
logarithmically homogeneous self-concordant barrier for the cone K x K*. The
latter requirement can be easily satisfied if we know a 9J-logarithmically homo-
geneous barrier F' for K and the Legendre transformation F™ of this barrier.
Indeed, by virtue of Theorem 2.4.4, F* is a ¥-logarithmically homogeneous self-
concordant barrier for the cone (— K*) anti-dual to K, so that F*(s) = F*(-s)
is the barrier of the same type for K*, and, of course, F(z) + F*(s) is a (29)-
logarithmically homogeneous self-concordant barrier for K x K*.

The only difficulty now is to provide (K.2) for (PD). This can be done
with the aid of the same Phase 0 as in the LP case. Namely, to find a strictly
feasible solution to a conic problem (C) with the feasible set Q((M +d) (Q is
the cone in certain finite-dimensional space H; M is a linear subspace of H),
we can choose a point zp € int @ and form the auxiliary conic problem

minimize t s.t.(t,2) € (Ry x Q),z—tzp € (M + (1 —t)d).

If the initial problem is consistent, then clearly the optimal value in the lat-
ter problem is 0, while the point (1,2) is a strictly feasible solution to it.
If we know a v-logarithmically homogeneous self-concordant barrier ® for Q,
then the function —Int + ®(z) is a (v + 1)-logarithmically homogeneous self-
concordant barrier for Ry x @ (Proposition 2.3.1(iii) combined with Example
1 of §2.3), and the latter problem can be solved by the basic version of the
method. We can terminate the iterations at the first moment when the open
ellipsoid W = {u | (®"(2)(uv — 2),u - 2) < 1} associated with 2-component of
current approximate solution intersects M + d. Indeed, this ellipsoid is con-
tained in int Q (Theorem 2.1.1(ii)), and therefore each point of the intersection
(M +d)NW can be taken as the desired strictly feasible solution to (C).

4.3.6 Sliding objective approach

Now let us describe the purely primal technique that allows us to avoid (K.3).
The advantage of this technique is that we do not require any knowledge of a
barrier for the dual cone. As far as (K.2) is concerned, we assume that this
condition is satisfied (otherwise, we could apply to (4.3.1) the above Phase 0).
Thus, we assume that (K.1) and (K.2) are satisfied, and, instead of (K.3), we
introduce a more realistic assumption

(K.3") We are given an a priori lower bound o for the optimal value of
the objective.

Of course, we can also assume that the objective is not constant on the
feasible set of (4.3.1).

Under these assumptions, we can modify the method as follows. At the ith
step of the method, we have the current objective

(4.3.14) c(i—1)=c—ti-1e
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such that the optimal value of this linear functional on the feasible set of (4.3.1)
is nonnegative. At the first step, the latter property can be provided by the
choice ¢y = o (see (K.3')).

The current objective generates the current potential

Vici1(z) = F(z) + 91ln{c(i — 1), ).

Let (P(d)) denote the problem that is obtained from (4.3.1) by replacing the
objective by d and let z* = K(d; z) denote the updating of a strictly feasible
solution z into a new strictly feasible solution z* defined by rules (K.1)-(K.3)
as applied to problem (P(d)). From the above analysis of a step, it follows that
the updating is well defined, provided that the optimal value of the objective
is nonnegative.

At the ith step, we first try to update z;_; with the aid of K(c(i —1),-). In
particular, we compute the quantity A; = A(x;—1, c(i — 1)), which, as we know,
is the Newton decrement (at x;_1) of the function

{e(i —1),u — zi_1)
(c(i —1),zi—1)

regarded as a function defined on rint S;, where

" D(u) = F(u) + 9

Ti—1

S; = Kﬂ{:l: eM ’ <F,(:Ei_1),:l: - 1),'_1> = O}.

It may happen that
(4.3.15) Az, eli—1) >

in this case, we set
(4.3.16) c(i) = c(i— 1), z; = K(c(i), zi-1)

and go to the next step. In the opposite case, we choose the largest 7 = 7; > 0
satisfying the relations

(4.3.17)  M@i1,c(i —1) —71e) < 1, (e(i —1) —Te,z;_1) > 0.
It is easily seen that 7; is well defined and

(4.3.18) Mzi-1,c(i — 1) — 7e) = 1.
Indeed, let 7 be the minimal value of the current objective c¢(¢ — 1) on the
feasible set of (4.3.1). Note that this value is nonnegative (by virtue of our
assumption about ¢(¢ — 1)). The optimal value of the objective c(i — 1) — e
on the feasible set of (4.3.1) is zero, and this objective is not constant on the
latter set, so that {c(i — 1) — 7e, z;_1) > 0 and A(zi_1,c(i — 1) — %) > 1 (see
(4.3.8)). At the same time, if 7 > 7 is such that {c(i — 1) — 7e,x;-1) > 0 and
the optimal value of the objective ¢(i — 1) — 7e on the feasible set of (4.3.1)
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is negative, then the arguments used in the proof of (4.3.8) demonstrate that
A(zi—1,c(i — 1) — 7€) > . Thus, the maximal 7 satisfying (4.3.17) does exist,
satisfies (4.3.18), and belongs to [0, 77*].

After 7; is chosen, we set

(4.3.19) c(i) = c(t — 1) — e, z; = K(c(?), zi—1)

and go to the next step. Note that, in view of 7; € [0, 7}], the optimal value of
¢(i) on the feasible set of (4.3.1) still is nonnegative.

Let us verify that, for the modified method, the accuracy estimate similar
to (4.3.13) holds, namely,

(4.3.20) % < R(zo) exp {—%(V}(wi) - Vb(:co))} < R(zo) exp{—ki},
where
k=%1-In2  R(zo) = F(zo) — min{F(z) |  €rint K.},

and c* denotes the optimal value in (4.3.1).
Let us verify first that

(4.3.21) V,,(.’l:,,) < Vi~1(~'15i—1) — K, K = % —In 2
Indeed, we have
(4.3.22) V,(x,) S V,;(mi_l) — K,

since the only property (additional to the nonnegativity of the optimal value of
the objective) used in the proof of (4.3.11) was the relation that in our notation
is now A(zi_1,c(i)) > §, and the modified method does maintain this relation.
Furthermore, either V;_;(-) = Vi(-), and then (4.3.21) is equivalent to (4.3.22),
or ¢(i) = ¢(i — 1) — 7;e with positive ;. In the latter case,

Vi(zi—1) = F(zi—1) + 9 In({c(Z — 1) — e, zi-1))

< F(xi_l) + 1.9111((6(1 - 1)71'1'—1)) = Vi—l(xi—l)

(we considered that z;_; is feasible, so that (e, z;_1) = 1), and (4.3.21) follows
from (4.3.22).
From (4.3.21), it follows (compare with the proof of Proposition 4.3.1) that

(C(O)1 .’L‘()) .
Vo wo) - V,(:l:z) = F(l‘o) — F(.’L‘z) +dIn —F— > ik,
( (i), 22
and this relation, combined with (c(3),z;) = (c,z;) — t; (since ¢(i) = ¢ — t;e)
and ty = o, implies that

(4.3.23) (e, zi) — t < R(zo) exp { —%(Vb(wo) - W(wi))} :

(¢, o) — 0
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Since ¢(¢) is nonnegative on the feasible set of (4.3.1) and since for feasible
solutions z we have (c(i),z) = {(c,z) — ti, we have t; < ¢*. Thus, (4.3.23)
implies the first inequality in (4.3.20). The second inequality in (4.3.20) follows
from (4.3.21). Thus, (4.3.20) is proved.

To conclude our description of the sliding objective version of the Kar-
markar method, note that it is difficult to expect it to be very good in prac-
tice, since the updating rule for ¢(-) is based on the worst-case analysis and
therefore contradicts the spirit of large steps.

4.4 Projective method and linear-fractional problems

In this section, we describe another potential reduction interior-point method
for {4.3.1), the so called (generalized) projective method. An advantage of
this method as compared to the method of Karmarkar is that the new method
does not require assumptions like (K.2) and (K.3). Besides this, the projective
method can be easily extended from problem (4.3.1) the generalized linear-
fractional problem.

4.4.1 Formulation of the problem. Assumptions

The generalized linear-fractional problem is as follows. Let P and @ be closed
convex cones in R* and R!, respectively, and let A, B, C be affine mappings
from R™ into R* (A and B) and into R’ (C). These data define the problem

P minimize A
subject to
(4.4.1) AB(v) — A(v) € P,
(4.4.2) B(v) € P,
(4.4.3) Cv) € Q.

Let us indicate some interesting particular cases.

(i) When P = R, and B(v) = 1, then (4.4.1)-(4.4.3) is the problem of
minimizing the linear form A(v) over v € R™ under the constraint C(v) € Q;
i.e., this is a conic problem associated with the cone @); we refer to this case
as to linear.

(ii) When P = R, and Q = R%, then P is the usual linear-fractional prob-
lem with the objective A(v)/B(v) and linear constraints (4.4.3) and {B(v) >
0}.

(iii) When P = RE, P is an optimization problem with the quasiconvex
objective

o

max i(v
1<i<k By(v

and convex constraints (4.4.3) and {B;(v) >0, i =1,...,k}.

p—
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(iv) When P is the cone of positive semidefinite matrices in the space of
symmetric m x m matrices, P becomes the problem of minimizing A under the
constraints {B(v) > 0, A(v) < AB(v)} and (4.4.3) (“< ” is understood here
in the operator sense). This problem is of interest for control theory; some
related applications are discussed in §5.4.

Preliminary remarks and notation. To proceed, it is convenient to slightly
transform the problem under consideration. It is better to deal with linear
(i.e., affine and homogeneous) mappings A, B, C than with affine ones. To this
purpose, let us add to the control vector v one extra variable ¢ and represent
A(v), B(v), C(v) as A(v,1), B(v,1), C(c,1), where A, B, C are linear. This
transforms P into a similar problem involving the new control vector & = (v, t)
and the additional constraint ¢ = 1. Since we deal only with the transformed
problem, we can forget about our initial v, A, B, C and omit bars in the
notation for our new data. Thus, we henceforth formulate our problem as

P minimize A
subject to
(4.4.4) (AB— A)v € P,
(4.4.5) Bv e P,
(4.4.6) CveqQ,
(44.7) (e,v) =1,

herein v € R™, P and Q are convex cones in R* and R}, respectively; A and
B are linear homogeneous mappings from R™ into R¥; C is a similar mapping
from R” into R' and e € R™. Henceforth {-,-) denotes the standard scalar
product in the corresponding RO,

Let us denote

E=R¥xRFxR!, K=PxPxQ,
so that K is a convex cone in F, and let
K*={s| {(s,z) 20 Vz € K}

be the cone dual to K. Also, let R()) for every A € R be the linear mapping
from R"™ into F defined by

R(Mv = ((AB — A)v, Bu, Cv);
also, let
E(M\)=ImR(\), E*t(\)={RM\v|veR" (ev) >0}

Assumptions. In what follows, we assume that the following statements are
true.
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(P.1) P and Q@ are closed convex pointed cones with nonempty interiors
(note that then K and K* also are closed convex pointed cones with nonempty
interiors).

(P.2) P is solvable, and, for a certain optimal solution v* to P, we have
Bv* >p 0 (we write a >p b, M being a cone, if and only if a — b € int M, and
a >p b, if and only if a — b € M).

(P.3) There exists z* € R™ such that

(,2") =1 and Cz" >¢0.

Our last assumption about P (it is not so crucial, but simplifies exposition)
is the following statement.

(P4)  Ker R(A) = {0} for all A € R.

Note that, in the case when P represents problem (4.3.1) (see §4.4.1 item
(i)), assumptions (P.1)-(P.3) mean exactly that (4.3.1) is strictly feasible (i.e.,
the feasible plane intersects the interior of K') and solvable.

These were assumptions about P. Now we present the assumptions about
our a priori information in the following problem.

(I.1) We are given two bounds A and X such that

A< AT <A,

A* being the optimal value in P.

(1.2) We are given an oracle that, at any input, z € F reports whether
reint K.

(1.3) We are given a d-logarithmically homogeneous self-concordant
barrier F'* for the cone K* dual to K.

Note that the only description of P and () used by the method that we
develop is the one given by (1.2) and (1.3).

4.4.2 Description of the method

The idea of the method is as follows. Let £ be a small positive real. From
(P.1)-(P.4), it is easily seen that there exists o = ©(e) such that (e,v) > 0,
Bv >p 0 and R(A)v >k O for all A > A\* + . We associate with © “the
potential”

Ve(s,A) = F*(s) + 91n (s, R(A)7);

here A > A\* + ¢ and s € int K*. Since Bv >p 0, the potential is monotone
in A; aside from this, from J-logarithmical homogeneity of F™*, we can easily
derive that the potential is below bounded in s € int K* and A > \* + ¢,

Ve(s, A) > 7(e).

Our method is based on a strategy for updating a given pair (s, A), s €
int K*, A > A\* into a new pair (s',\") = U(s, A) with the following properties:
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() 8 €int K*; X < )\

(B) If X' > X* + ¢, then V.(s', X) is “significantly” (at least by an absolute
constant) less than V.(s, A);

(7) The updating is organized in such a way that, if it results in A’ < A,
then a byproduct of the updating is a feasible solution to P with the value of
the objective equal to X'.

It should be stressed that, although the properties of the updating are
related to the potential, the updating itself does not use neither #(¢) nor £ and
is therefore independent of the potential.

Our method is to iterate the updating U, starting with a pair (5, A), where
§ is an arbitrary point from int K*. From (a) and (8), it follows that, until
the current value of )\ remains greater of equal \* + ¢, the potential associated
with ¢ decreases at a step at least by an absolute constant. Since the potential
is below bounded, we conclude that, in a finite number of steps (not exceeding
O(V:(3,A) — r(€))), the current A becomes less than A* + ¢. On the other
hand, () claims that, if the current value of A is less than ), then we already
have found a solution to P within accuracy (A — A*). These observations
imply convergence of the method; evaluating (¢) and V.(5, A), we come to the
efficiency estimate.

It remains to explain the nature of the updating /. Let

(4.4.8) F(z) = sup{(s,z) — F*(s) | s € int K*}

be the Legendre transformation of F* and let F(x) = F(—z). As we know (see
Theorem 2.4.4 and Proposition 2.4.1), F is a ¥-logarithmically homogeneous
self-concordant barrier for K, and, if s € int K*, then the point

z=—(F")(s)
belongs to int K; besides this, if r < 1, then the Dikin’s ellipsoid of the barrier F'

W) ={yllly —z ||lo,p< r},

where s
I = (@) = ([0 ()] ),

is contained in int K (Proposition 2.3.2(i.1)). Consider the set
ET(N) ={R(\v|veER", (e,v) >0}

and let V(A) = R(A\)v(A) be the point of this set closest to z in the norm
|+ M|z,

It may happen (case I) that | V(X) — z ||z,7> 0.99. It turns out that in
this case the direction

¢(=-2(V(\)-z), &=F'(z)=[F")(s)"
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is a descent direction for V,(-, \) at the point s, provided that A > \* +¢, and,
under the latter assumption, an appropriate step s’ = s + p{ in this direction
keeps the point in int K* and decreases V. at least by an absolute constant.
Note that, to choose p, we should not know the potential, same as we should
not bother about whether A > A\* 4 ¢ or not. After s is updated, we set X' = ;
note that the result of our updating satisfies (a)—(7).

Now consider the case opposite to I, i.e., when || V(A)—z ||;,r< 0.99. Since
the ellipsoids €2,.(s) are contained in intK for » < 1, the relation
| £ — V(X) |le< 1 implies that V()X’) € int K, so that we can immediately
find a feasible solution zy to P with the value of the objective equal to X'.
Namely, if (e,v()\')) > 0, then we can take

o= 2
(e,v(X'}))

If (e,v(\')) = 0, then it is possible to find § > 0 such that R(\)(v(X) + e) €
int K, and we can take ;
v(X') + de

(e,v(N) + be)
No other possibilities can occur, since by construction (e,»()\')) > 0.
Our observations demonstrate that the relation || V(X) — z ||z r< 1 for

sure is not satisfied if A’ < A*. On the other hand, in the relevant case, we
have

2\ =

| V(A) — z ||¢,p< 0.99.
Thus, bisection in X' € [\, A] allows us to find X' < A such that

0.99 <|| V(X) — 2 [lo.p< 1.

This ) is the A-component of the updated pair; note that z): is the feasible
solution to P required by (7). It remains to form s’ and to ensure (o) and (8).
To this end, let us note that the pair (s, \’) satisfies the requirements of case
I, so that the updating s — s’ corresponding to this case ensures the relation

{8 € int K*}&{XN > A+ e = Ve(s', X) < Ve(s, N) — const},

const being a positive absolute constant. Since V.(s, -) is monotone, the latter
relation implies (o) and (3).

The method we describe produces sequences s; € E, \; € R, and z; €
R™J{*} such that A\; > A2 > ..., and the following predicate is maintained:

(Lz) : {81 € int K*}&{/\l > )\*},
(4.4.9) {{} <A} = {zi € R” and (A, ;) is feasible for P}}.

To initialize the method, we choose sy as an arbitrary point of int K* and
set

Ao = A, 20 = *;

note that this ensures (Lyg).
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At ith iteration of the method, we transform (s;_1,A;—1) into (s;, A;, 2;).
This transformation looks as follows (italicized text describes the rules, and
the comments are in the standard font).

19, Set

(4410) ;= —(F*)I(Si_l), ¥, = (F*)”(.S‘i_l), ®, = \I!z_l
and go to 20.

Remark 4.4.1 As we know (Theorem 2.4.4, Propositions 2.3.5 and 2.3.2(i.1)),

(4.4.11) z; € int K,
(4.4.12) V¥, is nondegenerate

(so that @; is well defined), and the inclusions

(4.4.13) Wi={z| (®i(x —z;),z—z;) <r?} CintK, 0<r<],
(4.4.14) Qi ={s| (s—si-1, (s —s_1)) <’} CintK*, 0<r<l1
hold.

For A € R, let
Vi(A) = R(A)vi(})

be the closest to z; point of E()\) (see §4.4.1), the distance being measured
with respect to the Euclidean structure &; defined by the scalar product

(@,Y), = (®;z,Y).

It is easily seen that V;(A) can be found as follows. First, compute the
Ei-closest to x; point H;()) in E(A) as follows:

(4.4.15) H;()\) = RO\)hi(N), hi(N) = [¢:(A\)]1RT (N ®;24,
where
(4.4.16) $i(A) = RT(A)®;R(\).

Second, check whether (e, h;(A\)} > 0. If so, set v;(A) = h;(A), and conse-
quently V;(X) = H;(A). Otherwise, choose v;(\) as the point of the half-space
{{e,-) > 0} closest to h;(A\) in the Euclidean metric defined by the scalar
product {(¢;(A)z,y) on R,

(4.4.17) w(N) = b)) — A €) TR

([pi(N)] e, e
and set Vi(A) = R(\)ui(\).
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We are ready to describe the second operation of ith iteration.

20, Compute V;(A\i—1) and check whether V;(X\;_1) € int K.

If no (case I;), set Aj = A\i—1, 2i = zi—1 and go to 4°.

If yes (case I1;), go to 3°.

30. (1) Applying dichotomy in X € [\, \_1], find X; € [A, Ai_1] such that

(4.4.18) Vi(Ai) € (int K)\W{ go-

30, (2) Choose v; € R™ such that

(4.4.19) {R(\)v; € (int K)\Wige} and {(e,v;) >0},
set
(%
4.4.20 2 = )
( ) e o)
and go to 49.

Rule 3° needs justification. We should prove, first, that 3°. (1) leads to
the required A; after a finite number of dichotomy steps and, second, we must
explain how to find v; required in 3°. (2).

Let us start with the first of these two issues. In view of 20, we should
perform 3° only if

Vi(Ai-1) € int K.

Also, if V;(Ai—1) €& Wg.gg, then A;_; can be chosen as the required A;, and there
is no problem with 3°. (1). It remains to consider the case when

(4.4.21) Vi(hio1) € W g.
Note that
(4.4.22) Vi(A) € int K.

Indeed, otherwise, every v € R™ close enough to v;(A) would satisfy the in-
clusion R(A\)v € int K, and, since <e,'u,-(5\)> > 0 (by construction), we could

choose the above “close enough to v;(A)” v in the half-space {(e,) > 0}, so
that (e,v) > 0 and R(A\)v € int K, which means that the pair (X, (e,v) " v) is
feasible for P. The latter is impossible, since A < A*. Thus, (4.4.22) does hold.

Now note that (see Remark 5.1)
(4.4.23) Wi g9 € Wegge C int K.

In view of (P.4), the curve V;()), A € [A, \;_1] is continuous; as A varies from
Ai—1 to A, this curve passes from a point belonging to W¢ o9 (see (4.4.21)) to a
point outside int K (see (4.4.22)), and therefore (see (4.4.23)), the dichotomy
in ) after a finite number of steps results in a point A’ € W{ g99\W¢ g9; in view
of (4.4.23), this X’ can be taken as the desired ;.

Thus, 3°. (1) is justified.
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30. (2) is almost evident: Since V;(A;) = R(\i)vi(X) € (int K)\W{ g9 and
0 < {e,v;(\:)), to obtain v; required in 3°. (2), it suffices to set, say,

vi = vi(N) +€ie
with small enough ¢; > 0.

Remark 4.4.2 Note that we have only proved that our dichotomy is finite, but
did not evaluate the required number of steps. Of course, dichotomy is a fast
process, so that, in practice, we should not bother much about its laboriousness;
nevertheless, theoretically, our scheme should be regarded as presenting a “con-
ceptual” polynomial-time method, rather than a method that is actually poly-
nomial. We do not investigate the problem of how long dichotomy could be
in a general linear-fractional case; let us simply indicate that, in the linear
case (see §4.4.1, item (1)), we can avoid necessity in dichotomy at all. Indeed,
it is easily seen that, to find the required )\;, it suffices to minimize a linear-
fractional function over the ellipsoid under the constraint that the denomina-
tor is nonnegative. In the case in question, we have P = Ry, A(v) = a’v,
B(v) = eTv. Assume (as it is normally the case) that the barrier F* is of
the form F*(t,7,0) = —Int — In1 + E*(0), where t, 7, and o are projections
of s € K* = Rt x Rt x Q* onto the direct factors and E* is a logarithmi-
cally homogeneous self-concordant barrier for Q*. Then the positive definite
quadratic form zT ®x is a sum of two other positive definite forms, the first of
them depending on the projection of x onto P x P = Rt x R* and the second,
yT @y, depending only on the projection y of x onto Q. It is easily seen that
we then can set

Ai = min{) | relv>alv, efv>0 for some v such that vICTdCw < 0.999}.

The optimal value in the latter problem, if it exists, is given by simple explicit
formulae, and it turns out that under assumptions (P.1)-(P.3), the solution
does exist. Thus, in the linear case our method is actually polynomial.

Remark 4.4.3 Note that in the case II; (i.e., when 3° is applied) (N, z;) is
strictly feasible to P (i.e., z; € R", (e,2;) = 1 and R(\)z; € int K), so that
we have

(M) : {h> A}, and
(4.4.24) i
{{\i < A} = {2z € R"™ and (), 2i) is feasible for P}}.

In the case of I;, we have (A, z;) = (Ai—1, 2i-1), and (4.4.24) follows from
(M;—1). Thus, (M;) always holds.

Our last rule is as follows.
49 (1) Set
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(4.4.25) & = Vi(\) ~ i,
(4.4.26) G = &,
(4.4.27) pi = {{G, &)},
4428 =
(44.28) s

40, (2) Choose t; > 0 such that
(4429) Fi(ti) S 7T,;(Ti),

where
ﬂi(t) = F*(Si_l — tCi) . Az - R,

(4.4.30) A; = {t eR | 8i—1 — t(; € int K*},
and set
(4431) 8; = 841 — tiCi-

tth iteration is completed.
Rule 4° needs justification, just as rule 3° did. We should prove that ; is
well defined at 7;, i.e., that

(4.4.32) 5 € A,
so that (4.4.29) can be satisfied simply by the choice t; = 7.

Lemma 4.4.1 We have
(4.4.33) (G, Uils) = (@i, &) = (G, &) = P > (0.99);
(4.4.34) 72 (G, UiG) < 1.

Proof. The two equalities in (4.4.33) immediately follow from (4.4.26); the
third equality in (4.4.33) is the definition of p;. To prove the inequality in
(4.4.33), note that, in the case of I;, we have V;(\;) = Vi(A\i—1) ¢ int K, which,
in view of (4.4.13), implies that

(€, €); = (@i(Vihi) — ), Vi(As) — m3) > 1> (0.99)%,
as it is required in (4.4.33). In the case of II;, we have
(4.4.35) Vi(Xi) € (int K)\W{ 4

(see rule 3°. (1)), which again results in (§;,&;), > (0.99)?. Thus, (4.4.33) does
hold.

Equation (4.4.34) is an immediate corollary of (4.4.33) and the definition
of ;. O
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Now we are ready to prove that 7; € A;. Indeed, from (4.4.34), it follows

that

(4.4.36) T =s;1—7i(; € int O

(see (4.4.14)), so that T' € int K* in view of (4.4.14), and therefore 7; € A; (see
(4.4.30)).

Thus, 40 is justified. Since t; € A, by construction, the point s; = 8;_1 —#;(;
belongs to int K* (see the definition of A;), which, combined with (M;), proves
(L;). Thus, our iteration is well defined and maintains (L;).

4.4.3 Rate of convergence
Since Bx* € int P, the following two constants are well defined:
(4.4.37) v1 =1+ min{y > 0| yBz* + Bz* >p 0},

(4.4.38) v2 =1+ min{y > 0| yBz* + (\*B — A)2* >p 0}.

Let

€
(4.4.39) Y(e) = o 72;
note that
(4.4.40) 0 < my(e) <1, e>0.
Also, let
(4.4.41) V* = (Bz*, Bz*,Cz");

note that, in view of (P.2) and (P.3), we have
(4.4.42) V* cint K.
Let us define the quantity L(sp) by the relation

(4.4.43) )
InL(so) = S{F*(s0) + F(V*)} +1~In?

+ In(max{{sp, R(A)(ez* + (1 —€)z*)) | 0<e<1}).
Let us define z., 0 < € <1 by the relation
(4.4.44) ze = (1 — vy(e))x* + y(e)z".

Let us also write
T>KY,

ifr>gkYandz#Y.
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Lemma 4.4.2 For every € € (0,1) and for all A > \* + £, we have

(4.4.45) (e,2:) =1

and

(4.4.46) R(M\)zemk v(e)V™.

In particular,

(4.4.47) R(A)z € ET(A)((int K).

Proof. Let us fix ¢ € (0,1) and A > A* 4+ . (4.4.45) is evident. To prove
(4.4.46), note that

(AB — A)z: —v(e)Bz™ = (1 — 7(¢))(A\* B — A)z”
+(1-y(e)(A = A")Ba*
+7(e)(A - A*)Bz*
+7(e)(\*B — A)z* — 4(¢) Bz,

(4.4.48)

Since z* is feasible for P, we have (A\*B — A)z* >p 0, and therefore (see
(4.4.40))

(4.4.49) (1 —~(e)(A*'B~ A)z* >p 0.
Furthermore, in view of (4.4.37) and (4.4.38),

(4.4.50) v(€)Bz* >p —y(e)(m1 — 1)Bz*
and
(4.4.51) Y(EYN' B — A)z" >p —v(e)(y2 — 1)Bz™.

Relations (4.4.48)-(4.4.51) imply that
(AB — A)ze —(e)Bz" 2p (A = A" ){1 — n(e)} Bz”
(4.4.52) —v(e)(y2 — 1)Bz* — v(e)Bz*~p
>p{e(1 = n(e)) — 12v(e)}Bz* =0

(we considered that A — A* > ¢ and the definition of ¥(-)).
Now, by similar reasoning,

Bz, —y(e)Bz* = (1 — 2v(e))Bz* + v(e)Bz" >p
(4.4.53)
>p (1 —2v(e))Bz* — (v — 1)y(e)Bz* 2p 0.

Since Cz* >p 0, we also have
(4.4.54) Cze —v(e)Cz* 29 v(e)Cz" — 4(e)C2* > 0.

Equations (4.4.52)—(4.4.54) mean precisely that (4.4.46) holds. O
The main result on the above method is as follows.
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Theorem 4.4.1 Let
(4.4.55) 6; = mi(0) — mi(t:);

then, for all i, we have
(4.4.56) 8; > £ =0.99 — In(1.99) > 0.

Furthermore, let ¢ be such that

1 i
(4.4.57) In y(1) > In L(sp) — 3 Z d;
i=1

(in view of (4.4.56) the latter relation is satisfied wheni > |9x~1 In(L(s0)/v(1)}| )
and let €; € (0,1) be defined by the relation

(4.4.58) In v(e;) = In L(s0) — % 55
j=1
then
' L( L(so) 5 K.
(4.4.59) &< Ty @ { Z } @ ¢ { 3 } ,
and
(4.4.60) A <A 46

In particular, for all i satisfying (4.4.57) and the relation
(4.4.61) A +g < A

the point 2; belongs to R™, and (), 2;) is a feasible solution to P with the
accuracy (in terms of the objective of P) no worse than ;.
Thus, to solve P to an accuracy € € (0,1), it suffices to perform no more

than
L(sq)
¥(1)e

iterations of the method, O(1) being an absolute constant.

M() = 0(1)91n

Proof. 1°. Let us prove (4.4.56). Since F* is ¥-logarithmically homogeneous
self-concordant barrier for K*, the function =; is strongly self-concordant on
A; with the parameter of self-concordance equal to 1. Furthermore, in view of
(F*)'(si-1) = —z; (the origin of z;), we have

m(0) = (Giy i) = (@i(Vi(N) — m0), ) = (Vi(\) — g, o),

(V (A ) Tis ()"l,) ) + (m()\z) — T4, V'Z(Az»z .

(4.4.62)
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Since V;()\;) is the &;-closest to z; point of E1();) and the latter set is a cone,
we have (Vi(A\;) — x;, Vi(M\)); = 0, so that (4.4.62) implies that

(4.4.63)  m(0) = — (Vi( ) — 2, Vi(N) — i) = ~ (&, &)y = —

(the latter equality follows from (4.4.33)).

Furthermore,
(4.4.64) m}'(0) = (G, ViG) = o}

(see (4.4.33)). In particular, the Newton decrement A(w;,0) of m; at 0 equals
to p;. It follows that 7; is precisely the iterate of 0 with respect to the Newton-
type process described in Proposition 2.2.2 (where we should set a = 1), and,
in view of the latter proposition, we have

(4.4.65) mi(1i) <7 (0) — {pi —In(1 + p;)} < m(0) — K, K =0.99 —In(1.99)

(we used (4.4.33)), which, in view of (4.4.29), implies (4.4.56).
20, Let us fix 4 satisfying (4.4.57); then ¢; is well defined and belongs to
(0,1). Moreover, we clearly have y(¢) > £v(1), 0 < e < 1, whence

ey(1) < (&) = SO)GXP{ Zé }

which, combined with (4.4.56), immediately implies (4.4.59). In view of (4.4.9),
to complete the proof of the theorem, it remains to establish (4.4.60).
Assume that (4.4.60) does not hold, so that

(4.4.66) A > At + e

From the description of the method, it follows immediately that A; do not
increase, so that (4.4.66) implies that

(4.4.67) Aj > A"+, J=0,..,1.

Henceforth, let j take values in {0,1,...,4}.
Let z = z,, and let

in view of Lemma 4.4.2 and the relation A\; > A; > A* + ¢;, we have

(4.4.69) Zirgy(E)V*, Zj€ EY(A)[)int K.
Now set
(4.4.70) v; = F*(s;) + 91n (s;, Z;)

and let us prove that

(4471) Vi1—Vy > 5j, ] - 1, ,’L
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Indeed, we have
(4.4.72) Vi1 —V; = F*(Sj_l) +91In <8j_1, Zj_1> - F*(Sj) —%1In <Sj, Zj) .

Furthermore,
Zj_l — Zj = ((/\j—l - )\j)Bz, 0, 0),

and Bz >p 0 (since Bz is the second component of Z; and Z; >g 0, see
(4.4.69)). Also, since A\; < Aj_;, we conclude that Z;_; — Z; >k 0, whence,
in view of s;_; € int K*, (sj—1,Zj—1) > (8j—1,%;). Therefore (4.4.72) implies
that

Vi1 =¥ 2 F*(sj-1) + 91 (sj-1, Z5) — F*(s5) — 91n (s, Z5)
(4.4.73) = F*(sj—1) — F*(sj—1 — t;¢;)
+3{In (s;-1, Z;) — In(sj-1 — £;¢;, Z;)}-
Now we have
(Gir Zs) = (25&5, Z5) = (& Z5); = (Vi(Ng) — =5, Z5); -

Since Z; € E*()\;) (see (4.4.69)), the points V;();)+tZ; belong to E+();), t >
0, and, since V;();) is the &j-closest to z; point in E+(};), we conclude that
(Vi(Nj) — 25, Z5); 2 0. Thus, (¢j,Z;) > 0, and, since t; > 0 (see 4°.(2)), we
obtain

In (sj_1,Z;) — In(sj1 — t;¢;, Z5) 2 0,

so that (4.4.73) results in
Vi1 —vj 2 F*(sj_1) — F*(sj1 — 5¢5) = m5(0) — m5(¢;) = &5,
as required in (4.4.71). .
3%, Relation (4.4.71) implies v; < vy — Y 5=10j, or, which is the same,

i
(4.4.74) F*(si) +91n(si, Z;) < F*(s0) + 91n(so, Z0) — Mi, M;=)_6;.
j=1

In view of the first relation in (4.4.69) combined with s; € int K*, we have
d1n{s;, Z;) > FIn{s;, V*) + d1n v(e;),

so that

F*(s;) +91In(s;, Z;) > F*(s;) + 9In(s;, V*) + ?1n y(e:)

(4.4.75) > —F(V*)+9dh v(&;) +9Ind — 9

(the last inequality in (4.4.75) follows from Proposition 2.4.1).
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Furthermore, since Zg = R(\)z,, we have (see (4.4.43))
J1n (sg, Zo) < ¥1n L(sg) — F*(so) — F(V*) +9Ind — 9,
which, combined with (4.4.75) and (4.4.74), results in
91n y(e;) < ¥1n L(sg) — M;.

The resulting inequality contradicts the definition of ¢;, and this contradiction
demonstrates that (4.4.66) is impossible. Thus, (4.4.60) is proved. a

4.4.4 Concluding remarks

Large-step strategy. There are two possibilities to include into the method a
“large-step” strategy. First, when implementing rule 3°. (1), we could take as
A; not an arbitrary A € [A, \;_1] satisfying (4.4.18), but as “close” to min{\ €
A, Xi—1] | Vi()\) € int K'}. Moreover, it is easily seen that all we require of rule
30 is to find A < X\;—; and v, {e,v) > 0, such that

(4.4.76) RM\veintK and E*(\)(\Wig =0;

such a A can be chosen as )\;, and the vector (e, v)_l v can be chosen as the
approximate solution z; (compare with (4.4.20)). Rule 3° in its basic version
provides us with certain A = \, v =  satisfying (4.4.76), and, after these
quantities are found, we can try to improve the pair (;\,ﬁ), i.e., to replace it
by a pair (A, v;) satisfying (4.4.76) with A; < X. The less ); is, the better the
approximate solution to P found at the ith iteration, and the larger p; is, i.e.,
the larger the (lower estimate of the) contribution §; of the iteration into the
right-hand side of (4.4.59) is. The second possibility to implement large steps
is to find #; in the 4°. (2) via minimization of m;(¢) over ¢t € A;.

“Inner” dichotomy versus the “outer” one. An unpleasant feature of the
projective method for the linear-fractional problem is the necessity to perform,
even in the basic version of the method, the “inner” dichotomy in A (see rule
30. (2)); we can eliminate this necessity only in the linear case (see Remark
4.4.2). As far as a generalized linear-fractional problem is concerned, we should
note that, although this problem, generally speaking, is quasiconvex (see §4.4.1
item (iii)), we can immediately reduce it to a “small” series of convex problems.
Indeed, checking whether a given A is greater than the optimal value to P and
finding a feasible solution (v, A) to P is the same as finding whether the usual
conic problem with trivial objective

Py find v such that ABv — Ave P, Bve P, CveQ

is feasible and finding a feasible solution to P,. To solve P, we could perform
“outer” dichotomy in A and use, say, the method of Karmarkar or the primal-
dual method (see the next section) to analyse the arising auxiliary problems
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P»r. What are the advantages of the inner dichotomy used in the projective
method as compared to the strategy based on the outer dichotomy?

To understand the cost of the inner dichotomy used in projective method,
we should consider the following. Our point is that the inner dichotomy, in
contrast to the outer one, in many important cases is almost costless, since the
computational effort required by this dichotomy is dominated by other compu-
tations required at an iteration of a potential reduction interior point method
(like the projective method we are now studying, the method of Karmarkar
from the previous section, and the primal-dual method that is our subject in
the next section). Consider, for example, the problem mentioned in §4.4.1 item
(iv), i.e., the case of trivial Q and P being the cone of positive semidefinite
m X m matrices, and let n be the dimension of the control vector v. In the case
in question, E is the space of (2m) x (2m) block-diagonal symmetric matrices
with two m x m diagonal blocks; K is the cone comprised by positive semidef-
inite matrices from E. We provide E with the standard Euclidean structure
(A,B) = Tr {AB}; then K* = K. As we see in Chapter 5, the cone K* = K
admits 2m-logarithmically homogeneous self-concordant barrier

F*(s) = —InDet s;

we perform complexity analysis of an (ith) iteration of the projective method
associated with this barrier. Let M be the amount of the dichotomy steps at
this iteration.

In the case under consideration, we have

(4.4.77) (F*)'(s) = —s7 L (F*)"(s)y = s tys™ L.

Thus, our general scheme leads to the following computations (the quantities in
angle brackets indicate the arithmetic cost of the corresponding computation).

Rule 1°. This rule requires computing z; = (s;_1)~! (O(m?)). Note that, in
our general scheme, the next instruction was “compute the matrix (F*)”(s;—1)
and its inverse”; to implement it literally (i.e., to compute and store O(m?) x
O(m?) matrices), it would require at least O(m*) operations. Fortunately,
what, in fact, is meant in 1° is to “provide the possibility to multiply a given
Y € E by ¥; = (F*)"(s;—1) and ®; = [¥;]71.” In view of (4.4.77), to this
purpose, it suffices to know s;_; and z; and to compute ¥;Y and ®;Y for a
given Y it takes O(m?) operations.

Rules 2°, 3°. The effort required to compute v;(A) and V;()) is dominated
by the following operations:

e computing the n x n matrix ¢;(A);
e given ¢;()\), computing its inverse (O(n?));

e a single multiplication of a Y € E by RT(}), (O(m?n)), and a single
multiplication of a y € R™ by R()), (O(m?n)).
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It takes additionally O(m?) operations to check whether V;(\) € int K and
whether V()\) € W

Now, to compute ¢;()\) for a single A, it requires N = O(m3n + m?n?)
operations (we should multiply each of n columns R; of R(A) by ®,, ie,
compute n matrices s;_1R;8;-1, j = 1,...,n, which takes O(m3n) operations,
and then compute scalar products of each of the results with each of R;,
which takes O(m?n?) operations more). However (now is the crucial point),
to compute ¢;(-) at a series of k values of A, it takes less than kN operations,
namely, no more than 3N + (k — 3)O(n?). Indeed, ¢;(\) is quadratic in .
Therefore, we can compute and store the values of this matrix for three values
of A, say, A = 0,1,2, (O(m3n + m?n?)), and, after that, it takes only O(n?)
operations to compute ¢;(A) for any other A.

Rule 4°. The arithmetic cost of this rule (at least for the choice t; = 7;) is
clearly O(m?).

It follows that the arithmetic cost of an iteration with M dichotomy steps
is

O(m3) + O(m3n + m?n?) + M x O(n? 4+ n3 + m?*n 4+ m?)

= O(m3n 4+ m*n?) + M x O(n® + m*n + m®).

(the first left-hand side term represents all expenses for 1° and 4°, the second
is the cost of computing ¢;(\) for A =0, 1,2, and the factor at M in the third
term is the cost of computing v;(A), V;(A\) and checking whether V;()) belongs
toint K and W*). We see that, if n << m?, then the term M x O(n3+m?2n+m3)
is dominated by the term O(m3n +m?n?) in a large enough range of values of
M, so that, in this case, the built-in dichotomy is basically costless.

Note that the case of the usual linear-fractional programming (§4.4.1, item
(ii)) is even more preferable for the inner dichotomy. Indeed, in this case,
@i(A) is a 3-rank correction of, say, ¢;(0), and it takes only O(ln) operations
to compute ¢;(A) and [¢;())] ! after ¢;(0) and [¢;(0)]~! are computed, where
[l =dim@Q.

4.5 Primal-dual potential reduction method

From the theoretical viewpoint, a disadvantage of the generalized method of
Karmarkar and projective method, as well as that one of their initial LP ver-
sions, is that the efficiency estimate of the methods is proportional to the
parameter of the underlying barrier, while, for the path-following methods,
the estimate is proportional to the square root of the parameter. Below, we
present the primal-dual potential reduction method, which is free from this
shortcoming. The method extends onto the general conic case the algorithm
developed by Todd and Ye (see [TY 87|, [Ye 88a], [Ye 89]) for LP problems.
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4.5.1 Formulation of the problem. Assumptions

Let us fix a primal-dual pair of conic problems

(P): minimize (c,z) s.t. z€ K[ |(L+b),

(D): minimize (s,b) s.t.s€ K* ﬂ(LJ‘ +¢),

where, as usual, K is a closed convex pointed cone in F with a nonempty
interior, K* C E* is the dual cone, L C E is a linear subspace, and L+ C E*
is the annulator of L. For brevity, let us denote

M = L + b (the primal feasible plane),
P=M ﬂ K (the primal feasible set),

P’ =r1int P (the set of primal strictly feasible solutions),

and, similarly,
M*=L'+¢, D=M*(\K*, D' =rintD.

A pair (z,s) comprised of strictly feasible primal and dual solutions (i.e.,
of z € P', s € D) is called a strictly feasible primal-dual pair.
We henceforth make the following regularity assumption:

(PD): ((P), (D)) admits strictly feasible primal-dual pairs.

In terms of §4.2, (PD) means that, for our problems, (I,) and (I;) hold. In
view of implications (1) and (5) from §4.2, (PD) implies that both primal and
dual problems are solvable and that their optimal values P* and D* satisfy the

duality relation
(4.5.1) P* + D* = {c,b).

Note also, that to ensure (PD), it suffices to assume that, say, the primal
feasible set is bounded and intersects int K (assumption (K.1) from §4.3). In-
deed, the latter assumption, in terms of §4.2, is (I,) and (B,), while (PD) is
precisely (Ip) and (I3); to prove the implication (I,) and (Bp) = (I) and (1),
it suffices to note that ],(I;) would imply (R,); see §4.2, property (2), which,
combined with (Fp), clearly would imply 1,(Bp).

Note that, from (4.5.1), it follows (see (4.2.2)) that, for each pair (z, s) of
feasible primal and dual solutions, we have

(4.5.2) v(z,s) = e(x) +e*(s) = (s, ),

where
e(z) = (¢, z) — P*, e*(s) = (s,b) — D*

are the primal and the dual accuracies.



PRIMAL-DUAL POTENTIAL REDUCTION METHOD 139

The only representation of the cones K, K* used in the primal-dual method
is the knowledge (i.e., the possibility to compute the values and first- and
second-order derivatives) of a J-logarithmically homogeneous self-concordant
barrier F for the primal cone K together with the Legendre transformation
F* of F. As we know (Theorem 2.4.4), F* is ¥-logarithmically homogeneous
self-concordant barrier for the cone (—K*) anti-dual to K, so that the function
Ft(s) = F*(—s) : int K* — R is a barrier of the same type for the dual cone
K*. We assume that we are given F and F7.

To simplify our considerations, we also assume that we know an initial
strictly feasible primal-dual pair (2°,s%) (to find such a pair, we can use, say,
the preliminary stage of the barrier path-following method, and the projective
method, and so forth).

4.5.2 Primal-dual potential function

The potential underlying the method depends on a parameter v > 0 (which is
chosen as an absolute constant later) and is as follows:

Vi(z,8) = F(z) + FT(s) + (0 + v9Y?)In (s, ) : int K x int K* — R.
Also, let
U(z,s) = F(z) + F*(s) +d1In(s,z),
so that
Vi(z,s) = U(z,s) + 92 In (s, z) .

It turns out that the relative value of the duality gap v(:,-) at a strictly
feasible primal-dual pair (z,s) (and, consequently, the accuracy of z and s
as approximate solutions to the corresponding problems) can be estimated in
terms of the potential, as it is shown in the following result.

Proposition 4.5.1 Let (x,s) be a strictly feasible primal-dual pair and let
(20, s0) be the initial strictly feasible primal-dual pair. Then

v(z, s) o o Vi(®, s%) — Vi(z, )
(4.5.3) S0, 59) = R(z°, s%) exp { e ’
where -
(4.5.4) R(z®, %) = exp 4 L& 8) ~Ond+ 3
9172

Proof. By definition of Vi (-,-) and by virtue of (4.5.2), we have

Vi(z,s) — Vi(2%, s°) = y91/21n v(z:s) +U(z,s) - U(z?, s%).
v(z0, s0)
This inequality implies the statement under consideration, since
Ulz,s) — Uz, s%) > 9 —9 - U(a,s%

(see Proposition 2.4.1; note that U(z,s) = V(—s,z), V being the function
involved into Proposition 2.4.1). O
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4.5.3 Basic primal-dual procedure

The above statement means that, to approximate the pair of optimal primal
and dual solutions, it suffices to decrease at an appropriate rate the value of
the potential function. In the method under consideration, this is ensured
by a procedure that updates a given strictly feasible primal-dual pair into
another pair of the same type with the potential at the updated pair being
by an absolute constant less than at the initial pair. This procedure PD(y, 6)
depends on <y (which is responsible for the potential) and on certain positive
parameter §, which is specified (as an absolute constant) later.

The procedure PD (v,6), as applied to a pair of strictly feasible primal
and dual solutions (z, s), transforms it into the pair (z/,s') = PD(y, d)[(z, )]
of the same type in accordance with the following rules:

PD. (1) Set s

T = (9 +7y9*/?) Ga)

form the function
v(u) = F(u) + (r,u —z) : int K — R,
and find the Newton direction, £, of v |pr at z,
¢ = argmin {(v'(z), h) + 5 (v"(z)h,h) | h € L}.

Also, let A be the Newton decrement of v|p: at z,

A= (V"(2)¢, )",

PD. (2) If
(4.5.5) A > 6,
then set ¢
! > ! —
r =x+ e s s,

and terminate; otherwise set

r ' (3,(1}) 4 //
o =a, o = @) - P

and terminate.

Proposition 4.5.2 Under assumption (PD) for each v > 0 and all 6 > 0
satisfying the relation

_ _ 2
©: <1, 9(7,5)5"("(1”‘3 ‘5)—2(16_6)2>0

(this relation is satisfied for all small enough positive 8) and for each pair (z, s)
of strictly feasible solutions to (P) and (D), the pair (&, s") = PD(y, 6)[(z, s)]
is strictly feasible, and

(4.5.6) Vi(@',s') < Vi(z,s) — min{6 — In(1 + 6); (v, 6)}.
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Proof. Let us fix § satisfying (C) and a strictly feasible primal-dual pair (z, s).

19, Assume first that (4.5.5) is the case. Then s’ = s is a strictly feasible
dual solution. Furthermore, A = A(v |p/,z), and 2’ is exactly the image of z
with respect to the updating described in Proposition 2.2.2 (this updating is
applied to v |pr). By virtue of Proposition 2.2.2, ' € P/, and

(4.5.7) o) <v(@)-{A—In(1+ )} <wv(z)—{§—In(1+ )}
Since In(-) is concave and 7 is precisely the derivative of (9 +~v9/2)In (s, ) in

u at z, we have

Vi(z',§') = Vi(z,s) = Vu(2', 5) — Vi(z, 5)
= (9 +v9/?){In (5,2} — In (s,2)} + F(z') — F(z)
<(rz' —z)+ F(z') — F(z) = v(z') — v(x),

so that (4.5.7) implies that
(4.5.8) Vi(@',s') — Vi(z,s) < —{6 — In(1 + 6)}.

Thus, in the case of (4.5.5), (', s') is strictly dual feasible, and (4.5.6) holds.
20. Now consider the case when

(4.5.9) A <6
Then z’' = z is strictly primal feasible. To prove that s’ is strictly dual feasible,
denote s* = —F’(z); then, under the notation
- 191/2, = (S,(L‘>’
p=7 It p
we have
(4.5.10) s =ms", " =" — F'(z)¢.

We have s* € int K* (see Theorem 2.4.4). To prove that s’ is strictly dual
feasible, let us first prove that

(4.5.11) || 8" —s* |2 = (8" — s*, (F)"(s*)(s" — s*)) = (¢, F"(z)€) = A\? < &
We have
(8" =" (FT)'(s)(s" = 8")) = (F"(2)&, (FT)"(s") F"(2)€) = (F"(2)§,€)

(we considered that F*(—u) is the Legendre transformation of F, so that
(FHY'(—F'(w)) = (F"(w))"!, w € int K, while s* = —F'(z)). Thus, (4.5.11)
follows from the definition of A and (4.5.9).

Since 6 is less than 1, (4.5.11) means that s” belongs to the open ellipsoid

W={ue B | (u-s", (F*)'(s")(u—s)) < 1},
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which, in view of Proposition 2.3.2, item (i.1), is contained in int K*. Thus,
s" € int K*, and, since K* is a cone, s’ € int K* as well.

30. Now let us prove that s’ € M*. By definition, we have s” = —F'(z) —
F"(z)¢; by definition of &, the linear functional

f=F'(z)¢+F(z)+T7=-§"+71

vanishes at the linear subspace L, so that f = —s”" +7 € Lt. We have s' ~c =
78" —c= (7~ fyx —c= (w1 — c) — mf. We have 77 = s (the definitions of =
and 7), so that s’ — ¢ = (s —c) — nf € L (recall that s is dual feasible, and
f € L1). Thus, s’ does belong to M*, and since we already have seen that
s’ € int K*, &' is strictly dual feasible.

Thus, (2', §') is a strictly feasible primal-dual pair.

4°. Now let us evaluate the quantity w = Vi(2/, ') — Vi(z, s). We have

w = Vi(z',s") — Vi(z,8) = (9 + p){In{s,2) — In(s,z)} + F(s') = F(s)

= 9+ p){In{(ns",z)) —In(s,z)} + F"(ns") — FF(s)

— 9{In (", ) — In (s, 2)} + F*(s") — F*(5) + pln {222

(s, )
(note that F* is ¥-logarithmically homogeneous and s’ = ws”).
Furthermore,
= -F@) - F'@g, 7=
d+p

so that

(s",3) = (~F'(z) - F"(w)é,2) =9 —n,
where

n = (F"(z)§,z)
(we considered that (—F'(z),z) = 9; see (2.3.12)). Thus,

fms",z) B) (_Q)
In 5. 7) = ln(l-’r-19 +In|1l 5

w=9%Ind+1n (1 - ?9) —In (s, z)}

+pln (1 - g) ~pln (1 + %) + FH(s") - F*(s).

so that

(4.5.12)

Furthermore, by virtue of s” = s* — F”'(z)¢, we have F*(s") = ¢(1), where

$(t) = F¥(s* — tF"(z)¢).
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Note that, due to (4.5.11) and Theorem 2.1.1 (applied to 1-strongly self-
concordant function F*), we have

¢II (O)

(1—t6)%¢"(0) < ¢"(t) < Gogp 0Stsh
so that
PH) = 0(1) £ 60) + (0) + 55k = FH-F/(@)
+ (~F"(@)€, (F*) (=F'(2))
g (P @8 (P (P @) F' (@)
1

s —s* A .

= F(=F'(@) + (~F"@)% (FY (-F' @) + 35— |

From the origin of F't, it follows that (F*)'(-F'(z)) = —, so that our com-
putation leads to
2

(45.13)  FHs") < FH(=F'(@)) + (F"(z) g,x>+(—‘5_6_)2

(we considered that || s” — s* [|2. < §%; see (4.5.11)).

From Proposition 2.4.1, it follows that U(z, —F'(z)) = ¢1nd — ¥, or, due
to the definition of U(-, "), F+(—F'(:c)) + F(z) +9In(~F'(z),z) = 9Ind - 9.
At the same time, (2.3.12) means that (—F'(x),z) = ¥, and we obtain

FY*(-F'(z)) = -9 — F(z).

Thus, (4.5.13) implies
(4.5.14) Ft (") < -9 -F(z)+n+ —i—
e = 1T 1= 6)2

(we considered that n = (F"(z){, z)). Now (4.5.12) implies that

w<¥H{Ind +1In (1— %) —21n<s,x>}+p{ln (1— %) —In <1+§)}
-9 - F(z)+n+ =0 — Ft(s)
= {9nd ~9 — F(z) — Ft(s) —dIn(s,x)}

62

n n P
1 1—-2) r
+191n(1 >+pln( > pln(1+ >+17+2(1 5)2
62

n /A 4 %
§ﬁ1n<l 9)erln(l 19) ,01n(1+19)+77-i—2(1_5)2
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(the latter inequality follows from (2.4.8)). Since In(1—n/9) < —n/4¥, it follows
that

7 p &
5. < e 1+= —
(4.5.15) w_pln(l 19) pln( +19)+2(1—6)2
50, To complete the proof, it remains to evaluate 1. We have
n® = (F”(z){,x}z < (F"(z)¢,&) (F'(z)z, ).

We have (F"(z)¢,£) = A? (the definition of A) and (F"'(z)z,z) = 9 ((2.3.14)),
so that | n |< 692, The latter inequality, combined with (4.5.15) and the
relations p = y9/2, 9 > 1 implies that

2 62

y
< — .
@< -1 T e ey

Thus, in the case of (4.5.9), inequality (4.5.6) also holds. m]

4.5.4 Rate of convergence

The method in its basic version simply iterates the above updating, namely,
forms the sequence of strictly feasible primal-dual pairs

(i, 8i) = PD(v, 6)[(zi-1, 8i-1)],

where (o, so) = (20, s°) is the initial pair mentioned in §4.5.1, and vy, § are
positive absolute constants that should satisfy (C).

At the ith iteration of a “large-step” version of the method, we first compute
an intermediate strictly feasible primal-dual pair

(zj, S:-) = P‘D(’ﬁ 5)[(:1}5_1, si—l)]v

and then, using an appropriate line search, transform this intermediate pair
into a strictly feasible primal-dual pair (x;, s;) in such a way that

Vk(wias’i) < ‘/*(CII,;‘-,S,;F)

(some possibilities for the latter transformation are discussed below).
From Propositions 4.5.1 and 4.5.2, we immediately obtain the following
rate-of-convergence statement.

Theorem 4.5.1 Let a primal-dual pair (P), (D) satisfy (PD) and let (z;, s;)
be the trajectory of the primal-dual method as applied to the pair; control pa-
rameters v, 6 of the method are assumed to satisfy (C). Then the duality gap

V(.’II,;, s;) = {{c,x;) - P*} + {(S@', b> — D*}
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of the ith pair can be estimated as follows:

v(z,s) 0 0 Vi(z, %) — Vi(z, s)
A _
(4.5.16)
O(v,6) .
0o .0 3
< R(z",s )exp{—wl},
where 0
Uz’ s") —dnd + ¢
0 0y _ ’
R(:I;,s)—exp{ IV }
and

O(7,6) = min{é — In(1+ 6); Q(~, 6)}.

As far as the theoretical estimate (4.5.16) is concerned, rational choice of
7, 6 (i.e., that one minimizing x = y710(v, §)) is

v =105 §=0.34,

which results in x = 0.045.

4.5.5 Large-step strategy

Note that the basic version PD of the primal-dual method, in fact, does not
require knowledge of F'*, so that we can implement it if only F is known.
Of course, in the latter case, it is impossible to use the main advantage of
a potential reduction method, we mean “large steps.” Recall that all we are
interested in is updating a current strictly feasible primal-dual pair into another
pair of the same type with the value of the potential V, being at least by an
absolute additive constant less than at the initial pair. Since we are interested
in decreasing the potential by the maximum possible amount, we can try to
achieve a larger decreasing, say, with the aid of minimization of V, in the
direction prescribed by PD; that is what is understood as “large step.”

For procedure PD, the most natural scheme of large steps seems to be the
following. PD as applied to (z, s) determines a pair of directions; the first one
is the direction ¢ = (14 A) !¢ in the primal space E, and the second one is

{s,2)

= W[—F'(ﬁf) — F'(z)¢] - s

n

in the dual space E*. These directions belong to L, L*, respectively, and PD
sometimes prescribes to update (z,s) as 2’ = z + ¢, 8 = s and sometimes
as ' =z, 8 = s + 7, which ensures at least an absolute constant decreasing
of the potential. By virtue of the primal-dual symmetry, the latter is also
ensured by the updating PD*, which is “symmetric,” in the natural sense,
to PD; let us denote the primal and dual directions defined by PD* by n*
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and ¢*, respectively. Thus, given a strictly feasible primal-dual pair (z, s), we
can compute four directions in E x E*, namely, ({,0), (n*,0), (0,7), (0,{*)
with the following properties: The directions belong to L x L', and there
are at least two possibilities (the first is given by PD; the second is given
by PD*) to decrease “significantly” the potential by translating (z,s) in an
appropriately chosen direction from the above collection. This observation,
being interpreted in spirit of “large steps,” makes it reasonable to update a
given pair by minimizing the potential over the intersection of (int K') x (int K*)
and the four-dimensional affine plane passing through the pair parallel to the
above four directions.



Chapter 5

How to construct self-concordant barriers

In the previous chapters, we presented a number of polynomial-time interior-
point methods for standard and conic settings of convex programming prob-
lems. To apply such a method to certain convex program, we should act as
follows.

(A) First, we should reformulate it in the standard form

(f): minimize {¢,z) s.t.z€G
or in the conic form
(P): minimize (c,z) s.t.z€ Kﬂ(L +b)

associated with a closed convex domain G C F, respectively, a closed convex
pointed cone K C FE with a nonempty interior.

Note that, at least from the theoretical viewpoint, there are no difficulties
with (A).

(B) Second, we should find a self-concordant barrier F for G (the case of
problem (f)) or a logarithmically homogeneous self-concordant barrier F for
K (the case of problem (P)); in the latter case we sometimes are interested not
only in F, but also in its Legendre transformation F*. Of course, we should do
our best to choose the barrier with the smallest possible value of the parameter.

As far as (B) is concerned, there is theoretically no problem: The theorem
on universal barrier (Theorem 2.5.1) states that an n-dimensional closed con-
vex domain (cone) always admits a O(n)-self-concordant (O(n)-logarithmically
homogeneous self-concordant) barrier. The universal barrier is, however, use-
less from the computational viewpoint. Indeed, to implement an interior-point
method associated with a barrier, we need “an explicit” representation of the
barrier, which allows us to compute at a reasonable cost the values of the bar-
rier and its first- and second-order derivatives. The universal barrier, generally
speaking, does not fit this requirement, excluding a very restricted number of
simple domains for which it can be presented in a “computable” form. Recall
that as of yet we have mentioned only two examples of “computable” barriers,
i.e., the standard logarithmic barrier for a convex polytope (§2.3, Example 2)
and the barrier for the Lebesgue set of a convex quadratic form (Lemma 3.3.1).
Of course, even these two examples allow us to cover linear programming prob-
lems and (convex) quadratically constrained quadratic problems; nevertheless,

147
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it would be highly desirable to extend the set of “computable” self-concordant
barriers. This is our subject in the present chapter.

Below, we develop a kind of barrier calculus. This calculus includes the
following two parts:

(i) A list of ad hoc computable barriers for a spectrum of concrete con-
vex domains and cones, which are of especial interest for convex program-
ming (§85.3, 5.4). This spectrum includes epigraphs of the standard univariate
functions (the power function, the exponent, powers of the Euclidean norm,
fractional-quadratic functions, and so on), the second-order cone, and the cone
of positive semidefinite matrices, and so forth;

(ii)) A set of composition rules that allow us to form a computable self-
concordant barrier for a domain that is the result of certain standard operation
with convex sets (like taking inverse image, intersection, projection, and so
forth), provided that we are given self-concordant barriers for the operands,
i.e., the sets involved into the operation (§85.1, 5.2, 5.5).

Combining barriers mentioned in (i) with rules from (ii), we obtain a very
wide spectrum of computable self-concordant barriers and, consequently, pro-
vide the possibility to solve in polynomial time various convex programs of
appropriate analytical structure (see Chapter 6).

5.1 Operations with convex sets and barriers

It turns out that each standard operation IT with convex domains (cones) that
preserves convexity induces “an explicit” operation II* with self-concordant
barriers for the operands; the result of the latter operation is a self-concordant
barrier for the result of II. Since I1* is “explicit,” the resulting barrier is “com-
putable,” provided that the initial barriers possess this property.

Below, we list the standard operations Il and present the corresponding
.

5.1.1 Simple combination rules

Inverse images under affine mappings. We have (see Propositions 2.3.1(i) and
2.3.3(i)) the following result.

Proposition 5.1.1 Let G be a closed convexr domain in E, let F' be a 9-self-

concordant barrier for G, and let A: EY — E be an affine mapping such that
A(ET)Nint G # 0. Then the function

Ft(y) = F(A(y)) : it A }(G) - R

is a 9-self-concordant barrier for the closed convex domain A™1(G) C E*.

If, in addition, G is a cone, F is ¥-logarithmically homogeneous, and A
is homogeneous, then FV is a 9-logarithmically homogeneous self-concordant
barrier for the closed convex cone A~1(G).
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Direct products. We have (see Propositions 2.3.1(iii) and 2.3.3(iii)) the
following result.

Proposition 5.1.2 Let G; be closed convex domains in E; and let Fi(z;) be
9;-self-concordant barriers for G;, 1 < i < m. Then the function

F(ml,...,xm)=F1(m'1)+~--+Fm(xm):int(G1 X oo XG’m)—>R

is a (32, ¥;)-self-concordant barrier for the domain G X -+ X Gy, C Ey X
Lol X Em

If, in addition, GG; are cones and F; are 9;-logarithmically homogeneous,
1 < i< m, then F is a (3.7, 9;)-logarithmically homogeneous self-concordant
barrier for the cone Gy X -+ X Gy, C By X -+- X Epp.

Intersections. We have (see Propositions 2.3.1(ii) and 2.3.3(ii)) the follow-
ing result.

Proposition 5.1.3 Let G; be closed conver domains in E and let Fi(z;) be
¥;-self-concordant barriers for G;, 1 < i < m. Assume that the set G = (21 G;
has a nonempty interior. Then the function

F(x)=F(z)+ -+ Fn(z):itG - R

is a (3~ ¥;)-self-concordant barrier for the domain G C E.

If, in addition, G; are cones and F; are 9;-logarithmically homogeneous,
1<i<m, then F is a (3j2, ¥;)-logarithmically homogeneous self-concordant
barrier for the cone G C E.

Conic hulls and projective transformations. Let G be a closed convex do-
main in E. As we remember (see §4.1), to reformulate a standard problem
associated with G in a conic form, it suffices to identify E' with the hyperplane

O={(z,t)cEt=ExR|t=1}

in a (dim E + 1)-dimensional space and then introduce as the cone involved
into (P) the conic hull

K(G) = {(x,t) cEY[1>0, %ec}
of G. It is easily seen that
(56.1.1) intK(G):K’E{(x,t)€E+ | t >0, %eintG},

while the image of G under the above embedding E — 1II is the intersection of
P and K(G), as follows:

(5.1.2) O\ K(G) = {(,1)| = € G}.

Now assume that we know a ¥-self-concordant barrier for G. How can we
transform it into a logarithmically homogeneous self-concordant barrier for
K(G)? The answer is given by the following result.
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Proposition 5.1.4 Let G be a closed conver domain in E and let F be a
p-self-concordant barrier for G. Then, for an appropriate absolute constant @
(we can take 6 = 20), the function

F*(z,t) = 62 (F (%) — 2 lnt) Lint K(G) —» R

is a (20%u)—logarithmically homogeneous self-concordant barrier for the conic
hull K(G) of G.

Proof. F* clearly is C3-smooth on K’ and satisfies (2.3.10) with 9 = 26%p.
It remains to prove that F'* is strongly 1-self-concordant on K’.

10. Let us prove that F' is 1-self-concordant. To this purpose, let us fix
z = (z,t) € K’ and let w = (h,—s) € E*. Let us compute the derivatives up
to the order 3 of F'* at the point z in the direction w. For 7 € R, we have,
under the notation o =t~ !s, { =t~z €intG, n=t"'h, w=0€ + 7,

z+T1h

T, = T,

where
p(r) = 1-710

Let

¢(r) = F(§ +rw);
then

FH(z 4 mw) = 62(¢(p(1)) — 2u1n(1l — o7) — 2pInt).

Therefore

dy = DF*(2)[w] = *(2uo + m),
(5.1.3) dy = D?*F*(2)[w,w] = 6%(2uc? 4 20m; + 732),
d3 = D3F*(2)[w,w,w] = 6*(4uo> + 60%m; + 6072 + 73),

where

m=¢0), m=(8"(0)"*=(D*F(&)w,w))"’?,
m3 = ¢"'(0) = D°F(¢)[w,w, w].
Since F is a p-self-concordant barrier for G, we have
(5.1.4) 7% < pns; 3| < 273,
Thus, if v = /2, p = |v 11|, then p < 7 and

(5.1.5)  da > 8%(20%0? — 20vmy + 72) > 62 max{(vo)?,72/2} > 0.
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We see that F' is convex. Now (5.1.3)-(5.1.5) lead to the relation

1
| ds | < 26* {;{2 | vo 2 +3(vo)me + 3 | vo | n2} +7rg’}
dp\ %/ dy\ (2d2\"/* da\'/* (2d
2 2 2 2 2 2
=% {2 () @) G (F)
2d\ %2 3/2
2 <
+(3) p oD
so that

(5.1.6) | ds |< 2d3/*

for & > 20 (of course, the appropriate value of # can be lowered by more
accurate evaluations). Thus, F'* is self-concordant on K’.

20, It remains to verify that F*(z;,t;) — oo for each sequence {(z;,t;) €
K'} converging to a boundary point (z,t) of K(G). Of course, we can assume
that the sequence {F*(z;,t;)} converges to a point in the extended real axis.
If t > 0, then the points u; =t Les converge to a boundary point of (7, so that
F(t;'2;) tends to oo (since F € S (int G, E)), and therefore F*(x;,t;) — oo.
Now let ¢t = 0. Let w be an interior point of G. Then, by virtue of (2.3.3), we
have F(u;) > F(w)+ pln(1 — m,,(w)), where m,, is the Minkowsky function of
G with the pole at u;. Let || - || be a norm on E. Clearly,

c(w)

) 2 e w—w ]

for certain c(w) > 0; since z; converge, we have || u; — w [|< Ct; " for certain
constant C. Thus,

Ft(zi, t;) = 02{F(u;) — 2p1nt;}

292{F(w)+uln—(c(;:—)ié 2ulnt;} — oo, i — 00,

since t; tend to 0. O

Corollary 5.1.1 Let G be a closed convexr domain in E, let F' be a U-self-con-
cordant barrier for G, and let A(x) = ((a, ) + B) *(Az + b) be a projective
transformation of E such that (a,z) + (3 is positive on int G. Let

t =cl A(int G)
be the image of G under this transformation. Then the function
F*(z) = 0*(F(A () + 201n((0, A7 (2)) + 8))

is a (20%9)-self-concordant barrier for G*, 6 being the same absolute constant
as i Proposition 5.1.4.
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Proof. Let B(z) = ({(o,z) + 6)~}(Cz + d) be the transformation inverse to A;
without loss of generality, we can assume that (o, z) + § is positive on int G*.
Let K(G) C E x R be the conic hull of G. Consider the affine mapping

G: E->ExR: G(z)=(Cz+d,{o,z)+6).
Let us verify that
int Gt = G7(int K(G)).
Indeed,
{z € int G*} & {{B(z) € int G}&{{o,z) + § > 0}};
& {{o,z) +6 > 0,((o,z) + 6) "1 (Cz + d) € int G}
& {(Cx+d,{o,z) +6) c it K(G)} & {G(z) €int K(G)}.
Now, in view of Proposition 5.1.4, the function ®(z,t) = 6%(F(t lx) —

291nt) is a 260%9-self-concordant barrier for K(G), so that its superposition
with G, i.e., the function

0%(F(B(z)) — 29 1n((o, z) + §)),

is a 26%9-self-concordant barrier for cl G~!(int K(G)) = G* (see Proposition
5.1.1). The latter function, up to an additive constant, is F'*. m

The next pair of operations with convex sets—projection and summation—
imply computationally not so simple transformations of barriers and are mainly
of theoretical interest.

