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Accuracy Guarantees for ��-Recovery
Anatoli Juditsky and Arkadi Nemirovski

Abstract—We discuss two new methods of recovery of sparse sig-
nals from noisy observation based on ��-minimization. While they
are closely related to the well-known techniques such as Lasso and
Dantzig Selector, these estimators come with efficiently verifiable
guaranties of performance. By optimizing these bounds with re-
spect to the method parameters we are able to construct the estima-
tors which possess better statistical properties than the commonly
used ones. We link our performance estimations to the well known
results of Compressive Sensing and justify our proposed approach
with an oracle inequality which links the properties of the recovery
algorithms and the best estimation performance when the signal
support is known. We also show how the estimates can be com-
puted using the Non-Euclidean Basis Pursuit algorithm.

Index Terms—Linear estimation, nonparametric estimation by
convex optimization, oracle inequalities, sparse recovery.

I. INTRODUCTION

R ECENTLY, several methods of estimation and selection
which refer to the -minimization received much atten-

tion in the statistical literature. For instance, Lasso estimator,
which is the -penalized least-squares method is probably the
most studied (a theoretical analysis of the Lasso estimator is
provided in, e.g., [2]–[4], [19]–[21], [17], [18], see also the ref-
erences cited therein). Another, closely related to the Lasso, sta-
tistical estimator is the Dantzig Selector [7], [2], [16], [17]. To
be more precise, let us consider the estimation problem as fol-
lows. Assume that an observation

(1)

is available, where is an unknown signal and
is a known sensing matrix. We suppose that

is a Gaussian disturbance with (i.e.,
, where are independent normal r.v.’s

with zero mean and unit variance), and is a known deter-
ministic noise level. Our focus is on the recovery of unknown
signal .

The Dantzig Selector estimator of the signal is defined
as follows [7]:
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where is the algorithm’s parameter. Since
is obtained as a solution of an linear program, it is very attrac-
tive by its low computational cost. Accuracy bounds for this
estimator are readily available. For instance, a well known re-
sult about this estimator (cf. [7, Theorem 1.1]) is that if

then

with probability if a) the signal is -sparse, i.e., has at
most non-vanishing components, and b) the sensing matrix

with unit columns possesses the Restricted Isometry Prop-
erty with parameters and .1

Further, in this case one has , where is a
moderate absolute constant. This result is quite impressive, in
part due to the fact (see, e.g., [5], [6]) that there exist
random matrices, with , which possess the RIP with
probability close to close to zero and the value of as
large as . Similar performance guarantees are
known for Lasso recovery

with properly chosen penalty parameter . The available accu-
racy bounds for Lasso and Dantzig Selector rely upon the Re-
stricted Isometry Property or less restrictive assumptions about
the sensing matrix, such as Restricted Eigenvalue [2] or Com-
patibility [3] conditions (a complete overview of those and sev-
eral other assumptions with description of how they relate to
each other is provided in [19]). However, these assumptions
cannot be verified efficiently. The latter implies that there is cur-
rently no way to provide any guaranties (e.g., confidence sets)
of the performance of the proposed procedures. A notable ex-
ception from this rule is the Mutual Incoherence assumption
(see, e.g., [10]–[12] and [21] for the case of, respectively, de-
terministic and random observation noise) which can be used to
compute the accuracy bounds for recovery algorithms: a matrix

with columns of unit -norm and mutual incoherence
possesses with .2 Unfortunately,

1Recall that ������ ��, called also uniform uncertainty principle, means that
for any � � � with at most � nonzero entries,

��� ����� � ���� � �� � �����

This property essentially requires that every set of columns of� with cardinality
less than � approximately behaves like an orthonormal system.

2The mutual incoherence ���� of a sensing matrix � � 	� � 
 
 
 � � � is
computed according to

���� � �
�
�� � �

� �
�

Obviously, the mutual incoherence can be easily computed even for large
matrices.

0018-9448/$26.00 © 2011 IEEE



JUDITSKY AND NEMIROVSKI: ACCURACY GUARANTEES FOR -RECOVERY 7819

the latter relation implies that should be very small to cer-
tify the possibility of accurate -recovery of non-trivial sparse
signals, so that performance guarantees based on mutual inco-
herence are very conservative. This “theoretical observation” is
supported by numerical experiments—the practical guarantees
which may be obtained using the mutual incoherence are gener-
ally quite poor even for the problems with nice theoretical prop-
erties (cf. [14], [15]).

Recently the authors have proposed a new approach for ef-
ficient computing of upper and lower bounds on the “level of
goodness” of a sensing matrix , i.e., the maximal such that
the -recovery of all signals with no more than non-vanishing
components is accurate in the case where the measurement noise
vanishes (see [14]). In the present paper we aim to use the re-
lated verifiable sufficient conditions of “goodness” of a sensing
matrix to provide efficiently computable bounds for the error
of recovery procedures in the case when the observations are
affected by random noise.

The main body of the paper is organized as follows:
1) We start with Section II-A where we formulate the sparse

recovery problem and introduce our core assumption—a verifi-
able condition linking matrix and a con-
trast matrix . In Sections II-B, II-C we present two
recovery routines with contrast matrices:

• regular recovery:

• penalized recovery:

( is our guess for the number of nonzero entries in the true
signal, is the penalty parameter)

along with their performance guarantees under condition
with , that is, explicit upper bounds on the

confidence levels of the recovery errors . The novelty
here is that our bounds are of the form

(2)

(with hidden factors in independent of ), and are valid
in the entire range of values of . Note that similar
error bounds for Dantzig Selector and Lasso are only known
for , whatever be the assumptions on “essentially
nonsquare” matrix .

2) Our interest in condition stems from the fact that
this condition, in contrast to the majority of the known sufficient
conditions for the validity of -based sparse recovery (e.g., Re-
stricted Isometry/Eigenvalue/Compatibility), is efficiently veri-
fiable. Moreover, it turns out that one can efficiently optimize
the error bounds of the associated with this verifiable condition
regular/penalized recovery routines over the contrast matrix .
The related issues are considered in Section III. In Section IV
we provide some additional justification of the condition , in
particular, by linking it with the Mutual Incoherence and Re-
stricted Isometry properties. This, in particular, implies that the
condition with, say, associated with randomly

selected matrices is feasible, with probability ap-
proaching 1 as grow, for as large as . We
also establish limits of performance of the condition, specifi-
cally, show that unless is nearly square, with

can be feasible only when , meaning that the
tractability of the condition has a heavy price: when designing
and validating minimization based sparse recovery routines,
this condition can be useful only in a severely restricted range
of the sparsity parameter .

3) In Section V, we show that the condition is the
strongest (and seemingly the only verifiable one) in a natural
family of conditions linking a sensing and a contrast
matrix; here is the number of nonzeros in the sparse signal to
be recovered . We demonstrate that when a contrast
matrix satisfies with , the associated reg-
ular and penalized recoveries admit error bounds similar to
(2), but now in the restricted range of values of . We
demonstrate also that feasibility of with im-
plies instructive (although slightly worse than those in (2)) error
bounds for the Dantzig Selector and Lasso recovering routines.

4) In Section VI, we present numerical results on compar-
ison of regular/penalized recovery with the Dantzig Selector
and Lasso algorithms. The conclusion suggested by these pre-
liminary numerical results is that when the former procedures
are applicable (i.e., when the techniques of Section III allow
to build a “not too large” contrast matrix satisfying the condi-
tion with, say, ), our procedures outperform
significantly the Dantzig Selector and work exactly as well as
the Lasso algorithm with “ideal” (unrealistic in actual applica-
tions) choice of the regularization parameter3.

5) In the concluding Section VII, we present a “Non-Eu-
clidean Matching Pursuit algorithm” (similar to the one pre-
sented in [15]) with the same performance characteristics as
those of regular/penalized recoveries; this algorithm, how-
ever, does not require optimization and can be considered as a
computationally cheap alternative to recoveries, especially in
the case when one needs to process a series of recovery prob-
lems with common sensing matrix.

All proofs are placed in the Appendix.

II. ACCURACY BOUNDS FOR -RECOVERY ROUTINES

A. Problem Statement

a) Notation: For a vector and , we
denote the vector obtained from by setting to 0 all but the
largest in magnitude entries of . Ties, if any, could be resolved
arbitrarily; for the sake of definiteness assume that among en-
tries of equal magnitudes, those with smaller indexes have pri-
ority (e.g., with one has ).
stands for the usual -norm of (so that ).
We say that a vector is -sparse if it has at most nonzero
entries. Finally, for a set , we denote by its
complement ; given , we denote by the
vector obtained from by zeroing the entries with indices out-
side of , so that .

3With “theoretically optimal,” rather than “ideal,” choice of the regulariza-
tion parameter in Lasso, this algorithm is essentially worse than our algorithms
utilizing the contrast matrix.
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Given a norm on and a matrix
, we set .

b) The Problem: We consider an observation

(3)

where is an unknown signal and is the
sensing matrix. We suppose that is a Gaussian disturbance,
where (i.e., with independent
normal random variables with zero mean and unit variance),

being known, and is a nuisance parameter known to
belong to a given uncertainty set which we will sup-
pose to be convex, compact and symmetric w.r.t. the origin. Our
goal is to recover from , provided that is “nearly -sparse.”
Specifically, we consider the sets

of signals which admit -sparse approximation of -accuracy
. Given , and a confidence level ,

we quantify a recovery routine—a Borel function
—by its worst-case, over , confidence

interval, taken w.r.t. -norm of the error. Specifically, we
define the risks of a recovery routine as

(4)

Equivalently: if and only if there
exists a set of “good” realizations of with

such that whenever , one has
for all and all .

c) Norm : Given and , let us denote

(5)

Since is convex, closed and symmetric with respect to the
origin, is a norm. Let be the norm on conjugate to

d) Conditions and : Let
. Given , consider the

following condition on a matrix

: for all and one has

(6)

Now let be a positive integer and . Given , we
say that a matrix satisfies condition

4, if

(7)

4The reason for this cumbersome, at the first glance, notation will become
clear later, in Section V.

The conditions we have introduced are closely related to each
other:

Lemma 1: If satisfies , then satisfies
, and “nearly vice versa:” given

satisfying , one can build efficiently a matrix
satisfying with (i.e.,

) and such that the columns of are convex com-
binations of the columns of and , so that
for every norm on .

B. Regular Recovery

In this section, we discuss the properties of the regular -re-
covery given by

(8)

where is as in (3), , are some vectors in
and . We refer to the matrix

as to the contrast matrix underlying the recovering
procedure.

The starting point of our developments is the following.

Proposition 1: Given an sensing matrix , noise in-
tensity , uncertainty set and a tolerance , let the
matrix from (8) satisfy the condition
for some , and let in (8) satisfy the relation

(9)

where is given by (5). Then there exists a set
, of “good” realizations of such that:

(i) Whenever , for every , every and
every subset such that

(10)

the regular -recovery given by (8) satisfies

(11)

where and .
(ii) In particular, when setting

(12)
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and assuming , for every and , it
holds

(13)

(iii) Finally, assuming , for every
and , one has

(14)

The following result is an immediate corollary of Proposition 1:

Lemma 2: Under the premise of Proposition 1, assume that
. Then for all and

(15)

(for notation, see (12)). Further, if , we have also

(16)

The next statement is similar to the cases of in
Proposition 1 and Lemma 2; the difference is that now we as-
sume that satisfies , which, by Lemma 1, is a weaker
requirement on than to satisfy with .

Proposition 2: Given an sensing matrix , noise inten-
sity , uncertainty set and a tolerance , let the matrix

from (8) satisfy the condition for
some , and let in (8) satisfy the relation (9). Then
there exists a set , of “good”
realizations of such that whenever , for every
and every one has

(17)

In particular,

(18)

C. Penalized Recovery

Now consider the penalized -recovery as follows:

(19)

where is as in (3), and an integer , a positive , and a
matrix are parameters of the construction.