Images under affine mappings. We have the following result.

Proposition 5.1.5 Let G be a closed convez domain in E, let F' be a §-self-
concordant barrier for G, and let A : E — E*t be an affine transformation
such that

(5.L.7) A(E)=E*, A (A(z))[ G is bounded for eachz € G.
Then G = A(G) is a closed convexr domain in E*, and the function
F*(u) =min{F(z) | z € A7 (u)[]int G} : int GT - R

is well defined and is a 9-self-concordant barrier for G™.

If, in addition to the above assumptions, G is a cone, A is homogeneous,
and F is 9-logarithmically homogeneous, then Gt also is a cone, and F* is
¥-logarithmically homogeneous.

Proof. 1°. In view of A(E) = E¥, the set G’ = A(int G) is open (and, of
course, convex), and, clearly, G’ C G* C cl G'. Let us verify that Gt = cl G’
(so that G is a closed convex domain). From boundedness of the sets

S(u) = A7 (u) ﬂ G
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for u € G, in view of the standard convexity arguments, it follows immediately
that the multivalued mapping S(-) is locally bounded: For any bounded @ C
G, the set U, S(u) is also bounded. The latter statement, in view of the
standard compactness reasons, implies that G is closed.

20, For u € G' (= int G1), the set S(u) is a bounded closed convex set
that intersects int ¢; thus, by Proposition 5.1.1, the restriction of F' onto the
relative interior of S(u) is a ¥-self-concordant barrier for the set S(u) (regarded
as a closed convex domain in its affine hull). In view of Proposition 2.3.2 (ii),

F attains its minimum over the relative interior of S(u) at a certain point z(u)
(recall that S(u) is bounded). Thus, F* is well defined.

30, Let us verify that F'* is a barrier, i.e., that F*(u;) — oo along every
sequence {u; € G’} converging to a boundary point of G*. Since S is locally
bounded, for such a sequence {u;}, the sequence {x(u;)} also is bounded; all
limit points of the latter sequence belong to the boundary of G (since otherwise
{ui} would converge to an interior point of G1). Since F is a barrier for G,
we have F'*(u;) = F(z(u;)) — oo.

4%, Tt remains to prove that F't is strongly 1-self-concordant and that
MF*Hu) <92 we @

Let us first show that we can reduce the situation to the case when G does
not contain straight lines. Without loss of generality, assume that A(z) = Az
is homogeneous. Assume that G contains straight lines and let Ey be the
subspace {h | G+ Rh = G}. Note that (5.1.7) implies that Fy() Ker A = {0},
so that we can find a subspace E; D Ker 4 in E such that F = Ey x Eq. Let
G1 = G E1; then Gy is a closed convex domain in Ej. Since Ker A C Fj,
we have E* = (AEy) x (AE;), and the above representation of G implies that
Gt = (AE,) x Gf, where G} = A(G1). Note that F is constant along the
affine planes = + Ey, = € rint G; (we used Proposition 2.3.2(ii)); therefore F'*
is constant along the planes u + AFEy, u € rint G;r, and, to prove that F't is
a ¥-self-concordant barrier for G, it suffices to prove the latter statement for
the restriction of F* onto rint Gf. The pair (G, F* |, Gl+) is obtained from
(G1, F' | GIL) with the aid of the same construction as the one transforming

(G, F) into (G, F*), and, when proving the statement, we can from the very
beginning replace F with Fy,G with G1, and F' with its restriction onto the
relative interior of Gj. Thus, we can suppose that G does not contain straight
lines.

Let us fix ug € G’ and let o = z(ugp). After appropriate translations of the
origins in E and E*, we can assume that ug =0 € E* and zq = 0 € E; since
v = A(xz(u)), it means that A is homogeneous: A(x) = Ax. Let us provide
E with the Euclidean structure £ associated with the inner product (p,q) =
D?F(0)[p,q] (this is a nondegenerate scalar product in view of Proposition
2.3.2(ii); recall that G does not contain straight lines) and let Ey = Ker A, Ey
be the £-orthogonal complement to Ey. Also, let m be the £-orthoprojector of
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E onto Ej; note that there exists a linear isomorphism 1 : E; — ET such that
(5.1.8) A=T1om.

Let us denote a point of E as ¢ = (v,w), where v € E;, w € Eg and let
fl, fl, denote the partial derivatives of a mapping f with respect to v and w;
we also write f.,, instead of (f},),, and so on. Under this notation, we have

(5.1.9) (u) = (r 'u,w(r"'w)),

where the function w(v) defined in a neighborhood of 0 in E; and taking values
in Ey is given by the equation

(5.1.10) F (v,w) = 0;

note that this equation is satisfied by the pair (v,w) = (0,0) (since we have
assumed that ug = 0,z = 0), and its left-hand side ®(v, w) is C2-smooth and
satisfies the relation ®,(0,0) = Idg,, so that the equation does define (locally)
a C2-smooth function w(v), w(0) = 0.

Note that the identity F, (v, w(v)) = 0 implies

(5.1.11)  Dw(w)[h] = —[F" (v, w(v))]  E" (v,w(v))h, h € Ej,

Let
H(v) = F(v,w(v)),

so that in view of (5.1.9) one has (locally)

(5.1.12) Ft(u) = H(r" ).

Let us compute the derivatives of H at v = 0 in a direction h € Ej,
DH(v)[h] = (Fy(v,w(v)), k) + (F,,(v,w(v)), w'(v)h) = (F(v,w(v)), h)

(we have taken into account (5.1.10)). Since w(-) is C2-smooth and F is C3-
smooth, DH (v) is C2-smooth, so that H is C3-smooth.
Furthermore,

D?H(v)[h, h] = (Fy,(v,w(v))h, h) + (Fy, (v, w(v)) (w'(v)h), h)
= (Fy, (v, w(v))h, k)
—(Fypy (v, 0(0)) [Fy (v, w(v))] ™ Fy, (v, w(v)) 1, h)

(we have used (5.1.11)).
Last,

(5.1.13)
D*H(v)[h, h, k) = ((Fypo (v, w(v))R)h, B) + ((Fip (v, w(0)) (' (0)h)h, )

~({(Fup (v, w(©)) [Fypy (v, w(0))] 7 Fypy (0, w(v)) b, B) Y, ).
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Now set v = 0 and recall that w(0) = 0 and F),,(0,0) = 0 (the latter
relation holds, since Ey and F; are orthogonal to each other with respect to
the Euclidean structure defined by D?F(0,0)). We obtain

DH(0)[h] = (F,(0,w(0)), h) = DF(0,0)[(h, 0)],
D?H(0){h, h] = (Fy,(0,w(0))h, k) = D*F(0,0)[(h,0), (,0)],
D*H(O)[h, h, h] = (Fi (0, w(©))h)h, h) = D*F(0,0){(h,0), (h,0), (1, 0)]
(we considered that F),,(0,0) = 0 implies that w’(0) = 0 (see (5.1.11)) and

that the last term in the right-hand side of (5.1.13) vanishes at v = 0).
Since F' is a d-self-concordant barrier, it follows that

| DH(0)[A] | < 9*/3{D*H(0)[h, h]}'?,
| D3H(0)[h, h, h] | < 2{D*H(0)[h, h]}*/%.

Since locally F*(u) = H(77'u) (see (5.1.12)) and 7 is a linear isomorphism
of E; and E*, the latter inequalities imply that

| DF*(uo)lp] |< 9"/2{D*F* (uo)[p, pI}'/?,

| D*F* (uo)[p, p, p] |< 2{D*F* (uo) p, pl }*/?
for all p € E*. Since ug is an arbitrary point of G’ = int G*, we conclude that
F* is strongly 1-self-concordant on G’ and that A(F*t,u) < 92, uwe G
The concluding statement concerning the “conic” case is evident. O
Arithmetic summation. We have the following result.

Proposition 5.1.6 Let GG; be closed bounded convexr domains in E and let F;

be ¥;-self-concordant barriers for G;, 1 < i < m. Denote by F; the Legendre

transformations of F; and let F* be the Legendre transformation of the function
T, EF. Then F't is a (3%, ¥:)-self-concordant barrier for the set

Gt=G1+ +Gn={x€F|35,€Gi:x =21+ +Tm}

Proof of the statement follows immediately from Theorems 2.4.2 and 2.4.3.
Note that we can also prove this fact using Proposition 5.1.5 and the following
representation of the function F'*:

Ft(z) =min{Fi(z1) + - + Fu(@m) | 2 €int Gy, 71 + - - + Ty = x}.

5.1.2 Inverse image under nonlinear mappings

Let G be a closed convex domain in F, () be an open convex subset in a linear
finite-dimensional space E* and let A : H — E be a continuous not necessarily
linear mapping. We would like to transform a self-concordant barrier for G
into a similar barrier for the inverse image G = A71(G) of G under the
mapping A. Of course, it is necessary to make some assumptions about A,
since generally G* may be nonconvex. We start with describing mappings
which for sure provide convexity of G¥.
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A. Mappings concave with respect to a cone

Let E, ET be finite-dimensional vector spaces, K be a closed convex cone in
E, and H be a convex set in Et. A mapping A : H — K is called concave
with respect to K (K-concave for short) if it is continuous on H and for all
z,y € H and all ¢ € [0, 1] the vector

h = Altz + (1 — t)y) — tA(z) — (1 - t)A(y)

belongs to K.
The cone K defines a partial ordering on E: a >k bif and only ifa—b € K.
The definition of K-concavity of A means simply that

t.A(.’L‘) + (1 - t)A(y) <K A(t(l) + (1 - t)y)a T,y € Ha te [Oa 1]‘

Of course, the usual concave real-valued functions are precisely the R -concave
mappings.

Our first statement claims that convexity of the inverse image A~1(G) of
a convex set G is ensured by concavity of A with respect to the recessive cone

R(G)={heE| z+the G Vze€ GVt >0}
of G.

Lemma 5.1.1 Let H be an open convex set in Et, let G be a closed convex
domain in E, and let a mapping A: H — E be concave with respect to the re-
cessive cone R(G) of G. Assume that A(H) intersects int G. Then the set Gt =
cl A™Y(int G) is a closed convex domain in E*, and int G = A~ 1(int G).

Proof. Since A is continuous and its image intersects int G, the set HT =
A~!(int G) is nonempty and open in E*. Let us verify that this set is convex.
Let z,y € H*, t € [0,1]. We have

A(tz+(1-t)y) = {tA(x)+(1-t)A(y) h+{A(tz+(1-t)y) -t A(x) - (1-1)A(y) }2.

The vector {}; belongs to int G, since int G is convex and z,y € A~} (int G),
and the vector {}2 belongs to R(G), since A is concave with respect to the latter
cone. Therefore {}1 + {}2 € int G (an immediate corollary of the definition of
R(G)),and tx + (1 —t)y € H™.

Since H™ is an open and nonempty convex set in E™, its closure GV is a
closed convex domain in E* and intGt = H*. O

The following statement is quite standard.

Lemma 5.1.2 Let H be an open convex set in ET and let K be a conver
cone in E. A C*-smooth mapping A : H — E is K-concave if and only if
(-D*A(u)[h,h)) € K for allu € H, h € ET, and, if A is K-concave, then
A(z + h) <k A(z) + DA(z)[h], z,z +h € H.
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Proof. For a C%-smooth A and z,y € H, we have, under the notation z =
tr + (1 — t)y,

A(z) — tA() — (1 — ) A(y) = ~t / (1 = )D*A(z + 7z — 2))[z — 2,7 — 2|dr
0

1

—(1-1) /(1 —D2A(z + 7(y — 2)))
[y — z,g(;) — z]dr.

If (—D2A(u)[h, h]) always belongs to K, then the right-hand side of the latter
equality clearly belongs to K, which proves the if-part. To prove the remaining
part of the statement, it suffices to set in the above equality ¢t = %,
4+ eh, y = u — ¢h and to look at the principal term as £ — +0.

Now let A be K-concave and let z,x + h € H. We have

r =

1
Az +h) = Az) + DA@)H -7, r=— / D> Az + th)[h, R)(1 — t)dt;
0

since, as we already know, —D2?A(x + th)[h, k] € K, we have r € K, whence
A(z + h) <g A(z) + DA(z)[h],

as claimed. |

Examples of concave mappings.

Example 1. As we just have indicated, the usual concave real-valued
function is the same as an R, -concave mapping taking values in R. Convexity
of a real-valued function is the same as its R_-concavity.

Example 2. An affine mapping A clearly is concave with respect to any
cone K in the image space.

Example 3. Let S, be the space of symmetric m x m matrices, let S be
the cone of positive semidefinite matrices from S,,, and let L, , be the space
of p x g matrices.

Example 3.1. The mappings

Az) = —zx! Lyypn — Sm

and
B(z) = —zlx Lym — Sm

are S;t-concave (an immediate consequence of Lemma 5.1.2).
Example 3.2. The mapping

Alx) = -z !:int S — S,

is S;f-concave.
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Indeed, we have
DA(z)[h] = z tha ™,

—D?A(z)[h, h] = 227 ha tha ™! = 227 V2 (2 2Ry /)22 € S
Example 3.3. The mapping

Alz) =z2:8F - 8,

is S;}.-concave.

Proof. A clearly is continuous on S}, so that, to prove S;-concavity of A
on S}, it suffices to verify that A is S, -concave on int S;},. Furthermore, A
is C®-smooth on int S;. since locally A can be represented by the Cauchy

integral
1
Az) = —f 2Y2(2I — 2)~Vdz,
2w &
~ being an appropriate curve in the half-plane Re z > 0. To establish concavity,
let us use Lemma 5.1.2. We have

Al(z) =z,
whence
A(z)-DA(z)[h] + DA(z)[h]-A(z) = h,

which, in turn, leads to
2(DA(z)[h)? + A(z)-D2A(x)[h, h] + D2 A(z)Ih, h}-A(z) = 0.

The latter relation is the Lyapunov equation with respect to D2A(z)[h, h]; since
A(z) is positive definite and symmetric, the unique solution to this equation
is

D2A(x)[h, k] = —2 / exp{—A(@)t}(DA)[h])? exp{—A(z)t}dt,
1)
and we see that —D2?A(z)[h, h] € S;}, as claimed. O

B. Concave mappings compatible with a convex domain. The main
result

Our aim is to associate with a mapping A a rule for updating self-concordant
barriers F for G into similar barriers for Gt = A~1(G). It turns out that the
simplest rule ' — F oA, which is good for affine A, can be naturally extended
onto certain class of nonlinear A. Let us start with necessary definitions.

Definition 5.1.1 Let 8 be a nonnegative real; let E, E* be finite-dimensional
linear spaces; let K be a closed convexr cone in E; let T be a closed convex
domain in Et. A mapping A : intT — E is called (K, 3)-compatible with the
domain T, if
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(i) A is C3-smooth on intT;
(ii) A 4s concave with respect to K;
(iii) For all z € int T, h € E*, such that 2 + h € T, we have

D3 A(z)[h, b, h] <k —38D*A(z)[h, h].
Note that (iii) is equivalent to
{zeintT', 2+ hel} =

38D%A(z)[h, h) <k D3A(2)[h, h, h] <g —38D>A(z)[h, h]
(indeed, if the premise in (iii) is satisfied by (z, h), it is also satisfied by (z, —h)).

Definition 5.1.2 Let 3 be a nonnegative real; let E, E* be finite-dimensional
linear spaces; let K be a closed conver cone in E; let T be a closed convex
domain in E*; and let I be a self-concordant barrier for I'. A mapping A :
intI' = E s called (K, 3)-compatible with the barrier 11, if
(i) A is C3-smooth on intT;
(ii) A is concave with respect to K;
(iii) For all z € intT', h € E*, we have

D3 A(2)[h, h, h] <k —3BD2A(2)[h, h){D?11(z)[h, h]}/2.
Similarly to above, (iii) is equivalent to

{zeintT} =
36D%A(2)[h, h){D?*11(2)[h, h]}'/? < D3A(z)[h,h,h] <g
<k —3BD2A(2)[h, h]{D?11(2)[h, h|}}/2.

Remark 5.1.1 We already have dealt with the particular case of real-valued
mappings compatible with self-concordant barriers, which were called “functions
compatible with barriers” (Definition 3.2.1). A function f : int G — R, which
is B-compatible with a barrier F for G in the sense of Definition 3.2.1, is
a mapping into R, which is (R_,3Y 28)-compatible with F in the sense of
Definition 5.1.2.

Remark 5.1.2 The above properties—compatibility with a domain and com-
patibility with a barrier for the domain—are closely related: A mapping A :
intI' — E, which is (K, 8)-compatible with T' is also (K, 3)-compatible with
any self-concordant barrier for I'. Conversely, if A is (K, 3)-compatible with a
6-self-concordant barrier I1 for ', then A is (K, (36 + 1)3)-compatible with I

First implication: Let A be (K, f)-compatible with I" and II be a self-
concordant barrier for T and let z € intT and A € E1 be such that

DI(z)[h, k] < 1.
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Then the points z + h belong to the unit Dikin ellipsoid of II centered at z
and therefore belong to I' (Proposition 2.3.2(i)). In view of Definition 5.1.1,
item (iii), it follows that the inequality required in Definition 5.1.2, item (iii)
is satisfied for all A such that D?II(z)[h, k] < 1 and hence for all h (since both
sides of the inequality are of the same homogeneity degree with respect to h).
Thus, A satisfies Definition 5.1.2.

Second implication: Let A be (K, 3)-compatible with a f-self-concordant
barrier IT for G and let z € intT" and h € E* be such that z + h € T.
From Proposition 2.3.2(iii), it follows that {D?II(2)[h, h]}!/2 < 36 + 1, so that
Definition 5.1.2, item (iii) implies the required inequality D3A(z)[h, h, h] <k
—-36(36 + 1)D? A(2)[h,h]. O

Examples of mappings compatible with their domains.

Example 1. An affine mapping is (K, 0)-compatible with any closed con-
vex domain in the space of argument for any cone K in the image space.

Example 2. Let A(z2): Et — E be a quadratic mapping, i.e., a mapping
with the coordinates of the image represented as

y; = (Qj2,2) + (bj, 2) + ¢;, j=1,...,l=dimFE

((-,-) is an inner product on E*, Q; are linear operators on E*, b; € E* and
¢; € R). Assume that A is concave with respect to K. Then A evidently is
(K, 0)-compatible with ' = E™.

Example 3. A (R, [)-compatible with R function is a usual concave
and C3-smooth real-valued function f : (0,00) — R such that

36

| £(8) 1< -

i), t>0

(evident). In particular, we have the following examples.

Example 3.1. t* is (R4, (2 — p)/3)-compatible with R, 0 < p < 1;

Example 3.2. Int is (R4,2/3)-compatible with R .

Example 4. The mapping A(z) = —z7! : int S}t — S, (see §5.1.2.A,
Example 3.2) is (S;}, 1)-compatible with S;..

Indeed, we already know that A(z) = —z~! is S;-concave. Furthermore,
we have

~D?A(z)[h, h] = 22" thatha ™ = 20V 2 (2~ 2hg V%) 212,
D3A(@)[h, h, B] = =6z ha~tha he ™! = —6z~ /2 (¢ 2hg /23212,
so that
= —3D?A(x)[h, h] — D A(z)[h, b, h] = 62~ /2{Q? — Q¥}z~1/?,

where Q = 27 1/2hg= 12 Ifx+h e SF,

T, then clearly —I < st Q< st I, I being
the unit matrix, whence Q3 < S+ @2, and therefore A is positive-semidefinite.

The following simple lemma allows us to extend the list of examples.
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Lemma 5.1.3 (i) If A: intT' — E is (K, 8)-compatible with T and K' O K
is a closed convez cone in E, then A is (K', 3)-compatible with T

(i1) Stability with respect to summation, multiplication by positive reals
and to restriction. If A; : intI'; — E are (K, §3;)-compatible with closed convex
domains T; C E*, i = 1,2 and if I' = T'1 N2 possesses a nonempty interior,
then a combination

A(z) = pAi(z) + gA2(z) : intT' - R

of A; with nonnegative coefficients is (K, max{31, B2})-compatible with T".

(iii) Stability with respect to affine substitutions of argument. If A :
intT' — E is (K, B)-compatible with a closed convez domain T C E* and
B is an affine mapping into E with the image intersecting int T, then the
mapping Ao B is (K, 3)-compatible with the closed convex domain B~1(T).

(iv) Stability with respect to direct product. If A; : intI'y — E; are
(K, Bi)-compatible withT';, i = 1,2, then the mapping (z,y) — (A1(z), A2(y)) :
int(T'y x I'2) — Ey x Ey is (K1 %X Ky, max{f31, B2})-compatible with T'y x Ts.

Proof. The proof is quite straightforward.

In fact, statement (iii) of the lemma can be significantly strengthened; it is
done in §5.1.2.C.

Of course, statements similar to those of Lemma 5.1.3 hold for mappings
compatible with barriers.

Lemma 5.1.4 (i) If A:intT' — E is (K, 8)-compatible with a self-concordant
barrier Il for T’ and K' D K is a closed convexr cone in E, then A is (K', 3)-
compatible with 1.

(ii) Stability with respect to summation, multiplication by positive re-
als and to restriction. If A; : intI'; — E are (K, 3;)-compatible with self-
concordant barriers I1; for closed convexr domains T; C Et, i = 1,2 and if
I' =T1 NIy possesses a nonempty interior, then a combination

A(z) = pAi(z) + ¢A2(z) : intT - R

of A; with nonnegative coefficients is (K, max{0, B2})-compatible with the self-
concordant barrier I1; + Ila for T

(iii) Stability with respect to affine substitutions of argument. If A :
intI' - E is (K, B)-compatible with a self-concordant barrier 11 for a closed
convezx domain T' C Et and B is an affine mapping into Et with the im-
age intersecting intI', then the mapping A o B is (K, 3)-compatible with the
self-concordant barrier 11 o B for the closed convex domain B~(T).

(iv) Stability with respect to direct product. If A; : intT; — E; are
(K, 3;)-compatible with self-cocnordant barriers I1; for T';, i = 1,2, then the
mapping

(z,y) — (A1(z), A2(y)) : int(Ty x T'9) — E; X Es

is (K1 X Ko, max{f1, B2})-compatible with the barrier Iy (z)+1II(y) for I'y xTs.
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Proof. The proof again is quite straightforward.

Now let us formulate and prove the central result on mappings compatible
with (barriers for) their domains; as we see in §§5.3, 5.4, this statement plays
the key role in constructing explicit self-concordant barriers.

Proposition 5.1.7 Let G be a closed convexr domain in E, let ' be a 9-self-
concordant barrier for G, let ' be a closed convexr domain in E*, let II be
a v-self-concordant barrier for T' (in contrast to our usual practice, now we
regard a function II = const as a 0-self-concordant barrier for the whole space,
i.e.,, forT' = E%), and let A : intI' — E be a mapping. Assume that A is
(R(G), B)-compatible with I1 or with T, where R(G) is the recessive cone of G,
and that A(intT") intersects int G.
Then the set
G" =cl{z €intT | A(z) € int G}

is a closed convex domain in EY, and the function
¥(2) = max*{8, 1H{ F(A(z)) + II(z)}
is a (max%{B, 1}(9 + v))-self-concordant barrier for G*.

Comment. We see that the simplest rule F' — F o A for updating barriers
when passing from G to the inverse image of G under affine mappings A can
be easily extended onto nonlinear mappings, which are (R(G), 8)-compatible
with their domains. For the latter case, the updating rule is

F — max?{1, B}(F o A +1I),

where II is a self-concordant barrier for the domain of A. In the case of affine
(or R(G)-concave quadratic) A, we can set 8 = 0, II = 0, which results in the
initial rule F' — F o A.
Proof of proposition. In view of Remark 5.1.2, it suffices to consider the
cage when A is (R(G), B)-compatible with II.

1°. Since A is concave with respect to R(G) (see Definition 5.1.1, item (ii)),
the set GT is a closed convex domain in view of Lemma 5.1.1.

To prove that ¥ is a self-concordant barrier with the announced value of
the parameter, let us compute the derivatives of ¥ at a point z € intI" such
that y = A(z) € int G in a direction h € E*. Under the notation

v = max{f,1},
u= DA(z)[h], v=D?A(z)[h,h], w= D3A(z)h,h,h],
r={D*F(y)lu,ul}'/?,  p={D(z)[h,h]}'/?,

we have
(5.1.14) D¥(z)[h] = ¥*{DF(y)[u] + DI(z)[h]};
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(5.1.15) D*¥(z)[h, h] = v*{DF (y)[v| + D*F(y)[u, u] + D*1I(z)[R, h]};
(5.1.16)
D3%(z)[h, h, h]

=y DF(y)[w] + 3D*F(y)[u, v] + D*F(y)[u, u, u] + D3I(z)[h, k, h]}.
Now, we have
(5.1.17) ~ DF(y)[A] > {D*F(y)[A, A}, A2p) 0

(Corollary 2.3.1), and
(5.1.18) - v Z’R(G) 0

(Lemma, 5.1.2 combined with the concavity of A with respect to R(G)). Fur-
thermore, in view of Definition 5.1.2, item (iii), we have

(5.1.19) 3Bpv <r(e) w <r(c) —3Bpv.

Besides this, since F' and II are self-concordant barriers, we have
(5.1.20) | DF(y)[u] <92, | DINz)[R] [< v,
(5.1.21) | D3F(y)[u,u,u] |< 203, | D3(x)[k, k, h] |< 20°.

2°. From (5.1.17), (5.1.18), it follows that
(5.1.22) DF(y)[v] > {D*F(y)[w, o]},

so that the quantity
s = {DF(y)[o]}'/?

is well defined. In view of Cauchy’s inequality and (5.1.22), we have
(5.1.23) | D*F(y)[u, ] |< {D*F(y)[u, ul} /> D*F(y)[v, o]} /* < 2

Furthermore, the linear functional DF(y)[] is nonpositive on the cone R(G)
(see (5.1.17)), so that (5.1.19) implies that

(5.1.24) | DF(y)[w] | < 38ps?.
In view of (5.1.20)—(5.1.24) we can conclude from (5.1.14)-(5.1.16) that
(5.1.25) | DU ()[h] |< ¥2{9"%r 4 v1/2p},

(5.1.26) D*¥(z)[h, h] = v*{s® + r* + p?},

| D3W(z)[h, h,h] | < 38y%ps? + 3721 s + 29213 + 2¢2p°

5.1.27)
( 5273{%p32+7‘3+p3+%rsz}

(the concluding inequality in (5.1.27) follows from v = max{3, 1}).



164 HoOw TO CONSTRUCT SELF-CONCORDANT BARRIERS

From (5.1.25) and (5.1.26), it follows that

| D¥(z)[] | < ¥*{0"2r + v 2p} < 2O+ v}/ {r? 4 PP}/

(5.1.28) ) P e
< {9+ v}2{D?W(z)[h, h]}/2.

Now let us verify that

(5.1.29) | D*W(x)[h, b, h) |< 2{D*¥(h, h]}*/2.

In view of (5.1.26), (5.1.27), to prove (5.1.29), it suffices to establish that
%p32+r3+p3+—g-r32 < {r? 4 52 4 pR1302

for all nonnegative r, s, p, or, which is the same, to prove that

(5.1.30) 3p 4344 3r <1

for all nonnegative r, s, p with r2 + s2 4 p? = 1.
We have

3ps2+ 134+ p3+ 3rs? = (r+p)(r¥ + p? —rp + 35%)
= (r+p)(3(r* + 8+ %) - 3(r +p)?)
=3(r+p)B~(r+p)*<1

(we considered that the unconstrained maximum of #(3 — #2) equals to 2), so
that (5.1.30) and therefore (5.1.29) are proved.

4°. Thus, ¥ satisfies (5.1.28), (5.1.29) for all 2 € int G* and all h € E¥;
to complete the proof, it suffices to verify that, if x; € int GT converge to a
boundary point z of G, then ¥(z;) — oo.

Let y; = A(x;). Assume first that z € intI". Then y; converge to certain
y € G (since A is continuous on intI'), and y ¢ int G (since otherwise  would
belong to int GT). Since F' is a barrier for G, we have F(y;) — oo,II(z;) —
II(x), so that ¥(x;) — oo, as required.

Now let z € OI'. It suffices to lead to a contradiction the assumption that
{¥(z;)} is bounded. Let it be the case. Since z € 9T, we have II(z;) — oo,
so that the only possibility for {¥(z;)} to be bounded is F(y;) — —oo. Let
EFr be the recessive subspace of F' and let © be the canonical epimorphism
of E onto P = E/EF; as we know (see Proposition 2.3.2(iii)), G = 7(G) is a
closed convex domain in P, G = 7~!(G) and F(-) = F(n(-)) for certain ¥-self-
concordant barrier F' for G. Let 2; = m(y;); from the correspondence between
(G, F) and (G, F) and the fact that F(y;) — —oo, it follows that 2; € int G and
F(z) — —oc. Since F is convex on int G, it is below bounded on any bounded
subset of int G, so that the relation F(z;) — —oo implies that || 2; ||— oo.
Without loss of generality, we can assume that the vectors h; = z;/ || z ||



COMBINATION RULES 165

converge to certain vector h; of course, A # 0 and h € R(G). On the other
hand, since A is R(G)-concave, we have (see Lemma 5.1.2)

Yi =y + D.A(.Z‘1)[1), — :Bl] -7, T € R(G)
We conclude that
z = w(y1) + 7(DA(z1)[z; — 11]) — 7(r3), 7(r;) € R(G).

Now, since z; converge to z, the sequence {m(y1) + m(DA(z1)[z; — 1))} is
bounded, whence h = lim;_,oo(—7(75)/ || 2; ||), so that —h € R(G).

Thus, +h € R(G) and h # 0, so that G contains a line. It follows that h €
Ez (Corollary 2.3.1), and therefore Ez # {0}, which is the desired contradic-
tion (see the construction of ). O

It is time now to enrich the list of examples of mappings compatible with
their domains by one more example, which, combined with Proposition 5.1.7,
leads to a number of important barriers (for applications, see §5.4).

Examples of mappings compatible with their domains (contin-
ued).

Example 5. Let E be a linear space with a closed convex cone K, let
E’ be a Euclidean space with the inner product {-,-), and let T be a closed
convex domain in certain linear space E’. Let A(t), t € E” be a symmetric
linear operator on E’ affinely depending on ¢,

A(t) = Ag + Arty + - - - + Agty,

where t;,: = 1,...,k = dim E” are the coordinates of ¢ in certain basis and A;
are symmetric operators on E’.

Also, let Q(2',z") be a bilinear symmetric mapping from E’ into E, i.e., a
mapping with the coordinates of the image represented as y; = (Q;z',z"), j =
1,...,1 = dim E, where the coordinate operators Q); are linear symmetric op-
erators on E'.

Assume that

(A.i) Q is a convex with respect to K mapping, i.e., Q(z,z) € K, = € F;
(A.ii) A(t) is positive definite for ¢ € int T

(A.iii) for any t € E” the bilinear vector-valued function Q(A(#)z’,z") of
z',x" is symmetric in ', z”.

Note that (A.iii) is equivalent to the assumption that, for all ¢, the operator
A(t) commutates with all coordinate operators Q;.

The above data generate the following quadratic-fractional mapping:

Aly,z,t) =y — QA Y(t)z,2) : H= E x E' x (intT) — E.

Proposition 5.1.8 (i) In the above situation, under assumptions (A.i)—(A.iii)
the mapping A is (K, 1)-compatible withT = E x E' x T.
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(ii) In particular, if G C E is a closed convezx domain with R(G) D K, F
s a V-self-concordant barrier for G, and ® is a v-self-concordant barrier for
T, then the function

U(y,z,t) = Fly — QA7 (t)z, 2)) + B(2)
is a (¥ + v)-self-concordant barrier for the closed conver domain

(5.1.31)
Gt =c{(y,z,t) cEY=EXE xE"| tcintT,y — QA (t)x,z) € int G}.

Proof. 1°. (i): Of course, A satisfies Definition 5.1.1, item (i). Let us com-
pute the derivatives of A at a point X = (y,z,t) € it in a direction
E = (n,&,7) € E*. In what follows, we fix coordinates in F, and subscript
i marks ith coordinate of a vector from E; A’'(7) denotes the derivative of the
affine mapping A(-) in a direction .

We have

DA(X)[E] = m - (AT (0)}{¢ - A(MA (e}, z) - (QAT (B)z,€);
(5.1.32)
D2 A(X)[E,8] = 2(QA7 () A/ (NAT B){¢ — A'() A7 (D)}, o)
—2{QiA7 (t){E - A(n) A (B)a}.€).

As it was already indicated (see the comment to (A.iii)), all values of A(:)
commutate with Q;, whence A’(7) also commutates with ;. It follows that

(Q:A l(t A’(T)A LA (AN - €}, >
= (QATI({A(1) A7 )z - €}, A (DA (D)),

so that (5.1.32) can be rewritten as

G-L33) 2 4 3, =

= -2(QATI (W - A(n A~ )z} {E - A(m) A7 (t)z}) -
From the latter relation, it follows that
D*Ai(X)[E,5, 5]
=2(QiA” t)A'( VAT € - A(1)AT ()} {€ — A/(T) A7 (t)z})
~2(QATI DA (M)A DA (A (D) - £, {6 - A r)A (t)2})
—2{Q: AT (t){€ — A'(NAT ()2}, A (M) AT (O{A (1) A ()= - €)),
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and, again considering that A(t) and A’(7) commutate with Q;, we obtain

(5.1.34)
D3 Ai(X)[E, E, E]
=6(QiAI (A (1) AT ()] - A(N A ()}, {€ ~ A (M)A (t)z}) -

Thus, under notation

(=¢—A(n)A M)z,

we have
(5.1.35) D?A(X)[E,E] = —=2Q(A71(8)¢, ¢);
(5.1.36) D3A(X)(E,E,E] = 6Q(A7H ) A (T)A7L(t)¢, 0).

20, Mini-Lemma 1. Let B be a positive-semidefinite symmetric operator
on E' commutating with all coordinate operators Q; of Q. Then Q(Bs,s) € K
forallse E'.
Proof. Since B commutates with all (;, the operator B'/2 also possesses this
property, whence

(Q:Bs,s) = <QiB1/2s, B1/2s> ,

S0 that
Q(Bs, s) = Q(B'/%s, B/2s),

and the latter vector belongs to K in view of assumption (A.i). O
Relation (5.1.35), in view of Mini-Lemma 1 and Lemma 5.1.2, implies that
A satisfies Definition 5.1.1, item (ii), i.e., is concave with respect to K on intT'.
30. It remains to verify item (iii) of Definition 5.1.1. To this end, assume
that X + = eI
30.1. Let us verify that the operators

Bt =AY (t) - ATY®)A(1)AY(t), B =Alt)+ AT )A(1)ATN(t)

(which clearly are symmetric) are positive-semidefinite.

Indeed, the points X + = belong to I', so that the points ¢ + 7 belong
to T. The affine mapping A(-) takes positive-semidefinite values on the latter
set; it follows that A(t) &+ A'(7) is positive-semidefinite, so that the operators

“L(t){A(t) £ A'(T)} A" (t) also are positive-semidefinite, as claimed.

30.2. Since Bt and B~ are positive-semidefinite and commutate with Q;

(because A(t), A’(7) do), Mini-Lemma 1 implies that

QAT ()¢, ¢) — QAT (A (M)A ()¢, () € K,

QAT ()¢, Q) + QAT A (1) AT (#)¢, ) € K,
or (see (5.1.35), (5.1.36))

—iD?A(X)[E, 5] £ L D3AY(X)[E, 5, E] € K,
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so that

X+Eel = 3D?2A(X)[E,E) <k D’A(X)[E,E,&] <k —-3D*A(X)[E,=

bl

and A satisfies Definition 5.1.1, item (iii) with 8 = 1. Thus, A is (K,1)-
compatible with I, and (i) is proved.

Part (ii) is an immediate corollary of (i) and Proposition 5.1.7 (we should
apply Proposition 5.1.7 to II(y, z, t) = ®(¢) and consider that A(T") is the whole
E and therefore intersects int G). O

C. Compatibility of superpositions

A superposition of the usual concave real-valued functions on the axis, gener-
ally speaking, is not concave; to ensure the latter property, we should impose
the monotonicity of the outer function. The resulting statement can be imme-
diately extended onto vector-valued mappings: If f : E* — E is K-concave
and g : E — E~ is Q-concave (K and @ are convex cones in E, E~, respec-
tively), and, in addition, g is (K, Q)-monotone,

o' 2k 2" = g(z') 2q 9(a”),

then g o f is Q-concave. Surprisingly, it turns out that the latter assumptions
that ensure concavity of the superposition also ensure compatibility of go f with
the domain of the superposition, provided that f and g possess this property.

Proposition 5.1.9 Let I be a closed convex domain in Et, let G be a closed
convex domain in E, and let K be a closed convex cone in E. Also, let Q be a
closed convez cone in E~. Let F : intI' - FE and G : int G — E~ be mappings.
Assume that
(i) F is (K, a)-compatible with I';
(ii) G is (Q,y)-compatible with G,
(iii) G is (K, Q)-monotone on intG :

{z/,2" € int G, =’ >k 2"} = G(2') > G(z");

(iv) K C R(G).
Assume also that the set

H={zeintl| F(z) € int G}
is nonempty. Then the set H is an open convex domain in E™, the set
Gt =c H

is a closed convex domain in E*, and the superposition S8(z) = G(F(z)) :
intG* — E~ is (Q, B)-compatible with G, where

ﬁ:{max{a’7}’ ’YS %7
[@a+v+V(e=v)2+ Ba+2)(3y-1)]/2, otherwise.
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Proof. 1Y. In view of Lemma 5.1.1 and (iv), the set H is an open convex
nonempty subset of E*, so that G* is a closed convex domain in E* and
H=intG*.

20, The mapping S clearly is C3-smooth on H = int G, so that (S,G7)
satisfies item (i) of Definition 5.1.1.

30. Let z € H and h € E*. Let us denote

f=F), f =DF@)h, f'=DF()hhl, f"=DF()hhh.

We have
DS(x)[h] = DG(H)If],
(5.1.37) D*8(z)[h, k] = DG(f)[f" + D*G(N)If', £,

D3S8(z)[h, k, h] = DG(F)[F"]
+3D%G()If', £ + D3G()[f', f', ']

Since F is K-concave, we have

(5.1.38)

(5.1.39) — f" € K CR(G)

(Lemma 5.1.2 and (iv)). Furthermore, from (K, @Q)-monotonicity of G it im-
mediately follows that

(5.1.40) DG(u)[A] >¢ 0 whenever u € intG and A >k 0.
Besides this, G is )-concave, so that
(5.1.41) D*G(u)[A,A] <g 0 whenever u € intG and A € E.
From (5.1.39) and (5.1.40), it follows that
(5.1.42) DG(f)[f") <q 0,
while from (5.1.41) it follows that
(5.1.43) D*G(HIf", 1" <q .
Relations (5.1.37), (5.1.42), and (5.1.43) imply that
D*S(x)[h,h] <0, =ze€intG", he ET,

so that S is Q-concave on int G* (Lemma 5.1.2), i.e., S satisfies item (ii) of
Definition 5.1.1.

49, Tt remains to verify that S satisfies item (iii) of Definition 5.1.1, i.e.,
that

(5.1.44) D3S(z)[h, h, b} <g —3BD?S(x)[h, k],
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provided that z £ h € G*. Thus, we henceforth assume that the pair (z,h)
under consideration possesses the latter property. Note then that z + h € T,
whence, in view of (i),

(5.1.45) " <k —3af”.

This relation, combined with (5.1.40), implies that
(5.1.46) DG(H)f"] <@ —3aDG(f)[f"].

Thus, the first of three terms comprising D3S(z)[h, k, ] is bounded from
above (in the sense of <g) by constant times the vector —D?S(z)[h,h] (see
(5.1.38), (5.1.42), (5.1.43)).

To find a similar bound for the term D2G(f)[f’, "], let us use “Cauchy’s
inequality”: For any A > 0, we have (see (5.1.41))

! 1 " ! 1 "
D3G(1) A+ 31 AF + 37" a0,

whence

(:147) DG 1" <q —3 { MDY 11+ D6, 11}

The first of two terms of the right-hand side of (5.1.47) can be immediately
bounded from above by —D2S(z)[h, k], and our goal is to bound via the latter
vector the vector D?G(f)[f", f").

4% 1. Let us verify that
(5.1.48) fEfeqG

Indeed, f is K-concave and = + th € int G*, 0 < t < 1, so that, in view of
Lemma 5.1.2,

intG > f(x +th) <k f+tf, intG> f(x—th) <g f—tf', 0<t<l,;

since K C R(G), we conclude that f +tf € intG, 0 <t < 1, and (5.1.48)
follows.
In view of (5.1.48) and (ii), we have

(5.1.49) D3G(H)f', . F <@ =3y D*G(HIf, -
492, Let us prove that

fl/
3o+ 2

14
! eG

p— l ———
€6, f f+3a+2 )

(5.1.50) f+f+

493, Let
F(8) = Flz +th), 0< t < 1;
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we claim that

(1 _ t)3a+2 -1 f”
3a+2 ’

1
< ! t
f@) <k f+tf +3a+1{ +
(5.1.51)
0<t<l;

note that (5.1.51), combined with the fact that f(t) € G, 0 <t < 1 (the latter
is ensured by x € int G, z + h € G*) and (iv), implies the first inclusion in
(5.1.50) (we should pass to limit as t — 1 — 0).

To prove (5.1.51) is the same as proving that every function ¢(t) = (8, f(t)),
0 being a linear functional on E that is nonnegative on K, satisfies the in-
equality

(1 _ t)301+2 -1
3a+2

(5.1.52) ¢(t) < ¢(0) +t¢'(0) + 3a1+ . {t + }¢”(0)-

Note that, if u =z +th, e = (1 —t)h, then v € intI' and u + e € T, so that (i)
implies D3F (u)[e, e, €] <x —3aD?F(u)le, €], whence

D3F(u)lh, h, ) <x — ;’%D%m) [, B

or
F(0) <k~ (0
or
(5.1.53) "' (t) < —3—a¢>”(t), 0<t<l.

1—1t
Besides this, K-concavity of F implies that f”(t) <x 0, whence

(5.1.54) #"(t) <0, 0<t<l
Let us derive from (5.1.53), (5.1.54) that
(5.1.55) #"(t) < (1 —t)3*¢"(0), 0<t<l.

Indeed, in the case of ¢”(0) = 0, relation (5.1.55) follows from (5.1.54). Now
let ¢”(0) # 0, so that, in view of (5.1.54), ¢”(0) < 0. Let A be the largest of
those half-intervals [0,T), T < 1, on which ¢” < 0. For t € A, we have (see
(5.1.53))

d " 3o
— n(— < T
whence "0 )
¢"(0) < Lt €A,

¢(t) T (L—t)3
or, taking into account (5.1.54), ¢”(t) < (1—1t)3*¢"(0), t € A. From the latter
inequality and the definition of A, it follows that A = [0,1), and (5.1.55) is
proved.
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Two sequential integrations of (5.1.55) imply that

o< £ [ QP
#(t) — ¢(0) — ¢'(0)t < 3o0+1 {t'l— W} )

as required in (5.1.52). Thus, we have proved (5.1.51) and, consequently, the
first inclusion in (5.1.50). In other words, we have proved that

F(z) + DF(z)[h]) + &V—IHD%T(x)[h, hl € G

whenever z € intG* and h € E* are such that z + h € G; if a pair (z,h)
satisfies the latter premise, than the pair (z, —h) also does, so that

1
3a+2

F(z) — DF(X)[h] + D*F(z)[h,h] € G,
and, in fact, we have proved the entire (5.1.50).

4%4. From (5.1.50), it follows that the middle of the segment with the
endpoints involved into (5.1.50), i.e., the point f + (3a+2)~! f” belongs to G,

(5.1.56) f—-e€G, wheree= _3a1+ 2f”.
On the other hand, from (5.1.39), it follows that
(5.1.57) f+te€intG, t>0.

From (5.1.56) and (5.1.57), we conclude that, if
y(t)=f+te,  e(t)=(1+1t)e,
then y(t) € int G and y(t) £ e(t) € G. In view of (ii), we have
D*G(y(t))le(t), e(t), e(t)] <@ —37D?*G(y(1))le(t), e(t)],

or, which is the same, that

DGyt erel <o — 1L DGO)lerel,  t20.

In other words, if
g(t) = G(y(t)),

then
(5.1.58) g" () <g -3(1+1t)1g"(t), t>0;

besides this, from @J-concavity of G, it follows that

(5.1.59) q'(t) <0, t>0.
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Following the line of argument from 4°.3, we can conclude from (5.1.58),
(5.1.59) that

(5.1.60) 9"(t) <a ¢

]' "
— > 0.
Tromd @ 20

Relation (5.1.60) implies that

t

(5.1.61) g'(t)—4'(0) SQ/rdT—wg"(O).
0

1+7

Since ¢'(t) = DG(f +te)le], e € K (see (5.1.56) and (5.1.39)) and G is (K, Q)-
monotone, we have ¢'(t) >¢ 0, so that (5.1.61) and (5.1.56) imply that

1 " ! / dr "
DO = ~4'0) <e 0/ om0

- 3a—|—2/ (1+T)37D2g(f)[f”,f”], t>0,
0

whence
(5.162) - D*G(NIf". " <q - f’a” DG(NIf",  t>0.

Note also that
(5.1.63) - DG(f)[f"] 20

(see (5.1.39) and (5.1.40)).
5. From (5.1.62) and (5.1.47), it follows that, for any A > 0 and any ¢ > 0,
we have

D*G(NIf, ") <q —3IXD*G(HIf, f)

(5.1.64) _M”Dg(f)[f"]-

t
22 [ oy

From (5.1.64), (5.1.46), (5.1.49), and (5.1.38), it follows that for any A, t > 0,
we have

D3S(@){h, by h] <q (gxz + 37) (-D%6()17 £1)

(5.1.65) 5

2’\f1+—13—

(=DG(HIF"D,
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whence, in view of (5.1.42), (5.1.43), and (5.1.37), for any A, ¢t > 0, we have

(5.1.66)

3\2 3(3a+2
D3S(z)[h, h, h] <@ max - + 3v,3a+ -_(—2——)—

d
2 [ i

(~D?S(z)[h, h).

Inequality (5.1.66) implies that S satisfies item (iii) of Definition 5.1.1 with

A2 3o +2
B = inf max{ — +vy,a+ _sat?

At>0 2 9 dr
2X g(1+'r) gl

A straightforward computation of 3 leads to

,8_ {max{a,fy}, 7S %a
e+ +vV(@—7)2+ Ba+2)(3y-1)]/2, otherwise,

as claimed. O

5.2 Barrier calculus

The technique developed so far for constructing barriers can be essentially
strengthened by the following simple observation. Assume that we wish to
solve a standard problem

(f): f(z)={c,x) > min| z € G,

and, for this purpose, we are looking for a “computable” barrier for the cor-
responding closed convex domain G C E. It may happen that we cannot find
such a barrier, but we can point out another closed convex domain G* C E™,
an affine mapping 7 : E* — F such that 7(G*) = G, and a computable
barrier F* for G*. In this case, it suffices to replace (f) with the equivalent
problem

(F5): ft@={cn(y) »min|yeG*t

and to solve the latter problem by an interior-point method associated with
Ft.
Of course, similar idea can be used to transform (f) into a conic problem.
Although the above trick is very simple and traditional (it is common to
simplify a problem by introducing appropriate additional variables), it turns
out to be very important, and it is reasonable to study this in detail, as is done
below.
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5.2.1 Coverings and conic representations

The above considerations motivate the following definition.

Definition 5.2.1 Let G be a closed convexr domain in E, let | > 0 be an
integer, and let ¥ > 1.
(i) A (9,1)-covering for G is, by definition, a collection

I = (E*, Gt F*, 1)

comprised of a linear space ET, dim E* = dim E + I; a closed convex domain
Gt C E*; a9-self-concordant barrier F* for G; an affine mappingw : ET —
E such that 7(G1) = G. The quantities | and ¥ are called the codimension and
the parameter of I, respectively.

(ii) A 9-conic representation of G is, by definition, a collection

K - (E+’K+7F+;H)7r”y))

where Kt is a closed convex cone with a nonempty interior in a finite-dimen-
sional linear space EY, © is an affine mapping from finite-dimensional linear
space H into ET with n(H)(Nint K™ # 0, v is an affine epimorphism of H
onto E such that G = y(r~Y(K™)), and F* is a 9-logarithmically homogeneous
self-concordant barrier for K.

Thus, regarding (i), finding a covering for G is the same as representing G
as a projection of a closed convex domain G7 in a “larger” space and pointing
out a self-concordant barrier for the latter domain.

Regarding (ii), a conic representation of G is a covering of a special type:
The associated G should be represented as an inverse image of a cone K+
under an affine mapping, and we should know a logarithmically self-concordant
barrier for K.

Usually, since convex domains occurring in convex optimization are defined
by functional inequalities, we are especially interested in coverings for epigraphs
of convex functions.

Definition 5.2.2 Let G be a closed conver domain in E and let f be a lower
semicontinuous convex function defined on G and taking values in the extended
real azis R\J{+o00} such that f is finite on the interior of G. The pair (G, f)
is called a functional element (f.e.) on E. The epigraph of an f.e. (G,f) is
defined as the set

GG, f)={(t,z) eRXE=E, | z€G, t> f(z)}

(note that it is a closed conver domain in E). A (9,1)-covering (a ¥-conic
representation) of the epigraph is called a (9,1)-covering (respectively, a 9-
conic representation) of the f.e. (G, f).

An fe. (G, f) is called (9,1)-regular if it admits a (9,1)-covering.

In what follows, we do not distinguish between a continuous convex function
¢ . E — R and the corresponding f.e. (E,¢), so we can speak about (3,1)-
regular functions.
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5.2.2 Calculus for coverings

The calculus that we develop is a straightforward extension of the results stated
in the previous section.

Proposition 5.2.1 (images) LetI' = (E*,G*, F*, ) be a (9,1)-covering for
a closed convex domain G C E and let 0 : E — Ey be an affine transformation
such that the set G1 = o(G) also is a closed convex domain. Then

I=(EY,Gt,Ft,o0om)

is a (4,! + (dim FE — dim E}))-covering for G;.
Under the same assumptions on o, if K = (E*, Kt Ft;H m ~) is a -
conic representation of G, then

K+ = (E+,K+,F+;H,ﬂ',0’ 07)
s a ¥-conic representation for Gi.

Proof. This is an immediate consequence of the definitions. O
In what follows, Ker A for an affine mapping A denotes the kernel of the
homogeneous part of the mapping.

Proposition 5.2.2 (inverse images) Let T' = (E*,G*,F*,w) be a (9,1)-
covering for a closed convexr domain G C E and let 0 : By — E be an
affine transformation such that o(E1)NintG # 0. Let G = 0 Y(G). Then
G1 is a closed convexr domain in Ei, and T' induces a (9,l)-covering I'; =
(E#,G#*,F#,n#) for G1. This covering is as follows:

E* = {(y,5)| y€ E, s € By, n(y) = o(s)};
G* ={(y,5) e E* | y e G*};
F#(y,8) = F(y),  (y,5) € intG¥;
a#(y,s) = s, (y,8) € E*.

Under the same assumptions on o, a 9-conic representation K = (ET, KT,
Ft; H, m,v) of G induces a 9-conic representation K¥# = (E+, K+ F+; H#,
7%, v#) of Gy. This representation is as follows:

H* = {y"Y(Im 0)} x Ker o;
7 (u, 8) = w(u), u €y (Im o), s&Kero;

v (u, ) = T(y(u)) + s, u €~ Im o), s€Kero,

where T is a “partial inverse” to o, i.e., an affine mapping from Im o into E;
such that o(7(v)) = v.
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Remark 5.2.1 Rigorously speaking, the relation for, say, E¥ defines not a
linear, but an affine space, and, to obtain a linear space, we should somehow
choose the origin. A similar situation occurs in some of the below statements.

Proof of Proposition 5.2.2. G# evidently is closed and convex. Since G
is a closed convex domain in E* and Im o intersects the set int m(G*) =
7(int G*), there exist yp € int G* and sy € F; such that w(yo) = o(sp). The
point (yg, sp) evidently is an interior point of G¥, so that G* is a closed convex
domain in E#.

Let us verify that F# is a 9-self-concordant barrier for G#. G# is the inverse
image of G under the mapping 7(y,s) = y : E# — Et, and 7(E#) 3 y,
where yp is the above point from int G*. Thus, 7(E#) intersects int G, so
that F'* possesses the desired property in view of Proposition 5.1.1.

Now let us prove that 7% (G#) = G;. If s € Gy, then o(s) € G (the
definition of Gy), and therefore o(s) = 7(y) for some y € G* (since I' is a
covering for G). From the definitions of G¥ and 7#, it follows that (y, s) € G*
and 7#(y,s) = s. Thus, 7#(G#) > G;. Conversely, if (y,s) € G¥, then, by
virtue of definitions of 7% and G#, we have s = 7%(y,s), o(s) = n(y) €
m(G*) = G, so that s € G = 67 1(G). Thus, n#(G#) C Gy, so that 7% (G#) =
G.

Now, for a point (y,s) € E¥ the relation 7#(y,s) = 0 € E; holds if and
only if s = 0 and n(y) = o0(0), so that the dimension of the inverse image
(7%)~1(s) of a point s € E; coincides with the dimension of the inverse image
77 1(x) of a point z € E, whence the codimension of I'# equals to ..

The statement concerning conic representations can be proved by similar
reasoning. O

Corollary 5.2.1 Let (G, f) be a functional element on E and let A: E' — E
be an affine mapping such that A(E') intersects int G. Then a (9, 1)-covering
for (G, f) induces a (9,1)-covering for the functional element (A71(G), f o A),
and a 9-conic representation of (G, f) induces a ¥-conic representation of the

fe (A"1(Q), f o A).

Indeed, G(A~(G), f o A) is the inverse image of G(G, f) under the affine
mapping (¢, u) — (¢, A(u)), and the image of this mapping intersects int G(G, f).

Proposition 5.2.3 (direct products) Let I'; = (E;", G}, F7 ;) be (9;,1;)-
coverings for closed convex domains G; belonging to the spaces E;, 1 <i<m
and let G =Gy X -+ x Gy C E = E| x---xX Ey,. Then the coverings I'; induce
a (79,0 Li)-covering T = (E+,G*,F*,x) for G. This covering is as
follows:

Et=FE x---xE},

Gt =Gf x - x G,

F+(x1,...,xm):Ffr(:rl)+--'+F,j;(a:m), xieintG;L,
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(21, Zm) = (m(21), .. s T (Zm))-

¥;-conic representations K; = (E:‘ , K;’ , Fi+; H;, 7, vi) of the above G; in-
duce a (31 9;)-conic representation K = (E*,K*,F*; H,x,v) of G, which
is as follows:
Et=Ef x..-x Ef,

Kt =Kt x---x K},
FX(zy,...,zm) = Ff (z1) + - + FL (zm), z; € int K1,
HY =H; x--- x Hp,
T(x1, .-y Zm) = (71(21), .. .y Tm(Tm)),
Y(1y-- s Zm) = (M1 (21)y -« -y Ym(Tm))-

Proof. This is an immediate consequence of definitions and Proposition 5.1.2.
O

Proposition 5.2.4 (intersections) Let I'; = (E}, G, F,m) be (9;,1)-
coverings for closed conver domains G; CE, 1 <i<m andlet G=N",G;
possess a nonempty interior. Then the coverings I'; induce a (3" &, Y iny 1;)-
covering T = (G*,E*, F*,n) for G. The covering is as follows:

E*Y ={(z1,...,%m) € E¥ = Eyx-- X Ep | m(x1) = m2(22) = - -+ = (@) },
Gt ={(z1,...,2m) € ET | 7, € Gf, 1 <i <m},
Ft(zy,...,2m) = F{H(z1)+ -+ Ff (zm), (z1,...,Zm) €GY,
(21, .., Zm) = m(z1) (= m2(x2) = -+ = Tp(Tm)), (z1,...,zm) € ET.

Under the same assumptions about {G;}, ¥;-conic representations
K; = (B}, K}, F/"; H;, mi, 1)
of G; induce a (3 %, ¥;)-conic representation
K= (Et,K*,Ft;H,m,~)
of G, which is as follows:
Et=E; x---x Ep,
Kt =K} x---x K},
FY(z,...,2m) = FH(z1) + - + Fl (zm), z; €int K,
H={(u1,...,um) EH1 X - X Hp, | m(uw1) =+ = ym(um)},
w(uty .oy tm) = (m(u1), -0y T (Um)),

7(“17 cee 7um) = 71(u1) (= 72(’(12) == 7m(um))7 (ul, e 7um) € H.
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Proof. G clearly is a closed convex domain in E*. Indeed, each point z €
int G can be represented as m;(z;) for some z; € intGY, and (zy,...,Zm)
evidently is an interior point of G, so that this set has a nonempty interior;
closedness and convexity of G are evident. The same reasoning implies that,
if 7 is the natural embedding of ET into E# then G' is the inverse T-image
of G} x --- x G, and that 7(E™) intersects the interior of the latter set; in
view of Propositions 5.1.2 and 5.1.1, these observations imply that F* is a
(37, ¥;)-self-concordant barrier for G*.

Relations 7(G") = G and Y, l; = dimE* — dimE are evident. The

statement about conic representation of GG is quite straightforward. m]

Corollary 5.2.2 Let (G, f;) be functional elements on E, 1 < i < m, such

that o
int (ﬂ Gl) # 0.
=1

Then a collection of (9;,1;)-coverings (9;-conic representations) of functional
elements (G;, fi) induces a (3 ;=1 9i, Y iv; li)-covering (a (Y%, ¥;)-conic rep-
resentation, respectively) of the functional element

(o)

Proof. Indeed, G(N%; Gi, maxi<i<m fi) = Niz1 G(Gy, fi)- O
The following simple statement is evident.

Proposition 5.2.5 Let (G, f) be a functional element on E and letT = (E™,
G*, Ft, w) be a (9,1)-covering for this f.e. Let a > 0 and let ¢(-) be an affine
function on E. Then T induces a (9,1)-covering T# = (E*,Gt,F*+ «") for
the f.e. (G, fT(:) = af(-) + ¢(-)). The corresponding mapping 7’ is defined as
Jollows: Let w(x) = (1(x),0(x)), 7(z) € R, o(z) € E. Then

m'(z) = (ar(z) + ¢(o(2)), o(x)).

A 9-conic representation K = (EY, K+, F*;H,m,v) of (G, f) induces a
¥-conic representation K# = (ET K+ Ft.H,m +") of the fe. (G, "), where
v is defined as c o7, o(t,z) = (et + ¢(z),z) : Rx E >R x E.

The following simple statement is rather useful.
Proposition 5.2.6 Let (G, f) be a functional element on E and let
I =(E",G' Ft 7

be a (V,1)-covering for this f.e. Assume that the set Gy = {u € G| f(u) < 0}
is nonempty and let Go = {u € G| f(u) <0}. ThenT induces a (¥ +1,1+1)-
covering T'# = (Et,G%# F# 1') for the set Gy. This covering is as follows.
Let w(z) = (1(z),0(x)), 7(z) € R, a(z) € E. Then

G* ={z e GT | 7(z) <0},
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F#(z) = F*(z) — In(—7(z)), 7' (z) = o(x).

Under the same assumptions about G and f, a ¥-conic representation
K= (Et, K", F;H,m,%)
of the f.e. (G, f) induces a (9 + 1)-conic representation
K* = (B*, K*, F*, H* o# o *)
of the set Gg, defined as follows. Since v: H — R x E, we can write
¥(u) = (1(u), o(u)), T(u) eR, o(u)€eE.

We set
E# =R x ET,

K#*={t>0} x KT,
F#(t,z) = F(z) —Int, zecintK", ¢>0,
H* = H,

m#(u) = (-7(u),7(w), uweH,

v =g.

Proof. Since f is lower semicontinuous and convex and Gj, # 0, Gy is a closed
convex domain in E, and Gj intersects int G. If u € Gj, then we can choose
t € (f(u),0), so that the point (¢, u) belongs to int G(G, f), and therefore there
exists ¢ € int G* such that 7(z) = (¢,u). Since ¢t < 0, z is an interior point
of G#, 50 that G# is a closed convex domain in Et. Furthermore, G# is the
intersection of G* and the half-space Il = {z € E* | 7(z) < 0}. The function
—1In(—7(z)) is a 1-self-concordant barrier for II (see §2.3, Example 2), and,
since int G# # 0, F# is a (941)-self-concordant barrier for G¥ (see Proposition
5.1.3). The relation 7'(G#) = Gy and the fact that the codimension of I'* is
(I + 1) are evident.

The statement about conic representation is quite straightforward. |

Note that the above transformations of barriers are “simple” in the sense
that they are straightforward and involve “rational” linear algebra techniques
only. The progress with respect to the results of §5.1 is in Proposition 5.2.1:
A “computable” covering for a domain immediately implies similar coverings
for its images under affine transformations, which is not the case for barriers
(see Proposition 5.1.5).
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5.2.3 Legendre transformation

Let (G, f) be a functional element on E and let E* be the space conjugate to
E. Consider the Legendre transformation of f, i.e., the function

€)= suwp {(62) - f(z)}: B — R J{+oo},
z€Dom{f}

where Dom{f} denotes the subset of G formed by the points at which f is
finite. Clearly, f* is a convex lower semicontinuous function taking values in
the extended axis. The domain Dom{f*} of this function (the set of all £ such
that f*(§) < oo} is convex and nonempty (it clearly contains the set of all
subgradients of f at the interior points of G), and the set G* = ¢l Dom{f*} is
closed, convex, and nonempty. Thus, we have obtained the functional element
(G*, *) on the affine span E# of Dom{ f*}; this element is called the Legendre
transformation of (G, f).

Our aim now is to demonstrate how a ¥-self-concordant barrier for the
epigraph of (G, f) can be transformed into a self-concordant barrier for the
epigraph of (G*, f*).

To this purpose, consider the conic hull of the epigraph G(G, f) of the
element (G, f), i.e., the cone

K:cl{(s,t,w)€E+ERxRxE| 5> 0, EeDom{f},tZSf(i—)}.
$

This is a closed convex cone in E* with a nonempty interior, and the intersec-
tion of the cone with the hyperplane L = {s = 1} is exactly G(G, f).

Now let us look at the dual cone K*. A functional (o,7,&) € (ET)* =
R xR x E* ({(0,7,8),(s,t,z)) = 0s+ 1t + (£, x)) is nonnegative on K if and
only if the implication

{s >0, g € Dom{f}, t > sf (g)} = {os+1t+ (£, x) > 0}
holds or, similarly, if and only if the implication
{z € Dom{f}, t =z f(z)} = {o+7t+({ ) >0}
is true. Thus,
K*={(o,76)| o+ 7t + (£x) >0 V(t,z) € G(G, f)}.

Consider the intersection H of K* and the hyperplane {r = 1}. This inter-
section is, in fact, the set {(0,£) € R x E* | ¢ > sup{—t — {{,z) | (t,x) €
G(G, f)}}, and, since

sup{—t — (§,2) | (t,2) € G(G, )}

= sup{—f(z) — {{,z) | = € Dom{f}} = f*(-¢),
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we conclude that H = {(0,§) | o > f*(—£)}, so that H is the image of
G(G*, f*) under a linear authomorphism.

Thus, the epigraph of the Legendre transformation of (G, f) is, up to a
simple linear authomorphism, the intersection of the cone dual to K and an
appropriate affine hyperplane not containing the origin; such a hyperplane,
of course, intersects the relative interior of K*. Therefore, to point out a
self-concordant barrier for G(G*, f*), it suffices to find a logarithmically ho-
mogeneous self-concordant barrier for K* or a similar barrier for the cone
(—K*) anti-dual to K. In turn, we can take as the latter barrier the Legendre
transformation of a logarithmically homogeneous self-concordant barrier for K
(Theorem 2.4.4). We know how to update a J-self-concordant barrier for the
epigraph of (G, f) into an O(1)9-logarithmically homogeneous self-concordant
barrier for the conic hull K of this epigraph (Proposition 5.1.4). Thus, to
update a ¥-self-concordant barrier F' for the epigraph of a given functional ele-
ment (G, f) into an O(1)J-self-concordant barrier for the epigraph of(G*, f*),
we are required to compute the Legendre transformation of the (slightly mod-
ified) function F.

5.2.4 Superposition theorem

The theorem that we establish is the main result of our barrier calculus.

Let (G;, ¢;) be functional elements on E, 1 < i < m and let (G, ¢) be a
functional element on R™.

Consider the following pair of sets of assumptions. The first set is shown
below:

(Li) ¢; are finite and continuous on G;, 1 < i < m and ¢ is finite and
continuous on G

(Lii) The set U = N2, G; has a nonempty interior U’, and the image
Q of U under the mapping ¢ — (¢1(z),...,¢m(z)) is contained in G.

(L.iii) G D Q+R%, and ¢ is monotone on the latter set,

(Mue@, ye RY): op(u+y) > o(u).

The second set of assumptions is the following:

(ILi)  If a sequence {t; € G} is such that || ¢; |[2— oo and ¢; > ¢ for
some t € R™ and all 4, then ¢(¢;) — oc;

(ILii)  the set U = (2, G; has a nonempty interior U’, and, for every
z € U such that ¢;(z) < oo, i = 1,...,m, the vector (¢1(z),...,¢m(x)) is
contained in G, while the image of U’ under the above mapping is contained
in int G;

(ILiii) This is the same as (Liii).

We call the collection {(G1,¢1), - - -, (Gm, Om), (G, @)} reqular superposition
data, if it satisfies either (1.i)—(Liii), or (ILi)—(ILiii).

Under assumptions (I.i)—(Liii), the function

f(z) = (1(), ..., ¢m(x))
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clearly is well defined, convex, and continuous on U.

Under assumptions (I1.i)-(ILiii), we also can define the above superposi-
tion, namely, as follows: If z € U is such that ¢1(z),...,dm(x) are finite,
then

f(:L') = ¢(¢1(CI)), s ’¢m($))§

otherwise, f equals to +oo0.

Lemma 5.2.1 Under assumptions (ILi)—(ILiii), the pair (U, f) is a functional
element.

Proof. We should verify that (a) U is a closed convex domain and f : U —
R{J{+0oo} is convex; (b) f is finite on int U; (c) f is lower semicontinuous on
U.