Proposition 3: Given an sensing matrix , an integer
, a matrix and positive reals

, satisfying the condition , and a ,
assume that

(20)

(21)

Further, let , and let

(22)

Consider the penalized recovery associated with
. There exists a set , of

“good” realizations of such that
(i) Whenever , for every signal and every

one has

(23)

where, as in Lemma 2, .

(ii) When and , one has for every
and

(24)

whence for every and

(25)

The next statement is in the same relation to Proposition 3 as
Proposition 2 is to Proposition 1 and Lemma 2.

Proposition 4: Given an sensing matrix , noise inten-
sity , uncertainty set and a tolerance , let the matrix

from (19) satisfy the condition for
some , and let . Then there exists a set

, of “good” realizations of such that
whenever , for every and every one has

(26)
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In particular

(27)

Note that under the premise of Proposition 2, the smallest pos-
sible values of are the quantities , which results in

; with this choice of , the risk bound for the regular re-
covery, as given by the right hand side in (18), coincides within
factor 2 with the risk bound for the penalized recovery with

as given by (27); both bounds assume that satisfies
with and imply that

(28)

When , the latter bound admits a quite transparent inter-
pretation: everything is as if we were observing the sum of an
unknown -dimensional signal and an observation error of the
uniform norm .

III. EFFICIENT CONSTRUCTION OF THE CONTRAST MATRIX

In what follows, we fix , the “environment parameters”
and the “level of sparsity” of signals we intend

to recover, and are interested in building the contrast matrix
resulting in as small as possible error bound

(28). All we need to this end is to answer the following question
(where we should specify the norm as ):

(?) Let be a norm on , and be a positive in-
teger. What is the domain of pairs such
that and there exists matrix

satisfying the condition and the relation
? How to find such an , pro-

vided it exists?

Invoking Lemma 1, we can reformulate this question as follows:

(??) Let and be as in (?). Given ,
how to find vectors , satisfying

for every , or to detect correctly that no such collection of
vectors exists?

Indeed, by Lemma 1, if satisfies and ,
then there exists such that satisfy
for all and , so that satisfy
for all as well. Vice versa, if satisfy ,
then the matrix clearly satisfies ,
and .

The answer to (??) is given by the following

Lemma 3: Given , and a positive integer , let
. For every , the following three properties are

equivalent to each other:
(i) There exists satisfying ;

(ii) The optimal value in the optimization problem

where is -th standard basic orth in , is ;
(iii) One has

(29)

where is the norm on conjugate

to .
Whenever one (and then—all) of these properties take place,
problem is solvable, and its optimal solution satisfies

.

A. Optimal Contrasts for Regular and Penalized Recoveries

As an immediate consequence of Lemma 3, we get the fol-
lowing description of the domain associated with the norm

(30)

where in is specified as . Note that the
second equality in is given by Linear Programming duality.
Indeed, by is the smallest for which all problems

, are feasible, and thus, by Lemma 3,
if and only if and .

Note that the quantity depends solely of , while
depends on , as on parameters, but is independent of .

The outlined results suggest the following scheme of building
the contrast matrix

• we compute by solving Linear Programming prob-
lems in (30. ); if , then does not contain
points with , so that our recovery rou-
tines are not applicable (or, at least, we cannot justify them
theoretically);

• when , the set is nonempty, and its Pareto
frontier (the set of pairs such that

is possible if and only if ) is the curve
. We choose a “working point”

on this curve, that is, a point and compute
by solving the convex optimization programs

, with specified as . is
nothing but the maximum, over , of the optimal values of
these problems, and the optimal solutions to the prob-
lems induce the matrix which
satisfies and has . By reasoning
which led us to (??),

that is, is the best for our purposes contrast
matrices satisfying . With this contrast matrix,
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the error bound (28) for regular/penalized recoveries (in
the former, , in the latter, ) read

(31)

The outlined strategy does not explain how to choose . This
issue could be resolved, e.g., as follows. We choose an upper
bound on the sensitivity of the risk (31) to , i.e., to the -de-
viation of a signal to be recovered from the set of -sparse sig-
nals. This sensitivity is proportional to , so that an upper
bound on the sensitivity translates into an upper bound
on . We can now choose by minimizing the remaining term
in the risk bound over , which amounts to solving
the optimization problem

Observing that is, by its origin, a convex function, we can
solve the resulting problem efficiently by bisection in . A step
of this bisection requires solving a univariate convex feasibility
problem with efficiently computable constraint and thus is easy,
at least for moderate values of .

IV. RANGE OF FEASIBILITY OF CONDITION

We address the crucial question of what can be said about the
magnitude of the quantity , see (30) and the risk bound
(31). One way to answer it is just to compute the (efficiently
computable!) quantity for a desired value of . Yet it is
natural to know theoretical upper bounds on in some “refer-
ence” situations. Below, we provide three results of this type.

At this point, it makes sense to express in the notation that
depends, as on parameters, on the sensing matrix and

the “environment parameters” , so that in this section we
write instead of .

A. Bounding via Mutual Incoherence

Recall that for an sensing matrix
with no zero columns, its mutual incoherence is defined as

Compressed Sensing literature contains numerous mutual-in-
coherence-related results (see, e.g., [10]–[12] and references
therein). To the best of our knowledge, all these results state
that if is a positive integer and is a sensing matrix such that

, then -based sparse recovery is well suited for
recovering -sparse signals (e.g., recovers them exactly when
there is no observation noise, admit explicit error bounds when
there is noise and/or the signal is only nearly -sparse, etc.). To
the best of our knowledge, all these results, up to the values
of absolute constant factors in error bounds, are covered by
the risk bounds (31) combined with the following immediate
observation:

Observation 1: Whenever is an
matrix with no zero columns and is a positive integer, the ma-
trix

satisfies the condition .
Verification is immediate: the diagonal entries in the matrix

are equal to , while the
magnitudes of the off-diagonal entries in do not exceed .
Therefore

Observe that the Euclidean norms of the columns in

do not exceed , whence

, where . In the no-

tation from Section III, our observations can be summarized as
follows:

Corollary 1: For every matrix with no zero
columns, one has and

. In particular

It should be added that as grow in such a way that
, realizations of “typical” random matrices

(e.g., those with independent entries or with in-
dependent entries taking values ) with overwhelming
probability satisfy and
for all . By Corollary 1, it follows that for these the condi-
tion with, say, can be satisfied for as large
as merely by the choice , which
ensures that ; in partic-
ular, in the indicated range of values of one has

.