(a) The fact that U is closed convex domain is evident. To prove that f is
convex, it suffices to verify that, if z,y € U and w = az + (1 — a)y for certain
a € [0,1], then f(w) < af(z) + (1 — a)f(y) (0- (+00) = +00). In the case
when some of the functions ¢; are infinite at x or at y, the above inequality
is evident, since then either f(z) = +o0, or f(y) = +oo (the definition of
f). If all the functions ¢; are finite at x and at y, then the vector ®(u) =
(p1(u), ..., dm(u)) is well defined at u = z and at u = y and therefore is well
defined at w, and ®(w) < a®(z) + (1 — a)®(y) (recall that ¢; are convex).
In particular, all three points ®(z), ®(y), ®(w) belong to G (see (ILii)), and
the inequality f(w) < af(z) + (1 — @) f(y) immediately follows from ®(w) <
a®(z) + (1 — a)®(y) and (IL.iii).

(b) This part immediately follows from (ILii).

(c) It suffices to lead to a contradiction the assumption that, for certain se-
quence of points z; € U converging to a point z, the sequence f(x;) converges to
certain a < f(x) (here —0co0 < a < 400). Under this assumption, a < oo for all
large enough 7, so that we can assume that the vectors y; = (d1(x;), ..., dm(x;))
are well defined for all ¢ and that ¢ is finite and even above bounded along the
sequence {y;} (otherwise, a = o0).

Since ¢; is convex on G; and finite on int G, ¢; is below bounded on each
bounded subset of G;. In particular, there exists a vector ¢ such that y; > ¢
for all i. Also, since ¢ is above bounded along {y;}, from (I1.i) it follows that
the sequence {y;} is bounded. Therefore, without loss of generality, we may
assume that {y;} converges to certain y € G.

Now f(z;) = é(y;), and, since y; — y and ¢ is lower semicontinuous, we
have

d(y) <a= lim f(z;).

=00
Furthermore, ¢; are lower semicontinuous, and y; = (¢1(z;), ..., $m(2;)); since
xi — ¥, Yy — Yy as ¢ — oo, we conclude that all ¢; are finite at x and that
($1(x), ..., Pm(x)) < y. Now, from the definition of f and (ILiii), it follows
that f(z) < ¢(y), and, as it was already proved, ¢(y) < a. Thus, f(z) < a,
which is the desired contradiction. a
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Theorem 5.2.1 Assume that

{(G]a ¢1)’ Tt (Gm, ¢m)’ (G7 d’)}

are regular superposition data.

(i) Let T; = (E}, G}, Ft,m) be (%;,1;)-coverings for functional elements
(Gi,i) on E,1 < i < m and let T = (ET,G*,F*,x) be a (¥,1)-covering
Jor the functional element (G,¢) on R™. Then the coverings I'y,...,I'p,T
induce a (X7, 9 + 9,57 i + 1 + m)-covering T# = (E#,G# , F# 1#) for
the functional element

U, f(z) = p(¢1(), - ., ¢m())) -
This covering is as follows. m; maps E} onto R x E,
mi(3:) = (ri(xi),0(z3)),  7il@) €R, oi(wi) € E.

Similarly, m maps ET onto R x R™,

n(z) = (1(x), 0(z)), () e R, ofx)=(c(z),...,0™(x))T € R™.
We set

E* = {(z1,%2,- -, Zm,z) | z; €ES; i=1,...,m, € E*; T € R};
a1(z1) = 03(2) = -~ = Tm(ETm); T1(T1) = 0L (2), ..., Tm(Tm) = o™ (2)},
G* ={(z1,72,...,Zm,z) € E* | 2, € G, 1< i <m; z € G},

FH(zy, ..., &Em,x) = F{ (21)+ - +F () +F 1 (2), (21,22,...,Zm,T) € int G¥,
(@1, T, @) = (1(2), 01(21)) (= (7(2), 02(22)) = - - = (7(2), Tm(Tm))),

(mlaa;?a' - ,.'L'm,-T) € E#

(i) Let K; = (E}, K, F;t; Hy, mi,v;) be U;-comic representations of (G, ¢;),
i=1,...,m and let K= (E*,K*,F*; H m,v) be a ¥-conic representation of
(G, ¢). These representations induce a (3 i~ ¥; + ¥)-conic representation

K# = (B# K#, F# 0% ¥ o¥)

for the functional element (U, f(z) = ¢(¢1(x),...,dm(x))). This represen-
tation is as follows. The mappings vi,...,Ym,Y map Hy,...,Hp, H onto
R x E,...,R x E,R x R™, respectively, so that these mappings can be rep-
resented as vi(-) = (1i(-),0:(-)), i € R, s € E, i =1,...,m, and v(:) =
(r(:),0()), 7(-) € R, o(-) e R™. We set

E* =Ef x...x B} xE™T,

K#* =K x- x K} xKT,
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F#(z1,...,2m,2) = FH (@) + -+ FY(zm) + FT(2), 2; € int K}, z € int K,

H* ={(u1,..,Um,u) € H1 X - X Hp X H| o1{u1) = -+ = o (tm),
(ri(w1), ..., Tm(um)) = o(u)},
w#(ul, cooyUm, ) = (mr(ur), - T (um), (W), (U1, ...y Um,u) € H#
Y1,y w) = (1(w), 01(w)) (= (17(w), 02(wa)) = - = (7(u), o (um))),

(uy,. .., Um,u) € H¥.

Proof. (i) Let ' € intU and let ¢, > ¢;(u'), 1 < ¢ < m. Then (¢,v') €
int G(G;, ¢;) and therefore there exist z/ € int G such that m;(z}) = (¢},4/), 1 <
1 < m. Besides this, in view of (L.ii)-(Liii) (or (ILii)—-(ILiii)), we have (,...,t,) €
intG. Let ' > @(t},...,t,); then (¢, t],...,t,,) € int G(G, ¢), so that there ex-
ists ' € int Gt such that n(z') = (¢,¢),...,t,,). The point (zi,...,z,,z,t)
clearly belongs to int G¥, so that the latter set (which evidently is closed and
convex) is a closed convex domain in E#. A byproduct of our reasoning is the
fact that the image of the natural embedding w : E# — E} x---x E} x ET in-
tersects int D, where D = G x --- x G, x G* (the above intersection contains
the point (z},...,x,,,z')).

The function S(zy,...,Zm,z) = Ff(x1) + - + Ff(zm) + F'(z) is a
(3012, ¥; +9)-self-concordant barrier for D (Proposition 5.1.2); we clearly have
G# = w=(D), and, since w(E#) intersects int D, the function Sow (i.e., F#)
is a (7, 9; + 9)-self-concordant barrier for G#.

Now let us prove that 7# (G#) = G(U, f). Let (t,u) € G(U, f). Thenu € G;,
1 <4 < m, the values t; = ¢;(u) are well defined, and (t;,u) € G(G;, ¢;). The
latter relation means that there exists z; € G such that m;(z;) = (t,u). In
view of (Lii)—(1.iii) (or (ILii)~(ILiii)), the vector z = (t1,...,tm)T belongs to G,
and, since (t,u) € G(U, f), we have (¢, z) € G(G, ¢), so that there exists z € G
such that 7(z) = (t,z). Now the point (21,...,%m,x) clearly belongs to G#
and is such that 7% (zy,..., 2y, x) = (t,u). Thus, 7#(G#) contains G(U, f).
To prove the inverse inclusion, let (zy,...,%m,x) € G¥. Then z; € G, so
that the points (7;(x;), oi(x;)) belong to G(G;, ¢i), and u = o1(x1) = -+ =
om(Tm) (the definition of E#). It follows that u € U and t; = 7;(z;) >
#i(w). Furthermore, from (x1,...,2m,z) € G¥, it also follows that 7(z) =
(t,2) € G(G,¢) and z = (t1,...,tm)T. The latter fact, combined with (Liii)
(= (ILiil)) and the relation (ti,...,t,) > (¢1(u),...,dm(u)), implies that
E2 0(2) > O(d1(w), .., dm(w)) = f(u), 50 that TH(zs,..., Tm,5) = (L) €
G(U, f). Thus, 7#(G#) = G(U, f).

It remains to compute the codimension of I'#. Let us fix a point w® =
(29,...,2% , 29 € E#. From the definition of 7# it follows that 7#(z1, ..., Zm,
z) = 7#(w®) if and only if 7(2°) = 7(z) and 7;(z;) = (%(x), 0: (). It follows
that dim((7#)~1(w®)) = S0, I; + m + 1.

(ii) Let us prove that v# ([x#]"1(K#)) = G(U, f). Let (t,v) € G(U, f), so
that (t; = @i(v),v) € G(Gy,¢), i = 1,...,m, and (¢, (t1,...,tn)) € G(G, ¢).
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These relations mean that there exist u; € [m;] Y (K}), i=1,...,m,and z €
71(K), such that (t;,v) = y(w;), i = 1,...,m, and (t, (t1,...,tm)) = ¥(u).
We clearly have u# = (uy,...,um,u) € H?, 7% (u¥) € K# and v#(u#) =
(t,v). Thus, v#([z#]"1(K#)) D G(U, f).

Conversely, let u# = (u1,...,um,u) € H* be such that n# (u?) € K#
and let us verify that v (u*) € G(U, f). In view of the definition of H#,
the points (t;,v;) = 7:(ui), ¢ = 1,...,m, have the same v-component: v; =
-+ = vy, = v, and, besides this, we have o(u) = (t1,...,t). Since 7% (u¥) €
K#, the ith of the above points (¢;,v) belongs to G(G;, ¢;), while the point
v(u) = (t,0(u)) belongs to G(G, ¢). Thus, v € (2, Gi = U, t; > ¢i(v), i =
1,...,m, and t > ¢(o(u)) = ¢(t1,- .-, tm). Since (G1,61),--.,(Gm, dm), (G, P)
are regular superposition data, it follows that ¢t > f(v), so that (¢,v) € G(U, f).
It remains to note that, by construction, (t,v) = v#(u*), and the desired
inclusion v# (u#) € G(U, f) is proved.

To prove that K# is a (3-; 9; +9)-conic representation of (U, f), it suffices
to verify, in addition to the already stated relation

G(U, f) = v ([=*] 1 (K™)),

that

(1) K# is a closed convex cone with a nonempty interior in E¥;

(2) the image of 7# intersects int K#;

(3) v# maps H¥ onto R x E;

(4) F# is a (X, 9; 4+ 9)-logarithmically homogeneous self-concordant bar-
rier for K#. We omit these quite straightforward verifications. O

Let us present a simple application of the superposition theorem.

Corollary 5.2.3 Let o; > 0, and let (G, fi) be functional elements on E, 1 <
i < m, such that int (N2, Gi) # 0. Then a collection of (9;,1;)-coverings (a col-
lection of ¥;-conic representations) of (G, f;) induces a (3 i) %+ 1,3 ieq li+
m)-covering (respectively, (37~ ¥;+1)-conic representation) for the functional

element (% Gs, Y imq i fs)-

Indeed, the resulting functional element is a superposition of the initial el-
ements and the functional element (R™, @(t1, ... ,tm) = > v ast;). These su-
perposition data clearly satisfy (II.i)—(ILiii) and therefore are regular, and the
external function admits a (1,0)-covering (the function F(t,t1,...,t,) = —In
(t — ¢(t1,...,tm)) is a l-self-concordant barrier for its epigraph, see §2.3,
Example 2), as well as an 1-conic representation (the latter is defined as
K= (Et = RKt = R,Ft(t) = —Int; H = R™" n(t,t1,...,tm) =
t—3" aiti,Y(tt, .y tm) = (Gt - - tm))-
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5.2.5 How to solve convex problems with regular components

It is now time to explain the role that the above “calculus” plays in the interior-
point methods. Assume that we to solve a problem

(Z):  folu) > min| u€G, fi(u) <0, 1<i<m,

where G is a closed convex domain in F and f;, 0 < 7 < m correspond to
functional elements (G, f;), G; O G. Assume that the constraints satisfy the
Slater condition: The set {u € int G | fi(z) <0, 1 <7 < m} is nonempty.

There are two typical ways to apply the interior-point machinery to (Z).
First, we can try to reduce the problem to an equivalent standard problem
and to take care of providing the resulting feasible set with a “computable”
self-concordant barrier. Second, we can look for an equivalent conic prob-
lem, again keeping in mind the necessity to provide the corresponding cone
with a logarithmically homogeneous self-concordant barrier. Let us study the
corresponding possibilities.

A. To reduce (Z) to a standard problem. We first should look for
coverings for the involved data. Assume that we were successful and have found
(9;,1;)-coverings T; = (E}, G}, F;",m;) for the functional elements (G, f;),
0 <7 < m, as well as a (,1)-covering I' = (E*, G*, F*, «) for G. Then we can
transform (Z) into an equivalent standard problem and provide the feasible set
of the latter problem with a self-concordant barrier, namely, as follows.

First step. We reformulate (7) as

Gi) 3
1

3

(J) t— min| (t,:c)EG*EGﬂ(

i

where
G=RxaG,

GO = G(G()af(])y
Gi:RX{UEGi‘fi(u)SO}, 1< <m.

Second step. Note that T induces a (19, {)-covering I'* for G (since G is the
inverse image of G under the natural projection of R x F onto E, see Proposi-
tion 5.2.2); T'g is a (¥g, lg)-covering for Gg; I'; induce (¥9; + 1, I;)-coverings F;#
for G;, 1 < i < m (see Propositions 5.2.6 and 5.2.2 and consider that {f;}
satisfy the Slater condition). At the second step, we construct the induced
coverings.

Third step. Since (Z) satisfies the Slater condition, G* is a closed con-
vex domain, so that the coverings I'*#, Ty, I"f, ...,T# induce a (19, i)—covering
I' = (E,G, F,#) (see Proposition 5.2.4) for the set G*, where ¥ = 9+ 3™ ¥; +
m,

I =1+3%"l;. At the third step, we compute the latter covering. Note
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that 7(-) can be represented as #(z) = (7(z),0(x)), 7(z) € R, o(z) € E.
Clearly, (J) (and therefore (7)) is equivalent to the standard problem

(8) 7(z) »min| z € G,

and F' is a J-self-concordant barrier for the feasible domain of the latter prob-
lem, so that we can apply to it our interior-point methods.

Note that the updatings required at the second and the third steps are
explicit and use “rational” linear algebra routines only.

B. To reduce (Z) to a conic problem. We might first reduce it to
an equivalent standard problem (S) (see above) and then transform (S) into
an equivalent conic problem (P), according to the general scheme described in
§4.1. Recall that a ¥-self-concordant barrier F' for the feasible domain of (S)
can be “explicitly” transformed into an O(«¥)-logarithmically homogeneous self-
concordant barrier F# for the cone involved into (P) (see Proposition 5.1.4).
Nevertheless, the above scheme sometimes is not the best one, since usually it
is difficult to find an explicit representation for the Legendre transformation of
F#_ and consequently it is difficult to apply to (P) those of potential reduction
methods that require knowledge of both the primal and the dual barriers. This
is the reason for the below reduction scheme, which, in a sense, is compatible
with the Legendre transformation.

The scheme is as follows. First, we look for conic representations for the
functional elements (G;, f;), ¢ = 0,...,m and for a conic representation of
G. Assume that we were lucky and have found 9;-conic representations K; =
(Ef K, F;'s Hyymi,y) of (Gi, fi), as well as a ¥-conic representation K =
(ET,K*,F*; H,7,v) of G; assume also that all the cones K", K™ are pointed.

The mappings ~y; take values in R x E; let

71() = (Ti(')’ai('))’ i=0,...,m,

where 7;(-) € R and 0;(-) € E. Note that v(-) also takes values in E.
Now consider the following problem:
(P*) Minimize 79(up) by choice of

(w0, Uty - - U, u) € H* = HY x ---x H x H

under restrictions

O(ug, .-, um,u) = (mo(uo), - - -, T (um), 7(w), (=71 (w1),. . ., —Tm(um)))
(5.2.1) eK=Ki x---x K}, x Kt xRY,
(5.2.2) oo(uo) = o1(u1) = -+ = om(um) = y(u).

Note that K is a closed convex pointed cone with a nonempty interior in the
space E# = Ef x.--x Ef, x Et x R™.

From the definition of a conic representation, it follows immediately that
(P*) is equivalent to (Z) (if a point (ug,..-,um,u) is feasible to (P*), then
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z = v(u) (= oo(uo) = -+ = om(um)) is feasible for (I) and 19(ug) > fo(x));
conversely, for each feasible solution x of (Z), there exists a feasible solution
(u0s - - - Um,u) of (P*) such that og(up) = - = om(um) = y(u) = z and
1o(uo) = fo(z)). At the same time, (P*) is, in fact, a conic problem. Indeed,
let M be the affine space formed by (ug, . .., um, u) satisfying the linear system
of equations (5.2.2) and let N be the image of M under the affine mapping
II. Then (P*) is a problem of minimizing an affine functional 79 over the in-
tersection of the cone K and an affine subspace N. The only difference with
the definition of a conic problem is that the objective is expressed via certain
parameterization of a vector from N, not via this vector directly. The latter dif-
ficulty can be immediately eliminated. Indeed, let L be (any) level subspace of
IT | as (all these subspaces are translations of each other). If 7y(-) is not constant
on L, then (P*) is either inconsistent or below unbounded (in fact, it is below
unbounded, since (Z) is assumed to be feasible). Thus, in the case under con-
sideration, (Z) is unsolvable, so that this case can be omitted. In the case when
70(+) is constant along the level subspaces of II |57, we evidently can find a lin-
ear functional (e, -) on the space E# such that 79(ug) = (e, I(uo, - - . , Um, u)) +
const, (up, - .., Um,u) € M, and the following conic problem:
(P) Minimize (e, w) subject to w € K (| N is equivalent to (Z).
Now the function

F(z0,..-,2m,2,t) = ZF{"(zi) + Ft(2) - Zln(t,)
=0 i=1

z€itK!, i=0,...,m, z € intK*, t € intR™, is a (N9 + 9 + m)-
logarlthmlcally homogeneous self-concordant barrler for the cone K (Proposi-
tion 5.1.2 combined with Example 2 from §2.3). It is easily seen that the Slater
condition in (Z) implies that the feasible subspace of (P) intersects int K, which
is the main assumption on the problem required by the potential reduction in-
terior point methods.

Now what about the Legendre transformation of the barrier F#? The
main advantage of our now scheme is that there is no difficulties with this dual
barrier, provided that, from the very beginning, we are given not only barriers
FY, F*, but also their Legendre transformations Fr, F*. Indeed, the cone
dual to K is the direct product of the cones dual to the initial cones and the
cone dual to R’ (the latter cone is R7" itself), and the Legendre transformation
of F# is simply

F*(COa--'aCmaCa ZF* Cz +F*(C ( Zln 31)_ m,

G € —int(K;)*, (€ —int K*, s € —int RT.
The above schemes motivate our interest to coverings and conic represen-
tations: for concrete apolications of the schemes, see the next chapter.
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5.3 Barriers for two-dimensional sets

It is now time to provide the above “equipment” for constructing barriers with
“raw materials,” i.e., with a list of barriers for concrete convex domains arising
in convex programming. In this section, we present a number of barriers for
two-dimensional sets (mainly, for the epigraphs of univariate convex functions:
the power function, the exponent and the logarithm, the entropy). These
barriers are useful at least in the following two situations:

(1) When interested in convex problems involving separable functionals,
according to the general scheme of §5.2.5, we need coverings for functions of
the type f(z) = fi({e1,)) + -+ + fr({ck, 2}), where f; are convex functions
on the axis. Corollary 5.2.3 demonstrates that, to point out a covering for f,
it suffices to find coverings for all f;;

(2) When applying barrier calculus to obtain a barrier for a complicated
function defined by a formula, we need coverings for operations involved into
the formula and, in particular, for R — R updatings (like taking square or
exponent).

Of course, from the computational viewpoint, there is no serious difficulties
with the universal barrier for a two-dimensional convex domain, so that we
could avoid any concrete two-dimensional considerations at all. This would,
however, be not the best way. Thus, let us list a number of “explicit” two-
dimensional barriers.

5.3.1 Power functions and the entropy function

Proposition 5.3.1 Let ((t) be a nondecreasing C*-smooth concave function
on (0,00) such that the quantity

(5.3.1) ac = min {a >0(( ") |< it? | ¢t | ¥t > o}
is finite. Then the function
(5.3.2) max?{a¢, 1}{—Int — In({(t) — z)}
is a 2max2{ac, 1}-self-concordant barrier for the set
Gt =cl{(t,z) e R?| t >0, ((t) > z}.
In particular, the epigraphs of the power functions, i.e., the sets
G’ ={(t,z) eR*| t>(z4)P}, 1<p<oo
admit 2-self-concordant barriers

{—Int — In(t"/? — z)}.
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Proof. “General” part. The mapping t — ((t) : (intR4) — R is (R4, a¢)-
compatible with R, (§5.1.2.B, Example 3), and the identity mapping z — z :
R — R is ({0}, 0)-compatible with R (§5.1.2.B, Example 1). Therefore the
mapping

A(t,z) = (¢(t),z) : (intRy) x R — R?

is (K, a¢)-compatible with Ry x R, where K = R x {0} (Lemma 5.1.3(iv)).
Now G* is the inverse image of the half-plane G = {(r,z) | 7 > z} un-
der the mapping A, and the recessive cone of this half-plane contains K. In
view of Proposition 5.1.7 as applied to the standard 1-self-concordant barriers
F(r,z) = —In(r — z) for G and ®(t,z) = —Int for the domain of A, the
function

max?{a¢, 1}{—Int — In(¢(t) — )}

is a 2max*{ac, 1}-self-concordant barrier for G*, as claimed.

“Particular” part. It suffices to apply the “general” part to the function
() = t\/P, O

Proposition 5.3.2 Let f(z) be a C3-smooth conver function on (0,00) such
that the quantity

(5.3.3) as = min {a >0 (=) |< %?f"(x) vz > 0}
is finite. Then the function
max?{ays, 1}{—Inz — In(t — f(z))}
is a 2max*{ay, 1}-self-concordant barrier for the set
Gt =c{(t,z) eR*| 2> 0, t > f(x)}.
In particular, the epigraphs
Gp=cl{(t,z) e R? | >0, t > P}, p<0

of the decreasing power functions xP admit 2-self-concordant barriers

—Inz-In(t—-2P), 0>p>-—1,
—Int —In(z —t'/7), p< -1,

and the epigraph
G={tz)cR?| >0, t>zln(z)}
of the entropy function xIn(x) admits the 2-self-concordant barrier

{-In(z) —In(t — zIn(x))}.
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Proof. “General” part. The mapping —f(z) : intRy — R is (Ry,ay)-
compatible with R, (§5.1.2.B, Example 3), and the identity mapping ¢ — ¢
is ({0}, 0)-compatible with R. Therefore the mapping A(¢,z) = (¢, —f(z)) :
R x (intR;) — R? is (K, af)-compatible with R x R, where K = {0} x Ry
(Lemma 5.1.3(iv)). Now G is the inverse image of the half-plane G = {(t,y) |
t +y > 0} under the mapping A, and the recessive cone of this half-plane
contains K. In view of Proposition 5.1.7 as applied to the standard 1-self-
concordant barriers F(t,y) = —In(t + y) for G and ®(t,z) = —Inz for the
domain of A, the function

max2{af, 1H{—-Inz —In(t — f(z))}

is a 2max?{ay, 1}-self-concordant barrier for G*, as claimed.

“Particular” part. In the case of p € (—1,0), it suffices to apply the
“general” part to f(z) = 2P (af = 371(2 — p) < 1). The case of p < —1 can
be immediately reduced to the previous one, since, for ¢, > 0 and p < 0, we
have {t > zP} < {x > t'/P}. In the case of the entropy function, it suffices
to apply the “general” part to f(z) =zlnz (ay=1). O

5.3.2 The exponent and the logarithm
Proposition 5.3.3 The function

—In(In(t — z) — Int

is a 2-self-concordant barrier for the epigraph
Gt = {t>¢€"}

of the exponent, and the function

—In(t+1Inz) —Inzx
is a 2-self-concordant barrier for the epigraph

{z>0,t>—Inz}
of the function —Inz.

Proof. The first statement follows from Proposition 5.1.3 as applied to {(t) =
Int (¢ = %) The second statement is an immediate corollary of the first one,
in view of {(t,z) | t > €} = {(¢,z) | Int > z}. O

5.4 Barriers for multidimensional domains

Below, we present barriers for some multidimensional convex domains (a poly-
tope, a piecewise-quadratic bounded set, the second-order cone, the cone of
symmetric positive-semidefinite matrices, the epigraph of the matrix norm).
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5.4.1 Polytope

The standard logarithmic barrier for a polytope is given by Example 2, §2.3.

Proposition 5.4.1 Let
G={zcE| {(ai,x) <bj, 1 <i<m}

be a polytope defined by a set of linear constraints satisfying the Slater condi-
tion. Then the function

(5.4.1) U(z)=— Zln(bi — {a;,x))
i=1

is an m-self-concordant barrier for G. If G is a cone (i.e., b; =0, 1 <i < m),
then F is m-logarithmically homogeneous. If G = RT, so that —a; are the
standard orths of R™ and b; = 0, then the Legendre transformation of F is,
up to an additive constant, the function F*(s) = F'(—s).

5.4.2 Piecewise-quadratically bounded domains

The barriers for quadractically constrained domains are given by the the fol-
lowing statement.

Proposition 5.4.2 Let
G={z€E| filz) <0, 1 <i<m},

where all f; are conver quadratic forms and let the collection of these forms
satisfy the Slater condition. Then the function

m

(54.2) B(z) =~ ) _In(~fi(z))

i=1

is an m-self-concordant barrier for G.

Proof. This is an immediate corollary of Lemma 3.3.1 and Proposition 5.1.3.
Let us present another proof based on Proposition 5.1.7. Let f be a convex
quadratic form on E such that the set {z | f(z) < 0} is nonempty. Then the
mapping z — — f(z) is (R4,0)-compatible with E (§5.1.2.B, Example 2), so
that Proposition 5.1.7 as applied to the standard barrier F'(s) = —In(s) for
R and the trivial (identically zero) barrier for E implies that the function
—In(—f(z)) is a 1-self-concordant barrier for the set cl{x | f(z) < 0}, i.e., for
the set {z | f(z) < 0}. Now the statement under consideration follows from
Proposition 5.1.3 (barrier for an intersection). O
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5.4.3 Second-order cone

Let K be a second-order pointed cone in R"t!; under an appropriate choice of
the coordinates, K can be represented as the epigraph of the Euclidean norm,

(5.4.3) K={tz)e RxR"| t>|z |2}

Note that the standard Euclidean structure on R"®*! allows us to identify R"*!
and (R™*1)* and, under this identification, K coincides with its dual cone.

Proposition 5.4.3 The function
(5.4.4) B(t,z) = —In(t? — 27x)

is a 2-logarithmically homogeneous self-concordant barrier for cone (5.4.3), and
the Legendre transformation of B coincides, up to an additive constant, with
the function B*(t,z) = B(—t,—z).

Proof. Let us use Proposition 5.1.8. Let
E=R, K=R,, FF=R"!, E'=R, T=R,, G=R,,

Q(u,v) = (ulv) : E' - E

and let A(t) be the operator of multiplication by ¢ on E': A(t)u = tu.

The above data clearly satisfy assumptions (A.i)—(A.iii) of §5.1.2.B, so that
Proposition 5.1.8, as applied to the standard barriers F'(s) = ®(s) = —Ins for
the half-axes G and 7', implies that the function

U(y,z,t) = —In(y — t 127z)) — Int = — In(ty — =7 z)

is a 2-self-concordant barrier for the set
Gt =c{(y,z,t) EEY =ExE' xE"| teintT, y— Q(A~(t)z,x) € int G}
=c{(y,z,t) EEY=R xR xR | t>0, y>t 2Tz}
={(y,z,t) ERxR"™1 xR | t>0,y>0, ty > 2"z}

We see that K is the inverse image of Gt under the linear mapping
(t7 x) — (ti x’ t)’

and Proposition 5.1.1 as applied to ¥ implies that B is a 2-self-concordant
barrier for K. The 2-logarithmic homogeneity of the barrier is evident, and an
immediate computation demonstrates that the Legendre transformation of B
coincides, up to an additive constant, with B(—t, —z). 0



BARRIERS FOR MULTIDIMENSIONAL DOMAINS 195

5.4.4 Epigraphs of functions of the Euclidean norm

Proposition 5.4.4 Let G be a closed convexr domain in R? such that (u,t) €
G implies (v,t) € G for all v < u (in other words, such that R(G) contains the
vector (—1,0)T) and let F be a 9-self-concordant barrier for G. Assume that
G contains a point with a positive first coordinate. Then the function

BY(¢t,z) = F(zTz,t)
is a U-self-concordant barrier for the closed conver domain
GT ={(t,z) e Rx R"| (z"x,t) € G}.

If G contains a point with both coordinates being positive, then the function
T
BA(t,z) = F (%t) —Int

is a (9 + 1)-self-concordant barrier for the closed convex domain

'z
Gf =cl {(t,x) ERXR"|t>0, (—t-,t) EintG}.

In particular, let ((t) be a nondecreasing concave function on (0,00), which
is C3-smooth and is positive for large enough t and satisfies the condition

ag =min{a> 0| ¢"(0)|< | ¢"(6) | ¥t >0} < oo,
Then the function
Bél)(t,z) = max*{1, ac}{— In(¢(t) — z"2) — Int}
is a 2max?{1, o }-self-concordant barrier for the set
c{(t,z) ERxR"| t >0, || z ||3< ¢(t)},
and the function
B?)(t, z)=— In2ax{1, ac}In(t((t) — z"z) — Int
is a (2max*{1,ac} + 1)-self-concordant barrier for the set
cd{(t,z) eRxR™| t >0, || z |2< t¢()}.
For example, if p > 2, then the functions

(5.4.5) B,(t,z) = — In(t¥? — 2Tz) — Int
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are 2-self-concordant barriers for the epigraphs
{(t,e) eRx R | t>] |3}
of the powers of the Euclidean norm, and if 1 < p < 2, then the functions
(5.4.6) B,(t,z) = —In(t¥? — zT¢) — 2Int
are 3-self-concordant barriers for the above epigraphs.

Proof. “General” part. The mapping z — z7z : R" — R clearly is (R_,0)-
compatible with R™ (§5.1.2.B, Example 2), while the mapping t — t is ({0}, 0)-
compatible with R (§5.1.2.B, Example 1). It follows that the mapping

A(t,z) = (z7z,t) : R x R —» R2

is (K, 0)-compatible with R.x R", where K is the cone R_ x {0} in R? (i.e., K

is the ray generated by the vector (—1,0)7). By assumption, the recessive cone

of G contains K, and the image of A intersects int G. Therefore, Proposition

5.1.7 implies that B()(¢, z) is a #-self-concordant barrier for the set G .
Furthermore, let

(547 E=R? K=R_x{0}, EF=R", E'=R, T=R,,

Q(u,v) = (uTv)(~1,0)T : R" — R?

and let A(t) be the operator of multiplication by ¢ on E": A(t)z = tz. The above
data clearly satisfy assumptions (A.i)—(A.iii) from §5.1.2.B, and the recessive
cone of G contains K. In view of Proposition 5.1.8(ii) as applied to the self-
concordant barriers F' for G and ®(s) = — In(s) for 7', the function

T
‘I’(yvxat) =F (y - %(_170)71) —Int
is a (9 + 1)-self-concordant barrier for the set
xT.’L' T
Gt =cl{(y,z,t) EREZxR" xR | t>0, y— —(-1,0)" €intG .

The set G5 clearly is the inverse image of G* under the linear mapping
(t,z) = ((0,t)T,z,t) : R x R - R? x R" x R,

and the image of this mapping intersects int G* (since G contains a point
with both coordinates being positive), and Proposition 5.1.1 as applied to ¥
and this mapping implies that G5 is a closed convex domain; B(¥(t,z) is a
(¥ + 1)-self-concordant barrier for this domain, as claimed.
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“Particular” part. This is an immediate consequence of the “general” part
and Proposition 5.3.1. Note that the barriers for the sets

cl{(t,z) eRx R"| ¢t >0, z |3 ¢(8)}

and, in particular, those for the epigraphs of || - || for p > 2 are of the type
B, and the barriers for the sets

cd{(t,z) ERxR"| t >0, ||z |3< (1)},
(in particular, for the epigraphs of || - ||5 for p < 2) are of the type B(2). O

5.4.5 Cone of positive-semidefinite symmetric matrices

Let S, denote the space of symmetric n x n matrices with real entries; as usual,
Sy, is provided with the inner product (z,y) = Tr{zy}, Tr being the trace. Let
S} be the cone of positive-semidefinite matrices from S,,. Note that the above
Euclidean structure allows us to identify the conjugate to S, space S, with
Sn, and, under this identification, the cone S coincides with its dual cone.

Proposition 5.4.5 The function

(5.4.8) F(z) = — InDet(z)

is an n-logarithmically homogeneous self-concordant barrier for the cone S,
and its Legendre transformation coincides, up to an additive constant, with the
function F*(z) = F(—zx).

Proof. The function F clearly is C®°-smooth on int S;" and tends to co as the
argument approaches a point from 8S;7. Besides this, F' is n-logarithmically

homogeneous. Thus, in view of Corollary 2.3.2, to prove the statement, it
suffices to verify the inclusion

(5.4.9) F € 8(int S, S,).

For z € int S}, h € S,, we have
d
DF(z)[h| = g lt=0 InDet(z + th)
= —% li=o {InDet(z) + InDet(I + tz~'h)} = — Tr{z~'h},
D2F(z)h,h] = —% =0 Tr{(z + th) 'h} = Tr{z *hz~'h},

D3F(z)[h,h,h] = % li=0 Tr{(z+th) ‘h(z+th)*h} = —2Tr{z *hz~*hz~'h}.
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Let h* = = Y2hz~1/2; then
D’F(z)[h,h] = Te{(R*)?} 20, | D*F(2)[h, h,R] [= 2 | Te{(R*)} | .

In other words, if {1;} denote the eigenvalues of the (symmetric) matrix h*,
then

n n 3/2
| D*F(z)[h,h, k] |< 2 | v P< 2 {Zuf} = 2(D*F(x)[h, h])*/?,

which leads to (5.4.9). ]

Remark 5.4.1 Note that (5.4.8) is the best possible self-concordant barrier
for St. Indeed, an appropriate cross section of S is R%; therefore, from
Propositions 5.1.1 and 2.3.5, it follows that the value of the parameter of a
self-concordant barrier for S; cannot be less than n.

Remark 5.4.2 The barrier —InDet(z) can be not only guessed, but also de-
rived from Proposition 5.1.8. Indeed, a symmetric n X n matric

T
X:(y‘”)
r i

\

(t is (n—1) x (n—1)) is positive-definite if and only if t is symmetric positive-
definite and y > Tt 1z, so that

T
s;=c1{(g -'”t)

Proposition 5.1.8(ii) states that, if F,_1 is a ¥y_1-self-concordant barrier for
St |, then the function

F, ((i xj)) = —In(y — Tt 'x) + Fr_1(t)

is a Uy,-self-concordant barrier for S;7, 9, = 9,1 + 1. Since S§ = R, we
can start this recurrence for barriers for St with Fi(t) = —Int, 9; = 1, and
an immediate induction leads to F,(z) = —InDet(z), = € int S;F.

Aly,z,t) =y — z't7 1z € int Ry, tcint S,f_l} .

5.4.6 Epigraph of the matrix norm

Let Ly, ;» denote the space of n X m matrices with real entries. We provide Ly m
with the standard inner product (z,y) = Tr{zyT}. Also, let || z || denote the
standard operator norm of a matrix z associated with the standard Euclidean
norms on R™ and R",

I l=max { L2212 | e mmygop ]

I's Il2



BARRIERS FOR MULTIDIMENSIONAL DOMAINS 199

Note that Proposition 5.4.5 gives a (m + n)-logarithmically homogeneous
self-concordant barrier for the epigraph

(5.4.10) G={(t,a) ERX Lo | t || ||}

of the function || - ||. Indeed, G clearly is the inverse image of the cone S,

n+m
under the linear mapping
tl, T
t
( ?m) - ( T tIn> 3

where I, denotes the unit k x k matrix, and, in view of Proposition 5.1.1, the su-
perposition of barrier (5.4.8) and this mapping is the (m + n)-self-concordant
barrier for G. Our goal now is to demonstrate that G admits a better loga-
rithmically homogeneous self-concordant barrier, namely, with the parameter
min{n,m} + 1.

Proposition 5.4.6 (i) The epigraph (5.4.10) of the matriz norm admits an
(n + 1)-logarithmically homogeneous self-concordant barrier, namely,

T
(5.4.11) — InDet (tIn . ”’%) —Int,

as well as an (m + 1)-logarithmically homogeneous self-concordant barrier,

namely,
T

(5.4.12) — InDet (tIm - g?t_w) ~Int.

(ii) The epigraph
6* = {(t,2) € Rx Linn | t >[ |2}
of the squared matriz norm admits self-concordant barriers
—InDet(tl, — zzT) and —InDet(tl, — z7x)
with the parameters n, m, respectively.

Proof. (i) The proof of this part immediately follows from Proposition 5.1.8.
Indeed, let us set

E=S, K=G=8', E=L,,, E'=R, T=R,,

Qz,u) = t(au" +uz"): E' - E

and let A(t), t € E” be the operator of multiplication by ¢ on E’.
The above data clearly satisfy assumptions (A.i)—(A.iii) of §5.1.2.B, and,
in view of Proposition 5.1.8(ii), the barriers F(z) = —InDet(z) for S; (see
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Proposition 5.4.5) and ®(¢) = —Int for T induce the (n + 1)-self-concordant
barrier

T
U(y,z,t) = —InDet (y - :c%) —Int

for the set

T
Gt =l {(y,w,t) €Sy X LpmxR|t>0,y— % € int S;

={(y,2,t) € Sy X Lnm xR | t >0, y € S, ty — z2T € S}}.

It is clearly seen that the epigraph of the matrix norm is the inverse image
of Gt under the affine mapping (¢,z) — (tI,z,t), so that Proposition 5.1.1
allows us to conclude that (5.4.11) is an (n + 1)-self-concordant barrier for the
epigraph of the matrix norm.

To prove that (5.4.12) is an (m + 1)-self-concordant barrier for the set
(5.4.10), we can use similar reasoning, starting with £ = S,,, K = G = S},
and Q(z,u) = 3(zTu + uTz).

(ii) Note that G¥ is the inverse image of the cone S;' of positive-semidefinite
symmetric n X n matrices under the mapping A(t,z) = (tI, — z2T), which
clearly is concave with respect to R(S;) = S;. Therefore the first statement
in (ii) is an immediate consequence of Propositions 5.1.7 and 5.4.5. To prove
the second statement, it suffices to replace the above quadratic mapping by
Alt,z) = tI, — 27z m|

5.4.7 Epigraphs of fractional-quadratic functions

The general fractional-quadratic function of an n-dimensional vector  and a
symmetric n x n matrix X, ¢(z, X) = 27 X 'z, is convex in (z, X) on the set
of all pairs (z, X) with positive-definite X, and the epigraph G of the lower
semicontinuous closure of this function is exactly the set

’U.II?T

{(u,:c,X) eERxR" x5, | (m X

) is positive—semideﬁnite} ;

i.e., it is an inverse image of the cone S +1 of positive-semidefinite symmetric
(n+ 1) x (n + 1) matrices under an affine mapping. Therefore Propositions
5.1.1 and 5.4.5 imply that the function

’U,£ET

(5.4.13) F(u,z,X) = —InDet (a: X

) = —In(u — 2T X 'z) — InDet X
is an (n + 1)-self-concordant barrier for G.

In some applications (e.g., in the problem of truss topology design, see
[B-TN 92]), we are interested in the epigraphs of more specific quadratic-
fractional functions, namely,

(5.4.14) f(z,t) =T X (),
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where X(t) = Xo + Xit1 + - -- + Xgtx is an affine function of a nonnegative
te RFand X;, i =0,...,k are positive-semidefinite symmetric n x n matrices
with a positive-definite sum. The corresponding epigraph is

(5.4.15) G5 =cl{(u,z,t) ERx R* x R¥| ¢t >0, u> a7 X (t)z}.

A self-concordant barrier for G could be derived from barrier (5.4.13) with
the aid of the barrier calculus,

Fy(u,z,t) = F(u,z, X(t)) Zln(t
(5.4.16)
= —In(u — 2T X1 (t)z) — InDet X (¢ Z Int;

(we have taken into account that f is the restriction onto the nonnegative or-
thant R® of the superposition of ¢ and the affine substitution t — X (t); the
first two terms of the right-hand side form the barrier for the superposition
(Proposition 5.1.1), and the third term — Y°¥_, Int, is responsible for the re-
striction of this superposition onto the nonnegative orthant; see Propositions
5.1.3 and 5.4.1). The parameter of the barrier (5.4.16) is (n + 1 + k). Note
that, in this barrier, positive semidefiniteness of X (t) is penalized twice: ex-
plicitly (the term —InDet X (¢)) and implicitly (the term — Y%, Int;); recall
that the matrix coeflicients X; are assumed to be positive-semidefinite with
positive-definite sum, so that positivity of ¢ implies positive definiteness of
X (t). It turns out that this redundancy can be eliminated: We can omit the
term — InDet X (t), which reduces the parameter of the barrier to k + 1 and
significantly simplifies the barrier from the computational viewpoint. This is
a particular case of the following statement.

Proposition 5.4.7 (see [B-TN 92|) Let q, n, k be a triple of positive integers
and let X;(t), i = 1,...,q, be affine functions of t € RF taking values in the
space Sp of symmetric n X n matrices, such that X;(t) is positive-definite for
t>0. Let

file',t) = @) T Xtz R x (it RX) = R, i=1,...,¢q

be the quadratic-fractional functions associated with X;(-). Then the “epigraph”
of the vector-valued function (fi(z!,t),..., f;(z%,t)), i.e., the set

Gt=cd,

where
G = {(y,ml,...xq,t) € R? x (R™")? x RF | t >0

Yi > (mi)TXi—l(t)xi’ 1= 1, .. '7q}7

admits a (q + k)-self-concordant barrier

q k
(5.4.17) U(y,z',...,x%t) = - In(y — (") X; ' (t)2") = ) _ Int,.
=1 i=1
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Proof. For a direct proof, see [B-TN 92|; below, we present a simple proof
based on Proposition 5.1.8. Set

E=R!Y K=G=R!, E=(R", E'=Rf T=Rf

and let, for z = (z1,...,29), u= (ul,...,u?) € (R")?

(:L‘I)Tul
Qo) - ( )
(x9)Tug

Alt)z = (X (t)z?, . .., Xq(t)z9).

The above data clearly satisfy assumptions (A.i)-(A.iii) of §5.1.2.B, and the
inverse image of G under the mapping

Aly,z,t) =y — QA" (t)z,z) : EX E' xT — E,
i.e., the set
d{(y,z},...2%¢t) e RIX(R")IxR* | t > 0; 3 > ()T XL (t)z', i = 1,...,q},

is precisely the set G* mentioned in the statement we are proving. It remains
to note that (5.4.17) is precisely the barrier associated, by virtue of Proposition
5.1.8(ii), with the standard logarithmic barriers F(y) = —Y°7_; Iny; for G and
&(t) = — ¢ | Int; for T. a

5.5 Volumetric barrier

The problem

The problem we study is as follows. The standard logarithmic barrier F
(see (5.4.1)) for a n-dimensional polytope defined by m linear inequalities
has the parameter value equal to m. At the same time, we know that every
n-dimensional closed convex domain admits an O(n)-self-concordant barrier
(Theorem 2.5.1); unfortunately, the latter barrier, as a rule, is too complicated
and cannot be used in practical computations. Thus, in the case of m > n,
which is the usual situation for real-world LP problems, barrier (5.4.1) is far
from being optimal: The efficiency estimate of the related interior-point meth-
ods turns out to depend on the larger size of a problem instead of its smaller
size. Of course, it would be very important to find a “computable” O(n)-self-
concordant barrier for a n-dimensional polytope.

This problem still is unsolved, but recently Vaidya managed to make a
breakthrough in this direction. He developed two new barriers for the n-
dimensional polytope G defined by m linear inequalities: the volumetric barrier

®(z) = O(1)ymInDet(F"(z)),
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and the combined volumetric barrier

¥(z) = O(1) {%@(m) + \/gF(m)} ,

F being the standard logarithmic barrier for G. It turns out that the param-
eters of these barriers are O(ny/m) and O(y/nm), respectively. Note that the
cost at which we can compute the gradients and the Hessians of these barriers
is of the same order as that for F.

In this section, we generalize these barriers as follows. Note that the
standard logarithmic barrier (5.4.1) for G can be obtained from the m-self-
concordant barrier Fi(y) = — iv;Iny; for the nonnegative m-dimensional
orthant; to obtain F, we represent G as the inverse image of R under an ap-
propriate embedding 7 : R” — R™ and set F' = F, o7. Now F,, in turn, is the
result of the same construction as applied to the embedding p : R™ — S, (an
m-dimensional vector is regarded as a diagonal m x m-matrix) and the stan-
dard m-self-concordant barrier (see Proposition 5.4.6) F*(¢) = —InDet ¢ for
the cone S of positive-semidefinite symmetric m x m matrices: F, = Ft o p,
so that

F=Ftog, og=porT.

It turns out that each barrier of the latter type, i.e., the superposition of the
standard barrier F* for the cone S}, of symmetric positive-semidefinite m x m
matrices and an affine embedding of R™ into S, generates volumetric and
combined volumetric barriers with the same as in the case studied by Vaidya
values of the parameters. The advantage of this generalization is that the
corresponding family of n-dimensional convex domains, i.e., the family F7, , of
inverse images of S, under affine embeddings, is much wider than the family of
n~-dimensional polytopes and contains some nonpolyhedral domains important
for convex programming.

We demonstrate that an affine mapping o : R® — S, such that o(R")
intersects int S generates an O(1)(mn)'/2-self-concordant barrier for the n-
dimensional closed convex domain G = o~!(S};). It suffices to establish this
result for homogeneous embeddings o; indeed, the reduction to the case when
o is an embedding is evident. Now, if o(z) = Az + b is an embedding and
b € Im A, then an appropriate translation of the origin in R™ makes o ho-
mogeneous; if b ¢ Im A, we can regard R" as the hyperplane II = {(¢,z) €
R xR" | t =1} in R™! = R x R" and extend o to a homogeneous affine
embedding o (¢, z) = Az +bt. If we could associate with the latter mapping an
O(1)(mn)'/?-self-concordant barrier H for Gt = (o7)~1(S;), we would take
as the desired barrier for G the restriction of H onto G = Gt N1IL.

Of course, we are interested in the case of m > n only, since o always
generates the m-self-concordant barrier F* o ¢ for G.
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The main result

Theorem 5.5.1 Let A be a linear homogeneous mapping from R™ into the
space Sy, of symmetric m X m matrices, m > n, such that Ker A = {0} and
the image of A intersects the interior of the cone S, of positive-semidefinite
symmetric m X m matrices. Let

(5.5.1) F*(X)=—InDet(X) :int S, » R

be the standard m-logarithmically homogeneous self-concordant barrier for S;..
Let
®(z) = FT(Az) :int K - R, K =AYS}),

(5.5.2) ¥(z) = InDet(®"(z)) : int K — R.

Then, under an appropriate choice of absolute constants O(1), the function
0(1)8(x),
(5.5.3) O(x) = vVm¥(z)

(the generalized volumetric barrier) is an O(1)mY/?n—, and the function
O(1)E(x),
m

(5.5.4) =(z) = p¥(z) + %@(m), p=y

(the generalized combined volumetric barrier) is an O(1)/nm-logarithmically
homogeneous self-concordant barrier for the cone K.

Application example. Let f;(z), 1 < ¢ < m be convex quadratic forms
on R™ and let Rank { f;} be the rank of the Hessian of f;. Assume also that the
family { f;} satisfies the Slater condition: There exists z € R" such that f;(z) <
0, 1 < i < m. We know (Proposition 5.4.2) that under these assumptions the
set

G={z]| fi(z) <0,1<i<m}
admits an m-self-concordant “computable” barrier. Let us demonstrate that
G slso admits a computable O(1){n Y™, [Rank {f;} + 1]}'/2-self-concordant
barrier. Note that, in the case of small Rank {f;}/n and large m, the param-
eter of the latter barrier can be much better than that of the first barrier.
Note also that Vaidya’s combined volumetric barrier corresponds to the case
of Rank {f;} = 0.

A convex quadratic form f of rank k, under an appropriate choice of an
affine transformation Ay : R" — R**1 can be represented as

k

f(z) = gu(As(@),  @n(ar,oor2mt) = D25 —t.

i=1

The set {z € R**1 | ¢(z) < 0} can be represented as the inverse image of
.S',':‘+1 under the affine mapping 7} as follows:

Ti(z) = (ﬁ i) :
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Thus, there exists an affine mapping By (= TRank 5 © Ay) from R" into Sk
such that
{z € R™| f(z) <0} = B{'(S5,1).

Note that a point z with f(z) < 0 under the mapping By corresponds to an
interior point of S,': 41

Now, given the family {f;}, we can define an affine mapping 7' from R"
into Spr, where M = Y7, {Rank {f;} + 1}, as follows: T'(z) is the block-
diagonal matrix with m diagonal blocks By, (z),..., By, (z). Now the set G
can be represented as T_I(SI,I). Note that the Slater condition implies that
T(R™) intersects int S7;.

Now we are precisely in the situation of this section: G is represented as

an inverse image of S3, under the affine mapping T, and this representation
implies the corresponding combined volumetric barrier with the desired value
of the parameter.
Proof of Theorem 5.5.1. 1°. Let us start with some notation. In what
follows, lowercase italics denote elements of R™, uppercase italics denote m xm
and n x n matrices, handwritten letters denote linear transformations of 5,,,
and lowercase Greek letters are used for reals. All O(1) are absolute constants
(and, in particular, do not depend on n and m); if it is necessary to distinguish
between these constants, we use subscripts (so that, say, Os(1) denotes the
fifth absolute constant involved in our reasoning).

If A, B are m x m matrices, not necessarily symmetric, then S4 denotes
the linear mapping

X — AXAT : Sy — S,

T4 denotes the mapping
X > AX+XAT : Sm — S,
and P4 p denotes the mapping
X — AXBT + BXAT : Sy — S

Sm is regarded as an Euclidean space with the standard inner product
(X,Y) = Te{XY}; | X |l2= Tr'/?{X?} denotes the corresponding norm of
X € Sp,. R™ is provided with the usual inner product (z,y) = zy.

20, For y € int K, h € R® we have

D®(y)|n; = — Tr{(Ay)"'(4n)},
(555)  D*®(y)[h, A = Tr{[(Ay) " (AR} = (A" S(ay)-1 AR, b),
D3t1)(y) [h’a ha h] = -2 Tr{[(Ay)_l('Ah’)]g} = -2 T‘I‘{[S(Ay)—l/zAh]'?’}'
In particular, ®”(y) is nondegenerate (since Ker A = {0}), so that ¥ and &
are C*°-smooth on int K.

30, From (5.5.5), it follows that D2®(ty)[h, h] = t2D?®(y)[h, k], ¢t > 0, so
that ¥ is 2n-logarithmically homogeneous (and @ is clearly m-logarithmically
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homogeneous). It follows that © is 2n./m-logarithmically homogeneous and
E is 3y/nm-logarithmically homogeneous. Let us prove that, if y; € int K and
lim; ,o % = y is a boundary point of K, then G(y;) and Z(y;) tend to oo as
i — 00. Since @ is a logarithmically homogeneous self-concordant barrier for
K (Proposition 5.1.1 combined with Proposition 5.4.6), ®(y;) — oo, i — o0,
so that it suffices to verify that the same property holds for V.

Since @ is a self-concordant barrier for K, the ellipsoids

W;={y e R"| D*®(y:)[y — v,y — vi] < 1}

are contained in K (Proposition 2.3.2(i.1)); since Ker A = {0}, K is a pointed
cone, so, from the boundedness of {y;}, it follows that all the ellipsoids W; are
uniformly in ¢ bounded. Since y ¢ int K, y does not belong to the interior
of every W, and since the centers of W; converge to y, that means that the
(smallest) thickness of W; tends to 0 as i — co. The latter fact combined with
the uniform boundedness of W; means that mes, W; — 0, ¢ — o0, so that

U(y;) = InDet ®"(y;) = —2In(mes,W;) + const — oo, i — 00,

as claimed.

The logarithmical homogeneity of © and = and the fact that these functions
tend to oo as the argument belonging to int K approaches a boundary point
of K signify that all we need to prove the theorem is to demonstrate that, for
appropriate absolute constants O;(1) and O2(1) and all y € int K, h € R", we
have
(5.5.6) D*¥(y)[h,h] > 0

(this would imply convexity of © and =) and
(5.5.7) | D*6(y)h, h, h] |< 01(1){D?6(y)[h, h]}*/,
(5.5.8) | D3Z(y)[h, b, h] |< O2(1){D*E(y)[h, A}/,

which would mean that the functions are self-concordant with the parameters
of order of 1.
49, Let us fix z € int K. Set

A =S8 gpy-1720 A0 (¥"(z)) "2 : R" - S,

z = (®"(z))" .
Let
B(y) = F* (Ay) : int(A)"(S}) - R,
T(y) = In Det " (y)

and let ©, £ be the functions associated with ®, ¥ in the same way as ©, =
are associated with @, ¥. Then we clearly have

&(y) = &(Py) — InDet(Az), P =(d"(z))""?,



VOLUMETRIC BARRIER 207

whence

¥(y) = ¥(Py) + const(z),
so that

O(y) = O(Py) + consti(z), Z(y) = E(Py) + constz(z).

Since P is a self-concordant barrier for a pointed cone, P is nondegenerate. We
see that establishing (5.5.7), (5.5.8) is the same as establishing the relations
obtained from (5.5.7), (5.5.8) by replacing © « O, E «— =, z « % (of course,
the constants O;(1), O2(1) should not depend on z). Note that

Az = I, d"(z) = I,.

To simplify notation, let us forget about the initial data without bars and
let us omit bars in the notation for our new data (so that, say, our present
A is the old A); this should not cause any difficulties, since we are no longer
interested in the old data.

Thus, it suffices to establish (5.5.7), (5.5.8) under the additional assumption
that
(5.5.9) Ar =1, &' (z) = I,.

Note that, in view of (5.5.5), the latter relation means that
(5.5.10) ATA=1,.

59. Let us fix h € R™ and let H = Ah. Then
H =Y Nfifl,
=1

where {f;} is an orthonormal basis of eigenvectors of H, and A; are the corre-
sponding eigenvalues. The matrices

PO i=3j,

1 < j < i £ m form an orthonormal basis in Sy, and these matrices are
eigenvectors of Syk, Ty« so that these operators on Sy, commutate and are
symmetric. For an operator B on S, that has as its eigenvectors the matrices
E;ij, let A;;(B) denote the corresponding eigenvalues.
Note that
Mi(Tp2) = A + )\5,

so that Ty2 is positive-semidefinite.
6°. Let us compute the derivatives of ® and ¥ at z. Denote

(5.5.11) Qy) = "(y);
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then (5.5.5) can be rewritten as

(5.5.12) Qy) = ATSp) A,
where

(5.5.13) P(y) = (Ay)™;

from (5.5.12), it follows that

(5.5.14) DQ(y)[h] = AT Pr(,), D) As

(5.5.15) D*Q(y)[h, h] = AT{2Spp()n) + PPy, D2 Pw)hkl M
(5.5.16) D*Q(y)[k, b, h] = AT{3Ppp(y)in.02Pw)hh] + PPE),0*Ply)hhh FA-
Since ¥(y) = InDet Q(y), we have

(5.5.17) D¥(y)[h] = TH{Q () DQy)[H]},
D2U(y)[h, h] = — Tr{[Q () DQ() [R]]?}
+Te{Q~ () D?*Q(y) [k, A},
(5.5.19) D*U(y)[h, h, h] = 2Tr{[Q" (1) DQ(y)[A]]*}
— 3Tr{Q () DQ()[R1Q " () D*Q(y) [k, h]}
(5.5.20) + Tr{Q () D*Q(w)[h, h, B}

(5.5.18)

Last, from (5.5.13), it follows that

(5.5.21) DP(y)[h] = —(Ay) " Ah(Ay) Y,
(5.5.22) D*P(y)[h, k] = 2((Ay) " AR (Ay) Y,
(5.5.23) D3P(y)[h, h, h] = —6((Ay) L AR)3(Ay) L.

Relations (5.5.21)-(5.5.23), in view of (5.5.9) imply that

(5.5.24) P(z) = Iy,
(5.5.25) DP(z)[h] = —H,
(5.5.26) D?P(z)[h, h] = 2H?,
(5.5.27) D*P(z)[h, h,h] = —6H>.
From (5.5.14)—(5.5.16), it follows now that

(5.5.28) Q(z) = I,

(5.5.29) DQ(z)[h] = —AT Ty A,
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(5.5.30) D2*Q(z)[h, h) = AT {28y + 2T2} A,
(5.5.31) D3Q(z) = —6AT{SuTy + Tys }A.
Finally, (5.5.28)-(5.5.31) and (5.5.18)—(5.5.20) imply that

a = D*¥(z)[h, h] = - T{ATTH AAT Tz A} + T{AT {28 + 272} A}

In view of (5.5.10), AAT is an orthoprojector in S,,, and the operator 7y is
symmetric on Sy, (see 5°), so that the operator AT (7y)%A — ATTgAATTH A
in R" is symmetric positive-semidefinite; it follows that

T{ AT Ty AAT T A} < T{ AT(Ty)2 A} = Te{ AT {Ty + 2Sg} A},

so that
(5.5.32) a > Tr{AT T A} = 8.
Note that 3 > 0 (see 5°); in particular, ¥ is convex. Furthermore, (5.5.18)-
(5.5.20) and (5.5.28)—(5.5.31) imply that
D3*W(y)[h, h,h) = -2 Te{[AT T A]*} + 6 Te{ (AT Ty A)(AT{Sk + T2} A)}
—6 TI'{.AT{SHTH + THs}.A}
(5.5.33)
We also have (see (5.5.5), (5.5.9), (5.5.10))
(5.5.34) D*®(z)h,h] = Tx{H?},  D3®(x([h,h,h] = —2Tr{H*}.

7°. From (5.5.33), it follows that

(5.5.35) | D3WU(y)[h, h, k] |< 6 iéi,
=1
(5.5.36) 61 =| Tr{A%} |, A=ATTyA,
(5.5.37) 6, =| Tr{AB}|, B=ATSyA,
(5.5.38) 53 =| Tr{AC}|, C=ATTpA,
(5.5.39) 64 =| Te{ ATSy Ty A} |,
(5.5.40) b5 =| Tr{AT Ty A} | .

Note that A, B, C are symmetric n x n matrices (see 5°).
79.1. Let us verify that

(5.5.41) (0 <) Tr{A?} < 28.
Indeed, as we have already mentioned,

(5.5.42) A? = ATTH AATTHA < AT (Ty)2A
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(the inequalities involving symmetric matrices are, as usual, understood in the
operator sense: V > 0 means that V is positive-semidefinite). Furthermore,
z](TH) = A + Aj, so that )\,]((TH)2) ={(N+ A )2 < 2()\2 + )\2) = QA,J(TH2),
whence 0 < (Tg)? < 2732, which, combined with (5.5.42), 1mmedlately implies
(5.5.41).
70.2. From (5.5.41) and the inequality | Tr{Q?%} |< Tr3/2{Q?} (which
clearly holds for an arbitrary symmetric matrix), it immediately follows that

(5.5.43) 6 < 38%2.
79.3. We have Aij (SH) = AiAj, whence —Tg2 < 28y < Ty, so that
(5.5.44) — AT T A < 2ATSyA < AT T A = C.

Let {g;} be the orthonormal basis in R" formed by eigenvectors of the sym-
metric matrix A: Ag = g and let By, Cj; be the elements of B, C,
respectively, in this basis. Then | Tr{AB} |=| Y.;it; mBu |, and, in view
of (5.5.44), | By |< Cy, whence 31—, | By |< Tr{C} = 8. It follows that
| Z?:l ﬂ:lBll |S ﬂmaxl ' K |S ﬁTI‘lﬂ{Az} < 21/2ﬂ3/2 (see (5.5.41)). Thus,

(5.5.45) by < 20332,

70.4. Now, as in 79.3, we have

Z mCu

=1

| TH{AC} |= < Bmax | py |< FIXV?{A%) < 21262,

so that
(5.5.46) 83 < 2p3%/2,

70.5. Now let us evaluate 64 and 85. Let X € S,,, denote the ith column
of A: X® = Ae;, where {e;}™, is the standard orthonormal basis in R™. Let
X = (f)TX® fi. Note that

(5.5.47)

6 =| Te{ATSyTH A} |= Y (SuTyAe;, Ae;)

i=1

Z(ATSHTHAe,, e)| =

i=1

= Y T {(SuTuXP)XxD}| = HXOH? + H2XOH) X))
i=1
=9 Z Tr{HX(")H2X(i)} -9 Z Z(fj)THX(i)HZX(z‘)fj
1=1 i=1j=1

n m m
=2 ZZZ’\])‘i (z)

i=1j=1k=1
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while

(5.5.48) n
b5 =| Tr{ AT Tga A} |= |D (AT Tys Aey, €:)

i=1

Z Te{(Tgs XN XD} =

=1

i (TysAe;, Ae;)

S Te{(XxWH + B3 X)X B}
i=1

ZZ(f T XOHXO §;

i=1j=1

=2 Z’I‘r{X H3X

i=1

—2(3 3 3 A

i=1j=1k=1

=2

Let us denote

(5.5.49) 6= 3> INIX X%

then

(5.5.50) 85 < 26.

Furthermore, from (5.5.47), it follows that

by < 28,
n m m n m m
=S NI AP =SS (N |Akl)|xk|(X§2>
i=1j=1k=1 i=1j=1k=1
n m m A 5 5,
SZZZ |)\k|(XJk) —§+§
i=1j=1 k=1

(we considered that X®) are symmetric). Thus, §' < 6, and

(5.5.51) b4 < 26.
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Note also that

B=T{AT T A} = Z(ATTHeri, e) = Z (T2 Ae;, Ae;)
i=1 i=1
=Y Tr{(TX V) XV}
i=1
= Z ’I‘r{(X(i)HZ’ + HZ’X{i))X(i)}
i=1

(5.5.52) n _ _
=2) T{x®OH2x®}
=1

n

22,

(f )TX(’)HzX(l)f

3 XJ(Q =
k=1

I
Ms

.
I|
MR
.
il
—

I
M-
™=

.
If
I
—

1j
Denote

1/2
(5.5.53) {ZZ( x V)2 } :

i=1j=1
Then (5.5.50)—(5.5.52) can be rewritten as

m
b, 65 <26, 6= 7ok, =l Al;

(5.5.54) B=2y, =) tior.

80. Let us prove that

Z 78 = hTh,

k=1

o\ 12
(5.5.55) T < (Z ,sz) Ok

j=1

Indeed, in view of (5.5.10), we have || Az ||2= (272)1/2, z € R, whence

m
> 7 =l H l3=Il Ak 5= a";
k=1

at the same time,

7 =| (H, fefT) =] <Zhix<i>,fkf{£ > |

i=1
n 1/2 n ) 1/2
thm < {th} {Z(X&))z} < (hTh) 0y,
i=1

i=1
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and (5.5.55) follows.

90, The summary of (5.5.40), (5.5.43)-(5.5.46), (5.5.54), (5.5.44), and
(5.5.34) is as follows. We have established that, for some nonnegative 7, and
oy, such that

1/2
m
(5.5.56) e < (Z r]?) or, 1<k <m,
Jj=1
we have
m
(5.5.57) D*¥(x)[h,h] > > 1io},
k=1
(5.5.58) z)[h, h] = ZTk,

m 3/2 m
(5.5.59) | D>¥(x)[h, h,h] |< 100 {{Z r,?a,%} +> T}ja,%} ,
k=1 k=1

(5.5.60) | D*®(z)[h, b, h] |< 100> " 70
k=1

(of course, the factor 100 can be reduced, but now we are not interested in the
values of absolute constants). We should prove the pair of inequalities (5.5.7),
(5.5.8), i.e., the relations

(5.5.61) | VmD3W(z)[h, b, k] |< O1(){vmD*¥(z)[h, h]}*/?,
| pD3W(x)[h, h, h] + p ' D3®(x)[h, b, h] |
(5.5.62) < 02(1){pD*¥()[h, h] + p ' D?*®(x)[h, H]}*?,  p= \/g;

where O1(1) and O2(1) should be absolute constants (i.e., they cannot depend
on any data involved into (5.5.56)—(5.5.60)).

Now we derive (5.5.61), (5.5.62) from (5.5.56)—(5.5.60); the reader can dis-
regard all our preceding considerations.

10°. It is easily seen that, to derive (5.5.61), (5.5.62) from (5.5.56)(5.5.60),
it suffices to verify that, for all nonnegative 7, and oy, satisfying (5.5.56), the
following inequalities hold:

. 3
(5.5.63) {Z T;?U;%} < Os(1 {Z Tkak} )
k=1

m 2 m 3
(5.5.64) {Z (302 + (n/m) rk]} < Og(l)E{Z[T{fo% (n/m)ﬁ?}} )

k=1 k=1

where O3(1) should be an absolute constant.
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Of course, it suffices to consider the case when all 7, are positive; besides
this, we can assume that all these reals differ from each other. In view of the
homogeneity of (5.5.64) and (5.5.56) with respect to {7}, it suffices to consider
the case when

m
(5.5.65) Yor=1,
k=1
so that (see (5.5.56))
(5.5.66) Ok > Tk, 1<k<m.

Let us fix 4 € [0, 1] and consider the function

m 2
T3 T2 u T,
(5.5.67) bg(u) = {";[ W7 ) + 6 S]}

— s ‘RY—-R.
{e+ 5 12 +uk)}
k=1

Proving (5.5.63), (5.5.64) is the same as proving that the values of the functions
¢o(-) and @y, /s (-) at the point u* = (6f — 7F,...,02, — 72)T € RT (the latter
inclusion follows from (5.5.66)) satisfy the relations

(5.5.68) do(u*) < O03(1)vm
and
(5.5.69 ayml?) < 05

To prove these relations, let us evaluate the maximal value of ¢y(-) over RT.
First, ¢y is continuous on the latter set and clearly tends to 0 as || u ||2 tends
to oo; thus, ¢y attains its maximum over R at certain ut = u*(6). From the
necessary optimality conditions, we conclude that the following relations hold:

(5.5.70) Bgp(u™)/Bur <0, 1<k<m;  dgg(u’)/Oup <0 = uf =0.

We have
(5.5.71) Odg(u™)/Our, = wrt{m —Q}, 1<k<m,

where w > 0 and m
> (R (7F + uf) + 073]
k=1

3
(5.5.72) Q=3

0+ kE [T,f(T,f + u,’:)]
-1

According to our assumption that all 7, are positive and differ from each
other, we conclude from (5.5.70)—(5.5.72) that the only possible cases are the
following:

I ut =0;

II. All but one ug are zeros, the index of the remaining coordinate of u™
is the index of the largest 7, and the latter, i.e., the largest, 71 equals to Q.
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10%.1. Let us start with case II. Without loss of generality, let 7, be the
largest of {7 }. It is easily seen that the equality 7 =  implies the relation

4 2 2
(5573)  pou’) =5 - at 1

m —_— m *
5+Tf+712uT+ET£ 9+'r{1—|—27’,‘c1
k=2 k=2

In view of (5.5.65), we have 3. p* o ¢ > (1 — 72)%/(m — 1). Thus, (5.5.73)
implies that
-
(5.5.74) dp(u™) < — mvR

T o4ty 0L

2

10°.2. Now assume that I is the case, so that

{E 1+ 072]}2

k=1
{6+ > 7t)3
k=1

(5.5.75) do(u™) =

Without loss of generality, let 71 be the maximum of {7;}. Then
{Z[T;‘:’ + GT,S’]} <mn {Z[Tﬁ + 97',3]} =7 {Z 7+ 9} ,
k=1 k=1 k=1
so that @g(ut) < 2{3jx, 7 + 0} L. Besides this, as in 10°.1, we have

m e 232
{ZT,‘§+0} S P Gl W :

b m—1

and we see that (5.5.74) holds in case I same as it holds in case II.
10°.3. It remains to derive from (5.5.74) the desired relations (5.5.68),
(5.5.69). Maximizing the right-hand side of (5.5.74) in t = 7, we come to

2 1 ~1 1
o T S vm(+(m - 1) +1
IR N 2(mb + 1)

m—1

which, combined with (5.5.74), immediately implies (5.5.68), (5.5.69). 0
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Chapter 6

Applications in convex optimization

In this chapter, we present applications of the interior-point machinery to
concrete convex optimization problems of appropriate analytical structure:
quadratically constrained convex quadratic programming, geometrical pro-
gramming, approximation in || - ||,, minimization of the operator norm of
a matrix, optimization over the cone of positive-semidefinite matrices, finding
extremal ellipsoids. Below, we do not deal with the most popular and impor-
tant application areas of the interior-point methods, meaning linear program-
ming and linearly constrained quadratic programming. The reason is that
these classes are covered by the class of quadratically constrained quadratic
problems. The specific for LP and LCQP issues of the Karmarkar-type accel-
eration, which allows us to reduce the (average) arithmetic cost of an iteration,
are considered in Chapter 8.

6.1 Preliminary remarks
In what follows, we start with a problem in the usual form
(f) minimize fy(z) subject to fi(z) <0,i=1,...,m, z€G,

where G is a “simple” convex set (e.g., a Euclidean ball) in a finite-dimensional
real vector space F, and fix the analytical structure of the objective and the
constraints; then we point out an equivalent standard and/or conic prob-
lem and the corresponding barriers, which allows us to solve the problem by
the associated interior-point methods. For brevity, we restrict ourselves to
the barrier-generated path-following methods for standard problems and the
primal-dual potential reduction method for conic problems, with the emphasis
on the complexity of the implementation. Namely, we point out the parame-
ter ¥ of the resulting barrier (which is responsible for the rate of convergence
of the method; recall that, for both of the above methods, it requires us to
perform O(9#'/2) Newton-type steps to improve the accuracy of the current
approximate solution by an absolute constant factor) and the arithmetic cost
of a step (i.e., the number of operations of exact real arithmetics).

Recall that, to solve the problem by a path-following method, we need an
initial strictly feasible solution to the equivalent standard problem; similarly,
to apply the primal-dual method, it is required to know an initial pair of

217
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strictly feasible primal and dual solutions. There are many ways to find, under
mild restrictions on (f), these strictly feasible solutions by applying the same
interior-point methods to appropriate auxiliary problems (where no difficulties
with initialization occur). Of course, to perform complete complexity analysis,
we should consider the cost at which we can solve the auxiliary problems,
but detailed study of these issues would be too time-consuming. To simplify
our considerations, we present complete complexity analysis only for the path-
following method combined with a special initialization scheme based on the
“regularization of the constraints.” This scheme is as follows.

Assume that (i) the set G involved into (f) is a bounded and closed convex
domain, and we are given a 1¥-self-concordant barrier F' for G and an interior
point zt of G such that asymmetry of G with respect to £ is not worse than
a given 6 > 0,

zt +6(zt - G) C G;

(ii) We are given a constant V such that
fi(z) <V, i=1,....,m, z€G;

| fo(z) ISV, ze€G

(iii) The functions f; are represented by functional elements (G, f;) (see
§5.2.1), G; D G, and we know ¥;-self-concordant barriers F; for the epigraphs
of these functional elements, i1 =0,...,m.

Besides this, we assume that (f) is consistent (and therefore, in view of (i),
(iii) is solvable).

Let € € (0,V). Let us define an e-solution to (f) as a point z such that

T eG;
fi(z) <k, i=1,...,m;
fo(z) — f* <e,

where f* is the optimal value of the objective in (f).
The constraint regularization scheme for finding an e-solution to (f) (e is
given in advance) is as follows. Set

and

fe(2) = max{Q(e)(fo(z) + V), fi(z), ..., fm(z)}.

Consider the problem

(fe) : minimize f.(z) s.t.z € G.
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Let us prove that each point € G satisfying the relation

2

(6.1.1) fo(®) — min f. < 3€_v

is an e-solution to (f). Indeed, let z* be an optimal solution to (f). Then, in
view of (ii), we have ming f; < f.(2*) = Q(e)(f* + V). Thus, if z € G satisfies
(6.1.1), then

g2 2V €2

) < * — < — 4+ — < 1 =1,...
f:,,(CL')__Q(E)(f +V)+3V_ 3V +3V—E, 1 ]-7 y T,

and
2

Ae)(fole) +V) S QNS +V) + o,

whence
folz) < f*+[€%/(3V))/[e/(BV)] = f* +e.

We see that, to find an e-solution to (f), it suffices to provide (6.1.1). This
can be done as follows. Consider the standard problem

(fH: minimize ¢ s.t. (¢,z) € GT,

where
G ={t,x)eRxE|z €, f(x) <t <2V}

From (ii), it follows that f.(z) <V, z € G, so that (f) is equivalent to (f.).
Now the function

t m
Ft(t,z) = F, ((—2?5_) -V, :1:) + ;Fi(t,x) + F(z) — In(2V —¢)

is a ¥'-self-concordant barrier for the bounded closed convex domain G,
where
m
9r=3) di+d+1
i=0
(see Propositions 5.1.3 and 5.4.1).
It remains to note that we can easily point out an interior point of G™.

Indeed, let
w= (gV x*) ;

since z+ € int G and f.(z7) < V, we have w € int G*. Let us verify that the
asymmetry of G1 with respect to w is not worse than 6§+ = min{%, 6}. Indeed,
if (t,2) € G, then t > f.(z) > 0 (the latter relation follows immediately from
(ii)) and ¢ < 2V, so that the point (£(s),z(s)) = w + s{w — (t,z)} satisfies
the relation V < t(s) < 2V for all s € [0, 3]. For 0 < s < 4, we also have
z(s) € G (see (i), so that, for 0 < s < min{3,6}, we have z(s) € G and
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fe(x) < t(s) <2V (recall that f.(x) < V,z € G). Thus, for s = §*, the point
w + s{w — (¢, )} does belong to G* whenever (t,z) € G*.

Thus, we can solve (f.F) by the two-stage path-following method associated
with the barrier F'* and the starting point w (see §3.2). From Theorem 3.2.1,
it follows that, to solve (f) to the accuracy given by (6.1.1) (which results in
an g-solution to (f)), it requires to perform no more than

M(e) = O(1) (¥ In VE—T

steps of the preliminary and the main stages, where O(1) is an absolute con-
stant.

To complete the complexity analysis of the path-following method, it suf-
fices to combine the latter efficiency estimate (expressed in terms of the amount
of steps) with the evaluation of the arithmetic cost of a step.

Now we are ready to present concrete application examples. In all of these,
it is assumed that the problem under consideration is solvable and that we are
given the constant V involved into (ii).

6.2 Quadratically constrained quadratic problems

Let the functionals involved into (f) be the following convex quadratic forms:
fi(x):%:cTAiw—b?w+c,-:R”——>R, 1=0,...,m,

where A; are positive-semidefinite symmetric n X n matrices, b; € R", and let
G ={z € R"|| z |2< R} be an Euclidean ball.

6.2.1 Path-following approach

To apply the scheme described in §6.1, let us note that, in the case under
consideration, (i) is valid with

9=1, F(z)=—-In(R*~ | z|3)

(see Proposition 5.4.2) and

To provide (ii), it suffices to set
F}(t,x)z—ln(t—fi(m)) ("91':1’ i=0,...,m)

(see Proposition 5.4.2).
Thus, the barrier associated with problem (f7) is

Ft(t,2) = ~In (g5~ V — fole)) - g;l It — fi(z))

—In(R?~ || z [3) -~ In(2V - ¢),



QUADRATICALLY CONSTRAINED PROBLEMS 221

the corresponding parameter is 9+ = m + 3, which implies (assuming that
m > 0) that an e-solution to (f) can be found in no more than

M(e) < O(1)ym'?In my

steps of the preliminary and the main stages (henceforth, all O(1) denote
appropriate absolute constants).

The arithmetic cost of a step clearly does not exceed O(1)(mn? + n3) (it
costs O(mn?) operations to form the Newton system and O(n®) operations to
solve it), so that the total arithmetic cost of an e-solution to (f) is

2mV

N(e) < O(1)m'/?(mn? + n®)In )
£

6.2.2 Potential reduction approach

Quadratically constrained quadratic problems form a nice field for the potential
reduction methods, since these problems can be naturally reformulated in the
conic form. Indeed, let us first replace (f) with the equivalent problem

(f): minimize ¢ s.t.g(t,z) <0,i=0,...,m+ 1,
where

go(t,.’L’) = fO(-'E) —t, g@(tvw) = fz(w)’ t=1,...,m, g‘m+l(tax) =a'z— R’

are convex quadratic forms of the argument (¢,z) € R™+1.
Now let us construct conic representations for the Lebesgue sets of the
constraints. Given a convex quadratic form

9(y) =yTAy +b"y +c: R* - R,

let us find a decomposition A = DT D of the matrix A, D being an r x s matrix
(the smallest possible value of r is Rank A); note that such a decomposition
costs O(s%) arithmetic operations.

Consider the affine mapping

2Dy
Bly):R* =R :B(y) = | 1+bTy+c|.
1-bTy—c
It is easily seen that g(y) < O if and only if B(y) € K2 ,, where K2, is the
standard m-dimensional second-order cone

(6.2.1) K2 ={z€R™| 2y > (22 + -+ 22,_)V/?}.

If the set {y | g(y) < 0} is nonempty, then the image of the affine mapping
B intersects int K2 2, 50 that B defines a conic representation of the Lebesgue

set {y | g(y) <0} of g.
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Thus, given the quadratic forms gg,...,gm+1 involved into (f'), we can
find (at the total arithmetic cost O(1)mn®) m +2 affine mappings B;(t, z), i =
0,...,m+ 1, from R"! into the spaces R™*2, r; = Rank g/, such that

{(t’ .’L‘) | gi(t’m) < 0} = {(t,:L‘) I B,’(t,.’lf) € K3i+2}'

Now let
m+1 m+1
E= H Rn’+2’ K= II K12',-+2’
=0 =0

B(t,z) = (Bo(t, z),. .., Bms1(t,z)) : R* = E.

Then K is a closed pointed convex cone in F with a nonempty interior, and
the feasible set of (f') can be represented as {(t,z) | B(t,z) € K}. Note that
the linear functional ¢(t,z) = t is constant along Ker B (since (f) is assumed
to be solvable), so that there exists a linear functional ¢ on E such that

(¢, B(t,z)) =t + const.

Note that ¢ can be found at the arithmetic cost O(1)mn3.
We see that (f') (and therefore (f)) is equivalent to the conic problem

(f%) : minimize (c,u) st.u€ KﬂIm B,

and it costs O(1)mn? arithmetic operations to transform the initial data into
an explicit representation of the data involved into (f#). Note also that, if (f)
satisfies the Slater condition, then (f#) admits strictly feasible solutions.

Now there are no problems with solving (f#) by a potential reduction
method. Indeed, let

m+1 ri+1
(6.2.2) Flu)=~) In ({U(i)}f,.+z - {U(i)}f) ;
=0 i=1

where u(i) denotes the projection of u € E = [[7*4' R"+*2 onto the ith di-
rect factor and {u(z)}; denotes the jth coordinate of this projection. From
Proposition 5.4.3 combined with Proposition 5.1.2, it follows that F is a 9-
logarithmically homogeneous self-concordant barrier for the cone K, where
¥ = 2(m+2). It is easily seen that the cone dual to K is K itself (of course, we
provide E with the standard Euclidean structure, which allows us to identify F
and E*), and the Legendre transformation of F is, up to an additive constant
(which is of no interest), F(—s), so that F' can be used as both the primal and
the dual barrier required by the potential reduction methods.

Thus, we can solve (f) by applying to (f#), say, the primal-dual method
associated with the barrier F, and, to improve the current primal-dual gap
by an absolute constant factor, it suffices to perform O(1)m!/2 steps of the
method.
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Now let us evaluate the arithmetic cost of a step. From the description of
the method, it is easily seen that this cost does not exceed O(1)(mn? + n?),
provided that, at the beginning of the solution process, we compute and store
the matrices Bz-T B;, i=0,...,m+ 1, where B; are the homogeneous parts of
the affine mappings B;. Thus, the total arithmetic cost of the preprocessing
(i.e., of computing the data for (f¥) and the matrices Bf B;) is O(1)mn?,
while the arithmetic cost at which we can reduce the initial primal-dual gap
by a factor of the form 2~F is

O(1)mY2(mn? + n®)L.

6.2.3 Conic problems involving second-order cones

Let g = (mq,...,myg) be a collection of positive integers; such a collection is
called a structure. For a structure p, let

8

k
usz(mi}""amk)’ I/"‘lzzmi
=1

and let
Ru:le x .- x R™*,

By K 3, we denote the direct product Kz, x --- X K?,, of second-order cones
(6.2.1) of the dimensions my, ..., my; this is a closed convex pointed cone with
a nonempty interior, and the cone dual to it is Kz itself. Conic problems

Q) : minimize (¢,z)} s.t. T € Kﬁﬂ(L +b)

(L is a linear subspace in Ry, b € R,) are called quadratic (g-problems for
short). Usually, we deal with slightly different representation of (Q), namely,
with the formulation

(Q): minimize o7& s.t. £ € R®, A() € Kﬁ,

where A is an affine mapping from R"” into R, (compare with §6.2.2). Similarly
to §6.2.2, (Q') can be easily rewritten as (Q), provided that (Q’) is solvable.
As we just have indicated, the function

mi-l

k
(6.23) F(x)=->In ({m(i)}};i -y {:p(i)}?) :int K2 — R,
i=1 j=1

z(i) being the projection of z € R, = R™ x --. x R™* onto the ith direct
factor R™:, is a 2 | p |-logarithmically homogeneous self-concordant barrier for
Kﬁ and the Legendre transformation F*(s) of F' coincides with F'(—s) within
an additive constant. As applied to (Q’), the potential reduction methods
associated with F' improve the accuracy of a given solution by an absolute
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constant factor in no more than O(1) | p |'/¥ iterations, where v = 1 for the
method of Karmarkar and the projective method and v = 2 for the primal-
dual method. It is easily seen that the arithmetic cost of an iteration does not
exceed the quantity

O(1)(kn*+ | o | n+n?),

provided that we henceforth compute and memorize & matrices AzTAi, A; being
the ith block of the homogeneous part of A() (i.e., the block corresponding to
the ith direct factor R™ in the image space of A); the arithmetic cost of this
preprocessing is O(1) | u | n2.

Problems that can be reformulated as quadratic ones. Consider a convex
programming problem

(f): minimize fo(§) st. fi(§) <0,i=1,...,m, £ €G,

where G is a closed convex domain in R™ and f;, i = 0,...,m, are convex
functions represented by functional elements (G, f;) (see §5.2.1) with G C G;.

The question we now consider is when (f) can be reduced to a g-problem.
We have just seen that this property is shared by quadratically constrained
quadratic problems, but the latter class, in fact, is “significantly smaller” than
the whole class of g-problems. Indeed, the simplest problem

minimize ax +by st. zy>1, 2,y >0

is, of course, a ¢-problem, since the corresponding feasible set—the interior of
a branch of a hyperbola—can be easily represented as the inverse image of the
three-dimensional second-order cone under an appropriate embedding of R?
into R3; at the same time, this problem, from the standard viewpoint, is not
a convex quadratically constrained problem, since the constraint 1 — zy < 0
involves a nonconvex quadratic functional.

The natural description of the class of g-reducible problems is as follows:
To reduce problem (f) to a g-problem, it suffices to know second-order conic
representations (SO-representations) of G and of the fe. (G, fi),i=1,...,m,
i.e., conic representations of the data involving the cones of the type Kg).
Indeed, given these representations, i.e., affine mappings

%(:) = (r:(),xi() : R > R x R”

and

i RY — u@)y £=0,...,m+1,

such that
{6, eRxR"| £ €G;, t 2 fi(§)} =)
G(Glafl) = {(t,f) | 321' € Rli : (t)f) = ’Yi(zi)a 7'rl(zz) € Kz(z)}7 1= 01 ceey,

G={¢ | 3241 € Rim+1 . £= 'ym+1(zm+1), Tm+1(Zm+1) € Ki(m-{-l)}’
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we can apply to (f) the scheme from §5.2.5.B; this scheme leads to an equivalent
conic reformulation of (f). The latter reformulation is

(Qf):  minimize t(Z) = 7o(20) over Z = (20,...,2m4+1) €E  s.t. A(2) € Kﬁ,

where
FE = {Z = (ZQ,. .. ,Zm+1) € Rlo x ... x Rim+1 ' Xo(ZQ)

=x1(z1) =+ = Xm+1(2m+1) },
p=A{u),...,u(m+1),1,...,1},
A(Z) = (mo(20)s - - - » Tmt1(2m+1), —T1(21), - -+, =T (2m))-
The mapping
(20, -, 2m+1) — (10(20), M0(20))

transforms a feasible solution to (Qy) into a feasible solution to the problem
(r'): minimize ¢t s.t.t > fo(€), fi(§) <0,i=1,...,m, £€CG

(the latter problem clearly is equivalent to (f)), and every feasible solution to
(f") can be obtained as the image of a feasible solution to the former problem.

In connection with the above observation, it is worth noting that the class of
convex domains (functional elements) that admit SO-representations is closed
with respect to the calculus of conic representations described in §5.2 and, in
particular, with respect to superpositions (Theorem 5.2.1, as applied to SO-
representations of the initial functional elements, leads to an SO-representation
of the superposition).

Ezamples of SO-representable functions. Let us give a number of examples
of SO-representable functions; these are the functions that can occur as the
objective and the constraints in problems reducible to quadratic problems.

1. Linear functional. A linear functional f(y) = a’y + b admits an SO-re-
presentation with g = {1}. It suffices to note that

{ty) [ t= @)} =A"" (Kfy),  Alty) =t f(y):

2. Quadratic functional. A convex quadratic form f of n variables admits
an SO-representation with ;1 = {Rank {f”} + 2}; this representation is

{((t,) | t> 2T Az + b x4+ ¢} = A'I(Kﬁ),
where (compare with §6.2.2)
2Dz
At,z) = [ 1+ Ty4+c—t |,
1-bly—c+t

D being a Rank {f} x n matrix such that DTD = A.



226 APPLICATIONS IN CONVEX OPTIMIZATION

3. Mazimum. The function max{yi,...,y} admits an SO-representation
with

m times

p=1{1,...,1},
{(ta y) I t2> ma'x{yla .. 'ayl}} = A_I(KE)’ .A(t, y) = (t — Y- 'vt - yl)'

4. Euclidean norm. The function |y|l2, y € R"™ admits the trivial SO-
representation with p = {n + 1},

{t,9) | t > lyll2} = K.

5. Geometrical mean. Let q be a positive integer and let n = 29. Consider
the function f(y1,...,9n) = —(y1...yn)Y™ : R} — R. Let us describe an
SO-representation of this function. Let the vector of additional variables s be
comprised of n — 1 variables s; ;, 1=0,...,¢-1, 7=1,... ,2¢ and let

n—1 times
e N
p=1{3,...,3,1}.

Define an affine mapping A(t;y, s) taking values in R, as follows. A is com-
prised of (n — 1) components with three-dimensional images and a single com-
ponent with one-dimensional image. The three-dimensional components are
enumerated by the pairs (i,5), i = 0,...,g— 1, j = 1,...,2¢ the component

(g —1,7) is of the form
28¢-1,5
(yzj—1 - y2j) ;
Y21 + Y25

this three-dimensional vector belongs to K {23} if and only if y2;_1 and yo; are
both nonnegative and | sq—1,; |< \/¥2j—1Y2j-
The component (%,7) with ¢ < g —1is

23,‘,]‘
S$i+1,25—1 — Si+1,25 | 3
$i+1,2j—-1 + Si+1,2j
it belongs to K {23} if and only if its “parents” s;y1,2j-1 and s;412; are both
nonnegative and | 8;; |< /Sit12;-15i+1,2;- The (unique) one-dimensional

component of A(-) is t + sg,1.
It is clear that A(t;y, s) belongs to K? if and only if the relations

yj =0, 1<j5<29
0<sg-1,< (y2j—1y2j)1/2a 1<j <2971,
0 < sg-2 < (Sq-125-15¢-12))"/%, 1<5 <205
| 80,5 |< (51,2j~131,:2j)1/2; j=1
t+s01 >0

hold.
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Given y1,...,yn,t, we can find s; ; satisfying the above inequalities if and
only if all ys are nonnegative and ¢ > f(y), so that the constraint {3s :
A(t;y,s) € K2} is equivalent to {y > 0, ¢ > f(y)}. The image of A clearly
intersects int K 5, so that we have constructed the desired representation.

6. Fractional-quadratic function. What follows originates from the refer-
ence [B-TN 92]. Let 4;, i = 0,...,k be positive-semidefinite ! x | symmetric
matrices with a positive-definite sum and let

A(s) = Ao+ Arsy + -+ Agsg : RF = 5,

where S; denotes the space of symmetric [ x [ matrices. Since the sum of A; is
positive-definite, A(s) is positive-definite for positive s, so that the following
fractional-quadratic function is well defined:

f(z,s) =27 [A(s)] 'z: Q=R x {se R¥,s > 0} - R.

Extending f from @ onto G = cl () as a lower semicontinuous function taking
values in the extended axis R |J{+00}, we obtain a functional element (G, f);
problems involving constraints and objective of the above fractional-quadratic
type arise in some applications, e.g., to Truss Topology Design [B-TN 92]). It

is easily seen that the element (G, f) can be expressed as
G ={(z,s) e R x R¥ | s >0},
(6.2.4)
f(z,s) = sup{2zTu — uT A(s)u | u € R'}.

Let us construct an SO-representation of the f.e. (G, f).
Let D; be r; x! matrices r; = Rank { A4;}, such that DiTDi =4;,1=0,...,k,
and let us define a linear space H and a structure p as

H={2= . ,Utsnt)cRPx...xR* xR xRF x RF xR |
Dfyo+ -+ Dy =z},
MZ{T0+2,...,T]C+2,1}.

Let us define the affine mapping v from H into R x R! x R* and 7 from H
into R, as follows:

Fy(y()? tet )yk7$7 57 7—’ t) = (t7 x’ 8)’

W(yﬂv co s Y&y I, 8, T, t) - (71'0(90, S, T)) v aﬂ-k(yky S, 7-)7 7rk+1(7—a t))a
where
2yo 2y;
TrO(yO)S7T): TO_]- 1] 7Ti(3lz'7377'): T — S ] iil?"'7k7
0+ 1 Ti + 8

7I'k+1(T,t)=t-To—-'-—Tk.
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We claim that H, m, « define a conic representation of the epigraph of
(G, f), i.e., that

G(G, f)={(t,z,5)|,(z,5) € G,t > f(z,s)}! ={1(2) | z € H,n(2) € K2}
(6.2.5)
and that Im 7 intersects int K ﬁ The latter statement is evident. To prove
(6.2.5), denote the right-hand side of this relation by @ and note that, by
construction, @ is the set of all z = (yo,...,yk, =, s, T,t) satisfying the system
of equations and inequalities as follows:

(6.2.6) D('fyo + .o+ D{yk =z,

(6.2.7) vl y; < sitiy Ti +8; > 0, i=0,...,k,
where 5o =1,
(6.2.8) t>7+ -+ Tk

Equation (6.2.6) is the definition of H, relations (6.2.7) express the inclusions
mi(2) € K2 5, and (6.2.8) is the same as the relation m41(z) € K7.

To prove (6.2.5), note that in view of (6.2.4) (t,z,s) € G(G, f) if and only
if s > 0 and the quadratic form of u € R!2z7u — uT A(s)u does not exceed t,
or, which is the same, if and only if

(%) : s > 0 and the linear system with respect to u

(6.2.9) A(sylu==x
is solvable and for some {equivalently, for any) solution to this

system we have
(6.2.10) ulx <t.

Let (t,z,s) € G(G, f) and let u be a solution to the corresponding system
(6.2.9). Let us set

(6.2.11) yi=s;DiueR™,  i=0,....k

(henceforth, so = 1).
Relation (6.2.9) means that

(6.2.12) Diyo+ -+ Diyx ==,

so that (yo,.-.,yx,) satisfies (6.2.6); multiplying (6.2.12) by uT and taking
into account (6.2.11), we obtain

kT
T Zyi Yi
ru=

N 8

=0
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(henceforth a/0 = +oo for a > 0 and a/0 = 0 for a = 0), so that the reals

T
n=%Y% 0. . m

8i
extend the vector s to a collection satisfying (6.2.7); in view of (6.2.10), the
above 7; satisfy (6.2.8). We conclude that the vector z = (yo,. .., Yk, , 8,7, 1)
is feasible for (6.2.6)—(6.2.8), since, by construction, ¥(z) = (t,z, s), we have
proved that the left-hand side of (6.2.5) is contained in the right-hand side Q.

To prove (6.2.5), it remains to establish the inclusion @ C G(G, f). Let

2= (Y0, -, Yk, T, 8,7, t) € Q,

so that z satisfies (6.2.6)—(6.2.8). We should prove then that (¢, z, s) € G(G, f).
Let us first note that from (6.2.7) it follows s > 0, so that (z,s) € G. Further-
more, let I be the set of indices of nonzero s;, i = 0,...,k; from (6.2.7), it
follows that y; = 0, ¢ &€ I. Consider the auxiliary problem

T
'Uz' ’U’L

(6.2.13) minimize Z . overv;, t €1 s.t. ZD;‘rvi = z;
i€l el

this problem is feasible. A feasible solution is given by v; = y;, @ € I, and the
objective at the latter solution is < ¢ (see (6.2.7), (6.2.8)). It follows that the
problem is solvable, and, for its optimal solution y;, i € I, we have

)y
(6.2.14) W) <t.

8
Now optimality conditions for (6.2.13) imply that, for some u € R!,

y; = siDju, 1€l

From the latter relation and the fact that y} are feasible for (6.2.13), it follows
that
A(s)u = Z 8D Dju = ;
iel
multiplying the latter equation by u”, we obtain z7u = 3, (y*)Ty}/s;, and
(6.2.14) implies that the latter quantity is < ¢, so that (¢,z,s) € G(G, f) (see
the description of the latter set given by (*)). Thus, (6.2.5) is proved.

6.3 More of structured nonlinear problems

6.3.1 Geometrical programming problem (exponential form)

The class of geometrical programming problems corresponds to the case when
the functionals f;, i = 0,...,m involved into (f) are of the form

fi(z) = ZCU exp{a(i,5) 'z} +d;: R" - R, i=0,...,m,
j=1
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where a(3, j) are vectors from R™ and all the coeflicients c;; are positive; as in
the previous section, we assume that G = {z | || z ||2< R} is an Euclidean ball
(with minor modifications, what follows is also valid for, say, a polytope G).

To apply to (f) the scheme from §6.1, it is reasonable to reformulate the
problem as follows. Let

A={a(i,j) | 0<i<m, 1<j<r}

and let k be the number of elements in A (i.e., the number of different exponen-
tuals a(i, j) involved into the problem). Let a5, 1 < s < k be the sth element
of A with respect to some ordering, let s(i, j) be defined by the relation

a’(i’ .7) = Qg(i,5)s

and let ¢ be the largest of those coefficients ¢;; for which s(¢,7) = s. Set
0ij = €ij/Cs(i j)» SO that 0 < oj; < 1.

Adding k new variables 7y, ..., 7%, we can rewrite (f) in the equivalent form
70
(f*) : minimize go(7) = Z 00;Ts(0,5) + do
i=1
subject to

Ti
9i(7) :Zaist(i,j)+diSO, i=1,...,m,
i=1

Imis(T,T) = csexp{alz} — 7, <0, s=1,...,k,
(r,x) e G* = {(r,2) || x |2€ R,OL 7, VT, s=1,...,k},

where
V+=V+ max Idil'
0<i<m

First, let us verify that (f#) is equivalent to (f). It suffices to prove that,
if z € G, then csexp{alz} < V' for all s. Indeed, since, by the definition of
V, fi(z) <V, z € G, we have ¢;; exp{:aﬂi’j)w} <V —d; <V*forall i and j,
and the desired inequalities do hold.

Second, now we are in the situation required by the scheme from §6.1.
Indeed, G¥# clearly is bounded, and the point

v+ vt
ZL‘+= (T]ZT,...,T]CZT,QI:O)

is the symmetry center of G¥ (so that we can set in (i) § = 1). From Propo-
sitions 5.1.3, 5.4.1, and 5.4.2, it follows that the function

k
F(r,z) =— Z{ln 7o+ In(V* — 7,)} — In(R? — 27x)
s=1
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is a ¥-self-concordant barrier for G# required in (i), where ¥ = 2k + 1. Fur-
thermore, for (7,z) € G¥#, we clearly have

gl(T,m)_(1+01§1%)T<nr])V =V, i=1,....m+k,

! gO(Ta .'L') |S V#a

as is required in (ii). It remains to provide (iii), i.e., to point out 9;-self-
concordant barriers F; for the epigraphs of the functions g;. In view of Propo-
sition 5.4.1, we can take

9 =1, Fi(t;7,x2) = —In(t — ¢;(,2)), 1=0,...,m;
from Proposition 5.3.3, it follows that we can also take
19m+s =2,

Fris(t;7,2) = {—In(t +7,) — In(In(t + 7,) — Inc, — alz)}.

Thus, to find an e-solution to (f), we can apply to (f#) the scheme from
§6.1. The barrier F'* associated with the resulting problem ((f#)F) is as
follows:

(6.3.1) . ~
Ft(t;m,z) = —In (Q#—(E) _vH_ go(T)) ~ Y In(t - gi()
i=1
k .
— Z {ln(t +17s)+1In (ln(t +75) — Incs — af:c)}
s=1
k
—> {lnr +In(V* — 1)} — In(R? — 27x) —In(2V# — 1),
s=1
where 4 .
(e) = IVE

The parameter of the barrier is 9+ = 4k + m + 3.
From the results of §6.1, it follows that an e-solution to (f), 0 < ¢ < V#
can be found in no more than

#
N (k+m)V

M(e) = O(1)(k +m)"/?1 -

steps of the preliminary and the main stages of the barrier-generated path-
following method associated with F*.

Let us evaluate the arithmetic cost of a step. The computational effort at a
step is dominated by solving the Newton system with the (n+k+1) x (n+k+1)
matrix (the Hessian of F'*), and the right-hand side is comprised of a fixed
vector and the gradient of F*. It is easily seen that the right-hand side can
be computed in O(1)(m + n)k operations. Furthermore, from (6.3.1) it follows
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that, to multiply a given vector by the Hessian of F'*, it requires no more than
O(1)k(m + n) operations. Thus, the system can be solved by the conjugate
gradient method in O(1)k(m+n)(n+k) operations, so that the total arithmetic
cost of an e-solution to (f) does not exceed the quantity

O(1)k(m -+ m)(n + k) + ky/21n {2V

6.3.2 Approximation in L,-norm

The problem of approximation in L,-norm can be formulated as follows: Given
an affine subspace L in R* and a vector b from RF, find the element of L
closest to b with respect to the norm | - ||, . We study a slightly more general
problem, in which the approximation is subject to some additional (for the
sake of simplicity, quadratic) constraints. In other words, we consider problem
(f) under the assumptions that

k
folz) = Z | a?w —-b; |, z,a; € R" (p € [1,00))
=1

and all f;(z), i =1,...,m are convex quadratic forms. As usual, G is supposed
to be the ball {|| z ||2< R}.

Similarly to above, to apply the scheme from §6.1, we should reformulate
the problem. Namely, introducing k-dimensional vector 7 = (71,...,7%)T of
additional variables, we can rewrite (f) as the problem

k
(f%) : minimize go(7) = Z T;
i=1

subject to
gil,e)=lalz—b; P -1, <0, 1<j<k,
gr+i(T, x) = fi(x) <0, 1<i<m,
k
(r,z) € G* =] {(T,x) zl2<R 0<7,1<j<k, Y 75< V} ;
j=1

which is clearly equivalent to (f).
Let us indicate the data required by the scheme of §6.1 as applied to (f#).
First, the set G¥ admits a (k + 2)-self-concordant barrier

k
F(r,z) =—-In(R* -z ar:) ZlnT] In (V—-ZT]')
3j=1

and the asymmetry coefficient of this set with respect to the point

+ _ e — = — frouncd
T -—(Tl—k_l_l,...,Tk k+1,$ 0),
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so that (i) is satisfied with ¢ = k+ 2 and § = 1/(k + 1). Part (ii) clearly holds
for (f#) with the same constant V as in (f). It remains to provide the barriers
required in (iii). By Proposition 5.3.1, the function

Yy (t,u) = —{2Int + ln(tz/l’ u?)}

is a 4-self-concordant barrier for the set {(t,u) € R? | t >| u |P}. Thus, we can
take

Yo =1, Fo(t;7,2) = —In(t — go(7))
(see Proposition 5.4.1),

¥ =4, Fj(t;T,:c)zw(p)(t+'rj,ajT:c—bj), ji=1,...,k,

ﬁk-{-i =1, Fk+z(ta ‘T,.’E) = _ln(t - fl(x))7 i=1,...,m

(see Proposition 5.4.2).

Thus, to find an e-solution to (f), we can apply to (f#) the scheme from
§6.1. The barrier F* associated with the resulting problem ((f#)}) is as
follows:

(6.3.2) m
F+(t;7,m)=—ln(Q€) V — golr ) ;lnt—f,
_le{zln(t +75) +In (¢ +7)27 = (o] o — b;)*)}
—Xk:llms ~—In (V— zk‘;r) —In(R? - 2"z) - In(2V - 1),
where ) )

e) = 57

The parameter of the barrier is 9+ = 5k + m + 4.
From the results of §6.1, it follows that an e-solution to (f), 0 <& <V can
be found in no more than

1/2 In (k + m)V

M(e) = O1)(k +m) .

steps of the preliminary and the main stages of the barrier-generated path-
following method associated with F*.

It is easily seen that the arithmetic cost of a step does not exceed O(1)((m+
k)n? + (k + n)3). Thus, the arithmetic cost of an e-solution to (f) does not
exceed the quantity

O(1) ((m + k)n® + (k +n)*) (m +k)'/*In (m+k}V
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Note that the approach used in §§6.3 and 6.3.2 can, in fact, be applied to
any convex problem (f) with the functionals of the type

i
fi(z) =Y dijlagz),
j=1

where ¢;;(t) are convex univariate functions, provided that we can point out
explicit self-concordant barriers for the epigraphs of ¢;;. As was mentioned
in §5.3, it is not too difficult to find the latter barriers, since even the uni-
versal barrier for a two-dimensional closed convex domain can be regarded as
“computable.”

6.3.3 Minimization of the matrix norm

The problem we study is as follows: Given an affine function A(x) taking values
in the space Ly of real k x | matrices, minimize the operator norm || A(z) ||
of it. Here the operator norm of a k x | matrix A is defined as

I All=max{]| Au|l2| u € R, | u[2< 1},

or, which is the same, as the maximal eigenvalue of the matrix | A |= (AT A)Y/2.
In addition, we will restrict z by a number of (for simplicity, quadratic) con-
straints. Thus, we are considering problem (f) in the case when

fom) =l A=) I,  A():R" — Ly,

where the elements of A(z) are affine functions of z, and all f; are convex
quadratic forms, i = 1, ..., m. As usual, we take G = {z ||| z ||]2< R}. Without
loss of generality, we can assume that k <[ (otherwise, we could replace A(zx)
with AT (z)).

Let us apply the scheme from §6.1, provided that we are given the constant
V involved into (ii). The function

F(z) = —In(R? — 272)

is an 1-self-concordant barrier for G (Proposition 5.4.2), and G is symmetric
with respect to 2+ = 0 (§ = 1). According to Proposition 5.4.6, the function

Fy(t,z) = —InDet (tIk — %A(w)AT(:c)) ~Int

is a (k + 1)-self-concordant barrier for the epigraph {t >|| A(z) ||} of the
objective; here I denotes the unit k x k£ matrix. In view of Proposition 5.4.2,
the functions

Fi(t,z) = -In(t - fi(z)), i=1,...,m
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are 1-self-concordant barriers for the epigraphs of the constraints. Thus, we
can apply to (f) the scheme of §6.1. The resulting barrier is

Ft(t,z) = —InDet { (ﬁ — V> I — T(%A(w)AT(x)}

_In (W - V) Zln (R || z ||) — In(2V — ),

and its parameter is 97 = k + m + 3. Therefore, to find an e-solution to (f),
it suffices to perform

131%
M(e) < O(1)(m+k)"?In (m—})——
steps of the barrier-generated path-following method associated with F'*.
The arithmetic cost of a step evidently does not exceed O(n%(m + n) +
nkl(n + k)) operations, so that the arithmetic cost of an e-solution to (f) is

O(1)(m + k)1/? (n2(m +n) + nkl(n+ k)) In (m_—;k)_‘i

6.4 Semidefinite programming

Under the wording “semidefinite programming,” we understand conic prob-
lems on the cone of positive-semidefinite symmetric matrices. As we see, this
class of problems is a very nice field for the interior-point machinery. First,
many important convex problems can be naturally reformulated as the prob-
lems from the above class. Second, there are no difficulties with fine primal
and dual logarithmically homogeneous self-concordant barriers for the corre-
sponding cones, so that, to solve the problems, we can use the most attractive
potential reduction interior-point methods.

6.4.1 Preliminary remarks

Recall that a structure g = (ms,...,mg) is a collection of positive integers
and that, for a structure g, we set pu° = (mi,...,m}), | p |= 2 l 1 m;. Let
i be a structure and let S, denote the space of a.ll symmetric block-diagonal
| 4| x | u | matrices with k diagonal blocks of the row sizes my, ..., mg. The
space is provided with the scalar product (z,y) = Tr{zy}. By S:[, we denote
the cone in S, formed by all positive-semidefinite matrices from S,; this is a
closed convex pointed cone with a nonempty interior, and the cone dual to it
is S itself. The function

F(z) = —InDetx: intSI — R

is a | p |-logarithmically homogeneous self-concordant barrier for S, (see
Proposition 5.4.5), and it is easily seen that the Legendre transformation F*(s)
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of F' coincides with F'(—s) within an additive constant

F*(s) = F(—s) + const.
Thus, to solve a conic problem on S;f, i.e., the problem of the form
(P) : minimize {c,z) s.t.z €S (L+b)

(L is a linear subspace of S, b € S,), we can use each of the associated
with F' potential reduction methods described in Chapter 4. The amount of
steps of the methods that are required to improve the accuracy by an absolute
constant factor is O(1) | 4 |'/¥, where v = 1 for the method of Karmarkar and
the projective method and v = 2 for the primal-dual method.

Usually, we deal with slightly different representation of (P), namely, with
the formulation (compare with §6.2.3)

(P'): minimize o7¢ st. £ € R, A(¢) € Sy,

where A is an affine mapping from R™ into S,. Note that (P’) can be easily
rewritten as (P), provided that (P’) is solvable. In what follows, we refer to
(P) (or, which is the same, to (P’)) as to a pd-problem of structure p.

As already mentioned, to improve the accuracy of the current approxi-
mate solution to (P’) by an absolute constant factor, it suffices to perform
O(1) | 4 |'/¥ steps of a potential reduction interior-point method. What is the
arithmetic cost of a step? This quantity is dominated by the computational ef-
fort of finding the Newton direction of a given linear functional reduced to the
feasible plane of (P’), i.e., by the cost at which, given d € S, and z € int Sf;,
we can minimize the quadratic form

p(§) = (d, A& + § (ATF"(2) A&, &)

over £ € R™, where A is the matrix involved into A. If a; € S, i =1,...,n,
denote the columns of A; then the elements of the n x n matrix Q = ATF"(z)A
are Q;; = Tr{zla;z71a;}, so that, to form @, it costs O(1) | u3 | operations
to compute z7!, O(1)n | u? | operations more to compute all the matrices
z7la;z71, i=1,...,n, and then O(1)n? | u? | operations to compute all Q;;.
Since minimizing p is the same as computing Q1 A”d, the arithmetic cost of
a step is
O’ +n? | 4 | +n |4 |}.

Of course this cost can be reduced, if the a; are, say, sparse enough.

6.4.2 Positive-definite representable functions

Consider a convex programming problem

(f): minimize fo(§) s.t. f;(§) <0,i=1,...,m, £ €G,
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where (7 is a closed convex domain in R™ and f;, ¢ = 0,...,m are convex
functions represented by functional elements (G;, f;) (see §5.2.1) with G C G;.
Similarly to the case of quadratic problems (see §6.2.3), to reduce (f) to (P’),
it suffices to find positive-semidefinite representations (PD-representations) of
G and of the f.e. (G;, f;), i =1,...,m, i.e., conic representations of the above
data involving the cones of the type S} .

Similarly to the quadratic case, the class of convex domains (functional
elements) that admit PD-representations is closed with respect to the calculus
of conic representations described in §5.2 and, in particular, with respect to
superpositions (Theorem 5.2.1, as applied to positive-definite conic represen-
tations of the initial functional elements, leads to a positive-semidefinite conic
representation of the superposition).

In what follows, we present some concrete applications; in particular, we
give a number of important examples of positive-semidefinite representable
functions. These functions can be involved into (f) as the objective and the
constraints.

6.4.3 Examples of PD-representable functions

1. FEuclidean norm. The function || y ||2,y € R™ admits a PD-representation
with g = {n + 1},

a4 t oyl
{ty) | t>]lyll2} =B~H(S,h), B(t’y):(y tIn>

(as usual, I; denotes the ! x | unit matrix).

The above statement means precisely that the second-order cone K2 | can
be represented as an intersection of the cone of positive-semidefinite symmet-
ric matrices S’{+n +1} and an appropriate linear subspace passing through the
origin and intersecting int S?;1 +1p It follows that any function that admits a
second-order representation (see §6.2.3) also admits a PD-representation. This
observation underlies part of the below examples.

2. Linear functional. A linear functional f(y) = a’y + b admits a PD-
representation with g = {1}. It suffices to note that

{ty) | t2 f)}=AT(SEy),  Alty) =t—F(y)

3. Quadratic functional. A convex quadratic form f of n variables admits
a PD-representation with u = {Rank f” + 2}. Indeed, the epigraph of f is
of the form {(¢,y) | g(¢,y) < 0}, where g(¢,y) is a convex quadratic form of
(¢t,y) and the set Q@ = {(t,y) | g(¢t,y) < 0} is nonempty. As we have seen
in §6.2.2, there exists (and can be effectively found) an affine mapping C(t,y)
from R x R™ into R™*2, r = Rank ¢” = Rank f”, such that the image of C
intersects int K2, , (see (6.2.1)) and

{tt,y) | t> f(y)} = C7H(KZ).
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In turn, the cone K2 , can be represented as the inverse image of Sfrr +2) under
a linear mapping B (see §6.4.3.1). Thus,

{(69)] £ @)} = (BoC)™ (S} 4oy,

and this is the desired PD-representation of the epigraph of f, since the map-
ping B presented in §6.4.3.1 is such that the image of the mapping Bo C
intersects int Sg; +2}

4. Mazimum. The function max{y,...,y} admits a PD-representation
with
1 times
—
w={1,...,1},
as follows:

{(ta y) | t2> ma'x{yla oo ayl}} = A_I(S:—)a A(t, y) = Dla'g {t-yh s ,t_yl}-

5. Matriz norm. The matrix norm || y || on the space Ly 4 of p x ¢ matrices
admits a PD-representation with u = {p + q},

T
{&y 1 t=lyl}=A7(SD), A(t’y):(t;q i/f,,)-

6. Mazimal eigenvalue. The maximal eigenvalue Apax(y) of a symmetric
p X p matrix y admits a PD-representation with u = {p},

{&9) | 2 dmax(®)} = ATN(SE),  A(t,y) =tD, — .

7. The sum of k largest eigenvalues. Let y denote a symmetric p X p
matrix and let A;(y) > Aa(y) > --- > Ap(y) be the eigenvalues of y written in
the descent order. For 1 < k < p, set

k

or(y) =D Mi(y).

i=1

This function admits the following PD-representation with p = {1, p, p}:

{t,y) | t > ax(y)} = ATH(S)),
where

(t — ks) — Tr{z}
A:RxRx Sy xS(py — Sp: Alt, 8,y,2) = z
z—y+sl,

(blank spaces correspond to zero entries).
Let us verify that the above mapping does represent oy. In other words, we
should prove that, first, ¢ > ox(y) if and only if there exist real s and z € Sy,
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such that z > 0, z —y+ sI, > 0 and at the same time ¢ — ks — Tr{z} > 0 and,
second, that the image of A4 intersects int SJ.

“If” part. Recall that, if u, and v are symmetric and u — v is positive-
semidefinite, then the eigenvalues of u are not less that those of v, both of the
sequences being considered in the descent order (this statement immediately
follows from Weil’s characterization of eigenvalues,

Ai(u) = sgpinf{(um,:z:) | z € S(E)},

where E runs over the family of all i-dimensional subspaces of R? and S(E)
denotes the unit || - ||2-sphere in E). Now assume that, for a given (¢,y), the
above s and z do exist. That means that y < z + sI,, whence, in view of
the previous remark, o (y) < ox(z + slp) = ox(z) + sk. Since z > 0, we have
ok(z) < Tr{z}, so that ox(y) < Tr{z} + sk < .

“Only if” part. Let t > ox(y). Set s = Ag(y); the k largest eigenvalues of the
matrix y— s, are nonnegative, while the remaining are nonpositive. We clearly
can represent this matrix as z—w, where both z and w are positive-semidefinite,
the k largest eigenvalues of z being the same as those of y — sI, and the
remaining p — k eigenvalues of z being equal to 0. Now w = z —y+ s/, > 0 and
Tr{z} = ok(2) = ox(y — sIp) = on(y) — sk <t — sk, so that A(t,s,y,z) € S}.

To verify that Im A intersects S;f, note that A(t, s, y, 2) is positive-definite
when, say, t =10p, s =0, y =0, z = I,

8. Geometrical mean. Let ¢ be a positive integer and let n = 29. Consider
the function

f@,-um) = —(1-90)/" : R® - R.

We already know that this function is SO-representable (see §6.2.3.5), and
therefore it is PD-representable (see §6.4.3.1). In fact, the SO-representation
given in §6.2.3.5 is a PD-representation as well. Indeed, this representation
involves a direct product of Ry and three-dimensional second-order cones,
and a three-dimensional second-order cone

%%yﬂ)éﬂﬁlzzvx”+f}

is nothing but the cone of symmetric positive-semidefinite 2 x 2 matrices; the
isomorphism is given by the mapping

(%yxbﬁ(z_m Y )-

Y z+zT
9. Determinant of a symmetric positive-semidefinite matriz. Let n > 2
be integer and let V,,(y) = Dety : S{+n} — R. It is well known that for [ > n

the function V'’ l(y) is concave. Set v =|logy n| (the smallest integer not less

than logyn), k = k(n) = 2¥, so that n < k < 2n and let v,(y) = an/(%)(y).
To construct a PD-representation of (—wvy,), we introduce k(k+ 1)/2 additional
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variables 0;5, 1 < j < i < k and k — 1 more additional variables 7; let ¢
be the collection comprised of 011,022,...,0kk. Also, let Y(y) be a k x k
block-diagonal matrix with y being n x n diagonal block and I, being the
(k —n) x (k — n) diagonal block. Consider the affine mapping

B (t, UI, T )

A(ty,0,7) = L, AT(0) |,
Ale) Y(y)

where A(co) denotes the lower triangular matrix with the nonzero entries o; ;

and the k x k block B(t,0’,7) “represents” the relation t > —(01,1...0% %)%,

i.e., (see §6.4.3.8)
{(t U,) | Jr: B(t o’ T) €S k}} = {(t,a') l o' >0,t> _(Ul,l---Uk,k)l/k}-

Note that .A(-) takes values in the space of symmetric (4k — 1) x (4k — 1)
matrices.
We claim that the set

Q = {(t,y) | o, 7): A(t;y,0,7) is positive-semidefinite}

coincides with the epigraph of (—vy, ), so that A defines the desired PD-represen-
tation of (—v,). Indeed, the block of A comprised of Iy, A, AT, and Y(y) is
positive-semidefinite if and only if ¢ is such that A(c)AT(¢) < Y (y). Com-
bining the latter observation with the above property of B, we conclude that
if, given (t,y), we can find (o, 7) in such a way that A(t;y,0,7) is positive-
semidefinite, then y is positive-semidefinite and ¢ > —uv,(y). In other words,
Q is contained in the epigraph of (—wvy,). Conversely, if (¢,y) satisfies the
latter relations, then we can define o in such a way that o;; are nonneg-
ative and Y(y) = A(0)AT(0), so that Dety = (o1,1...0kx)2 and therefore
t > —(01,1...ak,k)1/ k. The latter relation, by construction of B, means that
there exists 7 such that B(t,o’,7) is positive-semidefinite, so that A(t;y, 0, 7)
is positive-semidefinite. Thus, @ contains the epigraph of (—vy,), which, com-
bined with the (already proved) opposite inclusion, means that @ coincides
with the epigraph of (—vy,). The fact that Im .A intersects int S is evident.
10. General fractional-quadratic function. Let

flz,X)=2"X 1z :R" x {int S}'} - R;
passing to the lower semicontinuous closure of this function, we obtain the
functional element (G = R™ x S;t, f), where, as it is easily seen,
f(z,X) = sup{22"y —y" Xy | y e R"}

(compare with §6.2.3.6). We can verify immediately that the functional el-
ement (G, f) (we dealt with this “general fractional-quadratic function” in
§5.4.7) admits the following PD-representation:

GG, f)= ( {n+1}) A(t,m,X)=(i 27:\
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Recall that the restriction of f onto the cone
{X=A0+31A1+"'+3kAk| Sq ZO}

generated by positive-semidefinite symmetric Ay, ..., Ay with positive-definite
sum admits the SO-representation given in item 6 of §6.2.3.

6.4.4 Applications

1. Linearly and quadratically constrained problems. As we have already
seen, a convex quadratic form f admits a PD-representation of the structure
{r +2}, r being the rank of f. Thus, the scheme of §5.2.5.B allows us to find a
pd-reformulation of any quadratically constrained convex quadratic problem.
The size | p | of the resulting structure u equals to > ;vq{r; + 2}, where m
denotes the number of constraints and r; is rank of the ith constraint (for
i = 0, rank of the objective). Of course, the parameter | u | of the resulting
barrier is worse than the one (namely, 2(m + 1)) corresponding to the conic
reformulation of a quadratically constrained problem (see §6.2.2).

2. Minimization of the matriz norm. Although this problem has already
been studied (see §6.3.3), it is reasonable to note that the epigraph of the
matrix norm on the space Ly; of k x | matrices admits a PD-representation
(see §6.4.3.5), so that the problem studied in §6.3.3 can also be reformulated
as a pd-problem.

3. Minimization of the largest eigenvalue of a symmetric matriz. Lovasz
capacity number of a graph. Let A(y) = Ao+ Y.}_; Aiyi be an affine function
of y € R? taking values in Syg; and let Apmax(A) be the largest eigenvalue
of a symmetric matrix A. Assume that we desire to minimize the function
Amax(A(y)) over y. The PD-representation of Apax(-) (see §6.4.3.6) immediately
implies the pd-reformulation of the latter problem,

minimize f(u) =t by choice of u = (t,y) s.t.tl;— A(y) € SE;I}.

The problem of minimizing the largest eigenvalue of a symmetric matrix
linearly depending on the control vector occurs, for example, in connection
with computation of the Lovasz capacity number of a graph. Let I" be a graph
with the set of vertices V = {1,2,..., N} and the set of arcs E. Consider the
following characteristics of I":

a(I")—the maximal cardinality of independent subsets of V/ i.e., the subsets
in which no pairs of vertices are connected by an arc in T’;

o(I')—the Shannon capacity number of I", defined as follows. Regard V as
an alphabet and let T'* be the graph with the set of vertices being the set of
all k-letter words in the alphabet; a pair of these words is adjacent in I'* if

and only if, for each i < k, the ith letters of these words (vertices of I') are
1/k
adjacent in I'. By definition, 6(T") = limg_, (a(I"“)) / :
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X (I')—the size of minimal vertex coloring in the complement to I" graph I
(the minimal number of sets in partitioning the nodes of I under the require-
ment that no vertices of different sets are adjacent in IV).

The characteristics a(I") and x(I") are very important for many combina-
torial problems; unfortunately, to compute them for an arbitrary graph, it is
an NP-hard problem. It is also very difficult to compute the Shannon ca-
pacity number (it is easily seen that it is an upper bound for a(I'}). Lovasz
[Lo 79] suggested a nontrivial upper bound 6(T") for o(I'), which can be ef-
fectively computed. One of equivalent definitions of @(T') is as follows. Let
us set into correspondence to each (indirected) arc v of the graph I' its own
control variable y, and consider the following function A(y) of the variables
y = {yy, 7 € E}, taking values in the space of symmetric N x N matrices:
The ijth entry of A(y) is 1 if either ¢ = j or the vertices ¢ and j are not
adjacent; otherwise, they are linked by an arc v, and the 7jth entry of A(y) is,
by definition, y,. Now, by definition,

6(I') = min A (A(y)).

Lovasz proves that
x(T) 2 (') = o(I') (= a(I)).

Thus, the quantity 6(I") that can be computed by solving the associated
pd-problem is a bound (and, in many interesting cases, very “strong”) one for
important characteristic numbers of a graph.

4. Dual bounds in Boolean programming. Consider a quadratic program-
ming problem with equality constraints

(QE) : minimize fo(u) s.t.ue R, fi(u) =0, 1<i<q,

where all the functions f;, 0 < ¢ < g are quadratic forms.

This is a nonconvex and a very difficult problem; indeed, each mathemati-
cal programming problem with polynomial objective and constraints is easily
reduced to (QE) (to represent, say, the monomial z$z3 via quadratic equali-
ties, it suffices to introduce variables z1 2, *1,3, T2,2, T13;2,2, and constraints
Ty12 = :L‘%, r1,3 = 21712, 22 = .’L‘%, r1,3;2,2 = 21,372,2 (= .’1::1)'11,‘%)) Boolean con-
straint 2 € {0;1} also can be represented via the quadratic equality z? = z.
Thus, (QE) covers “almost everything.”

In many cases (say, in the branch-and-bound algorithms as applied to
(QE)), it is important to evaluate from below the optimal value QE* of (QE)
(as usual, QE* = +o0, if (QE) is not consistent; otherwise, QE* is the infimum
of the objective values over the feasible set of (QE)). Shor [ShD 85| suggested
a lower bound for QE* based on the duality theory, namely the following.

Consider the following Lagrange function for (QE):

q
L(u,y) = fo(w) + _4ifi(u) = =267 (y)u + uT A(y)u + d(y).
i=1



SEMIDEFINITE PROGRAMMING 243

Herein b(y), A(y), d(y) are linear in y functions taking values, respectively, in
R/, Sy, and R. Tt is clear that the quantity

¢(y) = inf{L(u,y) | u € R'} > —o0
for each y does not exceed QE*, so that the quantity

¢ =sup{¢(y) | y € R} € [~o0, +00]

is a lower bound for QE*.

The advantage of this lower bound is that, to compute it, it suffices to
solve a convex problem (even a pd one), and therefore this bound can be found
effectively. At the same time, for many real world problems, this bound is
reported to be “strong” enough.

Let us present a pd-reformulation of the problem of maximizing ¢. Set
g = {l+1} and define the function a(t,y) = Au+b, u = (¢,y) (¢ is an additional
scalar variable), taking values in the space of (I+1) x ({+1) symmetric matrices

as follows:
_(dy) -t bT(y)
atw = ("% " )

It is easily seen (compare with §6.4.3.10) that the matrix a(t,y) is positive
semidefinite if and only if £ < ¢(y). Therefore computing ¢* is the same as
solving the following problem

(QE') : minimize f(u) = —t by choice of u = (t,y) s.t.z=a(u) €S,

where p = {l + 1}.

5. Inscribing the mazimal ellipsoid into a convex polytope. This problem
(studied in detail in §6.5, although not as a pd-problem) is as follows. Given
a convex polytope

Q={zeR"|alc<b,i=1,...,m},
we should find an ellipsoid
W(B,u) ={z=By+ul|ly2<1}

of the maximal volume contained in Q. The control variables here are B (which
should be a positive-definite symmetric n x n matrix) and u € R™.

We assume that @ is bounded with a nonempty interior and that a; are
nonzeros. Under these assumptions, the problem evidently is solvable.

To find a pd-reformulation of the problem, note that an ellipsoid W (B, u)
defined by a positive-semidefinite matrix B is contained in @ if and only if
(B, u) satisfies the set of constraints

| Ba; ||2 +afu — b; <0, i=1,...,m;
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instead of maximizing the volume of W (B, u), i.e., of Det B, we can minimize
the function

Vo(B) = —(Det B)Y/ (%) f = glloganl
As we already know (§6.4.3.1), the Euclidean norm of a vector admits a PD-
representation: There exists an affine mapping

B(t,v) : R - S{n+1}

such that
{(t2) | t 2]z ) = B (Sfuny)-

In particular, the affine mapping
Bi(B,u) = B(bi — a] v, Ba;) : Sy x R™ = S(n 113
represents the constraint
|| Ba; ||2 +aiTu -5<0

(i.e., a pair comprised of an n x n matrix B and a vector u € R" satisfies the
latter constraint if and only if B;(B,u) € S{+n +1}). In §6.4.3.9, it was explained
that an appropriate affine mapping C(t; B, o, 7) taking values in the space of
symmetric (4k — 1) x (4k — 1) matrices (o and T are additional vectors of vari-
ables of the dimensions k(k+1)/2, k— 1, respectively) represents the epigraph
of the function V,,(-) in the sense that B is symmetric positive-semidefinite
and ¢t > V,(B) if and only if there exist ¢ and 7 such that C(t; B,o,7) is
positive-semidefinite.
Now let )
m times

p={4k—-1,n+1,...,n+1}

and let A(t; B, u,0,7) be the affine mapping from the space of corresponding
variables (t € R, B € S(,},u € R"0 € RFE+HD/2 7 ¢ R*¥-1) into S, defined
as follows: The unique (4k — 1) x (4k — 1) diagonal block of A(¢t; B,u,0,7)
is C(t; B,o,7), and the remaining m of (n + 1) x (n + 1) diagonal blocks are
B;(B,u). From the above remarks, it follows immediately that the problem

minimize ¢ by choice of (¢, B,u,0,7) s.t. A(t;B,u,0,7) € SI

is the desired pd-reformulation of the problem of finding the maximal volume
ellipsoid inscribed into the polytope Q.

6. Applications in control theory. Semidefinite programming has many ap-
plications in modern control theory (see [BB 90|, [BBr 91], [BBK 89,
[BG 92|, [BY 89], [DPZ 91], [Do 82], [FN 91], [FT 86|, [FT 88], [FT 91],
[FTD 91], [GB 86], [KR 91], and especially [BGFB 93]). Let us present an
example arising from Lyapunov stability analysis of systems subject to uncer-
tainty (see Boyd and El Ghaoui [BG 92]). In many cases, such a system can
be described by a differential inclusion
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(6.4.1) 2'(t) € X(2(t)),

defined by a given multivalued mapping X (z) (zx € R", X(z) C R"). The
problem is to bound from above asymptotic behaviour of the trajectories of
(6.4.1). To this purpose, we might look for a quadratic Lyapunov function
zT Lz for the inclusion, L being a positive definite symmetric matrix. If

(6.4.2) 20T Ly < \eT Lz
for certain A and all x € R", y € X (z), then clearly
(6.4.3) zT (t)La(t) < exp{\t}{zT(0)Lz(0)}

for all solutions to (6.4.1).
We henceforth restrict ourselves to the case when

{Xiz;..., Xkx} C X(z) C conv {X;z;...; Xpz}

for certain given matrices X; (this assumption is satisfied in many applications
in control theory). Then, checking whether (6.4.2) is satisfied for a given A is
the same as checking whether the system of “linear matrix inequalities”

(6.44) M —(XTL+LX)eSF, i=1,...,kjL—1I,¢€S8'

with the unknown L € S, is solvable. The latter problem is, of course, a
pd-problem with trivial objective.

A more interesting question is to find the best (with the smallest possible
A) quadratic Lyapunov function for (6.4.1). This is, of course, the same as
solving the following generalized linear-fractional problem (see §4.4) involving
the cone of positive-semidefinite matrices:

minimize A s.t. \B(L) — A(L) € S},

n,...,np CL) € St
N e’

{n}’

n times

where B(L) is the block-diagonal matrix with k£ (n x n) diagonal blocks, each
of them being L, A(L) is the block-diagonal matrix with the diagonal blocks
XFL+LX;,i=1,...,k, and C(L) = L — I,,. To solve the resulting problem,
we can use the projective method (§4.4) or reduce it via dichotomy to a “small”
series of the usual pd-problems of the type (6.4.4).

Concluding remarks

We have presented a number of interesting convex problems that admit a
pd-reformulation. For some of them (minimizing the largest eigenvalue, Shor’s
bounding), pd-formulation seems to be very natural, while, for some
others (e.g., for quadratically constrained quadratic programs), pd-formulation
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might look too sophisticated. Nevertheless, we note some advantages of a pd-
reformulation.

A. Possibility to use the generalized combined volumetric barrier. An
important (at least from the theoretical viewpoint) consequence of the pd-
representation (P’) of a convex problem is the possibility to provide the feasible
set of (P") with the generalized combined volumetric barrier (§5.5). Recall that
the value of the parameter of the latter barrier is O(1)(n | u |)/2, and this
quantity can be essentially less than the values associated with the standard
barriers. For example, the parameter of the “standard” barrier — Y%, In(—f;)
for the domain G in R™ defined by m convex quadratic constraints f; < 0 is m.
The parameter of the barrier induced by the standard conic representation of
G (see §3.2) is 2m. The parameter of the standard barrier associated with the
pd-conic representation of G is M = Y"1+, {Rank {f;} + 1}, which, of course, is
worse than m. The parameter O(1)(Mn)!/2 of the combined volumetric barrier
induced by the latter representation, however, can be much smaller that m.

B. Nice anticipated behaviour of the potential reduction methods. In many
experiments with “large-step” versions of the Karmarkar method as applied
to LP problems, it was found that the number N of Newton steps required
to solve an LP problem to a fixed accuracy is “almost independent” on the
(larger) size of the problem m: The dependence looks like N = O(lnm).
Recall that the theoretical upper bound is essentially worse: N < O(m). Our
own experiments with the projective method as applied to pd-problems also
demonstrate that the number of steps is almost independent of the size of
the problem. Although no rigorous justification of this phenomenon is known,
there is certain plausible explanation of it, which appears as follows. Consider
a step of, say, the Karmarkar method as applied to (P) (see §6.4.1) and let
be the strictly feasible solution that is updated at the step into a new solution
Z'. Let us perform scaling, i.e., instead of variables z taking values in the space
Sy, let us use variables £ = z~122z~1/2 It is easily seen that the step of
the method of Karmarkar in the £-variables looks precisely as it looked in the
initial variables, excluding the fact that the current strictly feasible solution
now is the unit matrix I (and, of course, the feasible plane and the objective
now should be subject to certain transformation).

The step looks as follows. We are given a positive-semidefinite matrix ¢ €
S, (the updated objective divided by its value at I) and a linear subspace L in
S, (L is the updated homogeneous feasible subspace of the problem intersected
with the null space of the gradient of the barrier at I). It is known that

(a) Tr{o} = 1;

(b) L is contained in the subspace formed by matrices with zero trace;

(c) The set (I + L)NS; contains a matrix &* with Tr{¢*o} = 0 (£* is the
updated optimal solution to the problem; recall that, in Karmarkar’s setting,
the optimal value is zero).

At the step, we compute the orthoprojection x of o onto L (with respect
to the Euclidean structure on S, defined by the Hessian of the barrier F(§) =
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—In(Det £) at I; this is simply the standard Euclidean structure on S,), and
then we minimize the potential

v(t) = F(I —tx) +mln{o,] —tx), m=| u|

by choice of t > 0 subject to the constraint that I — ¢x should be positive-
definite. The next strictly feasible solution to (P) is an appropriate normaliza-
tion of the matrix I — t*x, where t* is the minimizer of the potential v. The
amount A by which the Karmarkar potential function is decreased at the step
is precisely v(0) — v(t*).

As we have mentioned, (o, I) = 1, and, since x is the orthoprojection of o
onto L, we have (o, x) = (x, x) . Thus,

v(t) = ~InDet{I — tx} + mIn(1 — ¢ (x, x))

~In (ﬁu —tsi)) +mln (1 —t|s ||§) ,

=1

where s = (s1,...,8m) is the vector comprised of the eigenvalues of x. What
we know about s is

(a) 3% si =0 (see (b)) and

(8) || 8 lloo=> 1/m (indeed, in view of (c), we have (£*,0) = 0 for certain
positive-semidefinite £* = I — 6, § € L. Since (o,I) = 1 (see (a)), it follows
that (6,0) = 1. Since 6 € L and x is the orthoprojection of ¢ onto L, we have
(6,x) = (6,0) = 1. Thus, (x,I —£*) = 1 or, in view of (@), (x,&*) = —1.
The latter relation, in view of positive semidefiniteness of £* and the relation
Tr&* = m (see (c) and (b)) implies (3).

Now, for 0 < t <|| s ||}, we have

Zzl (ts;) '—tm H.‘,‘II%w ZZ (ts;) '—tm Hs||§
i=1j=1J i—1 =27
< ”3“3§1<t\|3n Y tm s |2
- ” 8 “go j:QJ 00 2
s 2
—_\\”- —H“—22{1n(1 —t | 8]loo) ¥t 8llco} —tm | s [3=(t)

(we have considered («)). The minimizer of v on 0 < t <|| s ||} is the point
T=m/(1+m| s|x), and

V() = - ( sl )2{m 1500 —In(1+m | 5 floo)} < —(1 - In2) ( s ll2 )2

'8 [loo II's lloc

(the latter inequality follows from (3)). Since v(0) = 0 and v(7) < (1), we
conclude that a large step in the method of Karmarkar decreases the potential
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at least by the quantity

A(s)=n<”s|l2)2, k=1-In2;

[l s [loo

here s is a certain nonzero vector from R™ (depending on the data and the
step) with zero mean of the coordinates.

The worst-case efficiency estimate for the method of Karmarkar follows
from the fact that A(s) is always > « (evident). At the same time, the “typical”
value of the ratio (|| s ||2 / || 8 |lec)? for a n-dimensional vector s is much
larger than the worst-case value 1. For example, let s be a random vector
taking values in the space of m-dimensional vectors with zero mean and let
the distribution of the direction of s be uniform on the corresponding sphere.
Then “typical” value of (|| s ||2 / || 8 |leo)? is O(m(Inm)~1) (more precisely,
the probability of the event {(|| s [l2 / || $ llo)? > O(1)m(lnm)~'} under
an appropriate choice of an absolute constant O(1) tends to 1 as m — o0).
If the decreasing of the potential at each step of the method of Karmarkar
were of the above “typical” order m/(Inm), then, to improve the accuracy of
the current approximate solution by an absolute constant factor, it would be
sufficient to perform O(lnm) steps (instead of O(m) steps prescribed by the
worst-case analysis). Of course, it seems to be impossible to prove something
rigorous here: The directions s occurring at the sequential steps of the method
heavily depend on each other, and there is no hope to provide the directional
symmetry of all of them by a consistent choice of a probabilistic distribution
on the set of problem instances.