B. The Case of Satisfying the Restricted Isometry Property

Proposition 5: Let satisfy with some
and with . Then there exists matrix which, for every
positive integer , satisfies the condition , with

(32)

and is such that . In
particular

(33)
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C. Oracle Inequality

Here, we assume that possesses the following
property (where is a positive integer and ):

: For every and every -element
subset of there exists a routine for
recovering from a noisy observation

of unknown signal , known to be supported on
such that for every such signal and every one has

We intend to demonstrate that in this situation for all in cer-
tain range (which extends as grows and decreases) the uni-
form error of the regular and the penalized recoveries associ-
ated with properly selected contrast matrix is, with probability

, “close” to . The precise statement is as follows:

Proposition 6: Given and the “environment parameters”
, assume that satisfies the condition

with certain . Then for every integer from the range

(34)

(here is the standard matrix norm, the largest singular
value) there exists a contrast matrix satisfying the condition

and such that , so
that in the outlined range of values of one has

, and the associated with error bound
(31) for regular/penalized recovery is

(35)

Proposition 6 justifies to some extent, our approach; it says that
if there exists a routine which recovers -sparse signals with a
priori known sparsity pattern within certain accuracy (measured
component-wise), then our recovering routines exhibit “close”
performance without any knowledge of the sparsity pattern, al-
beit in a smaller range of values of the sparsity parameter.

D. Condition : Limits of Performance

Recall that when recovering -sparse signals, the condition
helps only when . Unfortunately, with these ,

the condition is feasible in a severely restricted range of values
of . Specifically, from [15, Proposition 5.1] and Lemma 1 it
immediately follows that:

(*) If is not “nearly square,” that is, if
, then the condition with

can not be satisfied when is “large”, namely, when
.

Note that from the discussion at the end of Section IV-A we
know that the “ limit of performance” of the condition

stated in (*) is “nearly sharp:”—when ,
the condition associated with a typical randomly gen-
erated sensing matrix is feasible and can be satisfies
with a contrast matrix with quite moderate .

(*) says that unless is nearly square, the condition
can validate sparse recovery only in a severely restricted
range of values of the sparsity parameter. This
is in sharp contrast with unverifiable sufficient conditions for
“goodness” of recovery, like RIP: it is well known that
when grow, realizations of “typical” random
matrices, like those mentioned at the end of Section IV-A,
with overwhelming probability possess with as
large as . As a result, “unverifiable” sufficient
conditions, like RIP, can justify the validity of recovery
routines in a much wider (and in fact—the widest possible)
range of values of the sparsity parameter than the “fully
computationally tractable” condition . This being
said, note that this comparison is not completely fair. Indeed,
aside of its tractability, the condition with
ensures the error bounds (31) in the entire range of
values of , which perhaps is not the case with conditions like
RIP. Specifically, consider the “no nuisance” case ,
and let satisfy for certain . It is well known
(see, e.g., the next section) that in this case the Dantzig Selector
recovery ensures for every and every -sparse signal
that

with probability . However, we are not aware of similar
bounds (under whatever conditions) for “large” and .
For comparison: in the case in question, for “small” , namely,

, we have (by Propo-
sition 5), whence for regular and penalized recoveries with
appropriately chosen contrast matrix (which can be built effi-
ciently!) one has for all -sparse

with probability (see (31)). We wonder whether a similar
(perhaps, with extra logarithmic factors) bound can be obtained
for large (e.g., ) for a whatever recovery routine
and a whatever essentially nonsquare (say, )
sensing matrix with columns of Euclidean length .

V. EXTENSIONS

We are about to demonstrate that the pivot element of the
preceding sections—the condition —is the strongest
(and seemingly the only verifiable one) in a natural parametric
series of conditions on a contrast matrix ; every one of these
conditions validates the regular and the penalized recoveries
associated with in certain restricted range of values of in
the error bounds (31).
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A. Conditions

Let us fix an sensing matrix . Given a positive integer
, a and a real , let us say that an

contrast matrix satisfies condition , if

(36)

where and , as always, is the vector obtained
from by zeroing all but the largest in magnitude entries.
Observe that:

• what used to be denoted before, is exactly what
is called now;

• if satisfies satisfies for all
(since for -sparse vector we have

).
Less immediate observations are as follows:

• Let be an matrix and let be a positive
integer. We say that is -good if for all -sparse
the -recovery

is exact in the case of noiseless observation . It
turns out that feasibility of with is inti-
mately related to -goodness of

Lemma 4: is -good if and only if there exist and
satisfying .

• The Restricted Isometry Property implies feasibility of
with small

Lemma 5: Let satisfy with . Then the
matrix satisfies the condition with

.

B. Regular and Penalized Recoveries With Contrast
Matrices Satisfying

Our immediate goal is to obtain the following extension of
the main results of Section II, specifically, Propositions 2, 4:

Proposition 7: Assume we are given an sensing matrix
, an integer , a contrast

matrix , and such that
satisfies the condition . Denote , where
the norm is defined in (5), and . Let
also noise intensity , uncertainty set and tolerance
be given.

(i) Consider the regular recovery (8) with the contrast matrix
and the parameters satisfying the relations

and let . Then

(37)

(ii) Consider the penalized recovery (19) with the contrast
matrix and . Then

(38)

C. Error Bounds for Lasso and Dantzig Selector Under
Condition

We are about to demonstrate that the feasibility of condition
with implies some consequences for the perfor-

mance of Lasso and Dantzig Selector when recovering -sparse
signals in norms, . This might look strange
at the first glance, since neither Lasso nor Dantzig Selector use
contrast matrices. The surprise, however, is eliminated by the
following observation:

(!) Let satisfy and let be the maximum of
the Euclidean norms of columns in . Then

(39)

The fact that a condition like (39) with plays a cru-
cial role in the performance analysis of Lasso and Dantzig Se-
lector is neither surprising nor too novel. For example, the stan-
dard error bounds for the latter algorithms under the RIP as-
sumption are in fact based on the validity of (39) with

for (see Lemma 5). Another example is given
by the Restricted Eigenvalue [2] and the Compatibility condi-
tions [3], [19]. Specifically, the Restricted Eigenvalue condition

( is positive integer, states that

whence whenever ,
so that

(40)

Further, the Compatibility condition of [19] is nothing but (40)
with . We see that both Restricted Eigenvalue and Com-
patibility conditions imply (39) with and
certain .