Nevertheless, in view of the above analysis of the “anticipated behaviour”
of the Karmarkar method as applied to (P), the aforementioned empiric phe-
nomenon does not seem too surprising. Note that the anticipated behaviour
of the projective method as applied to pd-problems is the same as that of the
method of Karmarkar.

6.5 Extremal ellipsoids

6.5.1 Inscribed ellipsoids: Geometric formulation of the problem

In this section, we study in detail the following geometric problem mentioned
in §6.4.4.5:

P(K): Given a polytope
K={zcR"| alx <b,1<i<m},
find the ellipsoid of maximal volume contained in K.

This problem arises in connection with the inscribed ellipsoid method (IEM)
(see Khachiyan, Tarasov, and Erlikh [KhTE 88]) for convex nondifferentiable
optimization. The method minimizes a convex function f, say, over an n-
dimensional cube to a relative accuracy v in O(nlIn(n/v)) steps (= evaluations
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of f and f’). Note that this number of steps cannot be reduced (for each v < %)
more than by an absolute constant factor (for precise formulation of the latter
statement, see [NYu 79}). Each step of the IEM requires finding an e-solution
to the above geometrical problem (it is necessary to find an inscribed ellipsoid
of the volume not less than

{maximum volume of the inscribed ellipsoids} e™*,

¢ being an appropriate absolute constant). In [KhTE 88], the latter problem is
solved by the ellipsoid method, which requires nearly O(m?®) arithmetic oper-
ations per step. It turns out that the barrier method from Chapter 2 reduces
this amount to O(m*°Inm). In this section, we describe the implementation
of the barrier method.
We study P(K) under the following assumptions.
(I) K is presented by the list of corresponding linear inequalities;
(II) K is bounded with a nonempty interior, and a; # 0, 1 <@ < m;
(IIT) K contains the unit Euclidean ball V' centered at 0 and is contained
in the concentric ball W of a given radius R.
Note that all these assumptions are satisfied in the case of IEM, where,
without loss of generality, we can take R = 10n and maintain with the aid of
a simple restart strategy the inequality m < O(nlnn).

6.5.2 Algebraic formulation of the problem

We can reformulate P(K) as follows. Let L,, be the space of real n x n matrices
and L} be the domain in L, formed by matrices of positive determinant. Each
ellipsoid in R"™ can be represented as

W(B,u) ={zx=By+ul||yl251},

where u € R" is the center of the ellipsoid and B € L.

Note that, under an appropriate choice of the volume unit, the volume | - |
of an ellipsoid W (B, u) is

| W(B,u) |= Det B,

and the inclusion W (B, u) C K holds if and only if (B, u) satisfies the system
of inequalities

Qa™ ™) : | BTa; l2< b; — azTu, 1<i<m

(@™ denotes the collection of vectors a;, 1 < ¢ < m, and b™ denotes the
collection of numbers b;, 1 <i < m).
Let
V(B,u) = —InDet B: L}t x R" — R.
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Problem P(K) can be reformulated as follows:
PK): minimize V(B, u) by choice of (B,u) € L} x R
s.t. constraints Q(a™,b™).

An ellipsoid W (B,u) is called e-optimal if it is contained in K and its
volume is not less than V*e ¢, where V* is the maximal volume of ellipsoids
contained in K.

P(K) as a convex programming problem. The quantities B and u in the
representation of an ellipsoid in the form W (B, u) are not uniquely defined. If
U is an orthogonal n X n matrix, then

W (B,u) = W(BU,u).

Hence we can assume the B-component of the variable z = (B, u) involved in
P(K) to be symmetric positive-definite. This additional restriction leads to a
convex programming problem. In fact, there are many convex programming
problems equivalent to P(K). Let us describe these.

Let Sy, be the space of symmetric real n X n matrices and S;, be the interior
of the cone S of positive-semidefinite n x n matrices.

Let A € L} and let AQ(a™, ™) denote the following system of inequalities
with unknowns (B,u) € L, x R" :

| BTAT a; ||2< b; — alu, 1<i<m.
Consider the problem
P(AK) : minimize V(z) by choice of z = (B,u) € S x R
s.t. AQ(a™,b™).

Problems P(K) and P(A, K) are clearly consistent. Let the optimal values
of their objectives be v*, v}, respectively, and let

A(z) =V(z) —v* for a P(K)-feasible point z,

An(z) = V(z) —vj
for a P(A, K)-feasible point z.

Lemma 6.5.1 Let A € L}. If z = (B,u) is P(A,K)-feasible, then Az =
(AB, u) is P(K)-feasible and

(6.5.1) A(Az) = Ap(2).
Proof. Az clearly is feasible for P(K). To verify (6.5.1), note that

V(Az) = V(z) = —InDet A
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does not depend on 2. Thus, each point that is feasible for P(A, K) corresponds
to a point that is feasible for P(K), the values of the objectives at the points
being equal to each other within a constant term (—InDet A). In particular,

(6.5.2) v* — vy < —InDetA.

To prove (6.5.1), it suffices to show that the latter inequality is an equality.
Let (B*,u*) be the solution to P(K). The polar factorization of the matrix
(A"'B*) allows us to represent B* as B* = ABU, U being orthogonal and
B being symmetric positive-definite. Since (B*,u*) satisfies the constraints
Q(a™,b™), the point 2t = (B,u*) satisfies the constraints AQ(a™,b™), so
that z* is feasible for P(A, K). Since U is orthogonal, we have

v* = V(B*,u*) = V(AB,u*) = V(B,u*) —InDet A = V(z*) — InDet A

> v — InDet A;

thus v* — v} > —InDet A. This inequality, combined with (6.5.2), proves the
lemma. O

The lemma shows that solving P(K) is the same as solving any of the
convex programming problems P(A,K).

6.5.3 Path-following method

Let us discuss how to solve P(A, K) by the path-following barrier-generated
method. Let F = S,, x R™. This space is provided by the standard Euclidean
structure, given by the scalar product

((B,u), (C,v)) = Tt{BC} + uTv.
Let G(A) denote the following closure of the feasible region of P(A,K) :
G(A)={z=(B,u) € E| B€S,,|| BATa; ||l2< bi —aTu, 1 <i <m}.

It is clear that G(A) is a bounded closed convex domain in E and that the
function

FAMz) = 2V(2) = Y In{(b; — af w)’— || B(ATa) |3} = 2V(2) + ®"(2)
1

(z = (B,u)) is a V-self-concordant barrier for G(A), where
¥ =2n+2m < 4m

(see Propositions 5.4.3, and 5.4.5; since K is a compact set, we have n < m).
Note that V(-) is 1-compatible with this barrier (Proposition 3.2.1(ii)). By
condition (III), the point z = ((1/2)1,,0) is a good starting point for P(A, K);
thus, the problem can be solved by the basic barrier method associated with
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the barrier FA. It can be verified that, to find an e-solution to the problem, it
suffices to perform no more than

0] (ml/ 2In E@)

€

steps of the preliminary and the main stages of the method. Each of these steps
requires us to form and to solve some linear system with dim E (< O(m?))
equations and unknowns. It is easy to show that the standard implementation
of a step costs no more than O(m®) arithmetic operations (in fact, O(m5)
operations if the conjugate gradient method is applied, since the matrix of
the resulting system is sparse). Thus, the straightforward application of the
barrier method to P(K) finds an e-solution at the cost O(m5> In(Rm/¢)). Our
aim now is to demonstrate that the intrinsic symmetry of the problem allows
us to reduce the cost by a factor of O(m).

The idea of the speed-up can be easily described for the main stage, where
we must compute the Newton directions for the functions FA(z) = (2+t)V(2)+
®2(z). This computation (at a “general” point z) costs O(m®) operations (for
simplicity, we replace the powers of n by the same powers of m > n). At a
“special” z, namely, at z = (I,, u), however, the computation costs only O(m?)
operations. So we would prefer to deal only with “special” points. Namely,
assume we have performed 7 iterations of the main stage and have a value
t; of the penalty parameter and an approximate solution (B;,u;), which is
P(K)-feasible.

Consider the problem P(B;,K). Since (B;,u;) is P(K)-feasible, the point
(In,w;) is P(B;,K)-feasible. Let us compute the Newton iterate (B, uit1)
of (I, u;) (the Newton method is applied to the function Ft?"). Then let us
increase the value of the penalty parameter in the same manner as in the
basic barrier method. Thereby we find a new approximate solution (B;y1 =
B;B:,u;+1) to P(K) and a new value, t;,1, of the penalty parameter. Now we
can perform the next iteration, and so on. Note that the described procedure
needs justification, because now we have no convex programming problem to
which we can apply the barrier method. The main idea of the justification is
the following. Similarly to the case of the basic barrier method, our aim is to
prove that the procedure maintains the relation

AFD, (I, ui)) < 0.1

(of course, 0.1 could be replaced by some other constant).

Assume that this relation holds for some ¢. Our usual arguments, when
applied to P(B;, K), imply that
0.1%

AEP: (B uig1)) < A=01)y

< 0.02.

The latter inequality in the case of

o)
tiy1 = (1 + W) ti
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implies that
(6.5.3) AFZ:,, (B, uis1)) < 0.05.
We wish to conclude from the latter relation that

(6.5.4) AEZHY (I, ui1)) < 0.1;

+1 7

the obstacle is the fact that (6.5.3) and (6.5.4) involve different self-concordant
functions. Let us use the following observation. It is not difficult to show that
there is a nonlinear one-to-one correspondence between the feasible domains
G(A), G(A)) of problems P(A,K), P(A’,K) such that the values of V (as
well as the values of ®* and <I>A') at two points corresponding to each other
coincide (within an additive constant that depends on A, A’ only). Therefore
F} and F}' at two points corresponding to each other differ by a constant
which depends on ¢, A, A’ only. It turns out that the point (B, u;+1) of the
set G(B;) corresponds to the point (I, u;1+1) of the set G(B;41). By Theorem
2.2.2(iii), relation (6.5.3) means that the value of the function F,* at the point
(B}, uit1) differs from the minimum of this function over G(B;) by no more
than (0.06)2/2. It follows that the value of Ffﬁl at (In,u;y1) differs from the
minimum of the latter function over G(B;+1) by no more than (0.06)%/2. By
Theorem 2.2.2(iv), the latter relation implies (6.5.4).

To use the same trick at the preliminary stage, we need some special effort.
Indeed, at this stage, we deal with families of functions of the type

t{linear form} + F2(z).

We wish these functions to be “almost invariant” under the above correspon-
dence between G(A) and G(A’). This condition is satisfied if the {linear form}
depends on u-component of z only, and we should provide the latter prop-
erty. To this purpose, we use the prepreliminary stage, which we include in
the method. At this stage, we are seeking such a point z# that the partial
derivative of the barrier with respect to B-component at z# is close to zero.
Assume that such a point is found. Then we can take the restriction of the
first-order differential of the barrier onto R™ as the {linear form} and use z#
as the starting point for the preliminary stage. Now, to obtain an appropriate
2#, we set w = 0 and minimize the barrier over the B-component only. This
subproblem proves to be relatively simple, and we manage to solve it (this is
the prepreliminary stage) with the aid of the barrier method at the cost of
O(m>3 In(mR)) operations.

Now let us describe the three-stage version of the barrier method for P(K).
Let us start with the description of the correspondence between G(A) and

G(A").

Lemma 6.5.2 Let A, A’ € L}. Consider the mapping Zy s, which transforms
a point z = (B,u) € S, x R"™ into the point 2/ = (B',u) € S, x R" such that

AB2AT — (A/)(BI)Q(AI)T
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(it is clear that the latter relation, for given A, A, defines a positive-semidefinite
symmetric B' as a function of a positive semidefinite symmetric B).

The mapping Zan s a one-to-one mapping from G(A) onto G(A') : z €
G(A) = 2’ € G(A'), such that V(z) — V(') does not depend on z and ®*(z) =
®N (2!). The inverse of ZAn 18 Znr A

The proof of the lemma is straightforward, and we omit it.

Description of the method. To simplify our considerations, we choose
the parameters of the method as concrete numeric constants.

Prepreliminary stage. At this stage, we deal with the problem

Pi(K) : minimize R(C) = —2InDet C — § In{v? — (C, A;)}
i=1
st.CeSH (C,A4)<bh?, 1<i<m,

where A; = a;al and (Q, X) = Tr{QX} is the usual scalar product on S,,.

Let G be the feasible domain of P; (K). It is clear that G is a bounded closed
convex domain and R is a ¢-self-concordant barrier for G, ¥ = 2(n + 2m) <
6m. Let Cp = 0.51,,. By (III), Cp is an interior point of G. At the prepreliminary
stage, we apply the preliminary stage of the basic barrier method associated
with R, Cp being the starting point. The parameters A} ,A1, A2, A5, Ag of the
method are subject to the inequalities (compare with (3.2.5), (3.2.6))

0 < At(A1) € A] < A2 < A3 <0.01,

M <A1 <001, AT(A3) < )5 < A3,
w?(23)

¢(M)) <0.01, A=) < 0.1,
w?(X2) .
T—wiuy <
recall that
~ 22 B _ w2()\)(1 +w(A))
AF(N) = e wA)=1-(1-30)3, ¢\ = 1-w())

Let C* be the result of the prepreliminary stage. This point belongs to
int G and satisfies the inequality

(6.5.5) A(R,C*) < A= 0.01.

Note that the number of iterations required to find C* does not exceed

2m

_ 1/2
(6.5.6) Ny =0(1)m"“In oA

(Proposition 3.2.3); herein 7g is the Minkowsky function of G with the pole
at the minimizer of R over int G.
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Proposition 6.5.1 We have

(6.5.7) Ny < O(m*?1n(Rm));

(6.5.8) R(C") —min R < 0.6)%.

The arithmetic cost of the prepreliminary stage does not exceed
(6.5.9) M <O (m3‘5 ln(Rm)) )

Proof. In view of (6.5.6), to verify (6.5.7), we should prove that

1
a=1-7r(Co) >0 <(’R,m)s>
for certain absolute constant s.

Recall that K contains the unit ball centered at 0 and is contained in the
ball of the radius R centered at 0; moreover, C is feasible for P;(K) if and
only if the ellipsoid W(C'/2,0) is contained in K. The above arguments show
that the ball (in S,) of radius % centered at Cp is contained in G and that the
diameter of G does not exceed 4nR? (the latter relation holds since the semi
axes of the ellipsoid W (C/2,0) for C € G, i.e., the eigenvalues of the matrix
C'/2, do not exceed R). Hence

1 o(1)
> >
Y= 16nR2 = (Rm)?’
Relation (6.5.8) immediately follows from (6.5.5) and Theorem 2.2.2(iii).

In view of (6.5.8), to prove (6.5.9), it suffices to show that the Newton
minimization step for a function

{a linear function of C'} + R(C)

can be performed at the cost O(m?). It is easily seen that the gradient 2H of
the function at a given point C € int G can be computed at the above cost. A
straightforward computation shows that the Hessian 2W of the function at C'
transforms X € S, into the matrix

QVX =207 XC 1+ ) 2di (A4i, X) Ai,
1=1
where the collection of numbers
1

2= AL O

1<t <m

can be computed at the cost O(mn?). The Newton displacement X is the
solution to the system WX = H; hence, it can be represented as

(6.5.10) X:C{H+inAi}C,

=1
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where z;, 1 <1 < m are (unknown) scalars. Let us derive the system of linear
equations for these scalars (the solution of the latter system, after substitution
into (6.5.10), gives the desired X). To derive the system, let us substitute
(6.5.10) into the equation WX = H. After some simple transformations, we
obtain the equation

m m m m
(6.5.11) > A+ di (A, CHC)Ai+ Y di)_z; (CA;C, A;) Ai = 0.
i=1 i=1 i=1 j=1

This matrix equation is equivalent to a system (let it be (*)) of m scalar linear
equations with m unknowns z;. The system is obtained by taking termwise
scalar products of (6.5.11) and the matrices A;, 1 < j < m. The ijth element
of the matrix of (*) is

(Aj, A) + ) di (Ax, Ai) (Ax, CA;C),
k=1

and the ith component of the right-hand side vector is
m
— Y di (Ar, Ai) (Ax, CHC).
k=1

To form the matrix of (*) and the right-hand side vector of the system, it
suffices to compute (i) all the products (4;, A;) (O(m2n) operations); (ii) m
matrices CA;C (O(n?m) operations) and all the scalar products of these matri-
ces and matrices A; (O(m?n) operations more); (iii) the matrix CHC (O(n3)
operations) and its scalar products by matrices Ax (O(n? m) operations more).

When evaluating the numbers of operations, we considered the fact that
A; are of rank 1.

After the above quantities are computed, each of the coeflicients of system
(*) can be computed at the cost O(m). Thus, system (*) can be formed at
the cost O(m?); then it can be solved at the cost O(m?). After the system is
solved, the Newton displacement X can be computed at the cost O(mn?); see
(65.10). O

Initialization of the preliminary stage. Having found the positive-definite
symmetric matrix C*, we compute its factorization C* = B,BT, where B, €
L} (the cost is O(n3)). Consider the problem

Py(B.,K) : minimize P(B) = —2InDet B — 3" In{82— || BB a; |2}
=1

It is not difficult to prove (compare with Lemma 6.5.1) that there exists
a one-to-one correspondence between the feasible sets of the problems P; (K)
and Py (B, K) with the following property: If C is a feasible point for the first
problem and B is the corresponding feasible point for the second problem, then
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R(C) = 2P(B)-+const. Note that, under our correspondence, C* is transformed
into I,.

By the above arguments, (6.5.8) implies the relation P(I,) — ming, P <
0.3)% (A = 0.01), where G, is the feasible domain of P;(B.,K). Let

F*(z) = FB(2)

be the barrier for the feasible set G(B.) of problem P(B.,K) and let z* =
(In,0). As we have seen,

(6.5.12) 2* € int G(B,); F*(z*) — min{F*(B,0) | (B,0) € G(B,)} < 0.3)%

Let (-,-), denote the scalar product in E defined by the bilinear form DZF*(z*)
[-,-] and let || - ||« be the corresponding norm. By Theorem 2.2.2(iv), relation
(6.5.12) implies that

(6.5.13) | DF*(2*)[(H,0)] |< 0.07 || (H,0) ||, VH € S,.

Moreover, if z** = (X**,0) is the minimizer of F* on the set G* = {(X,u) €
G(B.) | v =0}, then

(6.5.14) DXF*(z*")[2* — 2**, 2" — 2] < 0.01
(Theorem 2.2.2(iii)). By (6.5.13), there exists a linear form
P(w) = @ w), = %", w)

on F (recall that (-,-) is the standard scalar product on E = S,, x R") such
that || #* ||«< 0.07 and the restriction of the form onto S, coincides with the
similar restriction of linear form DF*(z*)[w].

Let us compute the form (w). Consider the linear form

P(w) = —DF*(z")[w] + P(w) = (¢",w), = (6™, w).
For A € L} and t > 0, let F(2) = té(z) + 2V(2) + @M (2) = té(2) + FA(2) :
int G(A) — R, so that FA € S (int G(A), S x R7).
Proposition 6.5.2 The form ¢(w) depends only on the u-component of w €
E, and
(6.5.15) AEB+ 2%) < 0.07,
(6.5.16) | ¢* [l.< O(m!2).

Let 2z be the minimizer of F*(-) over int G(B.) and let w1 (z) be the Minkowsky
function of G(B.) with the pole at z*. Then

(6.5.17) me(z) <1— %—2.

The vector ¢** € E can be computed at the cost of O(m?*n? + m3) operations.
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Proof. The fact that ¢ depends only on the u-component of the argument is
evident (recall that the restriction of ¢ onto S, coincides with the restriction
onto this subspace of the form DF*(z*)[-] and ¢ is the difference of the above
forms).

Furthermore,

DF*(2*)[w] = DF*(2*)[w] + ¢(w) = $(w),

and (6.5.15) follows from the relation || ¢* ||«< 0.07 (see the definition of ).
Moreover,

6 Is<Il (F*Y(2) lls + 1| 9 [le< 0.07 + O(m'/?),

since F* is a self-concordant barrier with the parameter O(m); inequality
(6.5.16) is proved.
To verify (6.5.17), note that the pair

z=(B,u) € S, xR"

is feasible for P(B,,K) if and only if the ellipsoid W (B.B,u) is contained in
K. Let us introduce the norm

p(B,v) =|| B«B || + [ v |2
(| - || is the usual operator norm) on E and let By = (1/2)(C*)~!/2. Since
B,BT = C*, B,(C*)1/2

is an orthogonal matrix, so that the ellipsoid W{(B.Bjy,0) is the Euclidean
ball of the radius 2 centered at 0. By (III), the 3-neighbourhood of the point
29 = (By,0) (in the metric defined by p) is contained in G(B,). At the same
time, (IIT) means that the diameter of G(B,) in this metric is < O(R). Hence,

(6.5.18) mi(z0) <1 0_7(29.

Furthermore, the restriction of F* onto G* = {(B,0) € G(B.)} is an
O(m)-self-concordant barrier for G*, and the minimizer of this barrier over G*
is z** = (X**,0). Hence, the set G* contains the ellipsoid (in S,)

U={(Y,0)| D’)F*(z™)[Y - X™,Y - X*] < 1}
and is contained in the ellipsoid
U' = {(Y,0) | D’F*(z*)[Y — X*)Y — X**] < O(m?)}

(see Proposition 2.3.2(ii)).
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The latter observation, combined with (6.5.14), implies that 2* can be
represented as
*=azp+(1-a)z
for certain z € G* and « € (0,1), a > O(1/m). In view of convexity of 7 and
(6.5.18), we have
m(2) S omy () + (1 - ey (1) <1 - SO oy OO
which is required in (6.5.17).

It remains to evaluate the cost at which ¢** can be computed. Let ) be
the Hessian of F™* at the point z*, let ¢ be the gradient of F* at this point, and
let 2 be the orthoprojector from E onto S,. Let = (X, 0) be the solution to
the system

(6.5.19) Qg — Qz) = 0; z €S,

(Sp is identified with the subspace S, x {0} in E). It is not difficult to show
that ¢** = Qx — q. Indeed, for w € S,,, we have

<1,‘,’U)>* = (Qw,w) - (QQ:I},’LU) - (Qqaw) = (Qaw)'

If we Eis (-, -),-orthogonal to S,, then (z,w), = 0 in view of z € S,,. Hence
z is {-,-},-orthogonal projection of the gradient of F* at the point z* onto S,
(the gradient is taken with respect to the Euclidean structure {-,-),), or, which
is the same, x = ¥*. Thus, ¥** = @z and ¢** = Qx — q.

Let us write the following expressions for the first- and the second-order
differentials of F'* at the point (I, u) :

NSE

(6.5.20) DF™(In, w)[(H, v)] = =2 (In, H) — Y di {cialv = (H,ATAM)},

(6.5.21) m
D*FMNIn,w)[(H, v), (H,v)] = 2(H, H) +_r; {cialv - (H, ATA,-A>}2
i=1

where A; = aiaiT. For given u, A, the collection of scalars d;, ¢;, 74, s; (which
depend on u and A only) can be computed at the cost of O(mn?) operations
(when referring to the costs of computations, we consider the fact that the
matrices A; are of rank 1). Note that s; > 0.

In particular, we see that the computation of ¢, as well as the multiplication
of @ by a given vector, can be performed at the cost O(mn?).

To prove that ¢** can be computed at the cost O(m?n? + m?), it suffices
to show that, at this cost, we can find a symmetric solution X to the matrix
equation

(6522) X +JX+XJ+ f: {ai + B; <ATAiA, X>} ATAA=V.
i=1
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In this equation, J = %Z;’;l s;{ATA;A is a symmetric positive-semidefinite
matrix that can be computed at the cost O(mn?). At the same cost, we can
compute the symmetric matrix V' and the collection of scalars «;, 5;.

1%, To solve (6.5.22), we act as follows. Let us reduce the matrix J by
an orthogonal transformation U to a three-diagonal form; i.e., let us find (at
the cost O(n?)) an orthogonal matrix U and a three-diagonal matrix P such
that UJUT = P. The substitution Y = UXU7 transforms (6.5.22) into the
equation

m
(6523) Y+PY+YP+) {oi+p:i(STAS Y)}STAS = L,

=1

where § = AUT, L = UVUT are matrices that can be computed at the cost
O(n?®). We desire to find a symmetric solution to (6.5.23); this solution (at the
cost O(n3)) can be transformed into the required solution to (6.5.22). Thus,
we must show that (6.5.23) can be solved at the cost O(m?n? + m3).

2%, Let us find the solutions to (m + 1) matrix equations

Y, + PY;+Y,P=5T4;S, 1<i<m,

Ym+1 + PYm-H + Ym+1P = L.

Since P is a three-diagonal matrix, each of these equations can be solved at
the cost O(n?). Indeed, the equation (with a n X n matrix Z as unknown)

(6.5.24) P(Z)=Z+PZ+ZP=M

has the unique solution, since the operator P (regarded as a linear operator
in L,) is symmetric and positive-definite (note that P is symmetric positive-
semidefinite). The subspace of symmetric matrices is invariant with respect to
P. Hence, for a symmetric M, the solution Z to (6.5.24) is symmetric, also. In
particular, Y; are symmetric, 1 <i<m + 1.

30. Let us show that (6.5.24) can be solved at the cost O(n3).

Matrix equation (6.5.24), regarded as a system with n? unknowns (the ele-
ments of Z), can be described as follows. The matrix P is symmetric positive-
semidefinite and three-diagonal, as follows:

Pe; = vie; + piei—1 + pit1€i41,

where e;, 1 < i < n are the standard orths in R?, eg = €,41 =0, p1 = i1 =
0, v; > 0. Let I; be the columns of M and let z; = Ze;, 0 < i <n+ 1. Then
(6.5.24) can be written as a system (i) of equations

;) : wizi + (Yie1 +1)zic1 + Pzioy + pic1zi2 = i, 2<iln+1,

with unknown vectors z;, which are subject to restrictions 29 = zp,+1 = 0.
To solve the system, let us act as follows. The indices of nonzero elements
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of the sequence p* = {p1,..., fn+1} can be partitioned into mutually disjoint
sequential groups I, = {s;,s, +1,...,t:}, 1 <r <k, such that

y’sr—l = l’l’tr+l = 0

(note that py = pn+1 = 0). Let
ID =L [{s:—1}, I'=L{t-+1}

Let i1, ...,4s be the elements of {1,2,...,n} not belonging to U I;"; I, ; = {i;}
and I, ; = {i; + 1} for 1 < j < f. We have defined the groups I, I}, 1 <
Jj < k+ f. Let (U(r)) denote the subsystem of system ({f) comprised by equa-
tions (U4;) with indices ¢ belonging to I7. It is easy to prove that subsystem
(U(r)) involves only z; with ¢ € I (so that these subsystems have no com-
mon unknowns), and system (i) is a “direct product” of subsystems (U(r)),
r=1,...,k+ f. It suffices to prove that subsystem (U(r)) can be solved at
the cost O(n?a(r)), where a(r) is the number of elements in I

To avoid cumbersome notation, assume that (I(r)) consists of the equa-
tions (U;), i = 2,...,p; thus,

ll‘p:oa ,U,2,...,,u,p_1750.

We desire to solve the subsystem at the cost of O(n?p) operations. Let us
act as follows. Let Zg be the zero and Z; be the unit n X n matrices and let
the matrix Z; be defined for 2 <7 < p as

1
Z; = T HOVier + DI+ PYZi 1 + pi1Z; 2}
1
It is clear that the general solution to the homogeneous system of equations

pizi + (Yic1 + Dzim1 + Pzio1 + pim12;9 =0, 2<i<p,

(where zg = 0) is of the form z; = Z;\, 1 <i < p, where A € R™. A particular
solution {z}, 1 < i < p} to the system

pizi + (Yie1 + Dzicy + Pzioa + pic12i—2 = i, 2<i<p,

can be found recursively, below:
.1 :
z; = ; {li—l —(vici+ )2~ Pzl - Mz‘—lzf_g}, 2< 1< p,
(3

where 25 = 2] = 0.

Since the matrix P is three-diagonal, to compute all matrices Z; and vectors
zf, 1 <i < p, it takes totally no more than O(n?p) operations (note that the
matrices Z; are O(p)-diagonal). It is clear that the solution to the subsystem
under consideration is

(6525) 2 = Z,)\* + Z;, 1 <9 <p,
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where A* is such that the equation (U}) is satisfied by the corresponding 2;. In
other words, A* is the solution to the linear system

{1+ 1)+ PHZp-1A + 251) + p-1(Zp-2A + 25_2) = Ip-1.

This system at the cost O(n?) can be reduced to the standard form, and the
matrix of this system is O(p)-diagonal; thus, the cost at which the system can
be solved by the conjugate gradient method does not exceed O(n?p). After \*
is computed, it takes no more than O(np?) operations to compute z; according
to (6.5.25). Thus, the subsystem under consideration can be solved in O(n?p)
operations, as it was announced at the beginning of 3°.

4°, Let us come back to (6.5.23). By 3°, the total cost at which each of the
Y;, 1 <i < m+ 1 can be computed does not exceed O(mn?). It is clear that
the solution to (6.5.23) can be represented as

m+1
(6.5.26) Y=3 tY¥;
i=1

with appropriate scalars t;. Substitution of (6.5.26) into (6.5.23) leads, by def-
inition of Y;, to the equation for ¢; of the form

m m m+1

(6.5.27)ZtiSTAiS +tm L+ Z {a,- + G; Z tj <STA,'S, Y}>} STA,-S = L.
i=1 i=1 j=1

This matrix equality is equivalent to a system (let it be (*)) of m + 1 scalar

linear equations with unknowns ¢;; these equations can be obtained by taking

termwise scalar products of (6.5.27) and matrices STA;S, 1 <i<mand L.

Let us compute all quantities of the form

<STA,~S,YJ->, <STA,-S,STAJ-S>, <STA,~S,L>, (L,L).

Since Rank A; = 1, the total cost of this computation is < O(m?n?). After
these quantities are computed, it takes no more than O(m) operations to com-
pute each of the coefficients of (*). Thus, (*) can be reduced to the standard
form at the total cost O(m?n2 +m3). Solving (*) (O(m?) operations) and then
computing Y in accordance with (6.5.26) (O(mn?) operations more), we find
the desired solution to (6.5.23). The proof is complete. O

Preliminary stage. At this stage, we compute matrices B; € L}, vectors
u; € int K, and numbers ¢; > 0, ¢ > 0 as follows:

BO = B*, Ug = 0, to = 1;
Zi41 = (Bir1, uig1) = (BB uiyy),
where (BUHD y;,1) = 20D is the Newton iterate of A = (I,,u;) (the New-
ton method is applied to the function Ff “(+)), ti+1 = tie™*, where

0.05

¥ =2(n+m).
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The preliminary stage is terminated at the first iteration when the relation
(6.5.29) MFBi (I,u;)) < 0.1

holds (the number of this iteration is denoted by 7*).
The result of the stage is the point

2# = (B¥ ,u¥) = (B, u+ ).
Proposition 6.5.3 The preliminary stage is well defined, namely,
Bie L, (In,uw)€intG(B;), 0<i<i*

For all i, 0 <1 <1i*, the relations

(6.5.30) L) :  MEFP, (I, w)) < 0.1,
(6.5.31) (Jo): AFD D) <0.02
hold.

The number i* of iterations at the preliminary stage satisfies the inequality
(6.5.32) i* < O(mY?In(mR)).

Each iteration of the preliminary stage can be performed at the arithmetic
cost of O(m?n? + m3) operations (this amount includes the cost of the verifi-
cation of the termination condition).

Proof. 1°. Assume that for some 3 the following relation holds:

for each j, 0 < j < i, we have B; € L},
M(@): ¢ (In,u;) € int G(B;) and relations (;) hold,
relations (J;) hold for 0 < j < 4.

Note that M(0) is clearly true (see (6.5.15)). Let us show that, if M(7)
holds, then M(: 4+ 1) holds. Indeed, the function F;, = Ft? ¢ is strongly
self-concordant on int G(B;), so that, by (I;) and Theorem 2.2.2(ii), we have
2+ e G(B;) and

(0.1)2

(6.5.33) A(Fy,, 20D) <

(thus (J;) holds).
Proposition 3.2.2 as applied to the strongly self-concordant family

F = {int G(B;), Fi(z) = té(2) + FB(2), Sp x R"}i>0,
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combined with the fact that ¢ is O-compatible with the barrier F5: (the pa-
rameter value for this barrier is ¥ = 2(n + m)), implies that

91/2 } L1t 92 0.05

it tig1) <41+ — -
p°'°7(]:’t“t‘“)—{ *0.07 007 *~ oor

whence, by Theorem 3.1.1 and by (6.5.33),
A(Fy,p, 2y < 0.07.
By Theorem 2.2.2(iii), the latter relation leads to

(6.5.34) Fy,,, (20+0) — i ) Fi,,.(2) <0.6(0.07)%.

By Lemma 6.5.2, the left-hand side in (6.5.34) is equal to

Bit1 ) .
B (Zn, wiy1) intg(lg:H) tiy1

which, combined with (6.5.34) and Theorem 2.2.2(iv), proves (I;1;). Thereby,
the implication M(i) = M(i + 1) is proved.
20. Let us prove (6.5.32). Similarly to §6.5.3, let
F*(z) = FB+(2) : int G(B,) = R,  F}(2) = tp(z) + F*(2).
With the aid of the transformation G(B,.) — G(B;) described in Lemma 6.5.2,
we set the points w; € G(B,) into correspondence with the points (I,,u;). In

view of (6.5.34) and Lemma 6.5.2, we have

5. F!(w;) — mi * < 0.6(0.07)2,
(6.5.35) £, (i) intlgl(%,)Ft’ < 0.6(0.07)

whence by Theorem 2.2.2(iv)
(6.5.36) AF,w;) < 0.08.
Let, as in §6.5.3, z* be the minimizer of F* over int G(B,) and let
Wy = {w €E=8, xR"| D*F*(2N)[w—-2z",w— 2] < %};
then W, /5 C int G(B.) (Theorem 2.1.1(ii)). Moreover,
D*F*(w)[h, h] > 0.25D*F*(z")[h, h]
for w € Wiy (Theorem 2.1.1), which implies that

(6.5.37) F*(w)—F*(zt)> 4 forwe oW ,.
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Let us provide E with the scalar product D?F#*(2%)[-,-] and let V and || - ||
denote the corresponding gradient and norm. In view of (6.5.16), (6.5.17), and
Proposition 2.3.2(i.2), we have

I V¢ < O(Rm™®),
which, combined with (6.5.37), implies that
F}(w) = F}(2%) 2 35 — O(tRm*?).

Hence, under an appropriate choice of absolute constants as factors in the
below O(-) we have, by virtue of (6.5.35),

0(1)
2R

If the premise in (6.5.38) holds for a given 4, then

(6-538) t; < = w; € W1/2.

ACF™,wi) < AMFg,wi) + 2t || Vo ||

(since the norm induced by the form D?F*(w;)[-, -] is bounded, up to a factor
2, by the norm defined by the form D2F*(zt)[,,-]). In view of (6.5.36), we
have

0(1) * 2.5
In particular, the implication
o(1 .
t; < m%% = )\(F ,w,-) < 0.09
holds, whence, by Theorem 2.2.2(iii),
O(l) * 3 * 2

and, by Lemma, 6.5.2,

0(1) B; - B; 2
S e = FPUnw) - min F < 0.6(0.09)2,

so that (see Theorem 2.2.2(iv))

o1
(6.5.40) t; < %2
This implication combined with the termination rule of the preliminary stage
(see (6.5.29)) and the updating formula for ¢; leads to (6.5.32).
30. It remains to verify that an iteration of the preliminary stage can be
performed in no more than O(m?n? + m3) operations. It is clear that the cost
of an iteration is

= AFPBi (I,,u;)) <0.1.

O(n®) + L1 + Lo,



266 APPLICATIONS IN CONVEX OPTIMIZATION

where £; is the cost of computing A(F, (I,,,u)) (this computation is required
by the termination rule) and L is the cost of computing the Newton displace-
ment for the function FA at the point (I,,u). It is clear (see (6.5.21)) that
the gradients of FA and F* at the point (I,,u) can be computed at the cost
O(mn?). After these gradients are computed, to compute the above quantities,
it suffices to to solve the equation (with unknowns (X,v) € E)

(6.5.41) D FA(I,,w)[(X,v),(H, k)] = (s,(H,h)) Y(H,h)€E,
s € E being given. Thus, the cost of an iteration is
O(mn? + L),
where L is the cost at which (6.5.41) can be solved. It suffices to prove that
L < 0(m?n? + md).

In view of (6.5.21), (6.5.41) can be rewritten as a system consisting of the
matrix and the vector equations

m
X+ rifcialv — (X, AT ANV }AT A
=1

(6.542) +3 si{ATAAX + XATA;A}
=1
=H,
(6.5.43) > di{cialv — (X, ATA;A)}a; =,
i=1

where A; = aia;-r. The collection of scalars s; > 0, ¢;, r;, d;, the vector h € R™,
and the symmetric matrix H (these quantities depend on u and A only) for
given u, A can be computed at the cost O(mn?).

Let us act as in the proof of Proposition 6.5.2: First, compute the symmet-
ric matrix m

W=> siATAA
i=1

(O(mn?) operations), then transform W by an orthogonal transformation to
a three-diagonal form (O(n?) operations) and rewrite (6.5.42), (6.5.43) as

(6.544) Y+ RY + YR+ ir@' {eialv - (v, 874:8)} ST4:S = G,
=1

(6.5.45) i d; {cia;frv (v, STAiS>} ai=h
=1

where R, S, and G are certain known matrices (they can be computed at the
cost O(n?); R is symmetric positive-semidefinite and three-diagonal). Note
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that the solution (Y, v) to system (6.5.44), (6.5.45) can be transformed at the
cost O(n3) into the solution (X, v) to (6.5.42), (6.5.43).

To solve (6.5.44), (6.5.45), we compute the solutions ¥;, 1 <7 <m+1 to
the matrix equations

Y+ RY; +Y;iR=8TA;S, 1<i<m,
Y1+ RY 1 + Yoo iR =G,

(see the proof of Proposition 6.5.2; the total cost of these computations is
O(m?n? + m3)). Then we represent the Y-component of the desired solution

as
m+1

Y = Z T'iYia
i=1

the scalars 7; being our new unknowns. Substituting this representation into
(6.5.44) and taking termwise scalar products of the resulting equation and
each of the matrices ST A;S, 1 < ¢ < m, G, we obtain a linear system of scalar
equations of the form

AT + By = p, (%)

Ct+Dv=gq, (*x)

where 7 = (71, ..., 7m+1)? and v are the unknowns and the matrices A, B, C, D
are of sizes (m+1) x (m+1), (m+1) xn, n x (m+1), n X n, respectively ((x)
corresponds to (6.5.44); (*x) corresponds to (6.5.45)). By the same arguments
as in the proof of Proposition 6.5.2, the quantities A, B, C, D, p, q can be
computed at the cost O(m2n?). Thus, it costs no more than O(m?n? 4+ m?)
to form (x)—(*x), to solve this system, and to transform its solution into the
solution to (6.5.44), (6.5.45). O

Main stage. At this stage, we produce matrices C; € L, vectors v; € int K
and numbers ¢; > 0, i > 0, as follows:

(Co,wo) = (B#,u#),  to=1;
wit1 = (Cir1,vir1) = (C:ICP, vipy),
where (CO+D v;,1) = w1 is the Newton iterate of the point h(®) = (I, v;);
the Newton method is applied to
Eg" (w) = t:;V(w) + V(w) + &% (w),

where, as above,
o*(w) = - Y In{(b; — alw)?>~ || B(ATas) |13} : int G(A) — R,
=1

tiv1 = tiet,
0.05

7
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Proposition 6.5.4 The main stage is well defined: For all i > 0, we have
C; € L;t, (In,v,-) € int G(C;).

For all 1 > 0, the relations

(6.5.46) Ki):  AED, (In,vi)) 0.1,
(6.5.47) Li):  MET,wl) <0.02
hold.

Each iteration of the main stage can be performed at the arithmetic cost of
O(m?n? + m®) operations.
For each i, the ellipsoid W (C;,v;) is contained in K and

(6.5.48) In | W(C, ) |> In | W(CH#,v##) | —O (tﬁ) ,

where | W |= mes,, W and (C## v##) is a solution to P(K).

Proof. The families
{int G(C),Ef, E}t>0

associated with a C € L] are strongly self-concordant families generated by
(n 4 2m)-self-concordant barriers V(w) + ®C (w) for the sets G(C) and by the
1-compatible with these barriers function V(w). By the termination rule for
the preliminary stage (see (6.5.29)), we have

MFB* (I,,u#)) < 0.01.

Clearly,
FB* =g,

= -

]

Thus, in view of tg = 1, (K¢) holds. In view of the same arguments as in
the proof of Proposition 6.5.3, (K¢) implies that the iterations of the main
stage are well defined and that relations (K;), (L;) are valid for each i. The
cost of an iteration can be evaluated in the same manner as in the proof of
Proposition 6.5.3. It remains to verify (6.5.48). This inequality, by Lemma
6.5.2, is equivalent to

0/
V(Ip,v;) —minV <0 (t_) ;
1
the latter inequality follows from (K;) by virtue of arguments similar to these
used in the proof of Proposition 3.2.4. a
The main result. The above propositions can be summarized in the follow-
ing theorem.
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Theorem 6.5.1 Assume that conditions (1)—(II1) are satisfied. Then the de-
scribed method finds an e-optimal ellipsoid (for all € € (0,1)) in no more than
O(mY/? In(mR/e)) iterations of all three stages. The total arithmetic cost of
these iterations does not exceed
o (m2'5(712 +m)In @—) .
€

The theorem is a straightforward consequence of Propositions 6.5.1-6.5.4.
Recall that, in the case of the IEM, we can take R < 10n, m < O(nlnn).

6.5.4 The minimum volume ellipsoid that contains a given set

A close to P(K) problem is to find the minimum volume ellipsoid containing
a given finite set. The latter problem can be solved by the above techniques;
here, we describe the corresponding results. Let I" be a given m-element set in
R"™ and K be the convex hull of I'; we wish to find the ellipsoid of minimum
volume containing I". This problem is referred to as 7,(T’).

We use the following traditional trick. Let us regard R™ as an affine hy-
perplane A in R™"*! defined by the equation ,,; = 1; thus, I ¢ 4 ¢ R,
Consider the problem

T2, (D) : find (n + 1)-dimensional ellipsoid of minimal volume

centered at 0 and containing I'.

If W O T is feasible for 7,2, ;(I'), then W defines a n-dimensional ellipsoid
W N A feasible for 7,(T"). It is not difficult to show that this correspondence
transforms the solution to 7,,41(I") into the solution to 7,(I'). Moreover, if
W is an e-optimal solution to Z,°,,(I') (i.e., it is feasible for this problem
and mes, 1 W < exp{e}V**, V** being the optimal value of the objective
in 7,7, (")), then W' = W A is an c-optimal solution to 7,(T'). It costs no
more than O(n?®) operations to transform the standard description of W into
the standard description of W’. Thus, we can restrict ourselves to problem

0, (D).

The algebraic reformulation of 7,2, ,(T) is as follows:

T given a subset I' = {z; | 1 <4 <m} C R""!, minimize
V(B) = —InDet B by choice of B € L;:H subject to

| Bzi [|2< 1, 1 <4 < m.

Let @ denote the feasible set of the latter problem. Each B € @ defines
an ellipsoid W(B~1,0), which is feasible for 7;?+1(F)- To find an e-solution
to 7.2, 1(T'), we must find an e-solution to T*, i.e., B € @ such that V(B) —
infgV <e.

The optimal value of the objective of 7* clearly is the same as for the
problem 7**, which is obtained from 7* by replacing the restriction B € L 1
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by the restriction B € S,,. The substitution B? = C transforms 7** into the
problem

T V(C)=—1nDetC - min | C €S, (C,X;) <1,1<i<m,
T

where X; = z;z; .

If C is an e-solution to 7*** and C = BTB (B € L},,), then B is an
(¢/2)-solution to 7*. Given C, we can compute B in O(n®) operations.

Assume that the following condition holds:

(IV) The convex hull K of the set I' contains the unit ball centered at 0
and is contained in the concentric ball of a given radius R (both of the balls
are balls in R"™).

It is not difficult to show, that under this assumption, we can add to 7***
n + 1 extra constraints of the type Cj; < ¢cR?*m?, 1 < j < n + 1, without
changing the optimal value of the objective; herein ¢ > % is an appropriate
absolute constant. We come to the problem

T#:V(C)Hmin|C€Sn+1, (C,Xi)<ai, 1<i<m+n+1

(we have increased the list of matrices X; to include our new constraints). It
remains to find an e-solution to 7#.
The feasible set G# of the latter problem admits an O(m)-self-concordant

barrier
m+n+1

F(C)=V(C)- Y In(a—(C X)),
i=1

and the objective is 1-compatible with this barrier. The point Cy = 0.25R 2
I,.,1 belongs to int G#, and it is easy to show that

1

In——m—
1 -7, (Co)

< O(In(Rm))

(see (IV)), where 7, is the Minkowsky function of G# with the pole at the
minimizer of F over int G¥. Thus, problem 7# can be solved by the basic
barrier method (with Cp taken as the starting point). The total number of
iterations required to find an e-solution to this problem (and hence to the
original one) does not exceed N(¢) = O(m*/?In(Rm/e)). The arithmetic cost
of an iteration does not exceed O(m?) (compare with Proposition 6.5.1). Thus,
we can find an e-solution to 7,(I') at the total cost of

0 (m3'5 In E?)

operations.

Remark 6.5.1 The advantage of problem T, as compared to P is that the
first of these problems can be reduced to a problem with linear constraints



EXTREMAL ELLIPSOIDS 271

(see T#), which is not the case for P. Recently, Khachiyan and Todd [KhT 90
proved that, to find an e-solution to P(K), we can form a “small” sequence
of auziliary problems of the same analytical structure as T,,. The sequence is
comprised of O((In1/e)(InlnR)) problems that should be solved to an accuracy
of order of €, and the basic barrier method solves each of them at the cost of
O(m331In(mR/¢)) operations. Thus, the total arithmetic cost of finding an
e-solution to P(K) proves to be O(m>®(In(mR/¢))In(1/€) InlnR), which, for
a fized €, is approzimately O(m) times better than our estimate for P.
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Chapter 7

Variational inequalities with monotone
operators

In this chapter, we develop interior-point methods for variational inequalities
involving monotone operators. This is, in a sense, the most general formula-
tion of an extremum problem of convex structure: Variational inequalities with
monotone operators cover not only the usual convex minimization problems,
but also saddle-point problems for convex-concave games, Nash equilibriums,
and so forth. The order of exposition is as follows. Section 7.1 contains an
introduction to the problem and motivate the approach we use. In §7.2 we
study self-concordant monotone operators and the related results on the New-
ton method (the theory is quite similar to that one developed in Chapter 1).
In §7.3 we present the path-following method for variational inequalities with
monotone operators compatible with a self-concordant barrier for the domain
of the inequality, and the concluding §7.4 is devoted to the particular case of
inequalities with linear operators.

7.1 Preliminary remarks

7.1.1 Variational inequalities

Recall the formulation of a variational inequality with a monotone operator.
Let E be a finite-dimensional real vector space and let E* be its conjugate. Let
S be a multivalued mapping defined on certain set Dom{S} C E and taking
values in F*; more precisely, S sets into correspondence to a point € Dom{S}
a nonempty subset S(z) C E*. The set

G(S) = {(z,€) € Ex E* | z € Dom{S}, £ € S(x)}

is called the graph of S. If S is single-valued (i.e., S(x) consists of a single point
for every € Dom{S}), then the (unique) point of the set S(z), € Dom{S}
is also denoted by S(z).

The mapping S is called monotone if

(7.1.1) E—mz—y) >0 V(z,8),(y,n) € G(S).

A monotone mapping S is called maximal monotone if its graph cannot be
extended without violation of the monotonicity property: For every (z,w) ¢
G(S), there exists (z,£) € G(S) such that (w— &,z —z) < 0.

273
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A pair (G, S) is called a monotone element on E if G is a closed convex
domain in E and § is a monotone operator with int G C Dom{S} C G.

Let (G, S) be a monotone element. The corresponding variational inequal-
ity V(G, S) is the following problem:

find z € Dom{S} such that (¢,y — z) > 0 or certain £ € S(zx)
and all y € G.

From monotonicity, it follows that every solution = to V(G, S) satisfies the
relation

(7.1.2) (n,y—z) >0 for all (y,n) € G(S).

A point z € G satisfying the latter relation is called a weak solution to the
variational inequality V(G, S). Thus, every solution to V(G, S) is a weak solu-
tion to the inequality as well. Under mild assumptions, the inverse statement
is also valid.

Proposition 7.1.1 Let (G,S) be a monotone element on E and let = be a
weak solution to V(G, S).

(i) If S is a single-valued continuous mapping defined on G, then = is a
solution to V(G, S).

(ii) Let S’ be a mazimal monotone operator and let S be the restriction of
S’" onto G: Dom{S} = Dom{S'} NG, S(y) = S'(y), y € Dom{S}. Then z is
a solution to V(G, S).

Proof. First, consider the case when S is single-valued and continuous oper-
ator defined on G. Since z* is a weak solution, for y € G and 0 <t < 1, we

have
(S(z* +t(y—z),y—2") 20

and, in view of the continuity of S, we conclude that (S(z*),y —z*) > 0, so
that z* is a solution.

Now let S be the restriction onto G of a maximal monotone operator S’
Consider the following operator g with Dom{g} = G:

g(z) ={€€E"| (£{,y—x) <0, y€ G}.

It is well known that this operator is maximal monotone. Now the interiors
of the domains of the maximal monotone operators S’ and g have a nonempty
intersection, so that the sum of these operators (the operator S(z) = {¢ + 7 |
¢ € S'(z), n € g(x)} with the domain Dom{S’} N Dom{g}) is also maxi-
mal monotone (Rockafeller’s theorem; see, e.g., [GTr 89]). The domain of
this operator coincides with Dom{S}. Furthermore, z* is a weak solution to
V(G,S), so that (n,y—z*) > 0, (y,m) € G(S), whence (n+¢&y—z") >
0, (y,n) € G(S),(y,€) € G(g), and we conclude that (x,y — z*) > 0 when-
ever (y,x) € G(S). The latter relation means precisely that, adding the pair
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(z*,0) to the graph of 5, we do not violate the monotonicity; since S is maximal
monotone, it follows that (z*,0) € G(5). Thus, z* € Dom{S’'} N G = Dom{S}
and 0 = &* + n* for certain &* € §'(z*) = S(z*), n* € g(«*). From the defini-
tion of g, it immediately follows that (¢*,y — z*) = — (*,y —~z*) > 0, y € G,
so that z* is a solution to V(G, S). O

An advantage of the notion of a weak solution is that, under minimal
assumptions, such a solution does exist.

Proposition 7.1.2 Let (G, S) be a monotone element and let G be bounded.
Then V(G, S) admits weak solutions.

Proof. Let us set into correspondence to a finite subset f C G(S) the set

X(f)={z€G| (ny—z) >0 ¥(y,n) € f}.

Let us prove that X(f) is nonempty. Denote f = {(yi,m:), ¢ = 1,...,m} and
assume that X(f) is empty. Since f is finite and G is a convex compact set,
the emptiness of X (f) implies the existence of scalars A; > 0,2 1", A, = 1,
such that the linear function g(z) = Y%, \i {(m, ¥i — z) is negative on G,

g(xz) < =6 <0, rz€eqG.

Let z* = 371", Ay;; then z* € G. Let z € intG and z(t) = z* + t(z —
z*), 0 < t < 1; then z(t) € int G C Dom{S}, t € (0,1]. Let n, € S(x(t)). We
have

m

~§ > g(z(t)) = Y_ i (i, ui — (1))

i=1

Z Z 77t7y1, - II) )> = (Ut,m* - m(t» =—t <77t7z - .’L'*> .

We have established that tw(t) > 6 > 0 for all ¢ € (0,1], where w(t)
(e, z — x*). This is impossible, however, since w is nondecreasing on (0, 1]
due to the monotonicity of S. This is the desired contradiction.

Thus, X(f) is nonempty for each f. The set X(f) is clearly compact,
and the family of sets X (-) is nested, so that their intersection is nonempty;
however, the latter intersection evidently is the set of all weak solutions to

V(G,S). O

7.1.2 Problems reducible to inequalities with monotone operators

It is well known that many interesting problems arising in convex program-
ming, game theory, and so forth can be reduced to variational inequalities with
monotone operators. Let us list the simplest examples.

1. Minimization of a convez function. Let (G, f) be a functional element on
E, i.e., a pair comprised of a closed convex domain H C F and a convex lower
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semicontinuous function f mapping G into the extended real axis R|J{+o0}
and such that f is finite on int G. It is well known that the subdifferential

0f(x) ={€ € E*| ({,y —x) + f(z) < f(y) Yy € G}

(this mapping is defined at the set of all z such that f(z) < co and the right-
hand side is nonempty) is maximal monotone on its domain, and the latter
domain contains int G; recall that the elements of df(z) are called support at
z on G functionals to f. Thus, if G' C G is a closed convex domain, then the
pair comprised of G’ and of the restriction of 8f onto G’ is a monotone element;
the solutions (= weak solutions) of the corresponding variational inequality are
precisely the minimizers of f over G'.

2. Convez-concave games. Let G be a closed convex domain in E, let @
be a closed convex domain in a finite-dimensional real vector space H, and let
f(z,y) be a (say, continuous) function defined on G x @, convex in z € G for
every y € @ and concave in y € @ for each x € G. The mapping (z,y) —
6f(z,y) = O:f(x,y) x (—0yf(x,y)) putting into correspondence to a point
(z,y) € G x @ the set of all pairs (§,n) € E* x H* such that £ is a support
at z on G functional to f(-,y) and 7 is a support at y on @ functional to
(—f(z,)) (the domain of the mapping is comprised of those (z,y) at which
the corresponding sets of support functionals both are nonempty). It is well
known that the pair (G x @, §f) is a monotone element, and, if G' C G, Q' CQ
are closed convex domains, then the weak solutions to the variational inequality
V(G' x Q',6f |g'xq') are precisely the saddle points of f on G’ x @, i.e., the
points (z*,y*) € G’ x @' such that

f@,y") = f="y") 2 f(=",y), (z,9)€G xQ.

The set of these saddle points is nonempty if and only if the following convex
problems are solvable:

(f*) : minimize f*(z) = sup f(z,y) st.z €,
yeQ!

(fe) : minimize f,(y) = sup f(z,y) s.t.y€Q’;
zeG’

the set of weak solutions to V(G' x Q',6f |¢'x¢r) is simply the direct product
of the sets of solutions to these two problems.
3. Nash equilibrium. Let G; be closed convex domains in finite-dimensional

real vector spaces E;, 1 <4 < m and let f;(x1,...,Zm) be continuous functions
defined on G = G x - -+ X Gp,; we assume that f; is convex in z; and concave
in 2t = (x1,...,%i-1,Tit1,---»&m), ¢ = 1,...,m and that the sum of these

functions is convex on G. Under this assumption, the operator

8(z1,. .-y xm) = {(&1,...,&m) | & is a support at z; on G;

functional to the function fi(z1,...,Zi—1,", Tit1,---,&m), t =1,...,m}
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defined on the set of those = (z1,...,Zm), where the right-hand side set is
nonempty, is monotone, and the pair (G, 8) is a monotone element. Let G, be
closed convex domains contained in G;, 1 = 1, ..., m. The weak solutions to the

variational inequality V(G',6 |¢), G' = G} x -+ x G}, are precisely the Nash
equilibriums defined as follows. Consider m players, the ith of them choosing
z; € G}. The penalty paid by the ith player in the situation when the choices
of the players comprise a collection of choices ¢ € G’ is f;(z). The set of choices
z* € G’ is an equilibrium if each of the players cannot decrease his penalty by

his separate actions, i.e., if } is a minimizer of fi(z},..., 2} 1,2}, ,...,Z},)
over G/ for all : = 1,...,m. Note that the saddle-point problem (see §7.1.2.2)
is a particular case of this situation when f; = f and fo = —f.

4. Complementarity problem. This problem is closely related to optimality
conditions in constrained optimization and is as follows:

given a mapping S : R? — R”, find z € RY : S(z) >0, (S(z),z) =0.

If S is continuous, then the latter problem is precisely the problem of find-
ing solutions (= weak solutions) to the variational inequality V(R%, S). If S
is monotone, then (R%,S) is a monotone element. Also, when the comple-
mentarity problem expresses optimality conditions in a conver optimization
problem, then S proves to be monotone.

7.1.3 Overview of the contents

It is known that polynomial-time methods for general convex problems (like
the ellipsoid method, inscribed ellipsoid method, and so forth) can be extended
onto variational inequalities with monotone operators (see [Nm 81]). In what
follows, we extend the interior-point methods developed for convex program-
ming onto variational inequalities with monotone operators. The order of
exposition is as follows.

(i) We introduce a class of strongly self-concordant monotone operators and
study the convergence of the Newton method at the corresponding variational
inequalities. The basic example of a self-concordant monotone mapping is the
derivative of a 1-self-concordant function f. Such a derivative is a C2-smooth
single-valued mapping S from an open convex domain @ = Dom{f} C F into
E* satisfying (for all z € Q and all hq, hs, hs € E) the relation

3
(ID*f(@)[ha, ha, ha)l =) |S"(@)[ha, ha, hsll < 2 [T (8" @)k, i)' /?
i=1

this is precisely the definition of a self-concordant monotone mapping S :
@ — E*. Note that, in the definition of a self-concordant function, the above
inequality was postulated only for the triples (h1, hg, hg) with hy = he = hs,
and the fact that this inequality then holds for all triples could be proved
(done in Appendix 1). The proof is based on symmetry of the three-linear
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form S”(zx)[-,-,] in the case of S = f’. Since now S” should not be symmetric,
we are forced to postulate the above inequality for all triples.

It turns out that the Newton method as applied to the equation S(z) =
0 (this equation is the “unconstrained” version of the variational inequality
associated with §) involving a self-concordant monotone operator possesses
the same convergence properties as in the case when S is the derivative of a
self-concordant function. The corresponding results form the contents of §7.2.

(i) To develop the barrier-generated path-following method for variational
inequalities, we introduce the notion of a (single-valued) monotone mapping
compatible with a self-concordant barrier for a closed convex domain. This
property generalizes the main feature of the first-order derivative of a function
compatible with the barrier. It turns out to be possible to solve an inequality
involving such a mapping by the path-following method associated with the
barrier. This method is presented and studied in §7.3.

Until now, everything appeared similar to the optimization case. In the
latter case, the next step was to reduce a given convex optimization problem
to a problem with the objective that is definitely compatible with any barrier,
i.e.,, to a problem with a linear (or a quadratic) objective. There were no
difficulties in this reduction, so that we could claim that each convex program-
ming problem can be solved with the aid of a barrier-generated path-following
method, provided that we can find a self-concordant barrier for the feasible do-
main of the standard reformulation of the initial problem. We know that such
a barrier always exists and, in many important cases, we are clever enough to
find a “computable” self-concordant barrier; we even possess a kind of calculus
for these barriers.

What happens in the case of monotone variational inequalities? In a sense,
everything is the same. We have no difficulties with an inequality involving
linear monotone operator and not too complicated G: To such an inequality,
the path-following method can be applied directly. As we see, in principle, each
monotone variational inequality can be reduced to an inequality involving a
linear monotone operator, so that, in principle, each inequality can be solved
with the aid of the interior point machinery. A drawback is that now the
“feasible domain of the standard reformulation of the initial inequality” is
more complicated than in the optimization case, so that we often cannot find
a computable barrier for the latter domain. Nevertheless, we develop a kind of
calculus that gives us some tools to find the desired barriers at least in simple
situations (e.g., when the initial operator is the sum of a linear monotone
operator and the derivative of a convex function, provided that we know a
covering for the latter function). This calculus is developed in §7.4.

7.2 Self-concordant monotone operators and Newton method

Let E be a finite-dimensional real vector space and let E* be the conjugate
space. A linear operator A : £ — E* generates a bilinear form
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(Ah,e) : Ex E — R,
where, as usual, (¢, z) denotes the value of a functional ¢ € E* at a vector
z € E. The operator A* conjugate to A acts from (E*)* into E*; since (E*)*
can be canonically identified with E, we can regard A* as an operator from
E into E*. In particular, the operator (A + A*)/2 is well defined; the bilinear
form
(3(A+ A%)h,e)
clearly is symmetric, and the associated quadratic form

<%(A + A*)h, h>

coincides with the quadratic form (Ah, h) generated by A.

Let Q C E be an open nonempty convex set. Assume that S is a C2-smooth
single-valued monotone operator on Q. The first derivative S’'(z) for every
is a linear mapping from E into E*, and therefore it defines a bilinear form
(S'(z)h,e) : E x E — R. From monotonicity, it clearly follows that

(S'(z)h,h) >0, heE;
thus, the symmetric operator
S(x) = 3(8'(z) + (8)(2)) : E — E?

is positive semidefinite; i.e., it generates a symmetric bilinear form with non-
negative values on the diagonal of £ x K. In particular, S at every z € @)
defines the (possibly, degenerate) scalar product

(h,€)sz = (S(z)h,e)
on F and a Euclidean seminorm

Ik llse={(h,h)s.2}'/>.

The second derivative S”(z) can be naturally identified with a three-linear
form on E defined as

S"(z)|h, e, 8] = % li=0 {S'(z + th)e,s).

Definition 7.2.1 A single-valued monotone operator S : Q — E* is called
self-concordant (notation: S € S(Q)) if it is C? smooth and if the following
relation holds for allx € Q and allh; € F, 1 =1,2,3:

3
(7.2.1) |S" ()1, ha, hs]| < 2] I hi llse -

i=1

An operator S € §(Q) is called strongly self-concordant on Q (notation: S €
S7(Q)) if the sequence of operators S{x;) is unbounded whenever x; € Q form
a sequence converging to a boundary point of Q.
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For S € §(Q) and z € @, let
E(S,z) ={hc E ||| h|s2=0},
We(S,z)={yeE||y—z|sz<r}, W2(S, z) = int W,.(S, z).

The following statement is a “finite-difference” reformulation of Definition
7.2.1 (cf. §2.1).

Proposition 7.2.1 Let S be a self-concordant on () monotone operator. Then
(i) The space £(S,z) does not depend on z € Q,

(7.2.2) E(S,z) = £(S5), z € Q,

and S’ is constant on every set of the form (z + £(S))NQ. If S is strongly
self-concordant on Q, then also

(7.2.3) Q=Q+E(S).
(i) If z € Q, then, for every y € QN WA (S,z) and all h, k' € E, we have

1
S'(y) = §'(z))h, K| < —1%,0 A b sz
|<( (y) (:D)) >|—{(1_ “y_-'r”S,z)2 } ” ”S,:l:” ”S,
“hHS.'z:
7.2.4 hlse =1y =2 llse) <[ B |lsy< z__
124)  hlls (1= 1y = llse) <l lsaS oo

If S is strongly self-concordant on @, then also
(7.2.5) WS, z)cQ, =z€Q.
Proof. (i) Let h € £(S, z), so that the function

6(y) = (SWh k) = (S@h,h): Q >R
satisfies the relation ¢(z) = 0. We have

(&' (W), e} | = 18" W)le; b ]l < 2 [l e llsgll b 5= 2 € llsiy 6(y)-

Thus,
(o' (W) e)| <2 elsy oly), yEQ;

the latter inequality, combined with the relation ¢(z) = 0, immediately leads
to ¢ = 0. This identity means that £(S,z) C £(S,y),y € Q. Since z is an
arbitrary point of @, the latter relation implies (7.2.2).

To prove that S'(y) = S'(z) for any pair z,y € Q satisfying y — z € £(S5),
let us fix these x and y; denote e = y — z and let hy,hy € E. Set f(t) =
(S'(z + t{y — z))h1, ha) : [0,1] — R. We have |f'(t)| = |S"(z + te)[e, h1, ho]| <
2 || e |sz+tell h1 lsz+tell P2 ||sz+te= O (the latter equality holds, since e €
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£(S)). Thus, (S'(z + te)hy, hy) does not depend on t, and therefore S'(y) =
S'(z).

To complete the proof of (i), it remains to verify that, in the case of S €
ST (Q), wehave Q+E(S) C Q. Let z € Qand y € z + E(S). f y € Q, then
there exists a bounded sequence t; € R such that z; = = + t;(y — z) € Q
and z; converge to a boundary point of Q. Since S € S(Q), the sequence
{8(z;)} must be unbounded; but, according to the already-proved part of (i),
§'(z;) = S'(z) and therefore S(z;) = S(z), which is impossible. Thus, y € Q.
Part (i) is proved.

(ii) Given z,y € Q, || y — = ||s,z< 1, consider the function

d(t) = (S'(z + te)e,€) : [0,1] — R,
where e = y — . This is a C! function, and we have
18 (8)] = 15" (z + te) e, e, e]| < 21| € [[§04s0 = 20%2(D).

The inequality
()l < 26*(t), 0<it<1

implies that either ¢(¢) =0, 0 <t <1or

d i ’
- t) <1 0<t<1;
‘ 7?0 =1, <t<
since ¢(0) =|| e ||%.m, in the latter case, we conclude that

ez, o lel2,
solt) = T tlelsa?

1+t ellsz)® ~
Of course, (7.2.6) also holds true in the case of ¢(t) = 0.
Now let h; € E, i = 1,2 be such that || h; ||s+< 1. Let

(7.2.6)

fit) = (S'(z + te)hs, hi) =|| hi 3 pp0e0 O<t<1
Then

[fi@)] =15"(z + te)le,

filt)-

It follows that either f; =0, or f; > 0 and

d 2||€||SJ:
—1In f;(t)] <2 STt e loa
\dt n fil )I <2lellsene 7o

(see (7.2.6)). In the latter case, we have

_ A 1
S50 S Tt ellsa?

(

o) <
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or

(72.7) [ hillss A=t ellsz) <l hi llsarte<ll hillsz A=t ellsaz)™"

Of course, (7.2.7) also holds in the case of f; = 0. Note that (7.2.7) contains
the second relation in (7.2.4).
Now let
f(t) = (S'(z + te)h1, ha), 0<t<1.

We have
|/ ()] = |S"(z + te)le, b1, holl < 2| € l|szstell P s zrtell b2 llsztte

< ollelisall b lisel b2 ”S,a:’
(1-tlelss)?

so that
| {(S"(y) — §'(x))h1, ha) | = |£(1) — £(0)|

1

dt
<2 e s, h S, ha ||s /
I € szl P1 llsell P2 llse J (1-t]elsaz)?

1
= -1]|lh || h -
((1* |y —2 |lsz)2 ) I h1 llszll Bz s,

as required in the first relation of (7.2.4).

From (7.2.4), it follows that the set of operators {S(y) | y € W2(S,z) NQ}
is bounded for each r < 1. In the case of S € ST(Q), this observation immedi-
ately leads to (7.2.5). O

The following simple statement is rather useful.

Proposition 7.2.2 (i) Stability of self-concordance with respect to affine sub-
stitutions of argument. Let S be self-concordant on Q and let x = A(y) = Ay+b
be an affine mapping of a finite-dimensional space E* into E with the image in-
tersecting Q. Then the set QT = A~1(Q) is an open nonempty convex subset of
E* and the operator S*(y) = A*S(A(y)) : QT — (E™)* is self-concordant on
Qt. If S is strongly self-concordant on Q, then S* is strongly self-concordant
on Q.

(ii) Stability of self-concordance with respect to summation. Let S; be self-
concordant on Q; CE, i=1,....k and let Q =", Qi #0. If oy > 1, i =
1,...,k, then the operator

k
S(z) = ZC!iSi(-T) :Q — E*

=1

is self-concordant on Q. If S; are strongly self-concordant on Q;, i =1,...,k,
then also S is strongly self-concordant on Q. If Q; =Q, i=1,...,k and S is
strongly self-concordant on @, then S also is strongly self-concordant on Q.
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(iii) Self-concordance of the derivative of a self-concordant function. Let
f be a l-self-concordant function on Q. Then the operator S = f' is self-
concordant on Q. If f is strongly 1-self-concordant on @, then S is strongly
self-concordant on Q.

Proof. (i) The only statement that is not a straightforward consequence of
Definition 7.2.1 is the claim that the strict self-concordance of S implies that
one of S*. If S is strongly self-concordant on Q, then W(S,z) C Q for every
z € Q; it immediately follows that W?(S+,y) € Q% for every y € Q. Thus, a
sequence of points with bounded 5’+() cannot converge to a boundary point
of @%, so that St does belong to ST(Q™T).

Parts (ii) and (iii) are immediate consequences of Definition 7.2.1. O

Let S € S(Q) and let £4(S) be the annulator of £(S) as follows:

(8) ={ne E*| (n,h) =0 Vh € E(5)}

This subspace of E* can be naturally identified with the space conjugate to
E/E(S). Note that (-,-)s; is, in fact, a nondegenerate scalar product on the
latter space, as well as || - ||s; is an Euclidean norm on this space. This norm
defines the conjugate norm || - ||5, on the space (E/E(S))", i.e., on EL(S).
Note that, in the case of nondegenerate S (i.e., when £(S) = {0}), we have

1615.= (& 18@178) ", s

We call an operator S € §(Q) regular (notation: S € R(Q)) if S(z) €
EL(S) for all z € Q. By R*(Q), we denote the subset of R(Q) formed by
strongly self-concordant operators from the above set.

Proposition 7.2.3 Let $ € R(Q), z € Q and n € EL(S). Then the linear
operators S'(x) and S(zx) map E onto £-(S), Ker §'(x) = Ker S(z) = £(S),
and

I S'(@)e 1521 € s || S(@)e 5=l € lls,z -
In particular, the equation
(7.2.8) S'(z)h =7
is solvable, and every solution h to it satisfies the relation

(7.2.9) A llse<Iln 54 -

Besides this, S is constant on each set of the form (z + £(S))N Q-
Proof. Since (S(y),h) =0,y € Q, h € £(S), we have

(S'(y)e,h) =0, yeQ, ecE, he&(S),
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so that Im S'(z) C £1(S). If e € Ker S'(z), then (S'(z)e,e) = <.§’(.7:)e,e> =0,
so that e € £(S). Thus, Ker S'(z) C £(S). The above inclusions lead to the
relations

dim E = dim Ker §'(z) + dimIm §’(z) < dim £(S) + dim £+ (S) = dim E,

so that Ker §'(z) = £(S), Im §'(z) = £1(S). In particular, (7.2.8) is solvable.
We also have

I S'(2)e 521l € s> (S'(z)e ) =]l e (15,
(the definitions of || - ||sz and || - |5 ), so that || S'(z)e ||5,2I € |lsz - The

latter relation immediately implies (7.2.9). It remains to prove that Ker S(z) =
£(S), Im S(z) = £1(S) and that || S(z)e 5=l € llsz - We have

Ker S(z) = £(S)

(Proposition 7.2.1(i)); the latter relation, combined with ($(x))* = S(z), im-
plies that
Im S(z) = £1(8).

The relation <S'(m)h,h> =|| h ||%, means precisely that || S(z)e 5=l € llsz-
Since Ker S'(-) = £(S), S is constant on the sets (z + £(S)) N Q- a

The above proposition can be inverted: If § € $(Q),Im §'(x) C £4(S), z €
Q, and S(xzp) € £L(S) for some zp, then also S € R(Q). Indeed, let us fix
h € £(S) and let f(z) = (S(x),h). We have Df(x)[e] = (S'(z)e,h) = 0, so
that f(x) is constant; since f(zo) = 0, we conclude that f(z) = 0. Thus,
(S(x),h) =0, h € £(S), so that S is regular.

Given a self-concordant on () operator S, we can associate with the operator
the equation

(7.2.10) S(z) = 0.

In the remaining part of this section, we focus on the properties of the Newton
method as applied to the above equation. To describe these properties, it is
convenient to measure accuracy of an approximate solution z to (7.2.10) via
the quantity (“Newton’s decrement of S at z ”), as follows:

v(S,2) = max{(S(z), k) | h € B, || h [l52< 1} < o0.

Note that, in the case of S = f/, f being a 1-self-concordant function, (S, z) =
A(f, z) is the Newton decrement of f at z; see §2.2.

It is clear that v(S,z) > 0 and = € Q is a solution to (7.2.10) if and only
if ¥(S,z) = 0. The relation ¥(S,z) < oo means precisely that S(z) € £+(S),
and, in the latter case, we clearly have

(7.2.11) v(S,2) =|| S(z) I3z -
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Proposition 7.2.4 Let S € R(Q). Then the function v(S, ) is finite contin-
wous function on Q.

It is an immediate corollary of (7.2.11).

Remark 7.2.1 IfS € §T(Q) and Q is bounded, then £(S) = {0} (see (7.2.3));
it follows that, in the case of S € 8T(Q) and bounded Q, we have RT(Q) =
SH(Q), and the function v(S,-) is finite and continuous on Q.

Let S € R(Q). In view of Proposition 7.2.3, the Newton equation
S'(z)h = S(z)

is solvable for every z € @Q, so that there exists a function e(S,z) : Q@ — F
such that
S'(z)e(S,z) = S(z).

The value of e at every z is uniquely defined, up to addition of an element
from £(S) (see Proposition 7.2.3), and

(7.2.12) | e(S,z) l|lse< v(S, x).

Let us introduce the function

SA
(7.2.13) w(A;s) = 1—_1;/( {(1 —$)A +/ 252——52 dt} ,
0

defined on the set
{(As)| A>0,1>5>0, sA <1},

Let
w*(A) = min{w(X;s) | 0 <s <1, sA <1},

It is easily seen that w*(A) is well defined, continuous on the set {A > 0}, and
that

(7.2.14) w*(0) = 0,w* () < A, 0<A<L

Furthermore, for A > 0, let o()) be the minimizer of w(A, s) with respect
to s running over the set {s | 0 < s < 1,8\ < 1} and let o(0) = 1. We can
prove straightforwardly that there exists an absolute constant « > 1 such that

w*(A) < kA%, 0<AL],

(7.2.15) s\ =1, A< %
Thus,
(7216) oV € (0,1], w(h o)) =w'(A) <A  0<A<L

The following statement is the basis for further counsideration.
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Theorem 7.2.1 Let S € RT(Q).
(i) For x € Q the Newton-type iterate of x, namely, the point
(7.2.17) zt =z7(S,7) = 2 — o(v(S, 2))e(S, z)
belongs to QQ and
(7.2.18) v(S,z) < w*(v(8, ).

(ii) Equation (7.2.10) is solvable if and only if there exists an z € Q with
v(S,z) < 1. If this is the case, then the sequence of the Newton-type iterates

T = .’1I+(S, :ci_l)

associated with an arbitrary xp € Q satisfying the relation v(S,z¢) < 1 con-
verges to the solution of the equation S(z) = 0 in the sense that

Ai =v(S, :E,,) < 'w*()\,’_l) — 0, 1 — 00.

Besides this, if x € Q) satisfies the relation

1
2. < —
(7.2.19) v(S,z) < B
then
(7.2.20) |z —2* ||s2e < 50(S, z)

for every solution z* to (7.2.10).

(iii) Let the image of Q in the factor-space E/E(S) be bounded. Then
(7.2.10) is solvable, and the set of solutions to the equation is of the form
z* + £(S).

Proof. (i) Let us fix ¢ € Q and denote
e=-¢(S,z), o=0(S z)), A=v(Sz).

We have || e ||sz< A (see (7.2.12)), and, since w = oA < 1 (the definition of
o())), we obtain z+ = z—oe € Q (see Proposition 7.2.1(ii)). Let h=z—zt =
oe, so that || h ||sz< w, and let g € E be such that || g ||sz< 1. Let

fo(t) = (S(z —th),g), 0<t<1L
We have
fo(t) = = (§'(z — th)h,g) = — (S'(z)h, g) + ((S'(z) — S'(z — th))h,g) .
Furthermore, §'(z)h = 0.5(x) (the definition of h) and

1
1-t|hlse)?

<t {aar

[((8'(z) = §'(z —th)h,g)| <t {( - 1} I szl gllse
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(see (7.2.4)). Thus,

150+ @S| < o { s — 1}

It follows that

1

14(1) = £,(0) + 0 (S(@), g | <w [ H{(1 ~ )2~ L)t

0
1 [ri2-r) 7
;O/ (1 —r)? d’”SO/r@ )(1—r)dr
or, which is the same,
[(8") — (1 0)S(a),g) | < ’"(2 =D

Since g is an arbitrary vector with || g ||s»< 1, it follows that

(7.2.21) I 8=*) 150< (1 =) || S(2) 15,4 +/ 22—- Qd
0

From the second relation in (7.2.4), it follows that

I g llser
lalises Hls=t e
—w
Therefore, for every n € £+(S), we have
1
”nl|Sz+ ma‘x{ m4q |Hq”S,z+ Sl}_<_max ( >|”qHSz<“1——
NS
1-w '

Thus, (7.2.21) implies that
1 rr(2-r)
V< _ % USRI O
(72.22) || S(=") Igar< 7= {(1 o) || $(z) 52 +0/ 0= d?"}

To simplify notation, set A* =|| S(z*) |I5 .+; since A = v(S,z) =|| S(z) |5,
relation (7.2.22) can be rewritten as

oA
1 r(2—r)
T—ox {(1*0)/\+0f———(1_r)2d7"}.

(7.2.23) AT <
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The right-hand side of (7.2.23) is precisely w(\;0); since o = o(A), (7.2.23)
implies (7.2.18). Part (i) is proved.
(ii) If (7.2.10) is solvable and x* is a solution to this equation, then S(z*) =
0, and therefore v(S,z*) = 0. Now let zg € @ be such that v(S,z¢) < 1 and
let
T; = .”L’+(S, Zi-1), 1> 1.

According to (i), A\; = v(S, ;) satisfy the relation A; < w*(\;—1). The latter
quantity is < A;_1 < 1 in the case of A;_y > 0; in the opposite case, z; =
Zi—1, J 2 © — 1 is a solution to (7.2.10). Since w*() is continuous, we have
Ai — 0, i — oo. It remains to prove that (7.2.10) is solvable. Let £'(S) be a
complement to £(S) in E, so that £'(S)NE(S) = {0} and £'(S) + £(S) = E.
Recall that the vectors e(S, z) are defined up to the addition of an element of
£(S); in particular, we can choose them to belong to £(S). Assume that this is
the case. Since ); converge to 0, there exists i = 49 such that = \;, < (5x)7L.
Since w*(A) < kA%, we conclude that the quantities p; = /\,-0 +i» ¢ 2> 0 satisfy
the relation y; < 5 %u. For i > 0, we have

“ x’ig-{—i - mi0+i-‘1 ||S’$i0+i-—1§ Hi-1.
This inequality combined with (7.2.4) implies that

Hi—1
— | Tig i1 — =i “S,Zio

Pi =|| Tig+i — Tigri—1 (|82, < 1

for all i > 0 such that z;, ;1 € W(S, z;,). Thus, if
Pi =” Lig+i — Tig ”S,:z:io, ) 2 O,
then

Ph=0; PB<P 1+p; F_1<1=p<

Note that p;—; < 5_”1” < 571, We claim that P; < % for all 4. Indeed,
Pp=0<LifP<1 j<i, thenalso p; < pja(1—-Pj_q) 1 =2c71579, j <
i,s0 that P, < Y%, 271577 < 3- Thus, P; < %, i > 0, and therefore

P, < Py +2p-1 < Pioq +2u5' 7,

so that, in fact, F; < 2.5u. We also have proved that >, p; < oo. Since
Ti i — Tig € E'(S) (our choice of e(S,-)) and || - |5, is a norm on £'(S), the
sequence ; ,, converges to a point Teo satisfying the relation || oo —x, ”S,zio <
2.5p < % In particular, oo € Wi/2(S, 74, ). The latter set is contained in @
(Proposition 7.2.1(ii)), so that z., € Q. Since v(S, ) is continuous on @ and
v(S,x;) — 0, we have v(S,z) = 0, so that z is a solution to (7.2.10). The
first statement in (ii) is proved.
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To complete the proof of (ii), note that, in the case of zg = x, where z is
the point involved into (7.2.19), in the above considerations, we can set ig = 0,
which implies that there exists a solution to (7.2.10), s, such that

| Zoo — & |5 < 2.50(S, z) < (2;@)_1 < %
From (7.2.4), it follows that
2= %o 5000 2 || oo — 7 (|50 50(S, @)

To prove (7.2.20), it suffices to establish that, if * is a solution to (7.2.10),
possibly not coinciding with z, then ||  — 2 |5z, =]l £ — 2* ||5e+. Indeed,
since S is monotone and z*, o, are solutions to (7.2.10), S vanishes on the
segment with the endpoints * and z, so that S’(z*)e = 0, e = o, —z*. The
latter relation means that e € £(S), so that || e ||sz+=0and || - ||sz. = - |5z~
(the latter relation follows from Proposition 7.2.1(1)). Thus, || £~ Zso ||s.2.. =||
-z HS,x“ .

(iii) From Proposition 7.2.1(i), it follows that Q = Q + £(S), while Propo-
sition 7.2.3 implies that S is constant along translations of £(.S). These obser-
vations allow us to immediately reduce the statement under consideration to
the case when £(S) = {0}. Thus, it is enough to prove (iii) in the case when
Q is bounded and £(S) = {0}. Let || - || be a fixed Euclidean norm on E, let
zo € @, and let R > 0 be such that @ is contained in the || - ||-ball of the radius
R centered at zo. Let B be the unit || - ||-sphere and let 7(¢) : B — {t > 0} be
defined as

r(€) =sap{t | zo + 1§ € Q}.
For £ € B and 0 <t < 1, we have

(S(zo + tr(£)€),&) = /<S'($0 + sr(£)6)r(£)E,€) ds + (S(z0), ) .
0

Furthermore,
(8'(z0 + s7(6)6)E,€) =I| € 300 sre)e
so that the vector

zo + sr(€)€ + L{(S' (w0 + sT(£)€)€,€)} V%
belongs to W, 5(S, 2o + sr(£)¢) and therefore belongs to Q. It follows that

s(€) + L{(S" (o + sr(£)€)E, )} /% < r(€),

so that
1

<S,(LL'(] + ST(€)€)§,§> Z W
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Thus,
h ds
(S(ao+r(©)6),€) 2 [ gl +(5(a0),€) = 9(4,0).
0

We clearly have g(¢,£) — oo, t — 1 — 0, uniformly in £ € B. Thus, || S(zo +
tr(€)¢) ||*— oo uniformly in § € B ast — 1 — 0, where || - ||* is the norm
dual to || - || . It follows that || S(z;) ||*— oo along each sequence z; € @
converging to a boundary point of (J. This observation, in turn, means that
the set Argmin {|| S(z) ||* | = € Q} is nonempty. Let z* be a point of the latter
set. Note that Ker $'(z*) = £(S) (Proposition 7.2.3), and, since £(S) = {0},
S'(z*) is nondegenerate; therefore the only possibility for z* to be a minimizer
of || S(z) ||* is to be a solution to (7.2.10). Thus, (7.2.10) is solvable. a

7.3 Path-following method

In what follows, we focus on the problem of solving variational inequalities with
monotone operators. Let G be a closed convex subset of a finite-dimensional
real vector space F with a nonempty interior G’, and let S : G’ — E* be a C2-
smooth single-valued monotone operator. We can associate with the monotone
element (G,S) the problem of finding a (weak) solution to the variational
inequality defined by (G, S) :

(713.1) V(G,S): findzeG st (S(u),u—z)>0 Vued

Since G is bounded, the problem is solvable (Proposition 7.1.2), and the solu-
tion set to it, V*(S, G), clearly is closed and convex.
Below, G’ denotes the interior of G.

7.3.1 Operators compatible with a self-concordant barrier

Let F be a ¥-self-concordant barrier for a closed convex domain G C E. Since
the three-linear functional D®F(z)[h1, he, h3] is symmetric, from the fact that
F is strongly 1-self-concordant on int G, it follows that

3
(7.3.2) |D3F(z)[h1, ho, k3| < 2 H{(F"(Cﬂ)hi, hi) )2,

=1

h; € E, i =1,2,3, and, since F is a ¥J-self-concordant barrier, we also have
(7.3.3) (F'(z),h) <¥Y? for all h such that (F"(x)h,h) < 1.

Thus, the monotone operator X(z) = F'(z) is self-concordant on G'. Re-
lation (7.3.3) means that v(X,z) < 9/2, 2 € G'. From the properties of
self-concordant barriers established in §2.3, it also follows that ¥ is strongly
self-concordant.

Let us start with the following definition (cf. §3.2).
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Definition 7.3.1 Let F' be a ¥-self-concordant barrier for G and let 3 > 0.
A C?-smooth monotone operator S : G' — E* is called 3-compatible with F
(notation: S € Ca(G, F)) if, first, the inequality

(7.3.4) |S”(m)[h1,hg,h3]|<6H{3< (2)hi, hi )} (F" (2)hs, i)} /0

holds for every z € G’ and all hy, he, hs € E and, second, the inclusion
(7.3.5) S(z) € (Ep)™, el

holds (recall that Er = Ker F”(z) does not depend on z € G’ and (Ep)* is
the annulator of Er).
Proposition 7.3.1 (i) Cs(G, F) is a cone: If S1, So € C3(G, F), ai,az >0,
then also a1 S) + a2Sy € C3(G, F); if B' > B, then C3(G, F) C Ca (G, F).
If S; € Cp,(G;, F;), i = 1,2, and int(G1(G2) # 0, then
(81 + 52) l6, 162 € Comax(1,8} (G1 [ ) G (Fy + F2) |, 2,)-

(ii) If S is a linear monotone mapping taking values in (Ep)*, then S €
Co(G, F).

(iii) If A(y) = Ay + b is an affine mapping from a finite-dimensional space
E* into E such that A(ET)NG' # @, F*(y) = F(A(y)) : it A}G) - R
and S € Cs(G, F), then A*S(A(-)) € Cs(A~Y(G), FT).

Proof. (i) To prove that Cs(G, F) is a cone, note first that aS € Cg(G, F)
whenever & > 0 and S € Cg(G, F) (evident). It remains to prove that S;+5; €

Cs(G, F') whenever S1, Sz € C3(G, F). Indeed, S1 + S, clearly takes values in
(Ep)*, and all we must establish is that the sum satisfies (7.3.4). We have

l(Sl + Sz) ( )[hl,hg,hg l < [)’ {H{S <Sl :E)hl,h >}1/3 H{3 <F” hz,h >}1/6

+ H{3 (Sa(@)hi, hi )} H{s <F"(z)hi,h>}l/6}

i=1 i=1

= ﬂH{s (F"(z)hi, hi)}1/0 {H{?» (S1(@)hi, B )}V

+ H{3 <S'2(x)hi,hi>}1/3} .

In view of the latter relation, to prove that Sy + Sz € C3(G, F), it suffices to
verify that
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N 1/3 n 1/3
Let a; = <Sl(.’1:)hi,hi> and b; = <52(:L')hi,hi> (
negative). We must prove that

3 3 3
H a; + H b; < H(a? + b?)1/3.
i=1 i=1 =1

We can restrict ourselves to the case of af + b = 1, i = 1,2,3 (it suffices to
perform the updating (a;,b;) — (ai(a + b3) /3, b;(a? + b3)~1/%)). We have

these quantities are non-

3 3
1 1
Haigg(a:f+ag+a§), Hb,-gg(bi’-i—bg-{-bg),
i=1

i=1
so that R
1
Lo+ ]t < 5(af + a5 +a3+b] +b3+83) = 1.

i=1 i=1
Thus, C3(G, F) is a cone. The inclusion C3(G,F) C Ca (G, F) and the last
statement in (i) are evident.
Items (ii) and (iii) are straightforward consequences of definitions. w

Proposition 7.3.2 Let S € C4(G, F) and let t > 0. Set
Si(x) = (1+ B)*{tS(z) + F'(z)} : G' — E*.
Then S; € R (G') and £(St) = Er.
Proof. Let us verify first that S; € S(G'). Let z € G’ and h; € E, i =1,2,3.
We have (see (7.3.2))

3 3
IS¢ (2)[h1, ha, hs]| < (1 + B)* {tﬂ [1{3 (8(2)ha hi 11 L1438 (F"(@)hs, h)}'/°

i=1 i=1
3
+ 2 [ (F"(@)hs, hi>1/2} :
i=1

We must prove that the right-hand side of the latter inequality is not greater
than

3 1 3
21T {1+ 8)28u(@ b, b)) =20148)° TTHE (S @)hi, hi) +(F" (@i, i) 2
=1 =1

Due to homogeneity with respect to h;, we clearly can restrict ourselves to the
case of (F"(x)h;, h;) = 1. Thus, it suffices to verify that

3 3
P2 o +2 < 201+ 8) [T {tws + 132,

=1 i=1
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where p; = {(S’(z)h;, h;)}. The inequality is evident in the case of p1papsz = 0.
Now let p; > 0, i = 1,2,3. Substitution p; = exp{s;} transforms the inequality
under consideration into

3
332tBexp{(s1 + 52 + 53)/3} + 2 < 2(1 + B) [[ (texp{si} + 1)/%;
=1

since 3: texp{s;} + 1} is convex and symmetric in s = (s1, s9, s3), we have
Hz 1 p Y ) )

3
21+ 79) H(t exp{s;} + 1)/2 > 2(1 + B)(1 + texp{(s1 + s2 + s3)/3})%/2.
i=1
Thus, proving our inequality is the same as proving that 2(1 + 8)(1 + tp)%/2 >
33/2¢8p+2 for all t, p > 0. The latter inequality can be proved straightforwardly.

Thus, S; € S(G'). Since F' € §*(G') and (S'(-)h,h) > 0, the inclusion
St € 8(G’) implies S; € ST(G’). It remains to prove that S; is regular and
that g(St) = Frp.

Since F is a self-concordant barrier, F'(z) € (Er)’; since S(z) € (Ep)t
(the definition of compatibility), we have Si(x) € (EF)L If h € Ep, then
(St(z),h) = 0,z € G, so that (Sj(z)e,h) = 0,e € E. We conclude that
<.§t(:c)h, h> = 0,h € Er, so that £(S;) D Ep; at the same time, S;(x) — (1 +
B)2F"(z) is symmetric positive semidefinite, whence Er D £(S;). Thus, S; is
regular and £(S;) = Ep. a

7.3.2 Barrier-generated family

Let F' be a ¥-self-concordant barrier for G and let S be a F-compatible with
the barrier monotone operator. We henceforth assume that GG is bounded. To
solve the variational inequality generated by S, we can act as follows: Consider
the family

{Si(x) = 1+ B)*(tS(z) + F'(z)) : G’ — E* }i>0;

according to Proposition 7.3.2, this family is comprised of strongly self-concor-
dant monotone mappings with the property

(7.3.6) £(S;) = Ep = {0}

(the latter equality follows from the fact that F is a self-concordant barrier for
bounded G; see Proposition 2.3.2).
From Theorem 7.2.1, it follows that the equations

(St) : St(iL') =0

have uniquely defined solutions z*(¢) € G’ for all ¢ > 0. It is clear that, for
large ¢, equation (S;) “is close” to the variational inequality V(G, S), so that
we can expect that the trajectory z*(t) converges, in a natural sense, to the
set of solutions to V(G, S). The following statement demonstrates what type
of convergence we can ensure.
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Proposition 7.3.3 Let S € C3(G, F) and let G be bounded. Then

o | S

(7.3.7) (VyeG):  (S(=*(1),2*(t) —y) <

Proof. We have S;(x*(t)) = 0 or S(z*(t)) = —t~LF'(z*(t)). Since F is a J-self-
concordant barrier, we have (F'(z),y —z) < 9, 2 € G, y € G (see (2.3.2)),
which immediately implies (7.3.7). O

Note that (weak) solutions to V(G, S) are precisely the points of G at which
the (clearly nonnegative) function

e(8,z) = sup{(S(y),z ~y) | y € G} : G’ > R| J{+00}
equals zero; thus, £(S,x) can be taken as a natural accuracy measure for the

points of G regarded as approximate solutions to the variational inequality.
Note that the monotonicity of S implies that if

e*(S,z) = sup{(S(2),z —y) | y € G} : G’ — R J{+o0},

then
(7.3.8) e(S,z) < et (S, x), e G

thus, (S, -) is even “more strong” accuracy measure than (S, ).
Now note that (7.3.7) means precisely that

(7.3.9) eT(8,z*(t)) <

%

so that Proposition 7.3.3 gives us an upper bound for the naturally measured
error of x*(t) regarded as an approximate solution to V(G, S).

7.3.3 Updating rule

The method we describe (cf. §3.2) forms a sequence of approximations z(t) to
the points z*(¢) along an increasing in certain ratio sequence t = t; of values
of t. The approximations are A-tight; i.e., the predicate

P(S,t,\;z) = {xr € G’} and {v(S;,z) <A}

holds at the pairs (¢;,z(t;)), where A is an arbitrary constant in the interval
(0,1/(25k)) (the choice of A determines the rate at which ¢; are varied). The
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method is based on the following updating rule:

N(A) : given (t,x) with ¢ > 0 and z satisfying the predicate
P(S,t, A\;z), choose

T =t(1+v(\9,8), y(A9,8) = W

and set
zt =1z — e(Sp+, x),

where e(S;, z) is the Newton direction of S; at z(i.e., the solution
to the Newton equation S, (z)u = S;(x)).

The following statement demonstrates that this updating rule maintains
the predicate P(S,t, A; z); note that now we do not assume that G is bounded.

Proposition 7.3.4 Let S € C3(G, F) and let t > 0, A € (0,1/(25k)). Assume
that x satisfies P(S,t, \;x) and that t+ > 0 is such that

(7.3.10) [tt/t — 1] < ~v(A, 9, 6).

Then x satisfies the predicate P(S,t",5);x), and the Newton iterate z+ =
z — e(Sp+,x) of T is well defined and satisfies the predicate P(S,t%, \;z™T).

Proof. We have

I hlls, n> —llsee heE

2 T T
(evident), and £(S;) = £(S;+) = EF (see Proposition 7.3.2), so that
(7311 nlls, <A+ /t=1) [ nlbe  mE (EBr)

Let z satisfy P(S,t,);z), so that || tS(z) + F'(z) ||5, ,< (1 + 8)72X. As we
have seen (Proposition 7.3.2), S(z), F'(z) € (Er)*, and the above inequality

implies that
* * /\_
At the same time,

. 1
| F@) 3,05 755 | 7@ s

(evident), and || F'(z) ||}y, < #1/2 (the definition of a ¥-self-concordant

barrier). We conclude that || tS(z) ||§, < (14+8)"22+ (1+8)~19'/2. Therefore

A 191/2
luﬁ—w&mHafﬂﬁﬁ—uuwuﬂaﬂswﬁ—n(u+ﬁp+l+g)
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It follows that
|| t*S(2) + F'(z) |15, . <l tS(x) + F'(z) |5, . + | (T = 1)S(2) 15,0

< g (A -1 (A 99 )

which, combined with (7.3.11), leads to
| 5() + F'@) I3, .

o _|1_ﬂ2 A =1 (A @+ 89"2) } (141t /£ - 1))

The right-hand side in the latter relation is < 5A(1 + 3)~% by virtue of
(7.3.10), so that P(S,t*,5); z) is true. Since P(S,t*,5); ) is true and S+ €
R*(G') (see Proposition 7.3.2), from Theorem 7.2.1, it follows that ™ is well
defined, belongs to G’, and v(S;+,z7) < k(5A)2 < A (we considered that

1
KA < %) O

7.3.4 Initialization

To follow the path z*(¢) with the aid of the above updating rule N()), we
must initialize the procedure, i.e., to find an initial pair (¢o, o), to > 0, such
that the predicate P(S,t, A;x) holds true at t = tg, £ = x¢. To find such a
pair, we can use the same approach as in the case of the barrier-generated
path-following method from §3.2, namely, we can approximate the minimizer
z(F) of the barrier F. Recall that G is assumed to be bounded. We know
(see Proposition 2.3.2(ii)) that, under the latter assumption, z(F’) is uniquely
defined; we clearly have v(F’, z(F)) = 0. Now let zg be close enough to z(F),
namely, let

A
!

3. < —.
(7.3.12) V(F,wo)_2(1+ﬂ)
Define ty as \
(7.3.13) to

" 2(1+B) | 8(xo) [vg

Then clearly
V(Stoa .’II()) S A)

so that (to, zo) is the desired pair satisfying P(S, to, A; zo).

Thus, to initialize the above process, it suffices to find an approximation xg
to z(F') satisfying (7.3.12). In §3.2.3, it was shown that such an approximation
can be found with the aid of the same path-following technique, provided that
we are given a starting point w € int G. It suffices to introduce the constant
monotone operator T'(z) = —F'(w) (which, of course, is 0-compatible with F')
and to consider the family

Ti() = tT() + F'().
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The corresponding trajectory z.(t) is defined by the equation
F'(z.(t)) = —tT(z) = tF'(w)

and passes through w: z,(1) = w. We can follow it as ¢ — 0 with the aid of
the updating rule

i+l (1 — (5(]-_1—@’19’())) ti’ il — ot e(TtHl,:pi)»

starting with (t°,2%) = (1,w); in view of Proposition 7.3.4, this procedure is
well defined and the predicate P (T, ¢, A/(3(1 + §)); z) holds true for (¢,z) =
(#,2%). We terminate the above process at the moment when the relation
v(F', z%) < (148)1\/2 is satisfied; the resulting z* can be chosen as the above
xg. According to Proposition 3.2.3, the number M of steps of the described
procedure satisfies the relation

7.3.14 M <O()(1 01/21 Y
where O(1) is an absolute constant and
(7.3.15) a(G:w) =max{t | w+t(w - G) C G}

is the asymmetry coefficient of G with respect to w.

Remark 7.3.1 The quantity to defined by (7.3.13) admits the lower estimate

A
(1 + B) max{(S(z0),y — z0) | y € G}

toZQ

Indeed,
| S(20) 5+ 2, = sup{(S(za),y — o) | y € W1(F’,z0)}

< max{{S(zo),y — x0) | y € G},
since W1(F’, zg) C G; see Proposition 7.2.1(ii).

7.3.5 Accuracy of approximations

We described a rule that allows us to form A-tight approximations to the
trajectory x*(t) along the sequence of values of ¢ increasing in the ratio (1 +
O(1)(A(1 + B) 19 1/2)). We also know that z*(t) converges in a proper sense
to the set of (weak) solutions to V(G, S) as t — co. We are now interested in
what can be said about the convergence of A-tight approximations to z*(t) to
the solution set as £ — oo. We give two possible answers to the problem.

A. Let us call a monotone single-valued operator S : G' — E* semibounded
if the quantity

| S le=sup{(S(z),y—z)| z € G, y € G}

is finite.
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Proposition 7.3.5 Let S € C3(G, F) be semibounded and let t > 0, p €
[0,1/(5K)]. Assume that = satisfies the predicate P(S,t, u;z). Then

9
(7.3.16) e(S,z) <5u S lle +
Proof. Assume that z satisfies P(S,¢, y; ). By virtue of Theorem 7.2.1(ii),
there exists a solution z* to the equation Si(-) = 0, such that

(7.3.17) | z—z* |52+ < Sp.

Let y € G'. We have (S(y),z* —y) < (S(z*),z* —y) (since S is monotone).
As in the proof of Proposition 7.3.3, we have (S'(z*),z* — y) < 9¢~1, so that

(7.3.18) (Sw).=" - < 2.

Now, since || £ — z* ||s,,z+ < 5 < 1 (see (7.3.17)), there exists u € Wy (S, z*)
such that z = Spu + (1 — 5u)z*. By virtue of Proposition 7.2.1(ii), we have
u € G therefore

(S(y),z—y) =5p(S(y),u—y) + (1 -5u) (S(y),z" —v)
<5 |8l +(1 - 50)

(we used (7.3.18)), which immediately leads to (7.3.16). 0

The above statement means that, if ¢ is large, if y is small, and if z is a p-
tight approximation of the point z*(t), then z is a high-quality approximation
to the solution of V(G,S) with respect to the accuracy measure £(S,-). A
drawback of this result is that the estimate involves p as well as t. This is
not too dangerous: We can maintain \-tightness to the trajectory z*(¢) with a
“large” A, say, with A = 1/(25k), until ¢ becomes large enough and then apply
to S; the Newton method described in Theorem 7.2.1 to update the A-tight
approximation into a u-tight one with small y. By virtue of Theorem 7.2.1,
the latter updating requires O(Inln A/p) Newton steps. It is interesting that
we have no difficulties with necessity to find too-tight approximations to the
central path when using another accuracy measure.

B. Let us introduce a new accuracy measure €*(S,z), z € G, as follows.
Let us associate with z € G’ the convex quadratic form

Sa(y) = (S(@),y — 2) + } (S(@)(y - 2),y - =)
of y € E. The quantity
*(8,z) = Sy(z) — min{S:(y) | y € G}

is nonnegative; under mild restrictions on S, it is closely related to the accuracy
measure €' (5, z), as demonstrated by the following statement.
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Proposition 7.3.6 Let G C E be bounded and let S be a Lipschitz continuous
single-valued monotone operator defined on G' = int G. Let || - || be a Euclidean
norm on E and let || - ||* be the conjugate norm on E*. Let

. (G) = max{|| z —y ||| z,y € G}

and

| S(x) = S(y) |I*
lz—yl

Ly (8) :sup{ | z # v, x,yEG'}.
Then, for all x € G', we have
e (S, z) < max{2¢*(S, z); (2 (S)e™ (S, z))*/2},

where

Q. (8) = Ly (S)dj (G).

Proof. By definition, e*(S,z) = max{{S(z),z —y) | y € G}. For a given
z € G, choose y € G such that e = ¢*(5,z) = (S(z),z — y) and consider the
function f(t) = Sz(z + t(y — z)), 0 <t < 1. This is a quadratic function with
the properties

FO) = (8@hy-2) =€  0)={(5@)y )@ -2)) < 2= y(S).

It follows that

£ (S,) > £(0) ~ min{ (&) | 0 <t < 1} > min {m }

NI O

e = e1(8, z) < max{2e*(S, x); (2Qe*(S, z))/%}. O

It turns out that, if x € G’ is a A-tight approximation to z*(t), then £*(S, x)
is of order of +~1.

Proposition 7.3.7 Let G be bounded, let S € C3(G,F), andletz € G', t >0
and X € [0,1/(25k)] be such that P(S,t, A;x) holds. Then

(7.3.19) & (8,x) < 23;.

Proof. Let T(y) = S(z) + S(z)(y — ) be the derivative of S;(y) with respect
to y. Consider the mapping
Ti(-) = 1+ B)*(T() + F'()) : G' — E*.

We clearly have T € Cg(G,F) and || Ti(z) ||, .=l St(z) |5, ., so that ||
Ty(z) |17, < A. The latter relation means that the derivative f’ of the function

fly) =tS:(y) + F(y)
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satisfies the inequality

(7.3.20) v(f',z) < A

148

Since the derivative T'(-) of Sz(-) clearly is 0-compatible with F, the mapping
f' =tT + F’ is strongly self-concordant and regular on G’ (Proposition 7.3.2).
In view of (7.3.20), Theorem 7.2.1, as applied to f’, means that there exists
z* € G’ with the properties

(7.3.21) fl(z*) =0,
5\ 1
oth. —_ * ! *< — < —_—
We have

e*(S,z) = Sy(x) — ngn Sz(+)
= {S;(x) — Sz(z*)}1 + {Se(z*) — mg'n S:()}2.

The derivative T(z*) of S;(-) at the point z* equals to —¢t 1 F’(z*); since S, ()
is convex, we have

(7.3.23)

(1o S max{(T(a"), 0" ~3) | y € G} = ; max{(F'(a"),y ~ =) | y € G}
as we already mentioned (see the proof of Proposition 7.3.3), the latter quantity
is < ¢t719. Thus,

(7.3.24) Sz(z*) — rrgn (1) < g
It remains to estimate {-};. We have
t(Se(z) — So(z™)) = {f(2) — f(z")} + {F (") — F(x}}.

The function f clearly is strongly self-concordant on G’, and (7.3.20) means
precisely that A(f,z) < (1 + 8)7*A < 1/(25«); from Theorem 2.2.2(iii), it
follows that f(z) — f(z*) < (14 B)~2A2. We evidently have

|z —2* |lpa <l 2 — 2% || 20
so that (7.3.22) implies
Iz — 2" | < 5(1+ B) A

Since F is convex and || F'(z*) || 4« < 91/2 (the definition of a ¥-self-concordant
barrier), we have

) — F(z) <l F'@) [ el 0= 2 e < 2
o~ F’,I* F,:L'*_ 1+IH .
Thus,
1 A2 591/2)
_ ¥« =
Sa(2) = So(a™) < 5 {(1+ﬁ)2 t1v5 }

which, combined with (7.3.24), leads to (7.3.19). O
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7.3.6 Summary

Combining the above considerations, we obtain the following method for solv-
ing variational equations. Let G be a bounded closed convex set with a
nonempty interior in E, let F' be a 1-self-concordant barrier for G, and let
S : G — E* be a Lipschitz continuous single-valued monotone operator [3-

compatible with F. Assume that we are given a starting point w belonging to

intG. Let 1

25k
 being the absolute constant from §7.2 (see (7.2.15)).
To solve V(G, S), we can use the following two-stage method:

PRELIMINARY STAGE (input: w; output: Zout)
(t,z) := (L, w);
Step:
= (1= (3/2)A(A +3(1+ B)9' /%))y
2=z~ (F"(z)) " (F'(z) — tF'(w));
IF
(F'(z), [F"(2)] " F' (@))'/* =|| F'() ([} >
THEN
goto Step
ELSE
Tout := T,
Stop;
ENDIF
MAIN_STAGE (input: the output Zou: of the preliminary
stage)
T = Zout;
t:=0.5(1+B)"1(S(x), [F"(x)] 1S (x)) * ;
Step:
= (1+(3/2)A(A + (1+ B8/t
z =gz — (t8'(x) + F"(2)) " (tS(x) + F'(x));
goto Step;

2(1+ﬁ)

Theorem 7.3.1 Let G be a bounded closed convex subset of E, w € intG,
let F be a U-self-concordant barrier for G, and let S € Cg{G, F) be Lipschitz
continuous. Then the above procedure is well defined, and, for each € > 0, the
total amount of steps of the preliminary and the main stages after which all
values of x generated at the main stage satisfy the inequality

(7.3.25) e*(S,z) <e
does not exceed the quantity

O(1)(1 + B)92In(2 + da NG : w) + 91+ 8) || S |lg e7Y),
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where O(1) is an absolute constant,
a(G: w) =max{t | w+t(w—-G) C G}
is the asymmetry coefficient of G with respect to w, and
IS lle=sup{(S(z),y — z) | 2,y € int G}.

Besides this, if || - || is an arbitrary Euclidean norm on E, then (7.3.25)
implies that

(8, ) < (8, ) < max{2e; 28 (8)e)M/?},

where
Q(8) = Ly ()df(G),

Ly (S) being the Lipschitz constant of S : G — E* with respect to the norm
| - || on E and the conjugate norm || - ||* on E* and dj.|(G) being the diameter
of G with respect to || - || -

7.3.7 Application example

As an application example for the above approach, consider the following prob-
lem (it is a particular case of the pure exchange model of Arrow—Debreu).
There are m customers and n kinds of goods. The total amount of the kth
good that can be distributed among the customers is x; > 0. The ith cus-
tomer possesses w; money units and is characterized by the utility function
fi(z1,...,oyn) depending on the vector of goods bought by the customer. The
distribution of goods is organized as follows. The goods are sold at certain
prices, which form the vector of prices p = (p1,...,p,) > 0. For a given p, the
ith customer buys the amount of goods z*)(p) = (m(li) (), - -- ,wﬁf) (p)), which
is the optimal solution to the program

maximize fi(z) s.t.z >0, pPz < w;.

The problem is to find the equilibrium prices, i.e., to find a positive solution

of the equation
m

> zl(p) =2,

i=1
or, which is the same, to solve the variational inequality generated by the
operator

S(p) =a* - i =) (p)

on the interior int R} of the nonnegative n-dimensional orthant.
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Let us restrict ourselves to utility functions of the form
filz) =Y cax®,
k=1
where c;x > 0 and a;, € (0,1).
It is known (see [Po 73], [PM 78]) that, for the above utility function, the

mapping p — (~z((p)) : int R’} — R is monotone. As we prove in Appendix
2, it is also compatible with the standard n-self-concordant barrier

F(p)=-) Inp
k=1

for R"}:
—z0() € C,(RY, F),
where . ‘
o — ot /ag )
Coa—alhr
a9 = max{a; ; ®  — min{a ;
= ily - Gin}y Gy = min{ail, ..., ain}

It follows that the mapping S(-) is (max; §;)-compatible with F' (Propo-
sition 7.3.1), so that, to find equilibrium prices, we can use the above path-
following method. Recall that the method requires G to be bounded, while
now it is not the case. This difficulty can be easily avoided. Indeed, the solu-
tion p* to our problem clearly satisfies the inequality (p*)Tz* < p= 37, wi,
so that p* belongs to the interior of the simplex G = {p > 0| p”«* < 2u}. The
function F*(z) = F(z) — In(2u — pTz*) is an (n + 1)-self-concordant barrier
for G, and S is (max; 3;)-compatible with this barrier (Proposition 7.3.1(1)).
Thus, it suffices to solve the variational inequality generated by S on G, and
now there is no difficulty with the unboundedness of the domain.

7.4 Inequalities with linear operators. Reducibility to linear
case

7.4.1 Variational inequalities with linear monotone operators

One of the simplest classes of monotone operators is formed by linear operators
S(z) = Az + a,
where A : E — E* satisfies the relation
(Ah,h) >0, heE,

and a € E*.
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For every closed convex domain G € E, the pair (G, S|g) is, of course, a
monotone element, and solutions to the corresponding variational inequality
are exactly the same as weak solutions to it (see Proposition 7.1.1). The
operator involved into the inequality is 0-compatible with any self-concordant
barrier for G, provided that G does not contain straight lines. Thus, in the
case of bounded G the only difficulty when solving a variational inequality
with a linear monotone operator by a path-following method is to find a self-
concordant barrier for G.

It turns out that, in fact, a variational inequality with a linear monotone
operator can be more or less straightforwardly reduced to a convex program-
ming problem.

To this purpose, consider the intersection G* of the cone

K:cl{(t,x)eRxE!t>O, %eG}

(this is the conic hull of G) and the affine hyperplane {¢ =1} in R x E. Note
that K is a closed convex cone with a nonempty interior in R x E (this cone
is pointed, if G does not contain straight lines). Let

St(t,z):Rx E— (R x E)*
be the linear homogeneous mapping defined as
St(t,z) = (- (a,z), Az + ta).

We have (S*(t, ), (t,z)) = {Az,z) > 0, so that the mapping S* is monotone.
If z* is a solution to V(G, S), then the point Z* = (1,z*) belongs to G* and
clearly satisfies the relation

(S*(@),2-5) 20, zeG

Conversely, if z* = (1, z*) satisfies the latter relation, then, as it is easily
seen, z* is a solution to V(G, S).

Thus, we have proved that a variational inequality with linear monotone
operator can be straightforwardly reformulated as the following conic varia-
tional inequality:

(P): ﬁnda:EKﬂ(L—i—b) st. (az,y—x) >0 forallye K[ )(L+b),

where K is a closed convex cone with a nonempty interior in a finite-dimensional
vector space H; L is a linear subspace in H; b € H; and a : H — H* is a linear
homogeneous monotone mapping

(ah,h) >0, heH.

Note that our reduction scheme ensures regularity of the conic variational
inequality, i.e., the property

(L+b)()int K # 0.



INEQUALITIES WITH LINEAR OPERATORS. 305

Note also that the above scheme is not the only way to reduce a variational
inequality V(G, S) to a conic variational inequality. In fact, it is easily seen
that any conic representation of G induces (at least in the case when G does
not contain straight lines) a conic reformulation of V(G, S).

7.4.2 Reduction to convex program

Now let us demonstrate that a regular conic variational inequality (P) can
be easily reduced to an equivalent conic optimization problem, namely, to the
problem

minimize f(z,s) = (Az,x) — (Axz — s,b)

(P*): .
s.t. (z,8) € (K x K*)({L + b),

where K*, as always, is the cone dual to K and £, b are the linear subspace
and a vector in H x H* defined by the relation

L+b={(z,8)| z€L+b, Az —se L'},

where L' is the annulator of L.
Note that the objective in (P*) is a convex quadratic form.

Proposition 7.4.1 Let (P) be regular; i.e., let L+b intersect int K. Then (P)
and (P*) are equivalent in the sense that, if (P) is solvable, then (P*) also is
solvable, the optimal value in (P*) is 0, and the solutions to (P) are precisely
the z-components of the solutions to (P*). Conversely, if (P*) is solvable and
the optimal value in this problem equals 0, then (P) is solvable.

Proof. Assume that (P) is solvable and z* is a solution to (P). Let
Q =cl{h| z* +th € K for all small enough ¢ > 0}

be the tangent cone of K at z*. Then the functional Az* is nonnegative at
the intersection of the closed convex cone Q and the linear subspace L, and
the latter intersection contains points interior to @ (recall that (P) is reg-
ular). From the Dubovitskii-Milutin lemma, it follows that there exists a
representation Az* = s* + y* with s* being nonnegative on ¢ and y* be-
ing nonnegative on L. The latter means that y* € L, while s* € K* and
(s*,z*) < 0 (since —z* € Q). In view of z* € K, relation (s*,z2*) < 0
implies that (s*,z*) = 0. Thus, the pair (z*,s*) is feasible for (P*) and
f(z*,s*) = (Az*, 2*) — (Az* — s*,b). Since Ax* —s* =y* € Lt and b—z* € L,
we have

(Az™,z*) — (Az* — s*,b) = (Az™,2") — (Az" — s*,2") = (s*,2") = 0.

Thus, (z*,s*) is feasible for (P*) and f(z*,s*) = 0.
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On the other hand, if (z, s) is a feasible solution to (P*), then
f(z,s) = (Az,z) — (Az — 8,b) = (Az,z) — (Ax — 5,)

(we considered that Az —s € L* and x — b € L). It follows that f(x,s) =
(s,z) > 0 (recall that (z,s) € K x K*). We see that the objective in (P*) is
nonnegative at the feasible set of the problem, so that the above (z*, s*) is an
optimal solution to (P*), and the optimal value in (P*) is 0.

We have proved that, if (P*) is solvable, then (P*) is solvable with zero
optimal value, and each optimal solution to (P*) can be represented as z-
component of an optimal solution to (P*). To complete the proof, it suffices
to verify that, if (P*) is solvable with zero optimal value and (z*,s*) is an
optimal solution to (P*), then z* is a solution to (P). Indeed, we have 0 =
(Az*, z*) — (Az* — s*,b) = (Az*,z*) — (Az* — s*,z*) (since (z*, s*) is feasible,
Az* — s* € L' is orthogonal to the vector z* — b € L), so that (s*,z*) = 0.
Let y € KN{L + b}. Then {Az*,y — z*) = (s*,y —x*) (since Az* — s* €
LY, y—z* € L), so that (Ax*,y - z*) = (s*,y—2*) = (s*,9) > 0 (we
considered that {s*,z*) = 0 and (s*,y) > 0 in view of ¢* € K*, y € K). Thus,
z* is a solution to (P). O

We have reduced a variational inequality with a linear monotone operator
to (P*); the latter problem is a conic optimization problem, and therefore
it can be solved by polynomial-time interior-point methods, in particular, by
potential reduction ones. To apply these methods, it suffices to know a ¥-
logarithmically homogeneous self-concordant barrier F' for the cone K and its
Legendre transformation F*; if it is the case, we can take the function

®(z,s) = F(z) + F*(—s)

as a 2¢-logarithmically homogeneous self-concordant barrier for the cone K x
K* involved into (P*). Note that the Legendre transformation of this barrier
is ®(—z,—s), so that F' and F* induce both the primal and the dual barrier
for (P*).

7.4.3 Convex representation of a monotone operator

Recall that we can now apply the interior-point machinery to a rather restricted
class of variational inequalities with monotone operators, since the operator
involved should be compatible with a barrier for the corresponding domain
G. The same difficulties occurred in convex optimization: To apply a barrier-
generated path-following method to a convex optimization problem directly,
we should require compatibility of the objective and the barrier for the feasible
domain, which is a severe restriction on the objective. In the optimization
case, however, it was easy to overcome this difficulty: We always could reduce
the problem to an equivalent one with a linear objective, so that, in fact,
the possibility of solving convex programming problems was limited only by
our abilities to point out “computable” self-concordant barriers for convex
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domains. In a sense, the situation with monotone variational inequalities is
similar: As we see, such an inequality admits a “convex representation,” i.e.,
can be reduced to an inequality with a linear operator on a modified domain.
Below, we describe the corresponding reduction and develop a kind of calculus
for convex representations (cf. §§5.1, 5.2).

Definition 7.4.1 A convez representation (c.r.) for a monotone element
(G, S) is, by definition, a closed convex set G contained in the set

G¥F=GxE*xRCE¥=ExE*xR

such that the following two conditions hold:
(a) (z,€) € G(S) = (2,€,(§,2)) € G
(b) (z,€,8) € GT = s—(§y) = (n,z ~y) for all (y,n) € G(S).

Let us establish some relations between the introduced notions.

Proposition 7.4.2 Let (G,S) be a monotone element. (i) Convez represen-
tations for (G, S) do exist; the minimal (with respect to inclusion) among them
18

G*(G’ S) =cl {COIIV{(:B,&, <§,$>) I (:E,é) € G(S)}}

(ii) Let G be a convex representation of (G,S) and let V(G,S) admit a
solution. Consider the bilinear game with the cost function

Yw,y) ={s— &y} w=(z,€,s)eG", yeq

(the player choosing w tries to minimize, and that one choosing y tries to
mazimize the function) and let

¥(w) = sup y(w,y)
yeG
be the cost function of the first player. Then the saddle set of v is nonempty,
and, consequently, the set of solutions to the problem of the first player

minimize ¥(w) s.t.w € G

also is nonempty; the natural projection of the latter set onto E contains all
solutions to V(G, S) and is contained in the set of all weak solutions to V(G, S).
In particular, in the case when the sets of solutions and weak solutions to
V(G, S) coincide and are nonempty, the optimal set of the first player coincides
with the set of solutions to the variational inequality.

Proof. (i) It is clear that the set G*(G,S) is contained in any convex rep-
resentation for (G,S), so that it suffices to prove that this set is a convex
representation of the element. It evidently contains all the triples

(z,€,5) = (2,€, (7)), = €Dom{S}, £e S(x)
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and, for such a triple, we have

s—Ey=¢Er—y) >nr-y)

for all y € Dom{S} and all » € S(y) (recall that S is monotone). Thus,
the inequality s — (£,y) > {(n,z — y) holds for all of the above triples and all
y € Dom{S}, 7 € S(y). Since both sides of the inequality are linear in (z,¢, s),
it also holds for all triples from the set

conv {(z,¢, (¢, ) | x € Dom{S}, € € S(z)},

and consequently for all triples from G*(G, S). Thus, G*(G, S) is a conic rep-
resentation for (G, S).
(ii) Let

pzy,m)=mz—y),z € G (yn) € GS)={(y,n) | ycDom{S}, n € S(y)}-

By definition of a convex representation, we have y(w,y) > u(z;y,n) for all
w = (z,£,8) € Gt and all (y,7) € G(S), so that

Y(w) 2  sup p(z;y,n) = a(z).
(ymeG(S)
Let us prove that a(z) > 0. Indeed, let y € intG; then the points y =
z + t(y — =) belong to int G C Dom{S} for all ¢t € (0,1], so that there exist
7t € S(yt). From the monotonicity of .S, it follows that the function

o(t) = (n,y — o)
is nondecreasing on (0, 1], and, of course,

a(x) > sup (n:,z —ys) = sup {—to(t)} =0
0<t<1 0<t<1
(we considered that o(-) is nondecreasing). Thus, (w) > 0, w € G*.
Now let z* be a solution to V(G,S). Then there exists £* € S(z*) such
that
(‘f*vy - :L'*> 2 U, ye G.

We have w* = (z*,&*, (€*,2*)) € G (the definition of a convex representation)
and

F(w*) = zggﬂ&ﬂz*) -y} <o.

Thus, J(w*) = 0, and w* is the minimizer of ¥ over G*. Moreover, (w*,z*) is
a saddle point of -, since, for w = (z,£,s) € GT and y € G, we have

Y(w,z*) = s~ (£2%) > (5,25 —2%) =0 > (", 2" —y) = y(w",y)

(the first inequality follows from w € Gt and Definition 7.4.1 (b)).
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We have proved that the solutions to V(G, S) are contained in the projec-
tion onto E of the optimal set of 4. In turn, let w* = (z*,£*s*) be a minimizer
of 4 or, which is the same, let 5(z*,£*, s*) = 0. It follows that

y(x*, €% shy) =" —(§"y) <0, yeQG,

and also, since

s*—(y) > (n,z" —y) for all (y,n) € G(5)

(due to (z*,&*,s*) € G*), we conclude that (n,z* —y) < 0, so that z* is a
weak solution to V(G, S). a

The advantage of a convex representation for a monotone element (G, S)
is that, given such a convex representation G*, we can reduce the problem of
solving variational inequality V(G, S) associated with the element to a bilinear
game with the cost function

Yw;y) =s—{&y), w=(z,&s)eG", yeG

(see Proposition 7.4.2(ii)). Assume that V(G,S) has a solution; then, as we
have already proved, « possesses a nonempty saddle set on G* x G, and the
xz-component of the projection onto E of any saddle point of v is a weak
solution to V(G, S). Assume that we would be satisfied by any weak solution
to V(G, S); then it suffices to find a saddle point of v (and we know that such
a point exists). Since v is a bilinear function, finding a saddle point of it is the
same as solving a variational inequality with an affine monotone operator

S(w,y) : (S(w,y), (bw, 8y)) = (=8¢, y) + (£, 6y) + 6s,

where w = (z,£,5) € Ex E* xR, y € F and dw = (6z,6£,68) € E x E* X
R, 6y € E. We know how to solve the latter problem by path-following and
potential reduction methods, provided that we know coverings (respectively,
conic representations) of G and G¥.

Thus, it is important for us to develop a kind of calculus that allows us
to point out “explicit” convex representations of monotone elements. Let us
start with “raw materials” for this calculus.

The following statement is a straightforward consequence of Proposition
7.4.2(i).

Proposition 7.4.3 Let G = E and let S(z) = az + b be an affine monotone
operator. Then the set

Gt ={(z,¢,5)| z€E, E=azx+b, s> {az,z)+ (bz)}

is a convex representation of (G, S).



310 VARIATIONAL INEQUALITIES

Note that Gt is a closed convex domain in the affine space
Et = {(z,¢,5)| s€R, £ =az+b},

and, in fact, it is the epigraph of a convex quadratic form, so that there is no
problem with finding coverings and conic representations for G+.

Our next statement demonstrates how to find a convex representation for
a potential monotone element. Let (G, f) be a functional element on E; then
the operator

St(z) = 0f (x)

(see §7.1.2, item 1) with the domain comprised of all those points z of G
where f is finite and the set 8f(x) of the support (on G) functionals to f
is nonempty, is monotone on its domain, and the latter contains at least the
interior of G; thus, (G, Sf) is a monotone element. Consider the Legendre
transformation (G*, f*) of the functional element (G, f). Recall that the latter
pair is defined as follows. G* is the closure of all those £ € E* for which the
function (¢, x) — f(z) is above bounded in z € G, and

&) =sup{({,2) - f(z) | 2 € G}, £eGn.
Proposition 7.4.4 The set
={(2,¢,5) € Ex E* xR : z € Dom{f}, £ € Dom{f*}, s > f(z) + f*(£)}
is a convex representation for the monotone element (G, S¢).

Proof. First, as we know (see §5.2.3), (G*, f*) is a functional element. It
follows that the pairs (G x G*,¢(z, &) = f(z)) and (G x G*,¥(x,€) = f*(£))
both are functional elements, so that their sum also is a functional element.
Since G is precisely the epigraph of the latter element, G* is closed and
convex.

Now let us prove that G contains each triple (z,£, s) with z € Dom{Sy},
¢ € Sp(z) and s = (£, z). Indeed, for the above triple, we clearly have = €
Dom{f}, £ € Dom{f*} and s = f*(£)+ f(z), so that (z,£,s) € G*. It remains
to verify that (z,£,s) € G implies that

S_<§1y> Z("iw_y)v (yaﬂ)GG(Sf)-
Indeed, we have z € Dom{f}, £ € Dom{f*} and s > f(z) + f*(£), so that
s=(&y) 2 flz)+ F(&) - &y = flz) - fy)
>{fW)+mz-y}t-fy 2 mr-y). O

Note that a covering for the f.e. (G, f) induces in “almost explicit” man-
ner a covering for its Legendre transformation (G*, f*) (§5.2.3), and a simple
combination of these coverings (see Corollary 5.2.3) is a covering for G*.
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Now let us demonstrate how to obtain a convex representation of “a com-
bined” monotone element on the basis of convex representations of the elements
involved into the combination. There are five standard operations preserving
monotonicity: multiplying by a positive constant factor, restriction onto a
smaller domain, affine substitution of argument, summation, and taking the
inverse. The induced transformations of convex representations are given by
the statements that follow.

Several transformation rules are evident.

Proposition 7.4.5 Let (G, S) be a monotone element and let G* be its convez
representation.
(i) Let a > 0. Then the set

G* = {(z,6,5) | (z,07'¢,a7's) € G}

is a convez representation of the element (G, asS).

(Note that G* is the image of Gt under an invertible affine mapping, so
that a covering (a conic representation) of G naturally induces a covering
(respectively, a conic representation) of G*.)

(ii) Let H be a closed conver domain contained in G and let S |y be the
multivalued mapping defined by the relations

Dom{S |u} = HﬂDom{S}, (S |u)(x) = S(z), z € Dom{S |g}.
Then (H, S |i) is a monotone element, and the set
H* = {(2,6,5) € G* | € H}

is a convex representation of this element.

(Note that H* is the intersection of G and the direct product of H and a
linear space; therefore a pair of coverings (a pair of conic representations) of
G' and H induces a covering (respectively, a conic representation) of H™.)

(iii) Let B(y) = By +b be an affine mapping from a finite-dimensional real
vector space E' into E such that Im B intersects int G. Set G’ = B (G) and
let S’ be the operator defined by the relations

Dom{S'} = B~ (Dom{$}), S'(y)={B*¢| &€ S(B(y))}, yeDom{s'},

where B* is the operator conjugate to B. Then (G’, S’} is a monotone element,
and the set

G' =cl{(y,n,s) | Iz,&,8) € G : z=B(y), n=B*¢}

is a convex representation of (G',S").

(Note that G' = cl B(G"), B(x,&,s) = (x, B*¢, s), where G" = (B~}(G)
and B is the affine mapping (z,€,8) — (B(x),£, s) (which image clearly inter-
sects the relative interior of GT). Therefore a covering (a conic representation)
of G* induces a covering (respectively, a conic representation) of G”. In turn,
in the case when 5(G") is closed, the latter covering/conic representation in-
duces a covering/conic representation of G'.)
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Now consider summation.

Proposition 7.4.6 Let (G,S1) and (G, S2) be monotone elements and let the
operator Sy + Sz be defined by the relations

Dom{S; + Sz} = Dom{S,} nDom{SZ}a

(814 S2)(z) = {€+n| € € Si(z), n € S2(2)}, =z € Dom{Y; + S2}.

Also, let G and G be convex representations of (G, S1) and (G, S2), respec-
tively. Then the set

Gt =cl{(z, 6 +n,s+1)| (z,§5) € GT,(z,n,t)} € GF}
is a convex representation for (G, S + S3).

The proof is quite straightforward.
Note that Gt = cl{B(G")}, where G' = B~}(G{ x G}) and the linear
mappings 8 and B are defined by the relations

ﬁ(w,ﬁ,sﬂl,t) = (.’1:,{ +n,8+ t)’
B(m, 57 s’ ’r], t) == ((z7 §1 S), (x’ n’ t))'

The image of B clearly intersects the relative interior of G} x G§, so that a
pair of coverings (conic representations) of Gf', G'Z*‘ induces a covering (re-
spectively, a conic representation) of G'. This covering/conic representation,
in turn, induces a covering/conic representation of G*, provided that 8(G') is
closed (and therefore coincides with G*). The latter requirement is satisfied
if at least one of the sets Gf, G is bounded.

It remains to consider inversion. Let (G, S) be a monotone element. The
projection Im S of the graph G(G,S) C E x E* onto E* is formed precisely
by those ¢ for which the inclusion & € S(z) is solvable; let S~1(£) be set
of solutions to the inclusion. Thus, we have defined a multivalued mapping
S~ that maps a point £ from Dom{S~!} = Im S into a nonempty subset of
E = (E*)*. It is easily seen that this mapping is monotone, namely,

E-mz—y)>0, &nelmS, zeSHE), ye Sy

If S is defined unproperly, then the above mapping S~! can be bad, e.g., it can
be defined in a neighbourhood of a point, but not at the point itself. Let us
call a monotone element normal if the set G’ = ¢l Im S is convex and possesses
a nonempty interior, and the latter interior is contained in Im S. In this case,
(G',871) clearly is a monotone element on E*; we call it the element inverse
to (G, S). It is well known that, if S is maximal monotone and the affine span
of Im S coincides with E*, then (G, S) is normal.

The following statement demonstrates that a convex representation of a
normal monotone element is, in fact, a convex representation of the inverse
element.



INEQUALITIES WITH LINEAR OPERATORS. 313

Proposition 7.4.7 Let (G, S) be a normal monotone element, (G',S~1) be
its inverse and let G be a convex representation for (G, S). Let

H={(¢z,5) e E*x (E")xR=E*xExR| (z,¢,5) € G},

R={(¢ )| £€C'}.

Then Gt = H(\ R is a conver representation of (G', S~ !). If Gt = G*(G, 5)
is the minimal convez representation of (G, S), then G*+ = H.

Proof. Let us prove that G** is a convex representation of (G',571). We
should verify that
(a) G** is closed convex set contained in G’ x (E*)* x R;
(b) G** contains all triples (¢, z, (€, z)) associated with (¢,z) € G(S™1);
(c) For every (£,z,5) € Gt we have

s—{n,x) > (- ny)

for all (n,y) € G(S7!). The verification is as follows:

(a) This part is evident;

(b) If (¢,2) € G(S71), then (z,£) € G(S) and £ € Im S C G'. Since
(z,€) € G(S), we have (z,&, (£, z)) € G and therefore (¢, z, (¢, z)) € H; since
¢ € G', we also have (§,z, (€, 7)) € R, so that (§,z,(€,z)) € GtT, and (b) is
proved;

(c) If (£,2,8) € GTF and (n,y) € G(S™1), then (z,£,s) € GT and (y,n) €
G(S); these inclusions, combined with the fact that G is a convex represen-
tation of (G, ), imply that

s—(&y) =2 (mz—y),

which is equivalent to the inequality required by (c).

It remains to prove that, if G* is the minimal convex representation of
(G, S), then G** = H or, which is the same, to verify that H C R. The
minimal convex representation is, by definition, the closure of the convex hull
of the set {(x,&, (€, z)) | (x,£) € G(S)}, so that in the case under consideration

H = cl{conv {({,z, (&,2) | (§,2) € G(STH}},

and, of course, the projection of this set onto E* is contained in G’ (the defi-
nition of the inverse to a normal monotone element). a
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Chapter 8

Acceleration for linear and linearly
constrained quadratic problems

8.1 Introduction and preliminary results

8.1.1 Motivation
In this chapter, we consider the problem

(L£Q): minimize ¥(z) = J2T Az — a"z
st. z € R", fi(z)= —aiT:v—f— b >0, 1<i<m,

where A is a positive semidefinite symmetric n X n matrix, a,a1,...,0, €
R™, by,...,by € R. In other words, we deal with a linearly constrained convex
quadratic programming problem.

Henceforth, set

(8.1.1) G={zeR"| fi(z) >0, 1<i<m}.

We assume that G is a bounded set with a nonempty interior (hence m > n).
Without loss of generality, we suppose that all a; are nonzeros. Then

(8.1.2) G=itG={zeR"| fi(z) >0, 1 <i<m}.

To solve the problem, we can use, say, the barrier-generated path-following
method (see §3.2; the method is referred to as the basic one) associated with
the standard logarithmic barrier

(8.1.3) F(z)=- iln(bi —alz): G - R,

=1

which is an m-self-concordant barrier for G; of course, the objective is O-
compatible with the barrier. As we know, to improve the accuracy of cur-
rent approximate solution by an absolute constant factor, the method requires
O(1)m!/? Newton-type steps, and each of these steps costs O(1)mn? arith-
metic operations. It follows that the arithmetic cost of finding an z-solution
to the problem, i.e., a point x. satisfying the relation

(8.1.4) ze € G, Y(ae) - miny < e{maxy) — miny}

315
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is

*(Y 15,2 m

(8.1.5) M*(e) = O(1)m 5n21n (m)
operations, where a(G : w) is the asymmetry coefficient of G with respect to
the starting point w € G’ used by the method.

In what follows, M*(c) always denotes the arithmetic cost (corresponding
to the method under consideration) of finding an e-solution to (£Q).

It is well known that the cost given by (8.1.5) can be reduced. To this
purpose, we can use different strategies and tactics.