We are about to present a simple result on the performance
of Lasso and Dantzig Selector algorithms in the case when
satisfies the condition (39). The result is as follows:

Proposition 8: Let matrix satisfy
(39) with and some , and let .

Let also the “environment parameters” be
given, and let there be no nuisance: .

(i) Consider the Dantzig Selector recovery

where

(41)
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Then

(42)

(ii) Consider the Lasso recovery

and let satisfy the relation

where is given by (41). Then

(43)

In particular, with

(44)

one has

(45)

a) Discussion: Let us compare the error bounds given by
Propositions 7, 8. Assume that there is no nuisance
and is such that the condition is satisfied by certain
matrix , the maximum of Euclidean norms of the columns of

being . Assuming that the penalized recovery uses ,
and the regular recovery uses ), the
associated risk bounds as given by Proposition 7 become

(46)

Note that these bounds admit a transparent interpretation: in the
range an -sparse signal is recovered as if we were
identifying correctly its support and estimating the entries with
the uniform error .

Now, as we have already explained, the existence of a matrix
satisfying with columns in being of Euclidean

lengths implies validity of (39) with . Assuming
that in Dantzig Selector one uses , and that in Lasso is
chosen according to (44), the error bounds for Dantzig Selector
and Lasso as given by Proposition 8 become

(47)

Observe that (look what happens with (39) when
is the -th basic orth). We see that the bounds (47) are worse

than the bounds (46), primarily due to the presence of the factor
in the first bracketed term in (47). At this point it is unclear

whether this drawback is an artifact caused by poor analysis

of the Dantzig Selector and Lasso algorithms or it indeed
“reflects reality.” Some related numerical results presented in
Section VI-A suggest that the latter option could be the actual
one.

Moreover, consider an example of the recovery problem with
a 2 2 matrix with unit columns and singular values 1 and
. It can be easily seen that if is aligned with the second right

singular vector of (corresponding to the singular value ), the
error of the Dantzig Selector may be as large as , while
the error of “ -conscious” recovery will be up to the
logarithmic factor in (indeed, choosing results in

). This toy example suggests that the extra factor in
the bound (47), at least for Dantzig Selector, is not only due to
our clumsy analysis.

This being said, it should be stressed that the comparison of
regularized/penalised recoveries with Dantzig Selector and
Lasso based solely on above the error bounds is somehow biased
against Dantzig Selector and Lasso. Indeed, in order for reg-
ular/penalized recoveries to enjoy their “good” error bounds,
we should specify the required contrast matrix, which is not the
case for Lasso and Dantzig Selector: the bounds (47) require
only existence of such a matrix5. Besides this, there is at least
one case where error bounds for Dantzig Selector are as good as
(46), specifically, the case when possesses, say, .
Indeed, in this case, by Lemma 5, the matrix
satisfies , meaning that Dantzig Selector with properly
chosen is nothing but the regular recovery with contrast ma-
trix and as such obeys the bounds (46) with .

It is time to point out that the above discussion is somehow
scholastic: when and is nontrivial, we do not know
how to verify efficiently the fact that the condition is
satisfied by a given , not speaking about efficient synthesis
of satisfying this condition. One should not think that these
tractability issues concern only our algorithms which need a
good contrast matrix. In fact, all conditions which allow to val-
idate Dantzig Selector and Lasso beyond the scope of the “fully
tractable” condition are, to the best of our knowledge,
unverifiable—they cannot be checked efficiently, and thus we
never can be sure that Lasso and Dantzig Selector (or any other
known computationally efficient technique for sparse recovery)
indeed work well for a given sensing matrix. As we have seen
in Section III, the situation improves dramatically when passing
from unverifiable conditions , to the efficiently
verifiable condition , although in a severely restricted
range of values of .

VI. NUMERICAL EXAMPLES

We present here a small simulation study.

A. Regular/Penalized Recovery versus Lasso: No-Nuisance
Case

To illustrate the discussion in Section V-C, we compare nu-
merical performance of Lasso and penalized recovery in the ob-
servation model (1) without nuisance:

5And even less than that, since feasibility of � ��� is just a sufficient con-
dition for the validity of (39), the condition which indeed underlies Proposition
8.
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TABLE I
LASSO VERSUS PENALIZED � RECOVERY. CHOICE OF

: —“IDEAL” CHOICE; —THEORETICAL CHOICE

where is known. The sensing matrix is specified by
selecting at random rows of the 128 128 Hadamard
matrix6, and “suppressing” the first of the selected rows by mul-
tiplying it by 1.e-3. The resulting 120 128 sensing matrix has
orthogonal rows; 119 of its 120 singular values are equal to ,
and the remaining singular value is .

We have processed as explained in Section III (a reader is
referred to this section for the description of entities involved).7

We started with computing , which turned out to be 0.0287,
meaning that the level of -goodness of is at least 17. In
our experiment, we aimed at recovering signals with at most

nonzero entries and with no nuisance .
The synthesis of the corresponding “optimal” contrast matrix

as outlined in Section III results in
. Note that we are in the case of

, and in this case the optimal is independent of the
values of and .

We compare the penalized -recovery with the contrast ma-
trix and with the Lasso recovery on randomly gener-
ated signals with ten nonzero entries. We consider two choices
of the penalty in Lasso: the “theoretically optimal” choice
(44) and the “ideal” choice, where we scanned the “fine grid”

of values of and selected the value
for which the Lasso recovery was at the smallest -distance
from the true signal. The confidence parameter in (44) was set
to 0.01.

The results of a typical experiment are presented in Table I.
We see that as compared to the penalized recovery, the ac-
curacy of Lasso with the theoretically optimal choice of the
penalty is nearly 10 times worse. With the “ideal” (unrealistic!)
choice of penalty, Lasso is never better than the penalized re-
covery, and for the smallest value of is nearly four times worse
than the latter routine.

6The �-th Hadamard matrix� is given by the recurrence� � �� � �
�� �� �� ��� �. It is a � �� matrix with orthogonal rows and all entries
equal to ��.

7It is worth to mention that when � is comprised of (perhaps, scaled) rows of
an Hadamard matrix (and in fact, of scaled rows of any other Fourier transform
matrix associated with a finite Abelian group) the synthesis described in Sec-
tion III simplifies dramatically due to the fact that all problems �� � turn out to
be equivalent to each other, and their optimal solutions are obtained from each
other by simple linear transformations. As a result, we can work with a single
problem �� � instead of working with � of them.

B. The Nuisance Case

In the second experiment we study the behavior of recovery
procedures in the situation when an “input nuisance” is present:

where is an unknown sparse signal, with known
is known and is standard normal

; in terms of (3), and . We compare
the performance of the regular and penalized recoveries to that
of the Lasso and Dantzig Selector algorithms. To handle the
nuisance, the latter methods were modified as follows: instead
of the standard Lasso estimator we use the estimator

where the penalization coefficient is chosen according to [2,
Theorem 4.1]; in turn, the Dantzig Selector is substituted by

(48)

with , where are the columns of
and is given (in what follows ).

We present below the simulation results for two setups with
:

1) Gaussian setup: a 161 256 sensing matrix with
independent entries is generated, then its columns
are normalized. The nuisance set is as
follows:

where is a known parameter; in other words, we observe
the sum of a sparse signal and “smooth background.”

2) Convolution setup: a 240 256 sensing matrix is
constructed as follows: consider a signal “living” on
and supported on the 16 16 grid

. We subject such a signal to discrete time
convolution with a kernel supported on the set

, and then restrict the result on the
16 15 grid . This
way we obtain a linear mapping

. The nuisance set is composed of
zero-mean signals on which satisfy

where is the discrete (periodic) homogeneous Laplace
operator:

with .
In the simulations, we acted as follows: given the sensing ma-
trix , the nuisance set and the values of and ,
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Fig. 1. Mean recovery error as a function of the nuisance magnitude �. Gaussian setup parameters: � � ���� � � �� � � ���� ��� � ��.

Fig. 2. Mean recovery error as a function of the noise StD �. Gaussian setup parameters: � � ����� � � �� � � ���� ��� � ��.

we compute the contrast matrix by choosing a “reasonable”
value of and specifying as the matrix satisfying

and such that , see Section III. Then
samples of random signal , random nuisance , and

random perturbation were generated, and the corresponding
observations were processed by every one of the algorithms we
are comparing8. The plots below present the average, over these

experiments, and recovery errors. All recovery
procedures were using Mosek optimization software [1].

We start with Gaussian setup in which the signal has
non-vanishing components, randomly drawn, with
. For the penalized and the regular recovery algorithms the

contrast matrix was computed using . On Fig. 1,

8Randomness of the sparse signal � is important. Using the techniques of
[14], one can verify that in the convolution setup there are signals with only
three non-vanishing components which cannot be recovered by � minimization
even in the noiseless case � � ���� � � �. In other words, the �-goodness
characteristic of the corresponding matrix 	 is equal to 2.

we plot the average recovery error as a function of the value
of the parameter of the nuisance set , for fixed ,
and on Fig. 2—as a function of for fixed . In the
next experiment, we fix the “environmental parameters”
and vary the number of nonzero entries in the signal (of
norm ). On Fig. 3, we present the recovery error as a
function of .

We run the same simulations in the convolution setup. The
contrast matrix for the penalized and the regular recoveries
is computed using . On Fig. 4, we plot the average
recovery error as a function of the “size” of the nuisance set

for fixed , on Fig. 5—as a function of for fixed
, and on Fig. 6—as a function of .

We observe quite different behavior of the recovery proce-
dures in our two setups. In the Gaussian setup the nuisance
signal does not mask the true signal , and the perfor-
mance of the Lasso and Dantzig Selector is quite good in this
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Fig. 3. Mean recovery error as a function of the number � of nonzero entries in the signal. Gaussian setup parameters: � � ����� � � ���� �� � ���� ��� � ��.

Fig. 4. Mean recovery error as a function of the nuisance magnitude �. Convolution setup parameters: � � ���� � � �� �� � ���� ��� � ��.

Fig. 5. Mean recovery error as a function of the noise StD �. Convolution setup parameters: � � ����� � � �� �� � ���� ��� � ��.
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Fig. 6. Mean recovery error as a function of the number � of nonzero entries in the signal. Convolution setup parameters: � � ����� � � ���� �� � ����

��� � ��.

Fig. 7. Typical signal/worst Lasso nuisance. Gaussian setup with parameters: � � ����� � � ���� � � �� ��� � ��� �� � ���.

case. The situation changes dramatically in the convolution
setup, where the performance of the Lasso and Dantzig Selector
degrades rapidly when the parameter of the nuisance set in-
creases.9 The conclusion suggested by the outlined numerical
results is that the penalized recovery, while sometimes losing
slightly to Lasso, in some of the experiments outperforms
significantly all other algorithms we are comparing.

VII. NON-EUCLIDEAN MATCHING PURSUIT ALGORITHM

The Matching Pursuit algorithm for sparse recovery is moti-
vated by the desire to provide a reduced complexity alternative
to the algorithms using -minimization. Several implementa-
tions of Matching Pursuit has been proposed in the Compressive
Sensing literature (see, e.g., [11], [10], [12]). They are based
on successive Euclidean projections of the signal and the cor-
responding performance results rely upon the bounds on mu-

9The error plot for these estimators on Fig. 4 flatters for higher values of �
simply because they always underestimate the signal, and the error of recovery
is always less than the corresponding norm of the signal.

tual incoherence parameter of the sensing matrix. We are
about to show how the construction of Section III can be used
to design a specific version of the Matching Pursuit algorithm
which we refer to as Non-Euclidean Matching Pursuit (NEMP)
algorithm. The NEMP algorithm can be an interesting option
if the -recovery is to be used repeatedly on the observations
obtained with the same sensing matrix ; the numerical com-
plexity of the pursuit algorithm for a given matrix may only
be a fraction of that of the recovery, especially when used on
high-dimensional data.