Strategy

In a path-following method, we are interested in approximating the path
z*(t) = argmin {Fy(z) = t¢(z) + F(z) | z € G’}

(¢ is either a linear form (the preliminary stage), or the objective involved into
(LQ) (the main stage)). This path should be approximated along a sequence of
values of ¢ tending to 0 (at the preliminary stage) or to oo (at the main stage),
and the computational effort is dominated by the arithmetic cost at which we
can solve the basic subproblem, i.e., to update a given “good” approximation
to z*(t) into an approximation of the same quality to z*(2t) (or z*(¢/2)); of
course, the above constant 2 could be replaced by an arbitrary absolute con-
stant greater than 1. To simplify our explanation, restrict ourselves to the
basic subproblem associated with the main stage, where ¢ should be increased.
A general-type path-following method solves this subproblem by a number of
updatings of the type t — tt = kt, where x > 1 is the rate of increasing t. Each
step t — t* is accompanied by an updating x ~ z*, and the only requirement
on r is that this point should be good (in a proper sense) approximate min-
imizer of Fy+(-) over G'. The most natural way to form z* is to minimize Fy+
by certain standard procedure for smooth convex minimization. Let us restrict
ourselves for a moment to one of the standard first-order procedures, e.g., the
gradient descent method. An obstacle for fast convergence of this method is
that, although our objective F;+ is very smooth, it may happen to be very
ill conditioned with respect to our initial (standard) Euclidean structure on
the space of variables, and the gradient descent method implemented in a
straightforward way may be very time-consuming. To overcome this difficulty,
it is reasonable to precede the gradient descent by an appropriate scaling of
variables, which ensures a reasonable condition number of the Hessian of Fy+
(at least in a neighbourhood of the point « where the procedure starts). This
scaling is equivalent to introducing a new Euclidean structure on R™ with the
aid of a scalar product I Pv, where P should be “compatible” with the Hes-
sian of Fy+ at x; to apply the associated “prescaled” gradient descent method,
we should know the matrix P~'. Note that the simplest way to implement this
scheme leads precisely to the basic method, where we, in fact, perform a single
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step of the prescaled gradient descent method, the scaling being defined by
the Hessian of Fy+ at = (indeed, the step of prescaled (in this way) gradient
descent method is, up to the stepsize, the Newton step). The rate of varying ¢
in the basic method is chosen according to the requirement that the prescaled
gradient descent method could minimize F;+ to the desired accuracy in a single
step.

Now it is clear that the strategy underlying the basic method is an “extreme
point” of a whole family of strategies. There is neither a priori reason to restrict
ourselves to the prescaled gradient descent method (there exist more efficient
first-order procedures for smooth convex minimization), nor any necessity to
update x by a single step of the procedure. In other words, we could try to
vary t at a higher rate than that one used in the basic method and accompany
every step t — ¢ by a number of steps of a prescaled first-order procedure for
minimizing Fi+ (-).

Tactics

As we have already seen, the above strategies require appropriate scaling of the
space of variables: Each step t — ¢* should be accompanied by computing a
matrix “compatible” with the inverse Hessian of Fi+ at x. In the basic method,
this is done quite straightforwardly: We simply compute the Hessian and its
inverse. Note that this is, in a sense, superfluous: All we need is not the exact
inverse Hessian, but a matrix compatible with this inverse Hessian within a
factor of order of 1. It turns out that appropriate approximate inverse Hessians
can be recursively computed at the lower average (over iterations) arithmetic
cost than the exact ones; this possibility for acceleration was discovered in the
same paper where the first polynomial-time interior-point method for LP was
developed (we mean the landmark paper of Karmarkar [Ka 84]). As applied
to interior-point methods for (£Q) (and LP), this Karmarkar acceleration was
used by most of researchers. Since it is used in all our strategies, it is reasonable
to recall the idea of the Karmarkar acceleration.

Assume that we are generating a sequence of points (t1, 1), ..., (¢, %), . - -,
(t; > 0, z; € G') and should compute symmetric positive definite matrices P;
and P! in such a way that

(%) p! (‘i’ + t;lF"(-'L'i)) <P <p (q> + ti_lF”(mi)) )

where ® is a given symmetric positive semidefinite matrix and p > 1 is a given
constant. Note that the matrices T; = t; ' F"/(z;) are of the form ATD(i)A,
where A is a constant m x n matrix and D(¢) is a diagonal m x m matrix with
positive diagonal entries.

Karmarkar’s scheme of computing P; and P[l is as follows. We set

P=3+ATD()A
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and update the new diagonal matrices D’(7) according to the rules

D'(1) = D(1);
[D'(i+1)]y5, if p~'[D(E+1)];; < [D'(3)]y5 < pIDGE+ 1)]j5
[D(¢+ 1)];;, otherwise

[D'(i+1)]5; = {

(note that this rule clearly maintains (*)). Now, for ¢ = 1, we compute P; and
then P! straightforwardly. To transform (P;, P!) into (Pz~+1,Pi“+11), we act
as follows. Let A(z) = D'(i+ 1) — D'(¢) and let k = k; denote the number of
nonzero diagonal entries in A(z). Consider the k x k diagonal matrix § = 6(3)
with diagonal entries being nonzero diagonal entries of A(3) and let a = a(z)
be the k£ x n matrix formed by the rows of A corresponding to the nonzero
diagonal entries of A(i). Then

P41 =P, +a éa,

and the above computation costs O(kn?) operations of the standard linear
algebra routines.
Now, in the case of ¥ < n, to update P[ into P} “+1» we can use the

Sherman—-Morrison formula

2L =P — (@P T8I + (aP )T 8} HaP ),

which takes O(kn?) operations; in the case of k > n, we can invert P, di-
rectly, which takes O(n3) operations. Thus, the cost of updating the pair
(P;, P!) always does not exceed O(kn?), while the straightforward computa-
tion of (Pi1, P;;}) takes O(mn?) operations.

As already mentioned, in the case of the basic barrier method, we can
replace exact Newton steps

LTiy1 = T4 — [VZPtz+1 (:E‘t)] Vth-H z't)
by approximate steps
Tit1 = X5 — ti_llji_IVFtﬁl(mi)’

where P, satisfies (¥) with an appropriate absolute constant p close to 1 (the
matrix ® involved into (*) is either zero (at the preliminary stage) or the
Hessian of the objective (at the main stage)). Thus, we can use the Karmarkar
scheme for updating P; in the basic method (the resulting procedure is called
the Karmarkar acceleration of the basic method). It turns out that the average
(over iterations) value of k in the latter method is of order of m!/2, so that the
average arithmetic cost of an iteration is O(m!/?n2 + mn) instead of O(mn?)
in the initial version of the basic method. Thus, the total arithmetic cost of
finding an e-solution by the accelerated basic method is

(8.1.6) M*(e) = O(mn? + m*?n) In (a(_GT_nT)g> .
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Note that the arithmetic cost of an e-solution to (£Q) depends, in partic-
ular, on the linear algebra tools used for scaling (i.e., for forming and exact
or approximate inverting of the corresponding Hessians). Bounds (8.1.5) and
(8.1.6) correspond to the traditional linear algebra routines, where the cost of
inverting a k x k matrix is O(k®). However, there are theoretically less costly
ways to perform the above computation, which require no more than O(k?*7)
operations for certain v < 1 (the best of the currently known values of v is
0.376... [CW 86]). Of course, the “advanced” linear algebra techniques reduce
the cost of finding an e-solution to (£Q). In what follows, we fix vy € (0,1] and
assume that we can invert a k x k matrix at the cost of O(k?*?) arithmetic
operations.

Overview

The aim of this chapter is to combine all aforementioned possibilities for accel-
erating the basic barrier method as applied to (£Q), i.e., “large steps in ¢ with
multistep prescaled first-order procedures for updating x,” recursive computa-
tion of (approximate) inverse Hessians used for scaling, and “advanced” linear
algebra routines.

Let us outline the contents of the chapter. In §8.2 we establish an important
inequality that, in a sense, bounds from above the rate at which the path z*(-)
associated with problem (£Q) can vary “at large”; this inequality forms the
basis for all our further considerations. In §8.3 we describe three strategies with
“large” steps in ¢ and multistep updating x based on three (prescaled) first-
order procedures, namely, the gradient descent method, the “optimal” method
for smooth convex minimization, and the standard iterative method for solving
the equation VF,+ = 0. In §8.4 we develop the strategy with the same stepsizes
in t as in the basic barrier method and the (approximate) Newton steps in
computed by a preconditioned (in certain specific way) conjugate gradient
method.

The results are as follows (for simplicity, we now restrict ourselves to the
case of n = O(m)). The arithmetic cost of finding an e-solution to (£Q) for
each of our procedures is of the type

Or(t)armtn (o).

where (G : w) and ¢ are the same as in (8.1.5) and ¢(,-) is specific for
the procedure under consideration. Our “reference point” is the Karmarkar
acceleration of the basic barrier method

qKarm('% m) = m(5+7)/2;
for the three strategies described in §8.3, we have

qGrDsc(’)’, m) = m(20+7)/(8*’7) (ln m)(l-fy)/(g_,y),
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gopt (7, m) = m0=1/ =7 (1n ) 1=/ (A=),
a1t (7) = m(5+7)/27
and, for the conjugate-gradient-based strategy from §8.4, we have

qcG (,7, m) — m5/2+‘2'72/(2+3'y—'72).

We see that, in the case where v = 1, i.e., for the traditional linear algebra,
all strategies are of the same cost: ¢.(1,m) = m3 (note that the strategies,
however, differ from each other even in the case of v = 1). The “ideal” case
v = 0 is similar: All q.(0,) are (sometimes within logarithmic factors) equal
to m5/2. In the case of 0 < v < 1, the quality of the third strategy from §8.3
is the same as of the Karmarkar acceleration, and the remaining are better in
order, the conjugate-gradient-based being the best one (for all v € (0,1)). For
example, for the best-known value of vy, the reference strategy yields

Karm (0.376...,m) = m?688-
while, for the conjugate-gradient-based strategy, we have
qCG(0376, m) = m2'594---_

As we have mentioned, in the case of v = 1, all our strategies lead to
the same complexity estimates as the widely used Karmarkar acceleration of
the basic method. Nevertheless, we suppose that these new strategies are of
practical interest even in the context of the standard linear algebra. Indeed,
the basic method seems to work in accordance with its theoretical worst-case
efficiency estimate, while the other strategies appear to be more flexible. We
mean that the performance of the first-order procedures for smooth convex
optimization, as well as the performance of the conjugate gradient method for
solving linear systems, usually is better than that one prescribed by the theo-
retical worst-case analysis, so that we may hope that the proposed acceleration
strategies typically are more efficient that the basic method with Karmarkar’s
acceleration.

8.1.2 Preliminary results

The remaining part of this section contains some preliminary results about
advanced linear algebra.

In what follows, we fix v € (0, 1] such that, for all positive integers k, a
nonsingular k x & matrix can be inverted at the arithmetic cost c,,k2+7. It is
known that, in this case, the product of two & x k matrices can be computed
at the cost of O, (k?*7) arithmetic operations (henceforth, the constant factors
in O,(:) depend on ~y only, while the constant factors in O(-) are, as always,
absolute constants). The following statement is a straightforward consequence
of these assumptions.
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Lemma 8.1.1 Let
o(l,k,r) = lkr(min{l, k,7})" 71, l,k,7 € N.

The product of an | x k matriz A and a k x r matriz B can be computed at the
cost of O(o(l,k,r)) arithmetic operations.

Proof. Let s = min{l, k,r}. Without loss of generality, we can assume that
l,k,r are divisible by s. After partitioning the matrices A and B into square
$ X s submatrices, we obtain (I/s) x (k/s) and (k/s) x (r/s) matrices A’, B’ with
elements from the ring £ of real s x s matrices. The multiplication of A’ and
B' in the traditional manner costs O(lkrs—3) multiplications and additions of
pairs of elements of L. Each of these £-operations costs no more than Ov(s2+7)
arithmetic operations, which proves the statement. O

Assume that the data in (£Q) are represented in the natural way (by listing
the entries of the matrix and the vectors) and let ¢ be a similarly represented
convex quadratic form. Let

(8.1.7) Ff(z) = t(z) + F(z).

Henceforth, f' and f” denote the gradient and the Hessian of a function
f : G’ — R with respect to the standard Euclidean structure on R”.
Let, forz € G', t > 0,

8(t,z) = (tYV2 7 Y x),...,.t7 V257 (2)) e R™,
d(t,z) = (t7 f7 =), .., £ (@) € R,
D(t,z) = D(z) = diag{d(t,z)} € D,
®y(z) = (F) (x),  Ty(z) = (FP)"(z),

where D is the set of diagonal m x m matrices with positive diagonal entries.
Let Z be the n X m matrix with the columns a4, ..., a,, and let

M(p,D)=¢" +ZDZ", DeD.

The n x n matrix M (¢, D) is symmetric and positive definite (the latter state-
ment holds in view of the boundedness of G’). We use the notation M7 (z) for
the matrix M (¢, D;(z)); note that, in view of (8.1.7),

(8.1.8) (F)Y"(z) = tMP(z), ze€d.
For a pair A, s of positive m-dimensional vectors, let
(8.1.9) v(h,s) = max{hi/si,s1/h1,-- ., hm/Sm, Sm/Phm} — 1.

Henceforth,
S={deR™| d>0}.

The following lemma holds.
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Lemma 8.1.2 (i) Given z € G', t > 0, and D € D, we can compute
(FPY(z) at the cost of O(mn) operations; compute Dy(z) at the cost of O(mn)
operations; compute the product of M (¢, D) and a given vector h € R" at the
cost of O(mn) operations; compute M (¢, D) at the cost of O,(mn'*7) opera-
tions.

(ii) Assume that we have computed D, D' € D, and the matrizr L =
[M(¢, D))~ and let k be the number of diagonal positions in which the entries
of D and D’ do not coincide. Then the matriz [M(¢, D')]™! can be computed
at the cost of O (m + l[n, k]) operations, where

n?kY, k<mn,
I, k] = {kn“‘”, k>n.

Proof. (i) The first and the second statements are evident; the third follows
from the relation
M(¢, D)h = ¢"h + Z|D(ZTh)).

The fourth statement follows from Lemma 8.1.1, since the computation of the
n x m matrix DZT costs O(mn) operations, the multiplication of Z and this
matrix costs O.,(mn!*7) operations, and it takes O(n?) operations to add ¢”
to the result.

(ii) If £ = 0, then the statement is evident. Let k be a positive integer. It
is clear that

M’rll,n = M(¢1 Dl) = M(¢: D) + Vn,ksk,n = Mn,n + Vn,ksk,n

(subscripts denote the numbers of rows and columns), where V,, j and S ,, can
be computed at the cost O(m + nk) operations.
Let k£ < n. We have

[My{L,n]_l = Mn_,:L - [Mn,nlvlv;z,k(Ik + Sk,nVn,k)_lsk,n [Mn,n]_l,

where I}, means the k x k identity matrix. By Lemma 8.1.1, the matrix (I} +
SknVnk) can be computed at the cost Oy(nkl'm); the resualting matrix can
be inverted at the cost O, (k%*7); each of the remaining matrix multiplications
costs no more than O, (n?k?), thus (A}, )" can be computed in no more than
0,(n?k") operations.

Now let k > n. We have

(M':L,n)_l = (In + (Mn,n)_lvn,ksk,n)_l(Mn,n)d'

The matrix I, + (Mp5) 'V, xSkn can be computed at the cost O(kn'*?)
(Lemma 8.1.1), the resulting matrix can be inverted at the cost O(n?*7), and
the result can be multiplied by (My)~! at the cost O(n?*7). Thus, (M}, )
can be computed at the cost of O(kn!*?) operations. O
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8.2 The main inequality
Let us fix a convex quadratic form ¢ on R"”, For t > 0, denote

(8.2.1) z*(t) = argmin {Ff(z) | z € G'},

(8.2.2) &) = {2 @ O) I )

(F? is defined by (8.1.7)).
The following lemma states an important regularity property of the trajec-

tory £*.

Lemma 8.2.1 Let ty, t2 > 0. Then

{tita}2(a* (t1) — 2*(12))" 9" (2" (1) — " (t2))
(823) +Z{€z tl 51. (t2 } {€ (tl ( )}_1

/2 ,1/2 -
— m{t)/ 42/ Y {tita} 2.
Proof. We have m
(@) — 7Y fifT
i=1
(note that f! does not depend on z). Subtracting such an equality corre-
sponding to ¢ = t3 from that one corresponding to ¢ = ¢; and multiplying the

resulting equality by (z*(t1) — *(¢2)), we obtain

(@*(t1) — 2" (82)) 7 ¢" (2" (t1) — 7" (t2))

= Z{t fi = iz (g} (2" (1))

~t3 [fiz"(t1) = fulz" (L)1 (2" (t2))},
whence
Et‘“t‘l/z{e (L)/6 (t2) + & (t2)/6} (1)}
() —2*(t2))T 9" (2" (t1) — a*(t2)) = m(t; ' + 85 1),

which immediately leads to (8.2.3). 0
Corollary 8.2.1 Let t1, t2 > 0. Assume that x(t1), z(t2) € G' are such that

(8.2.4) ML z(t;) <x<01,  j=1.2
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Then
{trt2} 2 (2(t1) — 2(t2))" ¢ (z(t1) — 2(t2))

(825) + i{&(tl, &(t1)) = 6i(ta, o(t2)) }2{8i(tr, 2(t1))bilte, (22))}
i=1

< {m{t” - &P + PO{H + 5"} {tta} /2
(recall that w(A) = 1 — (1 — 3X)1/3) with an absolute constant pg > 0.

Proof. Let us define m-dimensional vectors and m X m matrices as follows
(below t = ¢; or ¢t = ta):

h(t) = {fi(z* @)/ fi(z()) | 1 <i<m}T,
ho(t) = (h'(®),- - b))
H(t) = diag{h(t)}, e=(1,..., 1)T
g={(EW)/ga))?* | 1<i<m)T,
g_‘ = (gl—l') b YQT:LI)T

—_ T
n(t) = ( ha(@), ..., ,/hm(t)> ,

n-(t) = (@), ..., m. ().

9

We have
D?F(z(t))[z* (t) — x(t), 2*(t) — ()]
= t(z* (t) — ()T ¢" (a* () — 2(2))
+ 3060 ~ =) £ 1)
(8.2.6) =t(z"(t) — z(t))" ¢ (z*(t) — z(t))

307 @) 1 ) - A
— (& (1) ~ 3) ¢ (@ (0) - (0)

+ [ At) —e 3
and similarly
D2RY(a*(8))[* (t) — o(t), 2*(t) — a(t)

(8.2.7) . )
— t (@ () — 2(t)T ¢" (& () - 2(t)) + | h-(t) — e [}
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Thus, Theorem 2.2.2(iii) and (8.2.4) imply that

(8.28)  t(z*(t) —z(t))T ¢ (z°(t) — z(t)) + || h(t) — e 3< w?(N)
and

w?(A)

(8.2.9)  t(z*(t) — ()" ¢" (z*(t) — () + || h-_(t) — e |3< 1 —w)?

Furthermore, (8.2.3) implies that

8.2.10 {tit2}'/2 (2" (t1) — 2*(t2)) ¢ (2" (t1) — 2" (t2)) + | 9 — 9- |13
(8210 = m{t/? — /2 {11t} V2 = 2.

Since for positive s we have (s —s71)2 > (s—1)2 4 (s71 = 1)2, (8.2.10) leads to

{tit2}'/? (" (1) — 2" (82))" ¢" (2" (t2) — 2" (t2))

(8.2.11) , .
+llg—elz+1lg —el3<6°

By (8.2.8), (8.2.9), we have

6212 ta*0)— o) ¢ (2"(0) ~ 2(0) + | (0) - e JB< O,

(8213)  ta*(t) )" @ (1)~ 2(O)+ | n-(0) - e [ L)
(i~ w ()

Therefore,

(8.2.14)

¢ = {tat2}'/? (2(ts) — 2(t2))" ¢" (2(t1) — 2(t2))

+Z {8i(t1, 2(t1)) — ilte, z(t2))} {8i(t1, 2(t1))Bilt2, 2(t2))}
= {t1t2}1/2( (t1) = 2(t2)" ¢ (@(tr) = 2(t2))

+ || HY2(61) HY*(t2)g — H'(t) H V% (t2)g- |13
< {tat2}'? (@(tr) — 2(t2)" ¢ (x(tr) ~ 2(ts))

+2 || H2(0)H 2 (t2)g —e |13

+2 || H™V2(82) HY 2 (t1)g- ~ e I3 -
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Furthermore,
| H72 () HY (t2)g — e l2 <l H™V2(0)HY*(t2)(9 - €) Iz
+ | H=V3 (@) {(H 2 (t2)e — e} Il2
+ | H V3 (t1)e —e |l2
<l n-(t1) looll n(t2) llooll g — € 2

+ [ 7-(81) llooll n(E2) — € ll2 + [ 7-(t1) — e (|2

14+ w(A) w(A) w(A)
S e T ooy T T e

(we considered (8.2.12), (8.2.13)). The same estimate holds for the quantity
| HY2(82) 2 H=12(t1)g— — e ||2.
Thus, (8.2) implies that

(82.15) ¢ < {tato}/? (w(ts) — 2(t2))” ¢" ((t1) — z(t2)) + 24(8 + w(N))2.
We also have
{tita}'/? (2(ts) — 2(t2))” ¢ (x(t1) — x(t2))
< 3{tato}{(a*(t1) — 2*(t2)) 79" (2" (t1) — =*(t2))
+H(a*(t) — z(t1))T ¢" (2" (1) — 2(t1))
+(z* (t2) — 2(t2))" ¢ (x* (82) — 2(t2))}
< 3{tita}2 {{tata} V267 + 4710 (N) + t7'w?(V)}

(the latter inequality holds in view of (8.2.11), (8.2.12)). The obtained inequal-
ity combined with (8.2.15) proves (8.2.5). D

8.3 Multistep barrier methods

8.3.1 Notation

Recall that the barrier method, when applied to (£Q), follows the trajectory
(8.2.1), where ¢ is a linear form (at the preliminary stage) and ¢ = 9 (at the
main stage). The method computes approximations z(t) to z*(t) along certain
sequence {t; | 1 > 0} and maintains the inequality

A(F?, o(t:)) < A,

where ) is an appropriate absolute constant. In fact, this inequality is sufficient
for ensuring the efficiency estimate, no matter by which strategy this inequality
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is provided. An example of such a strategy was described in §3.2.2. In what
follows, three more strategies are presented.

Let us introduce the following subproblem P = P(r,y) : Given 7 > 0 and
y € G’ such that
(8.3.) A(F?,y) <A,

find ¢’ € G’ and 7’ satisfying the relations
(8.3.2) MES, ) < A

and

< 1/2, at the preliminary stage,
(8.3.3) 7’ {

> 2T, at the main stage.

Assume that M is a procedure that solves this subproblem (for each 7, y
satisfying (8.3.1)) at the cost of M arithmetic operations. Then we can find
an e-solution of (£Q) in no more than

wr0=0(un ggss)

arithmetic operations. Indeed, it suffices to follow the trajectory (8.2.1) in
accordance with the scheme

{r(= t:), y(= 2t:))} B {tiss = 7', 2(tiy1) = ¥}

(compare with the proofs of Propositions 3.2.3 and 3.2.4).
Thus, we can restrict ourselves to the subproblem P.

Sets K,(z)

For z € G’ and a > 0, let

(8.3.4)
Ky(z)={yeG| 1+ a)_lfi(a:) < fily) < QA+ a)fi(z), 1 <i<m}.

Let u1 > 0 be an absolute constant such that

(8.3.5) [In(r/s)[2 < 2" %0 {r - — s)”

for all s, r > 0 (we can take u; = 2).
Lemma 8.3.1 (i) Letz € G', a > 0, t, s > 0. Then

vy € Ka(w) : || (Vo)) 2 Ws(y)(We(2)) /2 — I |
(8.3.6)
< max{2a + o?; |1 — s/t]}.
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(i) There exists an absolute constant pp > 0 such that, for each t, ¢ >
0, z, ' € G' and X € (0,0.1) satisfying the conditions

(8.3.7) AMFP,z) <\, MFE,2') <A L<t/t <2,

the implications

(8.3.8) a > pa{mn?(t/t) + W?(N\) + 1} = 2’ € K4(x),
(8.3.9) a > pp{mn®@t/t) + w*(A)}Y? = 2’ € Ku(2)
hold.

Proof. (i) We have
V. (u) = r¢" + Z Diag { f; ()} 27,
whence
min{s/t, f(z)/ (), - .., f4(x)/ fr(y)} Ve(2)
< Uy(y) < max{s/t, f}(2)/ 7 Y), -, fn (@) F(9) } ¥e(2)
or
min{s/t, f()/ f2 W), -, F2(@)/ Fa W) Ha < U (2) 0, (1) T, V2(2)
< max{s/t, f{(z)/f}(v), .-, Fo(2)/ f2 () }Hn.
The latter relation immediately implies (8.3.6).
(ii) Let
0= (t/t)/2, v =&t x)/6(t, ).
Then, by virtue of (8.2.5), we have
(1 —v)?fv; < pd{m(1 - 6)2071 + (N1 +6)%07'};
moreover, 3 < 6% < 2. Therefore
max{v;, 1/v;} < O(mIn?0 + w?(A) + 1),

max{v;, 1/v;} < O(1)(m1n? 6 + w*(\))1/2.
It remains to note that fi(z)/f;(z) = {t'/t} "/ %uv;. o
For a > 0 and q € (0,1), let the function ¢(t) = g(a, g,t) be defined as
—In(a/q) — (a/a)(t — a/a) + (afa)(t — afa)?, i t>a/q
g9(t) =< —In(?), if ga <t<a/g
~In(ga) - (ga)"'(t — ga) + (ga)2(t — qa)?,  if t < qa.
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Also, let
l1—¢
a(q) = —.
(q) 7

It is clear that the function g(t) is a C? smooth extension of the func-
tion (—Int) from the segment [ga,a/q] onto R (the second derivative of the
extension is constant for ¢t > a/q and for ¢t < qa).

For u € G/, let

m

Fug(z) =) g(fi(u),q, fi(z)) : R* - R.

i=1

The following statement is evident.
Lemma 8.3.2 For each u € G', we have
(8.3.10) T € Kyq)(u) = Fug(z) = F(x);
moreover, for each x € R™, we have

(8.3.11) ¢ F"(u) < F) () < q°F"(u).

8.3.2 Gradient-descent-based acceleration

Let2>p>1,2>n>1, )€ (0,0.1]. We will describe a procedure M(p, 7, A),
which solves the subproblem P. This procedure performs a “large” step in t.
The stepsize depends on v, m, n; in the case of v = 1 and n = O(m), the
optimal step is

t—t =(1+0(m )i

instead of the usual step
t— (1+0(m V).

The return to the neighbourhood of the trajectory =*(-) is performed by mini-
mizing Ft",S by the gradient descent method. To avoid some difficulties (coming
from the restrictions ¢ € G’), it is convenient to apply the gradient descent
method not to Fﬁ’, but rather to the function F, 4, which is defined (and

strongly convex) on the whole space and at the same time coincides with Ff
in a neighbourhood of z*(#'). The latter property is provided by an appropriate
choice of u and ¢q. Of course, the gradient descent method corresponds not to
the initial Euclidean structure on R™ but to the structure defined by a matrix
close to (F2)".

The procedure is as follows.

Initialization. Let 3 be the positive root of the equation

/32/(1 - /3) = )‘2a
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, -1
qg= (1 + pafmIn® n + w?() + 1}) ,

h= (g %pm)7 ",
w = ¢*B(pn) 2,
To =Y, to=T.

Compute d° = d(tp, zp) and the matrices

M2 (z0), Qo= (M)

to

The kth step, k > 0. Assume that, after k¥ — 1 steps of the procedure, we
have formed a point z € G', a vector d* € S, a number #;, > 0 and the matrix

(8.312)  (I):  Qr=(M(¢,Di))™", Dy =Diag{d"},
such that

(8.3.13) (Jx) : v(d®, d(tx, 1)) < p
(for the definition of v, see (8.1.9)). Note that the initialization rules ensure
(In), (Jo)-

At the kth step, we

(a) Set

b txn, at the main stage,
k1= tu/n, at the preliminary stage,
Pe+1(T) = te418(T) + Fip (2);
(b) Minimize the function pg41 over z € R™ by the gradient descent method

corresponding to the metric defined by the matrix Q; ', i.e., set z0 = z and
compute

Thit1 = Thi — b g1 PQuPhr1(Th3)-
The process is terminated at the earliest step [ when the condition
- 2
(P§c+1(mk,l))TtkikaP;cH(xk,l) <w

holds;
(c) Set Tx+1 = Try;
(d) Compute d(tx;1,Tx+1) and d¥*1 € S

{ dk, df/p < diltesr, zhe1) < dfp,

di(tk+1,Tk+1), otherwise

k+1 _
ditt =

(note that this updating ensures (Jg41)) and use Q) to compute Qx4 in ac-
cordance with (I41).
This completes the kth step of M(p,n, A).
If tgr1/to > 2 (at the main stage) or tx+1/to < 1/2 (at the preliminary
stage), then set
=k, v =tpe1, ¥ =k

and terminate; otherwise, perform the (k 4 1)th step.
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Theorem 8.3.1 Each of the points xx, 0 < k < k*+1, produced by M(p,n, A)
belongs to G’ and satisfies the relation

(8.3.14) (Ke):  AMFD,z) <,

and the procedure solves P. Moreover,

1
(8.3.15) k* <0 (—) .
Let n satisfy the condition
(8.3.16) m2(n—-1)>1.
Then the arithmetic cost of M(p,n, ) does not exceed the quantity

MM =0,(¢g7*(n - 1) 'mnln(mg A7)
(8.3.17)
+mn!t + (p - 1) (p - 1) Im'n?).

In particular, under the choice

* N\ 1/(8—7)
(8.3.18) 5 =1+ m G=/=) ( n ) , p=15 A=01,

Inm
where
(8.3.19) n* = max{n,m> "2 nm},
we have
MO < Oq(m(5+27)/(8"7)(n*)(15_’7)/(8‘7)(ln m)-"/ =)
(8.3.20)

S O’Y (m(20+7)/(8'—7) (ln m)(l—’Y)/(B—’Y) ) .

Hence, under the choice (8.3.18), we have

M*(e) < 0, (M(” In (a(me—)_e))

(8.3.21) -
< (2047)/(8—7) (1-7)/(B—) (___)> .
<0, (m {lnm} In (G w)e

Proof. 1°. (8.3.15) immediately follows from (a).

20. Let us verify (Ki). For k = 0, this relation holds by virtue of the
initialization rules and (8.3.1). Assume that (Kj) holds for some k& < k* and
let us prove that (K1) also holds. Denote Cy = p_ (xx). Then, by virtue of
Lemma 8.3.2, we have

(8.3.22) ¢*Ck, < piy1(x) < ¢7%Ch.
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Furthermore, (Ix), (Jx), and the relation |In(¢x/tg+1)| = Inn imply that

(8.3.23) P Q! < Ok < ot Qi

Consider R™, as provided with the scalar product
(u,v) = uTth,;lv,

and let || - || be the corresponding norm. Inequalities (8.3.22) and (8.3.23)
mean that pi, is a strongly convex function with respect to our Euclidean
structure, and the spectrum of its Hessian belongs to the segment

[r,R] = [¢*p 7Y, ¢ 2 pm).

By definition of h, process (b) describes the usual gradient descent method as
applied to pgy1. Thus, by the standard arguments, we have, for all i,

(8.3.24) (Phy1 (ki) Tty ' QuPhya(Thi) < (1 —7/RY'R? || 2 — =, |1,

where xj is the minimizer of pr41.

By definition of g and in view of (K) and Lemma 8.3.1, we have *(tx4+1) €
Ka(q)(ack). Hence Ft(i+ , coincides with pg+y in a neighbourhood of z*(tx+1),
which means that z} = z*(tx+1). By virtue of Corollary 8.2.1, relation (Kj)
leads to

(8.3.25)
Il 2 -t 1*= (2 — 25) "t Qp *(ax — 7k) < plax — 21) Ve, (21) (25 — )

= pti(ze — z5) 7" (T — zk) + 2 D _{1 — 7 (=) filz})}?
i=1

< pltr/tes1) 1/2 2{m{t1/2 t1/2 }2 2(/\){t1/2 iizl}z}{tktkﬂ} 1/2

+pom(1-g¢")? < O(mg™?).
Therefore (8.3.24) implies that
(83.26)  (Phy1(zk) 8y ' Quphsa(@rs) < {1 - O(g*)}'O(mg™®),
whence
(8.3.27) 1 <I* = O(g~"){In(m/q) + In(1/w)}.
Let

Vpks1(2) =t Qupl 41 ()

be the gradient of py.; with respect to the above Euclidean structure. Then

| Vort1(Zes1) [1°< w?
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(this is the termination rule in b)). Hence

(8.3.28) | Tri1 — 2" (tr1) [|< prg 2w,

Moreover, we have (see (8.3.22), (8.3.23))

Uy, (2" (ter1)) = Pl (@ (Beg1)) < pna 2(66Q5 1),

and (8.3.28) implies that

(8.3.29) (zrt1 — 2 (tki1))T oy (2 (thr1)) (@1 — ° (tet1)) < pP1Pq00?,

which, by choice of w and by our standard arguments, leads to (Kgy1).

Note that (Ki+41) implies (8.3.2). The relation 7//7 > 2 (at the main
stage), 7'/7 < % (at the preliminary stage) immediately follows from the ter-
mination rule (see d)). Thus, our procedure solves P.

30, It remains to evaluate the arithmetic cost of the procedure. It is easily
seen that the total cost M’ of all computations, excluding computation of the
matrices Qg, does not exceed O(K*I*mn), K* = k* + 1. Now let us evaluate
the total cost M” of computing the matrices. First, Qy can be computed at
the cost < O,(mn!*?) (see Lemma 8.1.2). Now let

Ae={i| d¥ £ d), rio= Al r=) 1

Then, by virtue of Lemma 8.1.2,

k*
M" < Oy (ma™7) + 3 O, ([n, rk])
(8.3.30) k=0
< Oy (mn't + mK*) + Z O, (rgn ) + Z O, (n*r}),
keI keJg
where
IT={k|0<k<k*me>n}, JT={k|0<k<k*r,<n}.
Let

W =0ecR™, (h’f)i:\m(%@%)“))‘, 1<i<m, 1<k<k"
i\tky Lk

It is clear from (d) that

(8.3.31) r= Z"k <0 ( ) Z (R
Furthermore,

k* k™
PO RN TR e DN RN P
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We have (see (8.3.5) and Corollary 8.2.1)

(8.3.32)
m
I B* 113 =3 4% (8i(tks1, Thr1)/6i(tk, Tk))
=1
< 43 Y {Bi(tkrr, Thar) — Bilte, Tr) Y {8tk )8 (tk, To)}
i=1

<O(m(n—-1)%2+1).

Since k* < O ((n — 1)), (8.3.32) implies that

1 mY/? m
sam reo()o(me 22) <o (o)

(the latter inequality holds by (8.3.16)). Hence, (8.3.30) implies that

>~ 0y(run'*") < 0 (-2 ) Oy (mnt*),
kel p=1

.
2
;L;O,y(n rl) <0, (|J|(|J|) )
< O((p = 1)™)0; ((K*)*~rmn?)
Oy ((n—1)"'m™m?) 0 ((p—1)7).
Thus, (8.3.30)—(8.3.32), (8.3.27), and (8.3.15) imply that

MM <0, (¢74(n — 1) 'mnln(mg—'A71)
+mn!tT 4+ (- 1)~ (p—1)""m™n2). O

Note that, in the case of the traditional linear algebra techniques (y = 1),
relations (8.3.20), (8.3.21) become

M*'(e)<O ((n*)2mln (a(me)_e)> , n* = max{n,m/?Inm}.

8.3.3 Acceleration based on the optimal method

It is known that the rate of convergence of the gradient descent method as ap-

plied to strongly convex problems can be improved. Therefore, it is reasonable

to replace in the above scheme the gradient method by the so-called “optimal”

method for smooth convex optimization [Ns 83], [Ns 88d]. Now we describe

the corresponding procedure M*(p,n, A). The parameters of the procedure are

subject to the same restrictions as in §8.3.2. The procedure is as follows.
Initialization. Let 3 be the positive root of the equation

B*/(1-p)=
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q=(1+ pa[mIn®n+w?(N) + 1)) 7,

M =q %m,
w = ¢*B(pm) %2,
To =Y, to=r.

Compute d° = d(tg, ) and the matrices
M (zo), Qo= (M)

The kth step, k > 0. Assume that, after k — 1 steps of the procedure, we
have formed a point z € G’, a vector d* € S, a number ¢;, > 0, and the matrix

(8.3.34) (Lg) : Qx = (M(¢, Dy)) 7L, Dy, = Diag {d*},

such that
(8.3.35) Mp): v(d*, d(tg,xx)) < p
(note that the initialization rules ensure (Lg), (Mp)).
At the kth step, we
(a) Set
tkn, at the main stage,
tk1 = o
tx/m, at the preliminary stage;
Pt 1(T) = tr19(x) + Fip o (2);

(b) Minimize the function pg,; over z € R™ by the “optimal” method for
smooth convex optimization (the method corresponds to the metric defined by
the matrix Q,:l), ie., set Tro = Tk, Arpo = M, vk o = z; at the ith step of the
minimization process (i > 0), we

1. Compute a;; > 0 as a root of the equation

ai; = (1 — aki)ApiM ™Y
2. Set
Yk,i = QkiVki + (1 — ars)Ths,
2
Apiv1 = 0rq° + (1 — ar ) Agis
1,1
Thitr = Yk — Mt Qrblrr(Uki)
-1
Vk,i+1 = (1 — api) AiAg i Uk,
) 2A~1 o 'A—~1 t_l ! )
+ag;q kit1Yki — QkiAg 1l Qkpk+1(yk,z)~

The process is terminated at the earliest step [ when the condition

(Prsr (@r) tt 1 QrPhsr (Thy) < w
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holds;
(c) Set Txy1 = Thy;
(d) Compute d(txy1,7x41) and d*t! € S,

e df, d¥/p < di(tir1, ari1) < dfp,
' di(tk+1,Tk+1), otherwise

(note that this updating ensures (My;1)) and use Qi to compute Qxyq in
accordance with (Lg41).

The kth step of M*(p,n, A) is completed. If tx11/to > 2 (at the main stage)
or tx41/to < 5 (at the preliminary stage), then set

K=k, T =t, ¥ =z
and terminate; otherwise, perform the (k + 1)th step.

Theorem 8.3.2 FEach of the points i, 0 < k < k*+1 produced by M*(p,n, ),
belongs to G' and satisfies the relation

(8.3.36) (Ne):  AFR,zx) <\
and the procedure solves P.

Moreover,

1
3. *< — .

(8.3.37) k;_O(n_l)

Let n satisfy the condition
(8.3.38) m'?(np—1) > 1.

Then the arithmetic cost of M*(p,n,A) does not exceed the quantity

( | M® = ¢(\)0,(¢g7%(n — 1) 'mnin(mg™ A1)
8.3.39
+mn!tY + (p - 1)7(p — 1) 'm7n?),

where c()\) depends on X only.
In particular, under the choice

* \ 1/(4~v)
(8.3.40) n=1+m G-/ ("—> [ p=15 A=01
lnm b b H
where
(8.3.41) n* = max{n, mC 2 nm},
we have
M® <0, (m3/(4"7)(n*)(7‘"’)/(4‘7) (In m)(l—”r)/(4—"/))
(8.3.42)

<0, (m(m—v)/(4—7)(1n m)(1—7)/(4~7)) .
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Hence, under the choice (8.3.40), we have

M*(e) < Oy (M “ln (Icﬂwé))

<o, (m(lo—v)/(4—1){1n m} =0/ 1 (WimT)a» _

(8.3.43)

The proof of this theorem is quite similar to the proof of Theorem 8.3.1; the
only difference is that now we use the results about the rate of convergence of
the “optimal” method for smooth convex minimization (see [Ns 83], [Ns 88d])
instead of similar results for the gradient descent method.

Note that, in the case of n = O(m) and of v = 1, the optimal step in ¢ is

t— (12 0(m™ V3t

instead of t — (1 & O(m~3/7))t, as was the case in §8.3.2.

8.3.4 Fixed-point-based acceleration

Henceforth, we assume that (LQ) is an LP problem, i.e., that the function
15 linear. This implies that the function ¢ involved into P also is linear.

The procedures described in §§8.3.2, 8.3.3 are based on the idea to trans-
form an approximation of z*(¢x) into an approximation of z*(tx 1) for some
prescribed tryq. Our new procedure M**(p,a, A} is based on another idea:
Roughly speaking, ti; is as large as possible under the restriction z*(tx4;) €
Ku(xr). Thus, we follow the trajectory until it leaves the domain in which
U, (x) is close to Wy, (k). The idea of the procedure is very simple. The point
x*(t) is the fixed point of the mapping

T :x >z — QVE] (x),

where Qf is (an arbitrary positive-definite) “scaling” matrix. If « is a small
absolute constant and @, is close enough to (V2E¢(zk))“1, then T; proves to
be a contraction (with respect to an appropriate norm || - ||) on the set

Ka(zi) | T(@) =T 1< 7 1z =y |, 2,y € Kalzw).

Note that here it is important that ¢ is linear, since otherwise V2Ft¢(wk),
and consequently the contracting properties of T; would depend on t. Now, if
the fixed point x*(t) of the mapping T; belongs to a “smaller” neighbourhood
Ky (zx) of zx (o < a is an appropriate absolute constant), then the sequence
ut,, = Ty(ul), uf = xk, due to contracting properties of T}, does not leave the
“domain of contractness” K,(zx) and converges linearly to z*(t). Since the

rate of convergence is high, “a few” steps of the procedure
g g

“§+1 = Tt(uf)
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allow us either to conclude that z*(t) is “close” to K,(zx) and to find a good
approximation to this point, or to conclude that z*(t) is “far” from K,(zx)-
Combining this scheme with dichotomy in ¢, we can “quickly” (in O(In®m)
computations of values of T') find a good approximation to z*(tx+1), where
tx+1 is something like the largest ¢ for which z*(¢) belongs to K,(zx). Now,
the computational cost of the updating (¢, zx) — (tx+1,Tk4+1) is basically the
cost of computing Q, since, given (i, we can compute a value of " in O(mn)
operations, and it suffices to compute only O(In2 m) of these values; at the
same time, the average cost of updating Qr — Q1 even under the Karmarkar
acceleration dominates in order the above O(mnIn? m). Thus, here, as in the
Karmarkar-accelerated basic method, “almost all” computations are spent to
update the approximate inverse Hessians. Note that our present strategy is
somewhat similar to the basic one; the only difference is that in the latter
strategy the polyhedral sets K, are replaced by ellipsoids contained in K,
(these ellipsoids are defined by the Hessians of the barrier), which allows us to
use a single computation of 7. instead of O(In® m) computations of 7.

The procedure M**(p, a, A) is as follows. The parameters of the procedure
are subject to the restrictions

1<p<ll; 0<eo; 0<A<O.I;

(8.3.44) M8>a > 3uw(N); p(l+a)? <125

(it is clear that (8.3.44) can be satisfied by an appropriate choice of absolute
constants p, o, A).
ForueG’', t>0,andde€S, let

Q% = [M (¢, Diag {d})] %
O.1(z) = V(to(z) + Fuq)(2)) : R" - R",
g(a) = (1+ )7

Quai(z) =z — 71Q9)0us(x) : R® — R™.

The following statement is important for us.

Lemma 8.3.3 Assume that p, a, X satisfy (8.3.44). Letu € G, s,t >0, d€
S be such that

(8.3.45) v(d,d(t,u)) < p, |In(s/t)] <0.1
and
(8.3.46) AF? u) < A

Then
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(i) For given Q%, s,u,x the vector Qyds(x) can be computed at the arith-
metic cost O(mn);
(ii) The relation

(8.3.47) | 712, 4 (x)SM? ||< 025 Vz e R™,
where
S =s1Q%
holds (|| - || is the usual operator norm corresponding to the standard Euclidean

structure on R™);
(iii) The implication
{In(o/t)] < m=2(a/ (3p2)), 1/2 < o/t < 2}
(8.3.48)
= {2°(0) € Kap(v), Quaolz’(0) ="(0)}

holds.

Proof. (i) This part is evident.
(ii) By (8.3.11), we have

(@) F"(u) < Fy (o) (@) < ¢ (@) F" (u);

u,q{c

thus, for
f(2) = 36(z) + F, 40)(),
we have
¢*(a)f"(u) < f"(z) < ¢ () f"(w).
Furthermore, (8.3.45) implies that

p1s(QN) 7 < (W) < ps(@H) 7

Hence
p ' ()87 < f'(z) < pg(a) S
or
p (@), < 8V2f"(2)SY? < pg ()T,
Since
I, — 8" f"(2)S"? = $71%q, 4 (2)S'?,
we have

| 5712, 4, (@052 1< pg72(a) ~ 1 = p(1 + @) =1 £ 025

(the latter inequality holds by (8.3.44)). Part (ii) is proved.
(iii) Let o satisfy the premise in (8.3.48). Then, by (8.3.44), we have

a > 2ua{mn®(a/t) + w?(A)}/?, 1 <o/t<2,
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whence, by Lemma 8.3.1(ii) applied with ' = z*(0), t = g, x = u, we obtain
2*(0) € Kapa(uw)

The latter inclusion means that 0, ,(z*(c)) =0 or Q, 4, (z*(0)) = z*(0). O

Now we describe the procedure M**(p, a, ) as applied to P(7,y).
Initialization. Let

n = min{exp{m~"/*(a/(3uz2))}, exp{0.05} };
Z = max{(1 + a)® — 1,exp{0.1} — 1};
N =|In71(16) In{4p’maA~2(1 — E) '},
L=|lnm|;
o = ¥, to =1T.

Compute d° = d(tg, zo) and the matrices
(8.3.49) MP(z0), Qo= (M2)™".

The kth step, k > 0. Assume that, after k£ — 1 steps of the procedure, we
have formed a point z; € G, a vector d* € S, a number t;, (7 < t < 27 at the
main stage and 7 >t} > 7/2 at the preliminary stage) and the matrix

(8350)  (Mp):  Qr=(M(¢,Dy))”", Dy =Diag{d"},
such that
(8.3.51) (Ng) : v(d®, d(tg, zx)) < p

(note that the initialization rules ensure (Mp), (No)).
At the kth step, we
(a) Set
i=1,

tyn, at the main stage,
T =
tx/n, at the preliminary stage,

! =

71 exp{0.05},  at the main stage,
11 exp{—0.05}, at the preliminary stage,
Yo,0 = Tk Yo = Oy gk (Yo5-1), 1< <N,

¥° = vo.n,

0¥ =7
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(b) Set
o = {r'n}V2,
Yio = Ths  Yij = gy k0, Yii-1), 1<j<N.

Set
oi, if YiN € Ka(xk),
Ti4+1 =

T;, otherwise,

A 7t if yvin € Ko(zi),

Tz+1 —

o;, otherwise,

; yi,Na lf yi,N € Ka(xk)a
y*~ L, otherwise,

ai, if Yi,N € Ka(xk),
o1, otherwise.

If i < L, then set ¢ = ¢+ 1 and go to (b); otherwise, set

L L
Tkl =Y, tet1=0

and go to (¢).
(c) Compute d(ty,1,Tx41) and d*1 € S,

13

g+ — { dr, p~ldE < dilter, Trtr) < pdf,

di{tk+1, Tk+1), otherwise

(note that this updating ensures (Ng,;i)) and use @ to compute Q41 in
accordance with (Mg1).

The kth step of M**(p,a, \) is completed. If tx,1/to > 2 (at the main
stage) or tgy1/to < % (at the preliminary stage), then set

/ !
K=k, T =ty1, ¥ =Tk

and terminate; otherwise, perform the (k + 1)th step.
Comment. Let y(z,d, s) be Nth point of the sequence

Yo = ; Yi = Qpas(yj—1), 1<j<N.

Then (a) and (b) describe the usual L-step dichotomy as applied to the problem
(Lx):  Given xy, ti, find the point ¢ of the segment [In(7 /tg), In(71/tx)],
nearest to In(7!/t;), such that

(8.3.52) y(zr, 45, 5(0) € Kalzi),  s(C) = trexp{C}.
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Indeed, ¢ is the number of a dichotomy step. It can be proved that (8.3.52)
holds for ¢ = In(m1/t), i.e., for s(¢) = 71. It is clear that the latter statement
leads to

(8.3.53) y(zx, d*, trr1) € Ko(z).

Note that the choice of ) and 7! leads to

(8.3.54) Iny < |In(rt/te)].

It is not difficult to derive from (a), (b) and (8.3.54) that either

|In(! /tg41)| < 27°

or
ln(t/tes1)| < 27F

for some t such that y(z,d*,t) & K, (x).
Note also that (8.3.54) implies the relations

> at the main stage,
(8.3.55) tis1/tk

<1/n at the preliminary stage.

Theorem 8.3.3 FEach of the points zx, 0 < k < k*+1, produced by M**(p, a, \),
belongs to G’ and satisfies the relation

(8.3.56) (Ok):  MEF, zi) < A

and the procedure solves P. Moreover,

(8.3.57) k* < O(m!/?).

The arithmetic cost of M**(p,a, A) does not exceed the quantity

c(p, a, X, y)(mnltY + nm3/2In? m + m+7)/2p2)

8.3.58
(8:3:58) < C(p, a, A, y)mH1/2,
where c(p, a, A,7y), Clp,a, A,7y) depends on p, a, A, vy only.

Proof. 1°. Let us prove (O). (QOp) is true in view of the initialization rules
and (8.3.1). Assume that (Ox) holds for some k& < k* and let us prove that
(Og41) also holds. Let us fix ¢, 1 <7 <L and let

S=07'Qr yi=uig vi=5";
Then, for j > 1, we have

v; = R(Uj_1), R(’U) = S-1/2sz,d’°,a,— (Sl/zv).
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We have (henceforth || - || denotes the usual Euclidean norm on R™, as well as
the standard operator norm of a linear mapping from R" into itself)

| R@) =1 S22, a5, (5/20)8M2) )< 0.25
(Lemma 8.3.3 as applied with u = x4, d = d*, t = t;, s = 0;; the assumptions
of the lemma hold in view of (Og), (Ng) and since | In(o;/tx)| < |In(o;/71)| +
|In(71/tg)| < |In(7!/m1)| + Inn < 0.05 + 0.05 = 0.1).

Thus,
(8.3.59) | R(v) - R(¥) [<0.25 | v—2" | .
In particular, there exists an unique point v*, such that
R(v*) = v,
and, for each v, we have
(8.3.60) lv—v"l[<30lv=R)|.

We also have, for j > 0, || v; —v* ||[< 477 || vg~v* ||, whence, in view of N > 1,

2 lvo—ow 2]l vo —v* |

or

(8.3.61) | vn —v* ||< %4‘” | vo —vn || -

Of course,

(8.3.62) | on —o* | <4 ug—v* ||
20. Let us prove that

(8.3.63) yn € Ka(zk) = MEL,yn) <X

and

(8.3.64) z*(0;) € Kopolr) = yn € Kolzr)

Assume that the premise in (8.3.63) holds. Then we have

oo —on |12 =1 $72(yo — yn) 1= (3o ~ yn)"S ™ (0 — yw)
= (yo — yn) Q5 (yo — yn) < p(yo — yn) T (FL)"(z1) (30 — yn)
(we considered (My), (Ng)). Hence

0~ 17 0 3 (len) — i) () < pms?

(the latter relation holds since yn € Ko (xx)). Hence (8.3.61) implies that

(8.3.65) | on =" (< 347N p!/2mi /20,
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We have R(’U*) = 'U*, or
| R(un) — o ||< 1.34 || vy — v* ||< 2(47 N p12m1/2q).

Since
(8-3.66) Qg g0, (y) =y — S(FS) (y) for y € Ka(zr),

our inequality implies that
172 {yn — S(FEY (yn)} — Sy (< 247N p'Pm!2a)

or
(8.3.67) [(F2) )T SI(FEY (yn)] < 472N pmad.
We also have, for y € K,(zx) (see (8.3.6)),

(FLY'(=1)(1 - ) < (FE)"(y) < (F})" (@) (1 +6),
6 =max{(1+a)? -1, |1 —0;/ts|} < 1
or, since p~1871 < (FPY'(zx) < pS71,
(1= 0)S7 < (F2)'(9) < p(1 +6)S7.

Thus,
[(FS)' @] < p(1-6)71S,

and (8.3.67) implies that
N(F,yn) = [(FE) )T ((FE)" um)) HFLY (uw)] < 4728410 (1-6) "'mad.
By definition of N and by virtue of Z > 6, the resulting inequality proves the
conclusion in (8.3.63).
Now let us prove (8.3.64). Assume that
g* = 2%(0) € Koya(Tk)-

By (8.3.66), we have Q,, 4 5. (z*) = z*, or 5—1/2z* = v*. Thus,

oo —v* I1P=)l §72(@x — 2*) I*= (2 — 2*)75* (ax — 2*)
< plax — )T (FD)" (@x) (@x — ") = pi{fi(wk) — [i@)P 7 (@) < pma?,
=1

which, combined with (8.3.62), leads to

(8.3.68) | vn —v* [1>< 472N pma?



MULTISTEP BARRIER METHODS 345

or (yy — )78 Y yn —z*) < 472V pma?. The latter inequality, as above, leads
to
(yv — )T (FL) (zi)(yn — 2%) < 472N pPma?

(8.3.69) i{fi(yN) — fild*) Y 7 () < 47 PPma?.
-1

Hence
\fi(z")/ filzk) = Falyn)/ filze)| < 47 pm! 2
or, by virtue of z* € Ka/z(xk),

(8:3.70) fi(yn)/fi(zx) < fil@*)/ filzn) +47 N pm' o < 1+a/2+47N pm! 2

and
(8.3.71) filze)/ filyn) < {1 — /2 = 47N pm!/2a} 1.

Relations (8.3.70) and (8.3.71), combined with (8.3.44) and the definition of
N, imply the conclusion of (8.3.64).

3. Note that, by choice of 7, we have z*(r;) € Ko j2(wk) (see Lemma
8.3.3(iii)). Thus, (8.3.64) means that y° € K,(z}) (this was announced in
comment). By virtue of the comment, we have

Try1 = Y(zn, ¥ ter1) € Kolxy),

which, by (8.3.63), implies (Og+1).

Thus, (O) holds for all k, 0 <k <k*+ 1.

49, (Og+41), combined with (8.3.55) and the termination rule, proves that
the procedure solves P.

59. It remains to evaluate the arithmetic cost of the procedure. By Lemma
8.1.2, the total number of operations excluding computation of the matrices Qg
does not exceed

(8.3.72) M' = O(mnNLK*), K* = k* +1 < ¢,(p, &, \)m!/?

(the latter inequality holds in view of (8.3.55); henceforth, c;(p, @, A) denote
quantities depending on p, a, A only).

Let us evaluate the total number M” of operations needed by computation
of the matrices. As in the situation of Theorem 8.3.1, we have

MY < ca(p, 0, )0 7 4 mK* + (o~ 1) (K7t 4 (= 1) ™)
< Cg(p, «, )\)()7(77’”1,1_‘_'y + m3/2 + m(1+7)/2n2)

(the latter inequality holds by (8.3.72)). The resulting inequality combined
with (8.3.72) completes the proof. o
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8.4 Conjugate-gradient-based acceleration

8.4.1 Preliminary remarks

In this section, we present one more acceleration strategy for the basic method.
Here, as in the initial method, steps in ¢ are of the form ¢t — ¢t = (1 £
O(m~1/2))t, and the updating of = is * — z+ = z — e(z), where e(z) is an
approximate solution to the Newton system

(%) V2Ffi (z)e = VFt‘i (z).

The difference with the Karmarkar-type accelerated basic method is that, in-
stead of computing e(z) as

e(e) = QVFL (a),
where () is a “close” approximation to the inverse Hessian
(%) p'VEFL(2) < Q7' < pVEFL(2)

for an appropriate absolute constant p close to 1, we solve (*) by a kind of
preconditioned conjugate gradient method (PCG). The reader should be im-
mediately aware that our PCG is not the same as what is usually called “pre-
conditioned conjugate gradient.” The standard PCG as applied to a n x n
system Ae = b with a symmetric A makes use of a representation

A=A+ 4y,

where Ay is positive definite and can be easily inverted, while k = Rank A; is
< n (a typical example: a block-diagonal matrix spoiled by a small amount
of dense columns and rows). To solve such a system, we can reduce it to the
system (I + Ay Y 2A1A6 Y u = Ay !/2h and then solve the latter system by
the standard conjugate gradient method; if u; are the approximate solutions
formed by the latter method, then e; = Ay 1/ 2ui are approximate solutions
to the initial system, and the updatings e; — e; 41 require only matrix-vector
multiplications involving known vectors and the matrices Ay, A, 1 A;. Onthe
other hand, the matrix (I + A, Y 2AlA(; Y ?) has no more than k eigenvalues
different from 1, so that the standard conjugate gradient method solves the
system with this matrix in no more than k + 1 (instead of the usual n) steps.
Thus, the essence of the usual PCG is that it solves exactly systems of an
appropriate structure at the cost that is the less the better is the structure of
the system. As far as (£Q) is concerned, to apply this method, it is necessary to
assume that the matrix of linear constraints possesses an appropriate structure,
which generally is not the case.

We exploit another type of preconditioning. Assume that when solving
() we know a symmetric matrix @), which satisfies (¥*) with certain known p
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(which, in contrast to the Karmarkar acceleration scheme, can now be large).
Then we can reduce (x) to the system Au = b, where

A=QVIVPFL(@)Q7?,  b=Q '’VFEu(a).

Let us solve the latter system by the standard conjugate gradient method; as
above, the vectors e; = Q~1/2u;, wu; being the approximate solutions formed
by this method, are approximate solutions to (x), and the updating e; — €;11
requires only matrix-vector multiplications involving known vectors and the
matrices Q, Q71, V2Ft‘i (z). Now the rate of convergence of the method can
be controlled, since, in view of (xx), the condition number of A does not
exceed p?. Therefore, we can terminate the process when the desired accuracy
is attained.

Of course, to use the above scheme, we should maintain relation (x*) along
the sequence of our iterates (t,x) = (t;, z;). This, as always, can be done with
the aid of the Karmarkar scheme; an important point is that now we can use
large p instead of p close to 1, so that we can save on the updatings of Q)
(increasing the effort required by the conjugate gradient method). The initial
Karmarkar acceleration of the basic barrier method is, in a sense, disbalanced:
The average cost of updating @ is O(m??®), and the cost of computing e after
Q is found is only O(m?) (we mean the case of n = O(m)). In what follows, we
balance the costs of updating () and computing e, which results in the lowering
of the total computational effort.

8.4.2 Description of the method

Similarly to the basic barrier method (§3.2), the accelerated method is defined
by the parameters A}, A1, A2, A5, A3, subject to the restrictions

0 < AT (A1) < A] < A2 < A3 < A,

(8.4.1) N <A < A, AT (A3) < A < Ag;
(A <5 Q-we) 2w (Ae) < g,
(8.4.2) (1 —w(Xp))2w?(N) < 1

(recall that A*(X) = A2/(1 — X)?, w(A) =1 — (1 =303, ¢()) = 2N (1 +
w(A))/(1 —w(A))) and by a starting point w € int G.

In what follows, we regard A}, A1, Ao, A, A3 as absolute constants satisfying
(8.4.1) and (8.4.2).

Let

n* = max{n7 m(1+7+’72)/(1+"/)},

p= 10{("*)(1+7)m_(1+7’72) }2/(2+3v—~/2),

M =|{m"*n* }7/(2+3w—72) ,
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(8.4.3) K=|mY*M~', L=KM.

Note that n* < m.
Denote
m
F(z) = Zln(l/fi(:v)) :G' - R.
i=1
Then, as we know, F is an m-self-concordant barrier for G.

Structure of the method. Similarly to the basic barrier method, the accel-
erated method consists of the preliminary and the main stages. Each of the
stages corresponds to a set comprised of

(a) a convex quadratic form ¢ defined on R" = E,

(b) a number & > 0,

(c) an initial value, ty, of the parameter ¢,

(d) an initial point z_; € G,

(e) a pair of numbers A, X' € (0, \,).

For the preliminary stage, these data are

¢(z) = DF (w)w — zl;

t() = 1; Tr_1 = w;
AL — )‘,1 ’ ]
n=exp{—m§}, /\=A1, A =A1.
For the main stage, the data are
¢(z) = fo(z);
r1=u

(u is the result of the preliminary stage);

b — )\3—-)\(F,u)
O T 1V o) lfur

(I  lu,F is the norm in R™ induced by the scalar product D2F(u)[-,-], and V
is the gradient with respect to the corresponding Euclidean structure);

As — A

. — Iy
m}, )\—)\3, A—A3

K = exp {
Each of the two stages corresponds to a family
Fs={CG', Ff(z) = td(a) + F(2), R"}e>0;

this family is strongly self-concordant. The metrics associated with the family
are

(8.4.4) puo(Fgit,t') = (m? +v)v™ In(t/t)|

(Proposition 3.2.1). Moreover, it is clear that, for € G, t > 0, we have
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(8.4.5) (F$)'(z) = tMP(z).

At each stage of the accelerated method, we compute approximations, z;,
of the points
x; = argmin {Ft‘f(m) | z € G'},
where t; = tokt,i > 0.

Auziliary constructions. Let us start with some definitions. Let h be a
m-dimensional vector with positive entries h;, 1 <! <m. For 1 <1 <m, let

Cih, ) ={s>0| pP ' <s<p¥th}, jeciZ

(Z is the set of all integers). The number h;p* is called the center of the zone
T';(h,1). For a positive vector d € R™, the vector qqp is defined as a vector
from R™, which the [th component equals the center of that one of the zones
{T;(h,1) | j € Z}, which contains the number dj.

To describe a stage, we should classify its iterations. Let us split the set of
iteration numbers into sequential L-element segments; each of the segments is
in turn split into K sequential M-element groups (see (8.4.3)).

Stage of the accelerated method. Consider one of the two stages. At the ith
iteration of the stage, we have positive m-dimensional vectors h*~!, d*~1, an
7 X n matrix

(8.4.6) (Iic1): Qio1 = [M(¢,Diag {d"'})] 7,
and a point z;_1 € G'.

These quantities are updated according to the following rules (in the below
description, the numbers in angle brackets are the arithmetic costs of imple-
mentation of the rules):

I. Computation of h*, &, Q.

I.1. (a) Compute

(847) d*i = d(ti, x’i—l)

(O(mn), Lemma 8.1.2).
If 7 is not an initial point of a segment, go to 1.2.
(b) If ¢ is an initial point of a segment, set

(8.4.8) R =d' = d*
and compute the matrix Mtf(wiﬁl) {O(mn!*7), Lemma 8.1.2).

Compute Q; in accordance with (I;) (see 8.4.6) (O,(r"*?), the definition

of v).
At the main stage, go to II.
At the preliminary stage, also compute

AEF zim1) = ¢ (F'(25-1))T QiF (@i1)
(the equality holds by (8.4.7), (), (8.4.5), and (8.4.8)).
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If M(F,z;—1) < Ao, then terminate the preliminary stage and define its
result as u = z;_1; otherwise, go to II (O(mn))
1.2. (a) Compute

(8.4.9) dt = qges i1
(O(m)) and use Q;_1, d*, d~! to compute
(8.4.10) Qf = [M(¢,Diag{dT}]™
(Oy (m +[n, k(3)])), where
k(i) = [{le {1,2,...,m} | 4" # '},

by virtue of (I;_1) and Lemma 8.1.2 (the quantity {[n, k] was defined in Lemma
8.1.2).
If 7 is not an initial element of a group, set

(8.4.11) R=k"1 d=d" Qi=QF
1

(hence (I;) holds) and go to II.
(b) If i is an initial element of a group, set, for 1 <1 < m, in the case of
|In(d* /B > 1,

(8.4.12) di=h=d

(henceforth, the subscripts at d and h denote indices of components of the
vectors); in the case of | In(d}?/h} ') < 1,

(8.4.13) hi = AT, di = djf*
(O(m)). o
Then use @7, d*, d' to compute @; according to (I;) and go to II
(O (U[n, p(3)] + m)) , where
p(i) = |{] & # 4},

by virtue of (8.4.10) and Lemma 8.1.2.
II. Computation of x;.
IL.1. Perform

(8.4.14) N =1 (oin{ = A)?i, - /\+)})+ |41

steps of the process

ug = 0; 81 =19 = —Qib(tiy1,Ti-1);
Uj = Uj—1 + Q853

'rj = rj—l + a]QzH(t'n mi—l)sj;
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(8.4.15) sj+1 =15 + B;s5;

Herein,
u., 7., 8. are vectors from R";
T Qo Ta.,..

o = — . ﬂ — .
J T ’ J T T
Sj H(ti,mi_l)sJ- rj_l.S'irj_l

b(t,x) is the gradient of Ft¢ at z;

H(t,z) is the Hessian of Ft¢ at

(the gradient and the Hessian are taken with respect to the standard Eu-
clidean structure on R");

S; = M(¢, Diag {d'}) = Q;""

I1.2. Compute
(8.4.16) r, =Ti-1— uN(p).

This completes the ith iteration.
Comment to IL. Process (8.4.15) is the conjugate gradient method (corre-
sponding to the metric induced by the matrix S;) as applied to the equation

(8.4.17) H(ti,zi 1)y = b(t;, zi1).
It is easily seen that, under the notation
b="b(ti,z;-1); H=H(ti,zi1); S=8; Q=Q4;

(8.4.18) be=8"Y%;, H,=8Y2HS TV 4 =8V,
(1 is fixed), the sequence {z;} is the trajectory of the standard conjugate gra-
dient method for the minimization of the quadratic form

(8.4.19) WU(z) = 2T Hez — 2b7 2,

(the starting point is zp = 0). Note that the computations are interrupted
after N(p) steps.

8.4.3 The main result

The main result is as follows.

Theorem 8.4.1 Let the lincarly constrained quadratic programming problem
(LQ) satisfy the assumptions from the beginning of §8.1.1 and let the accelerated
barrier method be applied to the problem, w € G’ being the starting point. Then

(i) The amount of segments at the preliminary stage does not exceed the
quantity

m
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(recall that z(F') is the minimizer of F over G', wypy is the Minkowsky function
of G with the pole at z(F), and (G : w) is the asymmetry coefficient of G
with respect to w).

(i) For each e € (0,1), the number N(g) of segments of the main stage that
is required to find an approzimate solution x° € int G such that

¥(@) — min® < eVi(y),
where
Vr(¢) = max{y(z) | x € Wyjo(2(F))} — min{y(z) | = € Wyja(z(F))},

We(z) = {y | (F"(z)(y — 2),y — ) <7°},
satisfies the inequality
N(e) < O(In(m/g)).

(iil) The arithmetic cost M of each segment of iterations (at the preliminary
and at the main stages) satisfies the inequality

(8420) M< O,y(mrl('Y) (n*)m("!) + mn1+’y) < 07(777,7'(7)),
where 2 \ e ,
_2Eor Y _4+5y -
"= e P =T
and 10+ 15 2
_0+1loy—7v
"= Trer -2

In particular, the total arithmetic cost M*(¢) of finding x¢ satisfies the
inequality
M) £ 0y(1) {m" (w20 4 7 1n (- )

(8.4.21) oG : w)e

< 0, ()m™ ™ In (JGQ’:”w)E) .

Proof. A. Let us start with the following result.

Lemma 8.4.1 For each iteration number i, we have

(8.4.22) (Ji) : zi—1 € Int G;

the matrices S; and Q; are symmetric positive-definite and
(8.4.23) (K;) : tip~1S; < H(t;, zi_1) < tipSi;
the relations

(8.4.24) L) AFS,zion) <
(8.4.25) (Mi):  AFz) <X

hold.
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Proof. Induction on i (first for the preliminary stage and then for the main
stage).

Base:

(Jo) is evident for the preliminary stage. This relation holds for the main
stage since such a relation holds for the iterations of the preliminary stage.

(Lg) is evident for the preliminary stage (by definition of ¢ for the stage).
This relation holds for the main stage by virtue of the termination rule used
at the preliminary stage (see the proof of Proposition 3.2.4).

Step:

To complete the induction, it suffices to prove the implications

(8.4.26) (J5),3 <i = (Ky),
(8.4.27) (K;) and (L;) = (M;) and (J;11),
(8.4.28) (M;) = (Lit1)-

Relation (8.4.28) holds by Theorem 3.1.1, (8.4.4), and the definition of
(see the proofs of Propositions 3.2.3 and 3.2.4).
Let us verify (8.4.26). We have

Si=M(¢,Diag{d'}),  Hi= H(t;,zi1) = t;M(¢, Diag {d"'}).