Suppose that we have in our disposal such that the
condition is feasible; invoking Lemma 3, in this
case we can find efficiently a contrast matrix
such that

(49)

where, as always, with

given by (5).
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Fig. 8. Typical signal/recovery in Convolution setup. Parameters: � � ������ � � ���� � � �� ��� � ��� �� � ���.

Consider a signal such that , where,
as usual, is the vector obtained from by replacing all but
the largest in magnitude entries in with zeros, and let be
an observation as in (3).

Suppose that , and let be given. Consider the
following iterative procedure:

Algorithm 1:
1) Initialization: Set

2) Step : Given and ,
compute

a) and vector with the
entries

(here ).
b) Set and

(50)

and loop to step .
3) The approximate solution found after iterations is .

Proposition 9: Assume that and an is given.
Then there exists a set , of
“good” realizations of such that whenever , for every

satisfying and every , the
approximate solution and the value after the -th step
of Algorithm 1 satisfy

Note that if then also and Proposition 9
holds true. Furthermore, by (50) the sequence converges ex-
ponentially fast to the limit

Along with the second inequality of this implies the
bounds:

and, since for
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The bottom line here is as follows:
Corollary 2: Let be such that the condition

is feasible, so that we can find efficiently a con-
trast matrix satisfying (49). With Algorithm 1 associated with

and some , one ensures that for every , the
approximate solution found after iterations satisfies

[cf. (31)].
To put this result in proper perspective, note that the mutual
incoherence based condition

underlying typical convergence results for the Matching Pursuit
algorithms as applied to recovery of -sparse signals (see, e.g.,
[11], [10], [12]) definitely is sufficient for convergence of the
NEMP algorithm with , see Section IV-A. It fol-
lows that the scope of NEMP is at least as wide as that of “the-
oretically valid” Matching Pursuit algorithms known from the
literature; in the situation in question Corollary 2 recovers some
results from [10]–[12].

APPENDIX A
PROOFS FOR SECTION II

A. Proof of Lemma 1

The first claim is evident. Now let satisfy
, and let . Then for every

and every with we have

or, which is the same

By von Neumann lemma, this is the same as

and the outer clearly is achieved, meaning that there exists
, such that with one has

so that for every with one has
; applying the latter inequality to in the role of , we get

whenever , whence, of course,
for all . We conclude that the matrix

satisfies . It remains to note

that by construction the columns of are convex combinations
of the columns of and , and that building reduces to
solving matrix games and thus can be carried out efficiently.

B. Proof of Proposition 1

Let

so that . Let us fix , a set
satisfying (10), a signal

and a realization of the nuisance, and let be the value
of the estimate (8) at the observation . We
are about to verify that satisfies (11), which, of course, will
complete the proof.

Observe that because of , we have

Now, by (9), whence for all ,
and thus is a feasible solution to the optimization problem in
(8) and thus . Setting , we now have

, whence
. It follows that

(51)

Further, .
Since is feasible for the optimization problem in (8), we have

, and we have already seen that
, hence

(52)

for all . Applying (6), we now get

where the concluding is given by (51). Taking into account
that , we get

Invoking (51) once again, we finally get

and we arrive at (11. ).
To prove (11. ), we apply (6) to , thus getting

As we have already seen, , and the first “ ”
in (11. ) follows; the second “ ” in (11. ) is then readily given
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by (11. ). Now (ii) and (iii) are immediate consequences of (11)
and the fact that .

C. Proof of Lemma 2

In what follows, we use the notation from Proposition 1. For
, denoting by the support of , we have

Assuming , for (which happens with probability
), (14) implies that for all it holds

which combines with the standard bound

to imply (15). When , we clearly have

and (16) follows due to .

D. Proof of Proposition 2

The proof is obtained by minor modifications from the one of
Proposition 1. Same as in the latter proof, let

, where are the columns of ,
so that . Let us fix ,
let . Finally,
let be the support of .

Due to , we have

whence, by (9), is a feasible solution to the optimization
problem in (8) and thus . The latter, exactly as in
the proof of Proposition (1), implies the validity of (51):

(53)

Besides this, the same reasoning as in the proof of Proposition
1 results in (52), whence

(54)

Applying (7) to , we get

which combines with (53) to imply that

(55)

which is nothing but the first relation in (17). Applying to (7)
once again, we get

which combines with (55) to imply the second relation in (17).
Relation (17) combines with the Moment inequality to imply
(18).

E. Proof of Proposition 3

a) (i): Given , let, same as in the proof of Proposition
1, so that

. Let us fix and a signal
, and let us prove that for these data (23) takes place; this

clearly will prove (i). Let us set
. Let also be the support of .

Observe that by the origin of , we have

(56)

Combining the resulting inequality with (56), we get

(57)

where the concluding is due to combined with (22).
Further,

which combines with (57) to imply that

or, which is the same

(58)

By (6), we have

(59)

whence and therefore

Multiplying the latter inequality by and summing up with (58),
we get
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In view of condition (21), the coefficients in the left hand side
are positive, and (23. ) follows.

To prove (23. ), note that from (57) it follows that

which combines with (59) to imply that

Recalling that and invoking (23. ), (23. ) follows.
b) (ii)–(iii): (24) is an immediate consequence of (23) due

to . Assuming that and and taking
into account that , we obtain from (24) that uniformly
on and

Using, as in the proof of Lemma 2, the standard bound

we come to (25).

F. Proof of Proposition 4

The proof is obtained by minor modifications from the one of
Proposition 1. Same as in the latter proof, let

so that .
Let us fix and a signal . Let us set

. Let
also be the support of .