In the case of (8.4.9), we have d** = d*; in each of the cases (8.4.11)-(8.4.13),
we have
pfld*i < dz < pd*i-

These inequalities, combined with the definition of S;, imply (Kj;).
To prove (8.4.27), let us fix i. In what follows, we use notation (8.4.18) and
the abbreviations
t=14;, x=x, F= F,f.

Note that F; € S;(G’,R") (by Proposition 3.2.2; recall that ¢ is a quadratic
form and therefore is 0-compatible with F').

1°. Let z, = H_'b,. By the standard properties of the conjugate gradient
method, we have z; H,(z. — z;) = 0 for each j (recall that zp = 0), so that

(8.4.29) zJTH*zj = 2T Hoze — (20 — 2;) T Hu(2e — 7).
We also have 2] H,z, = u,Hu, (u. is the solution to (8.4.17)), or
2l Hoz = N (Fz) < A < }
(we considered (L;) and the relation
NA(Fy, @) = (FU(@)) IR (@) Fi(w) = 6" H "6 = uT Hu,).
Thus, (8.4.29), combined with the equality z] H.z; = u] Hu;, implies that

(8.4.30) ul Huj < 2l Hyzo < X% < 4,
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so that (see Theorem 2.1.1(ii))
(8.4.31) r—u; €G, j >0,

and, in particular, z; € 7, as required in (J;41)-
20, Let

gj = {(Z* _ Z]')TH*(Z* - zj)}l/2 (: {(u* - u,j)TH(u* - uJ)}1/2)

and let
gi(t) = H"1/2Ft'(:c — Tu;)

for 0 <7 < 1. Then
gy(7) + HY?u; = {HV2 (Fl/(z) - FY'(z — ru;)) H™/2} {Hu;),

whence (Theorem 2.1.1 combined with (8.4.30) and the inclusion
F e ST(GI,Rn))

| gi(r) + Hu; [2< M(1—7A)2=1), 0<7<]1,
which leads to
| H_1/2Ft,(x - uj) - H_1/2Ft'($) + H1/2Uj l2< )\2/(1 —A).

The latter relation, in view of F}(z) = Hu, implies that
12 g A? 1/2 2
(8432) | H™V2F(z ;) oS gt | B2 (e~ ) o= X/(1-X) ey,

By Theorem 2.1.1 and (8.4.30), we have
(1-))?H < F'(x —uj) < (1-\)"2H,

which, combined with (8.4.32), implies that

o VYV V2E < A2 €j
| (Ff (z — uj)) t(z —u) [la< (1—A)2+ T
(8.4.33) AFe,x — 1) <A/ = N2 +¢e;/(1-A).

30. Let P; be the space of real polynomials on the axis of degree less than
j- Then
zj = pj(Ha)Hez,

where

p; € Argmin {(p(H.)H.2)" Ho(p(H.)H.2:) = 22 Hup(H.)Hoze | p € P3},
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or, which is the same,
. 1/2
p; € Argmin {|| Hy*(I, = H.p(H.))z. |I3] p € Pj}.
The latter relation implies that

VpeP;j: e = (a — 2;) Hulo — 2) <|| B> (I, — Hop(H))2 |1} -

Thus, for each p € P; we have

1/2
& < max’(1 —p(r)| || B2 |3,

where X is the spectrum of the matrix H,. By (8.4.30), we have
(8.4.34) g < /\meaéc 1 —7p(T)] VpeP;.
T

Let g; € P; be such that

-9 -1 ~1 -1 -1
1~ rg(r) =1 [ £=2 P oy (222 L
p—p p—p

where T}(s) = ch(j ch™*(s)) is the Tchebyshev polynomial of the degree j. For
P = g5, (8.4.34) leads to

-1
(we considered (K;)), which immediately implies that

e; < 2hexp{-2j/p},  j= 1.

The latter inequality, combined with (8.4.33) and the definition of N(p), leads
to the relation
A(Ft,l' - uN(p)) < )\17

which is required in (M;). O
B. It is not difficult to conclude from (8.4.3) that, if

24-3y—~2
M= {m7/2n*}7/( +3v— )’
K* :m1/2(M*)_1,
L* = K*M* = m!/?,
then
(8.4.35) M=0M"), K=O0(K"), L=O0(L").
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Relation (8.4.35) immediately implies that, if the numbers ¢, i’ belong to a
common segment of iterations, then

(8436) lln(ti/ti/)l < 0(1),
and, if these numbers belong to a common group of iterations, then
(8.4.37)  |In(ti/ty)| <O(A), A =1/K*€[0(m~?),0(1)).

The results of Lemma 8.4.1 and relation (8.4.36) prove statements of The-
orems 8.4.1(i) and 8.4.1(ii) (compare with the proofs of Propositions 3.2.3 and
3.2.4).

C. It remains to prove Theorem 8.4.1(iii). Note that (8.4.21) is an immedi-
ate consequence of the preceding statements of the theorem, so that it suffices
to prove (8.4.20).

1% Let T = {t; | i > 0}. For t = t;, we write z(t) instead of z;_; and F;
instead of Ft¢.

Also, let

%i(t) = ¢ fi(z(t),  teT,
Pui(t) = 2 fi(za (1),
z.(t) = argmin {Fy(z) | x € G'}, t>0.

By Corollary 8.2.1, we have

(V¢ €T) s S Walt) — Bt Cls(tpa(t))
(8.4.38) i=1

< o) (m(t1/2 _ (tl)1/2)2(ttl)—1/2) .

20, Let us fix a segment of iterations and let I be the corresponding set of
values of the iteration number i. Denote the sets of values of ¢ for the groups
of the segment I by .Ji,...,Jk, respectively. The remarks on the arithmetic
cost of the rules forming the method (see the description of the method) imply
that

M <O, (mn”" + mnN (p)L)

(8.4.39) K K
+3°3 04U k@) + 3. S Oy (Un, p(3))]) -

Jj=1li€J; j=lieJ;

In view of rules 1.1 and 1.2, we have

0, ¢ starts a segment,

(8.4.40) k(3) ={ o
U@, UG ={l] 1<I<m, d}"#d '}, otherwise;
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0, 4 does not start a group or starts the group Ji,

(8.4.41) p(3) ={ V@), V@) ={l| 1<I<m, d#dfi}, otherwise.

30, First, let us evaluate the numbers k(i), i € I. Let i(q) be the initial
element of the group J;, 1 < ¢ < K. From the description of the method, it
is clear that

(8.4.42) RO = pila+] = . = pUO+M-1
(8.4.43) d = qguipia, g +1<i<i(g)+M, i€l
(8.4.44) d' = Qgei g, i(q) <@ <i(q)+ M.

Let I, ={i € I| i(q) < i <i(g)+ M}. By(8.4.7) and by the definition of
Yi(t), we have

4 = d(ti, zio1) = (Y72 (t), - - Y2 (£)) T

Thus, in view of (8.4.38), (8.4.35), we have

m
(8445) (Pz) . Z {(din)lﬂ _ (drz(Q))1/2}2 {dz«id?i(q)}-lm < Oy(mA2)
i=1
for1<g< Kandicl,.
Let us fix . We call a pair (¢,1) € I; x{1,2,...,m} an event, if the number
d}* does not belong to the zone Tg(h¥9),1). Let us prove that, if i € I,\{i(¢q)} =
IY and I € U(3), then either (¢,1) or (i — 1,1) is an event. Indeed, if, for some
i€ Ig and I, neither (i,1) nor (i — 1,1) is an event, then di* ! € To(hi@) 1),
which, by (8.4.44), implies that ™' = hi?. Since dji € To(hil9, 1), (8.4.43)
implies that dit* = h{®. Thus, df* = di™!, and | ¢ U(i) (see (8.4.40)). O
The above arguments mean that, for i € Ig, the quantity k() does not
exceed the total number of events of the form (i,1) or (i — 1,1). If (i,1) is an

event, then
dy
n hli(q) 2 lll(p),
l

while (8.4.12), (8.4.13) imply that
*i(g)
()
hl
d*i
‘hl ( *.l( )>
dlZ 7

(we considered that p > 10). The latter inequality means that the term in
(P;) corresponding to the value of I under consideration is > O{p'/?). Thus,

Thus,

Zlnl—)21
e
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the number of events of the form (i,!) does not exceed O,(mAZp~1/2). The
number of events of the form (i — 1,!) admits a similar upper bound. Thus,

k(i) < Oy(mA*™'?), iell, 1<q<K.

Since Ule = I\{¢*} (¢* is the initial element of the segment I) and k(i*) =
0 (see (8.4.40)), we obtain

(8.4.46) f: 3" 0, (Un, k(3)]) < O, ((n*)2mm2"rp-7/2L*)
j=1ieJ;

(note that mAZp~1/2 < n* by virtue of (8.4.3), so that I[n, k(i)] < (n*)2k"(s)).
49, Now let us evaluate the latter sum in the right-hand side of (8.4.39).
The sum is of the form

K
S=3"3" 0, (in,p)]) .

Jj=1i€J;

Note that, by (8.4.41), we have

5= 320, U, it@)]) < 0y (FPTEI™) + 0, (s+7P),
q=2

K
(8.4.47) P => p(i(q)).
q=2
For 1 < ¢ £ K, let s9 be m-dimensional vectors with the components
ln(h;(q)); let 77 be vectors with the components In(d] 49y, 1 <1 < m. From the
description of the method, it is clear that the evolution of these vectors looks
as follows:

(8.4.48) st =rl;
. s st =<
(8.4.49) g>1 = s =
! rd otherwise
Ik :

Let us prove that, for ¢ > 2, we have

p(i(9)) < [V*(9)l,
(8.4.50) V) ={le{1,...,m}| |sT " — 7! > 1}.

Indeed, if I ¢ V*(g), then, in view of h*®~1 = p#a=1) (h is constant at the
iterations of a group) and, by I.2.(b), we have

'ln(h;(Q)‘l/'d;i(lI))l <1
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Thus, by (8.4.14), df(q) = dfi(‘”. Therefore [ ¢ V(q). Hence V(q) C V*(q),
which, by virtue of (8.4.41), proves (8.4.50).
It is clear that

[In(s/s)2 <O ({31/2 - (s’)1/2}2{ss’}_1/2) , 5,8 > 0.

As in 3%, we have
m vifo i 2 [ wila—1) i -1/2
> @ @ O {&H g} < 0ymad),
=1

which implies that
|79 =791 3< O5(mA?)

or || 77 —r971 |[;< O,(mA). Since (8.4.48)—(8.4.50) imply that

K K
D () <D Nt —rt |,
g=2 q=2

we obtain

(8.4.51) P < 0,(mAK) < O,(m).

Relations (8.4.51), (8.4.46), (8.4.47), (8.4.39), combined with (8.4.35) and
(8.4.3), prove (8.4.20). 0
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Appendix 1

Proposition 9.1.1 Let H[zy,...,zx] be a symmetric k-linear form on R"
and Alz,y| be a positive-semidefinite quadratic form on R™. If

(9.1.1) VzeR™: [H[z,...,z|| < {Alz,z]}*?,

then .
(9.1.2) V(:vl,...,:ck ERn) : |H[x1,...,xk]| < II{z‘l[.'L'z,rz]}l/2
=1

Proof. Of course, it suffices to prove the proposition in the case of positive-
definite A (if it is not the case from the very beginning, we can replace A[z, z]
by Aclz,z] = Alz,z] + e27x and then pass to limit as ¢ — +0). Thus, we
henceforth assume that A is positive-definite.

The proof is given by induction on k. Base k = 2 is evident. Assume that
the statement holds for a given k =1 —1 > 2 and let us prove that it holds for
k=1L

1°. Consider A[z, ] as a scalar product (we henceforth write (z,y) instead
of Alz,y] and || = || instead of (A[z,z])'/?). Since both sides in (9.1.2) are
homogeneous in each x;, it suffices to prove that

(9.1.3) w=sup{|H[z1,...,z]| ||z |I€£ 1,1 <<} <1

20. Let us call a collection 7 = {71, ..., T;} of one-dimensional subspaces of
R"™ an eztremal, if for some (and then for each) choice of unit vectors e; € T;,
we have |Hley,...,e]| = w. Clearly, extremals exist; let T be the set of all
extremals. Proving (9.1.3) is the same as proving that T contains an extremal
of the type {T,...,T}.

Lemma 9.1.2 Let {T1,...,T;} € T and Ty # T». Let e; € T; be unit vectors,
h =ej+ez, q=e1—es. Then {Rh,Rh,Ts,...,T;} € T and {Rq,Rq, T3, ..., T}
eT.

Proof. First, e; and e; are linearly independent since 17 # T5; therefore

h+#0, q+#0. Let (Qz,y) = H[z,y,es,...,e]; then Q is a symmetric matrix.
Since {T1,...,T;} is an extremal, we have

w = |(Qe1, e2)| = max{}(Qu,v)| | [} w |, [} v]]<1}.
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Therefore, if EY = {x € R* | Qz = w2z}, E~ = {z € R" | Qz = —wr}
and E = (E* + E~)%, then at least one of the subspaces E*, E~ is nonzero,
| Qz || w' ||z ||, z€ E, where w’ < w. R™ is the direct sum of E*, E~, and
E.Let £ = 7+~ +z' be the decomposition of z € R™ corresponding to the
decomposition R® = E* + E~ + E. Since each of the subspaces Et, E~, and
FE is invariant for @,

w = [(Qer, ea)] < (et ) —wlerses)| + ' I € Il € |
<wller Nletl+ler e D+ el e
<wflef 2+ | el 2g) D8 + g 1232 4 |1 ¢4 1 € 1< w

(we considered that || ef |12 + || e; |2 + || €} ||2=1, i =1,2). We see that all
the inequalities in the above chain are equalities. Therefore we have

ey ll=l ez I=0; liel li=lesll; ler l=les l;

moreover, |(ef, e )| =I| ef |l 3 Il and |(ef",e3)| = e5 Il e7 I, which means
that ej = tej and e] = ;. Since e; and ey are linearly independent, only
two cases are possible:

(a) et =el #0, e] = —e5 #0, el =, =0;

(b) el = —el #0, e]f =e5 #0, & =€, =0.

In case (a), h is proportional to e, and q is proportional to e;; therefore

{RA,RA,T3,..., Ti} €T

and
{Rq,Rq,Ts,... T} € T.

The same arguments can be used in case (b). O
30. Let T* be the subset of T formed by the extremals of the type

t times 8 times

{T,...,T,5,...,5}

for some ¢ and s (depending on the extremal). By virtue of the inductive

assumption, T* is nonempty (in fact, T* contains an extremal of the type
{T,...,T,S}). For

t times 8 times
o N e N,
T={T,...,T,S,...,S}eT*,

let a(7) denote the angle between T and S and let e € T and f € S be
unit vectors with the angle between them being equal to (7). Without loss
of generality, we can assume that ¢t < s (note that reordering of an extremal
leads to an extremal, since H is symmetric). By virtue of Lemma 9.1.2, in the
case of a(7) # 0, the collection

2t times s—t times

T ={R(e+f),...,R(e+ f),5,..., S}
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belongs to T*, and clearly «(7’) = «(7)/2. Thus, either T* contains an ex-
tremal 7 with a(7) = 0, or we can find a sequence {7; € T*} with a(7;) — 0.
In the latter case, the sequence {7;} contains a subsequence converging (in
the natural sense) to certain collection 7, which clearly belongs to T*, and
a(T) = 0. Thus, T contains an extremal 7 with (7)) = 0, or, which is the
same, an extremal of the type {T,...,T}. O
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Appendix 2

Notation

We henceforth regard R™ as an Euclidean space with the standard scalar prod-
uct {-,-}, so that the space is identified with its conjugate space. We use the
following notation: If a lowercase letter (like a) denotes a vector from R",
then the same uppercase letter (like A) denotes the diagonal matrix with the
diagonal elements being equal to the corresponding entries of a. e denotes the
n-dimensional vector of ones (and, consequently, F - the unit n X n matrix).
If z is a (nonnegative) vector and a is a vector, then X® denotes the diagonal
matrix with the diagonal entries z}*. The nonnegative n-dimensional orthant
is denoted by R}, and its interior is denoted by R} , .

Let a = (a1,...,a,)T be a fixed vector satisfying 0 < a; <1, i =1,...,n
and let ¢ = (c1,...,¢,)7 be a fixed positive vector. These data define the
concave function

(10.1.1) f(@) = faelz) = ngat R? - R;
i=1

in the above notation,

(10.1.2) f(z) = (CX%,e).

We study the mapping

(10.1.3)  p(z) = A(z)f'(z) : R*, = R, M) = (f'(z),z) "

Note that z > 0 is (clearly, the unique) solution to the concave program
maximize f(u) subjectto u€ RY, (u,p(z)) <1;

it follows that z — p(z) is a one-to-one mapping of R}, onto itself, so that
the inverse mapping z(p) : R}, — R, is well defined,

(10.1.4) plz(u)) = v, ueRY

Note also that p(-) is C* smooth.

Antimonotonicity of p(-)

The fact that —p(-) is monotone was proved in [PM 78|. The following state-
ment establishes some useful estimates of p’.
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Lemma 10.1.3 —p(-) is monotone, p'(-) is nonsingular, and
3M@) (= f"(@)h, k) < (—p/(2)h, h)
< %(1 — amax) "' M(@) (= f"(2)h, h),

3(1 = ama) A7 (@) ([= ()] R, h) < (=P (@) 'R, h)
(10.1.6)
<A z) ([ f" ()] R, B),

(10.1.5)

where
Omax = Max{ai,...,an}-

Proof. We have (everything is taken at x)
(10.1.7) 7= 2" = X+ (£ Y

f" is symmetric negative defined diagonal matrix, so that there exists a non-
singular diagonal matrix @ = Q(z) with

(10.1.8) " _ _Q—z’
whence
(10.1.9) Qt = CY2AV(E — A)V/2 X0/,

Let W = Qp'Q. Then (see (10.1.7))

(10.110) W= -A(E+M@QMNQT - @MHQ ).
Denote
(10.1.11) ¢ =A2Qf,  £=\72Q g,

so that
W=-\U, Us=E-+{¢¢T — T},

(10.1.12) (6,6) = A{(f",z) = 1.

Let z, w be orthogonal to each other unit vectors such that ¢ = [z and £ is
a linear combination of z and w. By virtue of the last relation in (10.1.12),
we have £ = 1712 + mw. Let L be the subspace generated by z and w; then
L and L' are invariant with respect to W, W is the identity on L', and the
restriction of W onto L in the orthogonal basis z, w is the matrix

2 —Im
Y‘(o 1)’

-1 _ -2 1 Im
v (3.

so that
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For a two-dimensional vector 7 = (s,t)7 we have rTYr = 1252 — Imst + t. Let
us prove that (Im)? < 12, or, which is the same, m? < 1. Indeed,

m? < €Te =M Q7 'z, Q ') = (f'(z), )" (~f"z,x)
= (CA(E - )X, 2) (CAX%,0)"
= (CA(E — A)X,e) (CAX ¢,e)”! < 1.

1

We conclude that
3P +t8) > rTyr > L(12s% + £2).
Now,
2 =MQfQf) == ) )
=(CT1ATYE - A)71 X% 9CAX %, CAX? %) (CAX " %, )~
= (CA(E — A)"1X%,e) (CAX ,e) ",

so that
(1—amax) 12012 >1

Thus,
(10.1.13) 3 (hoh) < (Uh,h) < 3(1 — amax) "} (R, h) .
Similarly,

S22 + 5%) > 7Y "lr > L 2(12¢2 + 67,
whence
(10.1.14) 3(h,h) > (U7 h,h) > 3(1 — amax) (h, k).
Relations (10.1.13) and (10.1.14) combined with —p' = AQ~'UQ ™! immedi-

ately lead to (10.1.5)-(10.1.7). 0

Main result

Since p(z) is a one-to-one C*°-smooth mapping of R}, onto itself and —p
is positive-definite (although nonsymmetric), the inverse mapping z(-) is also
C*°-smooth and antimonotone.

Theorem 10.1.2 The mapping —z'(p) : RT, — R}, is B-compatible with
the standard logarithmic barrier

n
F(u) = - Zln U
i=1
for the nonnegative orthant R}, where

./
’6:3(amax/am1n)l 3\/%’

(1 - amax)s/2

Amin = minf{ay,...,an}.
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Remark 10.1.1 From the above statement, it follows immediately that the
mapping
p — argmin {f(z) | 20, {p,7) < w},

w being a positive constant, is B-compatible with F'; this is precisely the fact
used in the Application Example; see §6.3.7.

Proof of the theorem. 1°. Let us fix a positive vector p € R™ and a triple of
vectors 77, p, 7 € R™. Let us compute z'(p) and z"(p)n, n € R™. Let z = z(p),
so that p = p(z), and let A = A(z). We have (derivatives of z(-) are taken at
p, derivatives of p(-) are taken at z)

(10.1.15) =)

(10.1.16) ') = —-(@) 7" 1(P) (@) 7

henceforth, for a smooth mapping, S : R™ — R™ S$”[1] denotes the derivative
in the direction 7 of the mapping u — S'(u); this mapping takes values in the
space of n X m matrices, so that the value S”[n] is an n x n matrix linearly
depending on 7.

29, Now let ® be the Hessian of F at p,

(10.1.17) (®h, h) = <P‘2h, h>.

We prove that —z(-) is S-compatible with the barrier F, or, which is the same,
that

(10.1.18) | (~"[nle, 7} | < 3*2Bg(n)g(p)g(7) = 3*2p6,
where

(10.1.19) 9(o) = (~'o, 0)1/3 (@0, 0)1/6 .

Let

@)X=D, @E)'X=¢
3°. Let us prove some lemmas.
Lemma 10.1.4 We have

(10.1.20)
o(Ds) > (3)"* (CAE ~ A)X2s,5)/% (2n) 108 | s 3% (1~ ),

g(Es) > (‘3‘)1/3 (CA(E — A)X?s,5)/*

. Qmin 1/3
(20) 7Y ) s 1157 (1 = amax) (_‘) '

Omax

(10.1.21)
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Proof. We have
9(Ds) = (=2'(p') X s, ( ')Xs)l/3 (<I>(p')Xs,(p’)Xs)l/6
1/6
= (Xs,(-p) Xs>1/3 <P_2( X, (p’)Xs> /

> (3)13< /"Xs,Xs)'* (P72 (0) X5, (#)Xs)

1/6

(the second equality holds true by virtue of 2’ = (p’)~!; the inequality follows
from (10.1.5)). Thus,

1/6

(10.1.22) g(Ds) > (%) 13 (—f"Xs, XS>1/3 <P_2(p')Xs, (p')X3>

We have
(10.1.23) (—f"Xs,Xs)=(CA(E — A)Xs,s).
Now, from (10.1.7) and relation p = Af'(z), it follows that
P~ (=p') = X 'Diag “H{f}(~p) = (B - A)X "+ de(f)T = Xe((E - 4)f)"
= (E - A)X ¢ + MeeT)CA2X*,

thus,
(=) TP (=) = {(E ~ A)X~° + \OA’ X *(ee”)}
(B - A)X ¢+ MNeel)CA* X2}
=(E - A?X 2 4 A\CA2X? ¢(eeT)(E — A)X ¢
+ ME — A) X %(eel)C A X
+ X2nCAZX* ¢(eeT)C A2 X2 ¢
and

X(—p)TP2(—p)X = (E-A)’+ACA’ X (eeT)(E—A)+ MN(E-A)(eeT)CAZX
+A2nCAZX % (eeT)C A X",
Let ¢ = ACA2X%, oy = (E — A)e. Then
X(=p)'P?(—p")X = (E~ A{E —n""ee" {E - 4)
+ (n71/2¢ + nl/2¢)(n“1/2w + n1/2¢)T'
Let
= (E—A) Y n Vi +n'2¢) = n V2 + n12ACAHE — 4)71 X%,

so that

(10.1.24) X (—p)TP2(—p)X = (E — A{{E —n""ee” + T} (E - A).
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Lemma 10.1.5 For all s € R™, we have
1
-1,,T T 2
(10.1.25) <{E -n"ee’ 4y }s,s> > 5 lsl5-

Proof. Let L be the subspace generated by e and v; then L and Lt are
invariant with respect to the symmetric operator § = F — n~lee” + yyT. Let
s=§+¢", €L, s"¢cL+. Wehave

(S5,5) = (S5',s') + || 8" [

The vector v clearly is positive and | v ||2> 1. If L is one-dimensional, i.e.,
if 7 = we, then Ss’ =|| 7 ||2 &', so that {Ss',s) >|| s’ |2 . Now let L be two-
dimensional and let v = n~1/2 ¢ and w be the unit vector in L orthogonal to v.
Let a be the angle between + and e; since ~ is positive, we have cos o > n~1/2,
Let 7/ = (s,v), " = (s, w), so that

(Ss,s'y = (") + || v |13 (' cosa + 7" sin ax)?
> (") + (' cosa + " sina)?.
Let ¥ =rcosB, r” =rsinf, where r =|| s’ ||2;, then
(8s',8') = r*{sin® B + cos*(a — B)}.
The minimum of the latter quantity in 3 is 2r2sin® (7/4 — a/2) > (2n)"1r2.
It follows that (Ss,s) > (2n)71 || s ||2. O
Relations (10.1.22)—(10.1.25) lead to (10.1.20).
Now let us prove (10.1.21). We have
1/3
9(€s) = (~2'(#)"Xs, (#)"Xs) " (2(p')7 X5, ()7 Xs)
1/6
=(Xs, (—p’)Xs)l/3 <P‘2(p')TXs, (p')TXs> /

1/3
>(3) (1" Xs,Xo)* (P20 X, () X5)

1/6

(the second equality holds true by virtue of ' = (p') 1, the inequality follows
from (10.1.5)). The resulting inequality combined with (10.1.23) leads to

(10.1.26) g(£s) > (%)1/3(CA(E )Xo, (P2 X, (T XY

Now, from (10.1.7) and relation p = Af'(z), it follows that
PY(—p")T = X1Diag "{f'}(-p)T
= (E — A)X~° + AeeT)CAX*®
— AC 1A LX -2 CA(E — A) X% (z(f)T)
=(E - A)X°+ Meel)\CAX*® - A\(E - A)X¢(XeeT ) CAX*®
=(E—A)X~°+ AA(eeT)CAX e,
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Thus,
(=P P2(=p)T = {(E — A)X ¢ + A\CAX* ¢(eeT) A}
x {(E~ A)X~°+ AA(eeT)CAX* ¢}
=(E~A)?X "2 + \CAX* ¢(eeT)A(E — A)X ¢
+ AE - A)X ¢A(eeT)CAX ¢
+ A2 (Ae, Ae) CAX ¢(eeT)CAX ¢
and
X(~p)P2(—p )T X = (E-A)*+ACAX (D) A(E—A)+ AN (E—A)A(eeT)CAX®
+22 (Ae, Ae) CAX*(eeT)CAX".
Let = A\CX%Ae, ¢ = (E — A)Ae. Then
X(—p)P2(—p)TX = (E — A)?2 4+ 6CT + (6T + (Ae, Ae) 067
= (E— A)? + {(Ae, 4e)/2 0 + (Ae, Ae) V2 ¢}
{(Ae, Ae)' /28 + (Ae, Ae) "2 ()T
~ (Ae, Ae) ™! (E — A)((Ae)(Ae)T)(E - A)
= (B~ A){E — (Ae, Ae) ™" (Ae)(Ae)T + T H(E - A),

where
p=(E— A)"{(4e, Ae)/2 g + (Ae, Ae) /2 ().
Thus,
X __pl P—2 _pl TX
(10.1.27) (=#)Pr)

= (E — A){E - (de, Ae) " (Ae)(Ae)” + pu" HE — A4),

(10.1.28)  p = (Ac, Ae)"/? (B~ A)'ACX*Ae + (Ae, Ae) ~1/% Ae.
Let v = (Ae, Ae) , ¢ = Ae.

Lemma 10.1.6 For all s € R", we have

(10.1.29) <{E —vlee 4 pp’}s s> > 1 (amin )2 s 2.
"1 2n \amax 2
Proof. Let L be the subspace generated by ¢ and p; then L and Lt are
invariant with respect to the symmetric operator ¥ = E — v~ lee” + puT. Let
s=s+s", s c L, s c Lt. We have (8s,s) = (Zs',s') + || 5" ||3 . The vector
p clearly is positive and || p |l2> 1. If L is one-dimensional, i.e., if 4 = we, then
s =|| |13 &', so that
(8s',8") 2l 8" |13 -
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Now let L be two-dimensional and let v = v~1/2¢ and w be the unit vector
in L orthogonal to v. Let 6 be the angle between u and ¢; since p and ¢ are
positive, cos§ is not less than the minimal entry of || € ||;' € = v~ ¢, so that
088 > n"Y%(amin/amax). Let 7 = (s",v), " = (s/,w), so that

(Bs',s') = ("2 + || 1 |13 (' cos 6 + 7" sin8)% > (r")? + (+' cos § + r” sin §)2.

Let v’ = rcosB, r" = rsing, where r =|| &' ||2;, then (X5, ') = r2{sin® 8 +
cos?(6 — 3)}. The latter quantity is at least

) 1/ amin \ 2
22.2(2__)>_(mm)'
s 4 2/ 7 2n \Gmax

1 /awi 2
(®s9) 2 5 (522) )51

It follows that

T 2n \amax

Relations (10.1.26)-(10.1.29) lead to (10.1.21). O

4%, We have
(10.1.30) Q= (z"lnlp,7) = (p"1(®) 'nl(®) e, (@)T) 7).
Let
(10.1.31) h=()'n, r=()"p, t=)'r, B=(0)") '
then
(10.1.32) Q = (p"[h]r, Bt).
We have (see (10.1.7))
(10.1.33)

p'Th] = A Th] = A{{f"h, 2) + (£, W}
+2X3{{f"h,z) + (F, Y H) ()T + (=) "}
=X{(f" DT+ ST+ (02T + ST+ () () ]}

9
= Z Ak[h]’
k=1

Aqh] = A(f')"Th],
Aolh] = =2 {f"h,z) f’,
Aslh] = =X (f',h) f",

Aqn] = 2X%{(f"h, z) + (F', () ()7,
Aslh] = 2X°{(f"h,z) + (f", M H(f)T) ",
Aglh] = =X{(f"M)(T + 1 (F0)T},
Az[h] = =X3((f"h)=") £,
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Ag[h] - —)\Q(flhT) II,
Aglh] = —N*(f'=")(f")"[h].

Let
h=X"'h, r=X"', t=X"!Bt,
so that
(10.1.34) n="Dh,p=Dr,7 = Et.
A. We have
A |hjr,Bt)| = A|(CA(E — A)(2E — A)X®*HRe, Te
(10.1.35) |[(Ax[h]r, Bt)| = A {CA( )N ) )|

<20 (CA(E —- A)X°|H||R||Tle,e),

where |Y| denotes the matrix obtaining from a matrix Y by replacing each
entry by its absolute value. By virtue of Holder inequality, we have

(10.1.36)
2X (CA(E — A)X*|H||R||T|e, )
<2 (CA(E - AXIHPe,e) " (CAE - H)X*|Rfe, )
< (CA(E - A)X%[Tfe,e) "
< 2{A(CA(E — A)X°h, Y} P {X(CA(E - A)Xr,r)}/3
X MCAE - XL, OY | A 2 1 1571 ¢ 15°= 2A.
At the same time, (10.1.20) and (10.1.34) demonstrate that
(10.1.37) {A (CA(E — A)Xh, A} || b | M3< 23(1 — amax) 773 (20)/8g(n),

(10.1.38) {A (CA(E — A) X, r) 173 || v |L3< 21/3(1 — apax) " 13(20)/8g(p),
while (10.1.21) leads to
MCA(E — A) X, )3 || ¢ |L/3
(10.1.39) {M(CA( ) N
< 21/3(1 - amaX)_l/3(2")1/6(amu/amin)l/gg("')-

It follows (see (10.1.35)—(10.1.39), (10.1.18)) that

(10.1.40) A < (amax/amin) /3 (1 = amax) "1 (20)/20
and
(10.1.41) | (Aq[h]r, Bt)| < 2A.

B. We have

{MCA(E — A)Xh, W)YV (CA(E — A) X, r)}V/?
AN (CA(E — A)X°¢, 1)}/
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= {\ (CA(E — A)X°h, }PB{A(CA(E — A) X r,r)}'/3
AN (CA(E — A) X, t)}1/3
{N(CA(E — A)X°h, B)}/S (X (CA(E — A)X°r,r)}/8
AN (CA(E - A) X%, t)}/8.

Since A = (CAX%,e) ", we clearly have {\ (CA(E — A)s, s)}}/6 <|| s ||},é3
Thus,

- a 1/2 _ ap py11/2
(10.1.42) {MCA(E — A)X°h, W)}/2{X(CA(E — A)X°r,7)}
AM(CA(E - A) X%, t)}1/2 < A.

Note also that
(10.143)  A{CAX®s,s) < (1 — amax) H{A (CA(E — A)X°s, )}
C. We have
[{Azh]r, Bt)| = X2 [{f"h, &) || (f"r, Bt)| = X |(f" Xh, Xe)| |(f"Xr, X1)|
x X2 |[(CA(E — )X~ X He, Xe)|
X |(CA(E - )X %X Re, x:re>[
= A2 (CA(E — A)X°®|H|e,e) (CA(E — A)X°|Rle,|T|e)
= X ({CA(E — A)X*}'/|Hle, {CA(E — A)X°}/%)
x ({CA(E - A)X*}/*|Rje, {CA(E - A)X*PTle)

< X ({CA(E - )X} /2%, {CAE - A)X*}/2e)"”

x ({CAE — A)X*Y 21, {CA(E - 4)X"}/2h)"?
x ({CA(E - HX*YVr (CAE - HXY/2r)*
x ({CA(E ~ )X}t {CA®E - A)x°) /%)
= {M(CA(E — A) X%, e)}}?{\ (CA(E — A)X°h, h)}}/?
x {M (CA(E — A)X%r, M)} {A (CA(E — A)X°, 1)1/} < A;
the latter inequality follows from (10.1.42) in view of

A= (CAX%, )" < (CA(E - A)X%,e)" L.

Thus,
(10.1.44) [(Az[h]r, Bt)| < A.
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D. We have (compare with B)
[(Ash]r, Bt)| = A% |(f',h)| [("r, BE)]
= N2 |(CAX"*¢, Xh)| |(CA(E — A)X* 7> X Re, XTe)|
=N |(CAX*He,e)|
X (CA(E — A)X®Re,Te)|
< A2 (CAX%, )2 (CAX h, h)'/?
x (CA(E — A)X°r, 1)/ (CA(E — A)X°t,8)"/?
= (A (CAX®Rh, WYY/ X (CA(E — A) X%, r)}!/?
x {ACA(E — A) X%, t)}/?
<(1- amax)"lﬂA
(the latter inequality follows from (10.1.42), (10.1.43)). Thus,
(10.1.45) | (As[h]r, Bt) | < A(1 — amax) /2.
E. We have f"X?% + X f' = CA?X%. Now,
[{(Aqlh]r, Bt)| = 2X° [(f"h, ) + (f, )| [{f', ) [1{f', BY)]
=203 |(f"X He, Xe) + (', XHe)| [(f', XRe)| |, XTe)|
=223 '<CA2X“h, e>| {(CAX%,r)| [(CAX e, t)|
< 2X3 (CAX°h, h)'/?
x (CAX%,e) /% (CAX r, )2 (CAX e, e)}/?
x (CAX®t, 1)1/ (CAX %, e)'/?

{A(CAXh, B)} /2N (CAX 7, r)} 2N (CAX 5, t)}1/?
(1 — amax) ">/2A

=2
<2
(we have used (10.1.42), (10.1.43)). Thus,
(10.1.46) | {A4[h)r, Bt) | < 2(1 — amax) Y%A,

F. We have (compare with E)

|(As[h]r, Bt)| = 23 |(f"h,z) + (', )| [(f', BE)| [(f"r, )]

=2)% KCA?X"h, e>' {CAX%,e)| {CA(E - A)Xr,€e)|,

and the latter quantity, as in E, proves to be < 2(1 — amax) 'A. Thus,

(10.1.47) |{As[h]r, Bt)| < 2(1 — @max) ' A.
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G. We have
[{Aslhr, Bt)| = X [(f"h, Bt) (f',r) + (f', Bt) (f"h,r)|
= X |(CA(E — A)X%h,t) (CAXe,r)
+(CA(E — A)X°h,r) (CAX e, )|
< M{(CA(E — A)X°h, )2 (CA(E — A)t, t)'/?
(CAXr, )2 (CAX e, e)'/?
+(CA(E - A)X°h, )Y (CA(E — A) X, 7)1/
x (CAX%, )12 (CAX %, e)/?}
= {A(CA(E — A)X°h, W)} 2N (CA(E - A) X%, t)}1/?
AN(CAXOr,r)}/?
+{A (CA(E = A)X%h, )Y2{X (CA(E — A)XC°r,r)}}/?
x {A{CAX, ) }? < 2(1 = amax) "V/2A
(see (10.1.42), (10.1.43)). Thus,
(10.1.48) |(Ag[h]r, Bt)| < 2(1 ~ amax)~*/?A.
H. Now
|[(Az[h]r, Bt)| = X |(f"h, Bt) (f"z,r)| = N |(f" Xh, Xt) (f"Xe, X)|
= N |(CA(E - A)X°h,t) (CA(E — A) X7, e)|
< N (CA(E — AX°h, )Y2 (CA(E — A) X, 1)'/2
x (CA(E — A)X%,r)1/2 (CA(E — A) X%, €)'/
< {MCA(E — A)Xh, )}VHM (CA(E — A)X°,1)}/?
ANCA(E — AX°r,r)}Y2 < A

(see (10.1.42)). Thus,
(10.1.49) |{Az[h]r, Bt)| < A.

I. We have
|(As[h]r, Bt)| = N |(f', Bt) (f"h,r)] = X |{f', Xt} (f" X, Xr)]
= N |(CAXC,t) (CA(E — A)X°h,r)]|
< A2 (CAX%,e)? (CAX t,1)Y/?
x (CA(E — A)X*h, )2 (CA(E — A)X°r,r)'/?
= {A(CAX,t)}2{ X (CA(E — A) X h, h)}'/?
x{A(CA(E — A)X%,r)}}? < (1 — amax) V2A
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(see (10.1.42), (10.1.43)). Thus,
(10.1.50) |{Ag[h]r, Bt)| < (1 — amax)”2A.
J. We have (H = Diag {h})
[(Aslh]r, Bt)| = A2 |(f', Bt) ((f)"[h]r, z)]
= N2 |(f', Xt) (CA(E — A)(2E - A)X**Hr, z)|
= M |(CAXC%,t) (CA(E — A)(2E — A)X®HRe, ¢)|
= M2 (CAX%,t) (CA(E — A)(2E — A)X°h,7)| < A2 (CAXt,8)'/?
x (CAX %, e)/* (CA(E — A)(2E — A)X°h, h)'/?
(CA(E — A)(2E — A)X°r,r)1/?
<232 (CAX )V (CA(E — A)X°h, W2 (CA(E — A)X°r,r)'/?
< 21 — amay) " /2A
(see (10.1.42), (10.1.43)). Thus,
(10.1.51) [{Ag[h]r, Bt)| < 2(1 — amax) /?A.

5°. From (10.1.30), (10.1.32), (10.1.33), and (10.1.41)—(10.1.51), it follows

that
|— (2" [n]p, T)| < 14(1 — amax) ">/2A

or, in view of (10.1.40),
|- (z"[n]p,T)| < 14(amax/amin)1/3(l - amax)75/2(2n)1/2@;

by definition of 3, the latter quantity is < 33280, so that (10.1.18) does hold
true. O
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Bibliography comments

What follows is a very brief historical and bibliography comment to the mono-
graph. We attempted to mention all contributions to the subject known to
us, but, since the area of interior-point polynomial-time methods is extremely
popular now and has attracted attention of many researchers, we understand
that the comment is far from being complete. The most complete bibliography
(over 1,200 entries) on interior-point methods was recently created by Dr. E.
Kranich and is available via NETLIB.

1 Historical remarks

1.1 Classical interior-point methods
Polynomial-time interior-point methods are closely related to quite traditional
areas of mathematical programming, meaning the interior penalty function
approach combined with the Newton method for minimizing the resulting
(penalized) objective (see the classical monograph of Fiacco and McCormick
[FMcC 68]). The traditional analysis of this scheme, however, gives no theoret-
ical understanding of the preferable types of penalties and reasonable handling
the penalty parameter (recall that in 1968 almost nobody was interested in the
key for this understanding complexity issues). The logarithmic barrier

F(z)=—- Zln fi(x)

for a polytope
G={zeR"| fi(z)=alz~b;>0,i=1,...,m}

was used in the context of linear programming by Frisch in the early 1950s
(see [Frs 56)).

In more specific sense, the “prehistory” of the polynomial-time interior-
point methods originates from the paper of Dikin [Di 67] where the so-called
Dikin method for LP problems was suggested. In this method, a given strictly
feasible solution y to the problem

(LP): minimize ¢’z s.t. z€G

is updated as follows: We compute the minimizer z’ of the objective over the
ellipsoid {z | (F"(y)(z — y),z — y) < 1} defined by the logarithmic barrier for
G, and the iterate of z is obtained by a step from z in the direction ' — z, the
stepsize being a fixed fraction of the largest stepsize preserving the feasibility of

379



380 BIBLIOGRAPHY COMMENTS

the shifted point (compare with the first “half-step” in the parallel trajectories
method §2.5). Dikin proved the convergence of this procedure and established
the asymptotic rate of convergence (under the assumption that the problem is
nondegenerate). To our knowledge, there are no polynomial-time results about
this method; simultaneously, it looks similar to the polynomial-time interior-
point algorithms, and it is reported that the practical performance of Dikin’s
algorithm is close to, say, that one of Karmarkar’s method. Dikin’s activity in
this area was completely unknown in the western world and almost unknown
in the USSR until the birth of modern polynomial-time interior-point methods.

1.2 Polynomial-time interior-point methods
The history of the methods begins with the landmark paper of Karmarkar [Ka
84], where the author’s method for LP problems was suggested. The excel-
lent complexity result of this paper, as well as the claim that the performance
of the new method considerably overcomes that one of the simplex method,
made this work a sensation and inspired very intensive further studies. Two
years later, Renegar [Re 86] suggested a new (theoretically, even more efficient)
polynomial-time interior-point method for LP, which appeared a quite tradi-
tional method of centers. This paper was especially important for clarifying the
nature of polynomial-time interior-point methods for LP, and it predetermined
further development in the field.

1.2.1 Linear programming
Until now, the activity in the field of interior-point methods focuses mainly on
linear programming. It seems to be impossible to mention most of the contri-
butions to the area done by various researchers; our reference list (although far
from being complete) does give some impression on the activity in the area.
In what follows, we restrict ourselves to the minimal amount of comments
compatible with the contents of the monograph.

Below, n denotes the larger size of an LP (or an LCQP—linearly con-
strained convex quadratic) problem in the canonical form, and L denotes the
total length of the input data (in the case of problems with integer data) or
the quantity In(1/¢), if the problem under consideration is to be solved to the
relative (with respect to an appropriate scale) accuracy € (in the latter case,
the coefficients can be reals). To simplify the estimates, we express them in
terms of the larger size only.

The method of Karmarkar solves an LP problem in O(nL) steps of the
total arithmetic cost O(n*L) (the basic version) or O(n®3L) (the accelerated
version). Renegar [Re 86] developed the first path-following polynomial-time
method for LP with the efficiency estimate of O(n'/2L) steps (O(n3°L) oper-
ations totally); independent, earlier similar method of centers were proposed
by Sonnevend (along with results on ellipsoidal approximations and nonlin-
ear applications) [So 85|, however without any complexity estimates. Vaidya
[Va 87] accelerated Renegar’s method, with the aid of the Karmarkar speed-
up; the resulting complexity estimate (O(n3L) operations) remains the best-
known complexity bound for LP, provided that the traditional linear algebra
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technique is used. The same complexity estimate was independently and si-
multaneously obtained by Gonzaga in the paper [Go 87|, where the first barrier
path-following method for LP was developed. This complexity bound is valid
for all the following interior-point methods for LP (all exceptions will be spec-
ified).

Most of the papers connected with the path-following approach are based
on the method of centers. As already mentioned, the barrier path-following
method originates from Gonzaga [Go 87]. The parallel trajectories method for
LP and LCQP was developed by Nesterov [Ns 88b], [Ns 88c].

Primal-dual interior-point methods for LP with the complexity of O(n!/2L)
steps were developed by Kojima, Mizuno, and Yoshise [KMY 87| and Monteiro
and Adler [MA 87a]. Important contributions to this field belong to Carpen-
ter, Choi, Lustig, Monma, Mulvey, and Shanno [CMS 88|, [CLMS 90]. The
potential reduction primal-dual O(n'/2L)-step LP method was suggested by
Todd and Ye [TY 87] and then improved by Ye [Ye 88a), [Ye 89].

1.2.2 Linearly constrained quadratic programming
This is the closest to LP class of nonlinear problems: As far as the path-
following methods are concerned, the technique created for LP usually can be
extended without essential difficulties to this class. Polynomial-time methods
for LCQP were developed by Kapoor and Vaidya [KV 86], Ye and Tse [YT 89|,
and Mehrotra and Sun [MS 87]. As far as we know, the first O(n!/?L)-step
methods of O(n3L) arithmetic cost for LCQP were suggested by Goldfarb and
Liu [GL 88}, Monteiro and Adler [A 87b], and Nesterov [Ns 88b}, [Ns88c]|.

1.2.3 Complementarity problems
A special area in the theory of interior-point methods is formed by studies
devoted to the interior-point and path-following technique for complementar-
ity problems, mainly linear ones (Kojima, Megiddo, Mizuno, Noma, Pardalos,
Ye, and Yoshise [KMgY 88], [KMY 88], [KMgNY 90], [Ye 88b], [YP 89]).
Polynomial-time interior-point methods for nonlinear complementarity prob-
lems were developed by Kojima, Megiddo, Mizuno, and Noma [KMgN 88|,
[KMzN 88a|, [KMzN 88b], [KMgM 90|, [KMgNY 90].

1.2.4 “Anticipated” behaviour of interior-point methods for LP
and LCQP
Another special area is the “anticipated” behavior of the interior-point meth-
ods for LP problems. Computational experience demonstrates that the number
N of steps of, say, Karmarkar’s method on real-world problems is essentially
less than that one prescribed by the worst-case efficiency estimate. While the
latter is proportional to the size n of an LP problem, in practice, N seems to
be proportional to Inn. Although no rigorous justifications of this phenomenon
are known, there are some arguments that make it not too surprising. Indeed,
assume that the search direction £ defined at a given step by the Karmarkar
algorithm with line search, is random and uniformly distributed in the corre-
sponding subspace (the latter subspace is provided by the Euclidean structure
defined by the second-order differential of the barrier). It can be proved that
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under this assumption the amount at which the Karmarkar potential function
is reduced at the step typically is (n/Ilnn) instead of the worst-case (1),
which results in the “anticipated” efficiency estimate of O(L Inn) steps instead
of the worst-case estimate of O(nL) steps (Mizuno, Nemirovsky, Todd, and Ye,
[Nm 87], [To 89], [MTY 90a], [MTY 90b], [Ye 90b]). The main drawback of this
approach is that we cannot point out (and cannot even prove the existence)
of an a priori probabilistic distribution on the set of LP problems of the size
n, which results in a “good” distribution of the search direction at each step.
It is interesting to note that O(L Inn)-anticipated behavior of potential reduc-
tion interior-point methods is established for the methods with the worst-case
efficiency estimate O(nL) only, while the anticipated behavior of the methods
with O(n'/?L)-worst case efficiency is O(n}/4L) (see [MTY 90a], [MTY 90b]
for a detailed discussion of these issues).

We should also mention the work of Sonnevend, Stoer, and Zhao {SSZ 89,
[SSZ 90], where it is proved that, for some special classes of LP problems,
the worst-case efficiency estimate for path-following methods is better than
O(n'/2L) iterations.

1.2.5 Nonlinear convex problems
There is a number of papers devoted to investigation of trajectories gener-
ated by logarithmic penalty functions (Sonnevend [So 85], who also gives re-
sults on centers of polyhedra; Jarre [Ja 87]; and Mehrotra and Sun [MS 88b])
within general convex context. To our knowledge, there were rather few results
[Ja 87], [Ja 89al, [Ja 89b], [MS 88a], [MS 88b] on polynomial-time interior-point
algorithms for essentially nonlinear problems.

In our opinion, the reason for relatively restricted activity in the field of
polynomial-time interior-point methods for nonlinear convex programs is that
the initial technique developed for LP in the seminal papers of Karmarkar [Ka
84] and Renegar [Re 86] heavily depends on the specific properties of LP.1

To extend interior-point polynomial-time methods on “more nonlinear”
problems, new approaches are needed. The first results here dealt with con-
vex quadratically constrained quadratic programs; path-following methods for
these problems were developed by Jarre [Ja 87] and Mehrotra and Sun [MS
88a). These authors also extended their approaches to general convex problems
(see [Ja 89al, [Ja 89b], [MS 88b]); below, we give more detailed presentation
of these general results. We should also mention a recent paper of Monteiro
and Adler [MA 90| on separable problems and the papers of Alizadeh [Al
91al, [Al 91b], [Al 92] and Jarre {Ja 91] on semidefinite programming (com-
pare with §5.4). The approach to explanation and design of interior-point
polynomial-time methods underlying this monograph is based on the concepts
of self-concordant functions and self-concordant barriers introduced by Nes-
terov [Ns 88b], [Ns 88c]. These ideas were developed in a number of papers of
the authors (see [NN 88], [NN 89], [NN 90a], [NN 90b], [NN 90c], [NN 90d],

!Note, anyway, that the technique developed for LP can be quite straightforwardly used
for semidefinite programming (see [Al 91a], [Al 91b]).
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[NN 91a}, [NN91b]; as far as polynomial path-following methods are concerned,
basically, all applications presented in this monograph were already given in
[NN 88)).

As already mentioned, general interior-point approaches to nonlinear con-
vex problems were also developed by Mehrotra and Sun [MS 88b)], Jarre [Ja
89a), [Ja 89b], Monteiro and Adler [MA 90], and Kortanek and Zhu [Z 90], [KZ
91]. Mehrotra and Sun deal with convex problems of the type

minimize fo(z) s.t. fi(z) <0,i=1,...,m,

with bounded feasible set, and make rather restrictive assumption that the
functions f;, ¢ =0, ..., m, satisfy the curvature condition

kL (y) < fl(z) < kf(y)

for all feasible x, y; here k is certain “curvature constant.” Under this assump-
tion, they establish polynomiality of a path-following Renegar-type method
associated with the barrier Y 7%, In(—f;). In fact, the curvature condition is
very close to the notion of strong convexity and shares its main shortcoming:
The numerical value of the curvature constant x usually depends not only on
the analytical structure and sizes of the problem, but also on the diameter of
the feasible domain, on numerical values of coefficients, and so forth.

The approach developed by Jarre [Ja 89a], [Ja 89b] is based on the “relative
Lipschitz condition” (RLC): a convex C? function f that is negative on an open
convex domain ¢ and tends to 0 along each sequence converging to a boundary
point of the domain satisfies this condition (with constant M) if

Vz € R" Vy € Q Vh with kT H(y)h < 0.25(1 + MV/3)72

|27 (D*f(z + h) — D*f(2)) 2| < M{KTH(y)h}"/ 2" D*(y)z;

here H(y) is the Hessian of the function Fy(-) = —In(—f(-)) at y. Jarre demon-
strates that the problem

minimize ¢’z s.t. fi(z) <0,i=1,...,m

associated with the constraints f; satisfying the RLC on the domains {f;(z) <
0} can be solved in polynomial time by the path-following method associated
with the barrier F(z) = }_; Fy,(x). As found by Jarre [Ja 90], the RLC implies
self-concordance: For a C3 function f satisfying the RLC with constant M, the
function F; proves to be O((M + 1)?)-self-concordant barrier for the Lebesque
set {z | f(z) < 0}. This observation allows us to derive all constructions and
complexity results based on the RLC from those based on the theory of self-
concordance. In our opinion, the main disadvantage of the RLC, as compared
to self-concordance, is that it seems much more difficult to verify the former
property in the case of nonquadratic f. Besides this, the width of the class of
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convex domains that can be represented in terms of functions satisfying the
RLC is not known.

The schemes of Monteiro and Adler [MA 90] and Kortanek and Zhu [Z90],
[KZ 91] deal with convex problems involving linear equality constraints; Mon-
teiro and Adler, in addition, assume the objective to be separable. Under
appropriate assumptions on the objective, the authors prove polynomiality
of the barrier-type path-following methods associated with the natural loga-
rithmic barriers for the epigraph of the objective. As shown by den Hertog
[D-H 92], the assumptions of these papers imply self-concordance of the cor-
responding barriers (at least in the case of C3-smooth objectives), so that the
schemes in question also are covered by the general self-concordance-based
approach.

In all of the above approaches, to find a barrier for the domain {x | f(z) <
0} defined by a smooth convex function, we should take as barrier the function
— In(— f(z)); to provide “nice” properties of the barrier, it requires us to impose
certain restrictions on f. It means that the structure of the barrier is a priory
fixed. In this book, we proceed differently. We point out the desired property
of the barrier, prove that, in principle, such a barrier does exist for every
domain, and develop a technique for obtaining “computable” barriers. The
latter approach seems to be more flexible, since we do not restrict ourselves to
barriers of any specific type. For example, we feel free to use the function

F(t,z) = -In(t*~ || z |13)
as a self-concordant barrier for the second-order cone

{t,2)| f(t,z) =l ||l2 —t < O}

It seems rather difficult to find a direct correspondence between the functions f
and F. Of course, an arbitrary ¥-self-concordant barrier F' can be represented
via the logarithm of a concave function f(z) as

F(z) = —9In(f(2)),

with
f(z) = exp{-97'F(2)},

(f is concave by Proposition 1.3.2(iv)), but this possibility seems useless for
developing the theory of the interior point methods, same as for constructing
“computable” barriers.

2. What follows are specific bibliography comments to different parts of
the text.

Chapter 1. The basic concepts of self-concordant function and self-concor-
dant barrier were introduced in [Ns 88b], [Ns 88c|. The results presented in
the chapter originate from [NN 89], [NN 90b].
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Chapter 2. The notion of a self-concordant family was introduced in
[NN 89], where on the basis of this notion the authors explained and ex-
tended onto the nonlinear case path-following methods previously developed
for LP and LCQP (the barrier method [Go 87|, [Ns 88b], [Ns 88c], the method
of centers [Re4 86] and the primal and dual methods of parallel trajectories
[Ns 88a, [Ns 89)).

As compared to [NN 89, the only new result of Chapter 2 is the complexity
analysis of the barrier-generated path-following method with large-step strat-
egy (see Proposition 2.2.5). The authors were pleased to find that similar result
was independently obtained by den Hertog [D-H 92]|.

Chapter 3. Duality for convex programs involving “nonnegativity con-
straints” defined by a general-type convex cone in a Banach space is a relatively
old (and, possibly, slightly forgotten by the mathematical programming com-
munity) part of convex analysis (see, e.g., [ET 76]). The corresponding general
results, as applied to the case of conic problems (i.e., finite-dimensional prob-
lems with general-type nonnegativity constraints and affine functional con-
straints), form the contents of §3.2. To our knowledge, in convex analysis,
there was no special interest to conic problems, and consequently to remark-
able symmetric form of the aforementioned duality in this particular case. The
only previous result in spirit of this duality known to us is the dual character-
ization of the Lovasz capacity number (') of a graph (see [Lo 79]).

The general approach presented in Chapter 3 regarding explanation and
extension onto the general convex case of the potential reduction interior-point
methods known for LP (the method of Karmarkar [Ka 84], the projective
method [Nm 87], [NN 90a], the primal-dual method of Todd and Ye [TY 87|,
[Ye 88a, [Ye 89]), was developed in [NN 90bj, [NN 90d]. Interpretation of the
generalized method of Karmarkar in terms of the Newton minimization of a
self-concordant barrier for an unbounded domain (§3.3.4) is motivated by the
devoted to the LP case paper of Bayer and Lagarias [BL 91].

The authors are greatly indebted to Professor Stephen Boyd, who attracted
their attention to the generalized linear-fractional problem and stimulated by
this the research summarized in §3.4.

Chapter 4. The results of this chapter originate from [NN 88|, [NN 89],
[NN 90b]. Section 4.1.2 is new. Several interesting self-concordant barriers for
two-dimensional convex sets can be also found in [D-HJRT 92].

An important open question concerning barriers concerns decreasing the
gap between the theoretically best possible value O(n) of the parameter of a
self-concordant barrier for an n-dimensional convex domain G (see Theorem
1.5.1) and the parameters of “computable” barriers for G (for example, in
the case of a polytope G defined by m linear inequalities the parameter of
the standard logarithmic barrier for G is m). A very important result in this
direction was obtained by Vaidya [Va 89]; the generalization presented in §4.5
of this result seems to be new.
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Chapter 5. Most of the results presented here were announced in [NN 88];
complete proofs were given in [NN 89], [NN 90b]. Among these applications,
the most attractive, in our opinion, are those related to quadratically con-
strained quadratic programming and to semidefinite programming. The latter
area is now very popular among those involved into the design of interior-
point methods for nonlinear convex programming (Alizadeh and Jarre [Al 91a),
[Al 91b], [Al 92], [Ja 91]), same as among those interested in applications
of these methods, mainly to various control theory problems (Balakrishnan,
Baratt, Barmish, Boyd, Doyle, El-Ghaoui, Fan, Nekooie, Packard, Tits, Yang,
Zhou, among others; see [BB 90], [BBr 91], [BBK 89], [BG 92|, [BY 89|,
[DPZ 91], [Do 82|, [FN 91|, [FT 86], [FT 88], [FT 91], [FTD 91], [GB 86],
[KR 91]); detailed presentation of control theory applications of semidefinite
programming can be found in the monograph of Boyd, El-Ghaoui, Feron, and
Balakrishnan [BGFB 93]. The most of “semidefinite reformulations” of convex
programs presented in §5.4 are quite straightforward; the only exception is the
pd-representation of the function “the sum of k largest eigenvalues of a sym-
metric matrix”; the representation given in §5.4 (it was independently found by
Alizadeh) is based on the “convex-concave” description of the function given
by Overton and Womersley in [OW 91].

As far as generalized linear-fractional problem on the cone of positive
semidefinite matrices is concerned (§5.4.4.7), many applications of this prob-
lem, same as a special interior-point method of analytic centers for it, are given
by Boyd and El-Ghaoui [BG 92].

The problems connected with extremal ellipsoids (§5.5) were, from differ-
ent viewpoints, studied by many authors. We should especially mention the
improvement (by a factor of O(m)) of the complexity bound from Theorem
5.5.1 for the problem of finding the inscribed ellipsoid of the maximum volume
obtained by Khachiyan and Todd in [KhT 90].

Chapter 6. To our knowledge, polynomial-time interior-point methods for
variational inequalities previously were developed mainly for inequalities with
affine operators and only for polyhedral feasible domains (see references in
item 1.2.3). We should also mention the paper of Guler [Gu 90], where some
general properties of the penalty-type paths associated with a nonlinear mono-
tone complementarity problem are investigated. The contents of the chapter
originates from [NN 91a).

Chapter 7. Acceleration of polynomial-type interior-point methods for LP
and LCQP begins in the landmark paper of Karmarkar [Ka 84], where the
first method of this family was suggested. As already mentioned, Vaidya and
Gonzaga were the first to accelerate path-following methods for LP, which
resulted in the best-known—cubic with respect to the size of an LP problem—
efficiency estimate for LP. Karmarkar’s type acceleration was used by most of
the researchers dealt with LP and LCQP (see references in item 1.2.1). The
schemes presented in Chapter 7 originate from [NN 89; see also [NN 91b].
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Acceleration for linear and linearly con-
strained quadratic problems
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strategy, 316
tactics, 317
Advanced linear algebra, 321

Barrier calculus, 148, 174
Barrier-generated family, 2
Legendre transformation, 181
superposition theorem, 182, 184
Boolean programming
dual bounds for, 243

Combination rules for barriers/coverings
arithmetic summation, 155
conic hull, 149
direct products, 149
images under affine mappings, 152
inverse images under affine mappings,
148
inverse images under nonlinear map-
pings, 156
intersections, 149
projective transformation, 143
Combined volumetric barrier, 203, 246
Complementarity problem, 277, 381
Conic duality, 103
Conic representation, 175
second-order, 224
examples, 226
Constraint regularization scheme, 218
Convex-concave games, 276
Convex problem
conic form, 102, 147, 188
complementary slackness relation,
104, 106, 109
dual formulation, 103
dual inequality, 105
duality relations, 105
duality theorem, 109
normal primal-dual pair, 106
primal-dual pair, 104
primal-dual relations, 107
zero duality gap, 106, 109
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standard form, 57, 103, 147, 188
Coverings, 175
calculus, 176
direct product, 178
images, 176
intersections, 178
inverse images, 176
Curvature condition, 383

Differential inclusion, 245
Dikin’s ellipsoid, 13, 34
Dikin’s method, 379
Duality theorem, 109

Eigenvalues minimization problems
largest of, 239, 242
sum of k largest, 239
Extremal ellipsoids
inscribing maximal volume ellipsoid,
244, 249
algebraic formulation, 250
geometric formulation, 249
path-following method for finding,
252, 254, 257, 263, 268, 270
circumscribing minimal volume ellip-
soid, 270

Function
[B-compatible with self-concordant bar-
rier, 66
fractional-quadratic, 227, 241
Lyapunov’s, 101
positive-semidefinite representable, 237
potential, 101, 112, 124, 139
Functional element, 176
Legendre transformation of, 181

Linear differential equations
uniqueness theorem, 14
Linear-fractional problems, 121
Logarithmically homogeneous barriers
definition of, 39
Legendre transformation of, 47, 48
main properties of, 40, 41
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v-normal, 40
Lovasz capacity number of graph, 242

Mappings
compatible with barrier, 160
compatible with convex domain, 159
compatibility of superpositions, 168
examples, 160, 165
concave with respect to cone, 156
examples, 157
maximal monotone, 274
monotone, 273
quadratic-fractional, 166
Methods
barrier-generated, 2, 70
interior penalty function, 1, 379
of centers, 2, 82 See also Path-following
interior-point methods,

Potential reduction interior-point meth-
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Monotone element, 274
potential, 310
transformation rules for, 311-313
Monotone operator
compatible with self-concordant bar-
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properties of, 291, 292
convex representation of, 307
linear monotone, 304
Multistep barrier methods
acceleration based on optimal method
for smooth convex optimization
efficiency estimate, 336
scheme, 334
conjugate-gradient-based acceleration
efficiency estimate, 351
scheme, 348
fixed-point-based acceleration
efficiency estimate, 342
scheme, 340
gradient-descent-based acceleration
efficiency estimate, 330
scheme, 329
sets Kq(z), 327

Nash equilibrium, 276

Newton decrement
definition of, 15, 284
properties of, 16

Newton iterate, 16, 284

Newton method
convergence results, 17, 18, 24
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damped, 15
stepsize rules, 24, 26

Path-following interior-point methods, 57
barrier-generated, 65, 68
efficiency estimate, 75
large-step strategy, 76
main stage, 73
preliminary stage, 70
dual parallel trajectories method, 86,
87
efficiency estimate, 92
scheme, 90, 91
method of centers, 80
efficiency estimate, 84
scheme, 84
primal parallel trajectories method,
93
efficiency estimate, 96, 99
scheme, 95
Path-following scheme, 2, 57
Perturbed primal problem
cost function, 106
properties of, 106
Polynomial-time methods
definition for LP, 3
definition for NLP, 5
historical remarks, 380
Positive-semidefinite representation, 237
of determinant, 240
of Euclidean norm, 238
of fractional-quadratic function, 241
of geometric mean, 240
of matrix norm, 238
of maximal eigenvalue, 239
of quadratic-functional, 238
of sum of k largest eigenvalues, 239
Potential reduction interior-point methods,
101
anticipated behaviour, 248, 381
Karmarkar method, 111
assumptions, 111
potential function for, 112
projective transformation-based ex-
planation of, 116
rate of convergence, 115
scheme, 114
sliding objective approach, 119
unknown optimal value, 117
primal-dual method, 138
assumptions, 138
large-step strategy, 145
potential function, 139
rate of convergence, 144
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scheme, 140
projective method, 121
assumptions, 121, 123
large-step strategy, 135
potential function, 124
rate of convergence, 130, 132
scheme, 126130
Preconditioned conjugate gradients method,
346
Problems
approximation in L,-norm, 232
arising in control theory, 245
complementarity, 277, 381
conic involving second-order cone, 223
geometrical programming, 230
inscribing maximal ellipsoid into poly-
tope, 244
minimization of largest eigenvalue, 242
minimization of matrix norm, 234, 242
quadratically constrained quadratic,
220, 241, 381
path-following approach, 220
potential-reduction approach, 221
reducible to inequality with monotone
operator, 275
semidefinite programming, 236
Pure exchange model of Arrow-Debreu,
302

Recessive
cone, 45
subspace, 15
Relative Lipschitz condition, 383

Second-order representation, 224
Euclidean norm, 226
geometrical mean, 226
fractional-quadratic function, 227
quadratic functional, 226
Self-concordance, 12
Self-concordant barrier, 3
bounds on parameter, 42, 49
definition of, 32
examples, 33, 40, 81
for cone of positive-semidefinite sym-
metric matrices, 198
for epigraph
of entropy function, 192
of exponent, 193
of fractional-quadratic function, 201
of functions of Euclidean norm, 195
of logarithm, 193
of matrix norm, 199
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of power function, 191, 192
for piecewise-quadratically bounded
domains, 194

for polytope, 193, 203

for second-order cone, 195

Legendre transformation, 45, 47, 86

main properties, 33, 34, 39

parameter of, 4, 32
Self-concordant families, 58

barrier-generated, 66

center-generated, 80

definition of, 58

homogeneous, 86

metric associated with, 61

properties, 58, 59, 62
Self-concordant function

behaviour on Lebesgue set, 27-29

definition of, 12

Legendre transformation, 43

main properties, 12, 13

strongly, 12
Self-concordant monotone operator

definition of, 280

Newton decrement, 284

Newton method, 286

properties, 280, 282, 283, 285
Semidefinite programming, 236
Standard logarithmic barrier, 2, 315
Symmetric k-linear form, 361

Uniqueness theorem for linear differential
equations, 14
Universal barrier, 49

Variational inequalities, 273
accuracy measure, 294, 299
accuracy of approximation, 298
application example, 302, 365
barrier-generated family of, 294
path-following method for, 290
efficiency estimate, 302
initialization, 296
summary, 301
updating rule, 295
reduction to convex program, 305
regularity, 305
with linear monotone operator, 304

Volumetric barrier, 203



	Interior-Point Polynomial Algorithms in Convex Programming
	SIAM Studies in Applied and Numerical Mathematics
	ISBN 0-89871-319-6
	Contents
	Foreword
	Preface
	Chapter 1 Introduction
	Chapter 2 Self-concordant functions and Newton method
	Chapter 3 Path-following interior-point methods
	Chapter 4 Potential reduction interior-point methods
	Chapter 5 How to construct self-concordant barriers
	Chapter 6 Applications in convex optimization
	Chapter 7 Variational inequalities with monotone operators
	Chapter 8 Acceleration for linear and linearly constrained quadratic problems
	Appendix 1
	Appendix 2
	Bibliography comments
	Bibliography
	Index