Observe that by the origin of and due to we have

(60)

and

Combining the resulting inequality with (60), we get

(61)

Here, the concluding is due to combined with the
definition of . Further

which combines with (??) to imply that

or, which is the same

(62)

By (7), we have

(63)

whence and therefore

Multiplying the latter inequality by 2 and summing up with (62),
we get

and the first relation in (26). The second relation in (26)
is readily given by the first one combined with (7). We
have proved that (26) holds true whenever ; since

, (27) follows.

APPENDIX B
PROOFS FOR SECTIONS III, IV

A. Proof of Lemma 3

(i) (iii): If satisfies , then for every we have

where the first and the second inequalities are given by
and , respectively.

(iii) (ii): Assume that (iii) takes place; then, by homogeneity,
for every with , or, which is the

same, the optimal value in the conic problem

is . The problem clearly is strictly feasible and bounded,
so that by Conic Duality Theorem the dual problem is solvable
with the same optimal value. Now, the dual problem reads

and the fact that it is solvable with the optimal value
means that there exist such that
and , whence is a feasible solution to with
the value of the objective .
(ii) (i): If is feasible, it clearly is solvable; thus, in the
case of (ii) there exists with and

. From the latter inequality, it follows that
for every , so that for all . We

see that satisfies , and thus (i) takes place. This reasoning
shows also that whenever is feasible with optimal value

, it is solvable, and its optimal solution satisfies .

B. Proof of Proposition 5

Let , so that what we
need to prove is that there exists a matrix satisfying
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and such that . Invoking Lemma 3, all we need to this
end is to show that

(64)

Now, we clearly have

for all , whence for all . Therefore, all we
need in order to justify (64) is to prove that

(65)

Let . Setting , let vectors
be obtained from by the procedure as follows: is obtained
by zeroing all but the largest in magnitude entries of is
obtained by the same procedure from is obtained by
the same procedure from , and so on, until the step

where we get . We clearly have
, whence also

, since the vectors are -sparse. Setting
and , we have

where the last is given by the following well-known fact: [8]:

(!) If is and are supported on a common
set of indices of cardinality and are orthogonal, then

.

It follows that

Hence

where the second inequality is due to the fact that
by RIP. Thus

where the concluding inequality is due to and
. Recalling that , (65) follows.

C. Proof of Proposition 6

Proof: We start with analysis of . Let
, and let be a subset of of cardi-

nality . Let be the linear space of all vectors from
supported on , and let .

Assume that we are given a noisy observation
of a signal , and that we want to recover
from this observation the linear form of the signal. From

it follows that there exists a recovering routine such
that for every and the probability of recovering
error to be is . Assuming and applying the
celebrated result of Donoho [9], there exists a linear estimate

such that for every and the probability
for the error of this estimate to be is . Moreover
(cf. Proposition 4.2 of [13]), one can pick such that for all

where is the matrix obtained from by zeroing columns
with indexes not belonging to . Let and

, where is the -th basic orth (so
that ). Specifying as the vector from such that

, and as the vector from such that
(the required clearly exist) and applying to

the pair , and to the pair ,
we get

Hence, denoting by the value of the inverse error func-
tion at , we obtain

It follows that as remains bounded and
. Thus, there exists a sequence ,

of values of such that goes to a limit as , and
this limit satisfies the relations

Taking into account that when
, we arrive at the following result:

Lemma 6: Under assumption , for every and
every -element subset of there exists
such that for all (here

are the columns of ), and

(66)

We claim that in this case for all , it holds that

(67)

Taking this claim for granted, and invoking Lemma 3, we im-
mediately arrive at the desired conclusion. Indeed, given sat-
isfying (34), we have , so that (67) implies that
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whence, by Lemma 3, there exists satisfying the condition
and such that , which is exactly what

Proposition 6 states.
It remains to prove (67). Let us fix , and let be set

of indices of the largest in magnitude entries in . Denoting
by the complement of in , we have

, whence

(68)

Let be the index of the largest in magnitude entry of .
By Lemma 6 there exists satisfying (66) and such that

for . We have

(69)

where the concluding is given by (66). Now

with the concluding given by (68). The resulting inequality,
in view of (69) and the bound given by (66)

implies (67).

APPENDIX C
PROOFS FOR SECTION V

A. Proof of Lemma 4

Recall (cf., e.g., [14, Theorem 2.1]) that a necessary and suf-
ficient condition for an matrix to be -good is the
nullspace property as follows: there exists such that

(70)

Assume that this condition is satisfied, and let be a
vector with nonzero coordinates, equal to . (70) says that
the optimal value in the Linear Programming problem

is at most ; passing to the dual problem, we conclude that there
exist and such that and ,
whence for every it holds

Since the set of the outlined vectors is finite, the quantity
is finite, and

meaning that the condition holds true for
. Vice versa, the existence of and

satisfying clearly implies the validity of (70) with the
same and this implies the -goodness of .

B. Proof of Lemma 5

Let satisfy with ; we want to prove that
then the matrix satisfies the condition . Indeed,
let . Let vectors be obtained from
as follows: is obtained by zeroing all but the largest in
magnitude entries of and keeping the latter entries intact, then

is obtained by applying the same procedure to , and so
on. We stop at step where we get . Observe
that , whence also
(since is -sparse). We now have

implying that

(in the above chain, step is valid due to
(since is ) and the statement (!), see

the proof of Proposition 5). The concluding inequality in the
chain says that satisfies .

C. Proof of Proposition 7

We present here the proof of (i), which is a straightforward
modification of the proof of Proposition 2. The proof of (ii) can
be obtained by equally straightforward modification of the proof
of Proposition 4.

Thus, suppose we are under the premise of (i), and let be de-
fined exactly as in the proof of Proposition 1, so that

and for all
and all . Let us fix and , let

be the set of indices of the largest in magnitude entries in ,
and let , and .

Since and , we have for
all , whence is a feasible solution to the optimization problem
defining , whence, exactly as in the proof of Proposition 1

Now, satisfies the condition and thus satisfies the
condition . Applying the latter condition, we get
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Invoking (71), we conclude that

(71)

thus

(72)

Next, satisfies , whence
. Therefore, we get from (71)

(73)

All we need in order to extract (i) from (71) and (73) is to verify
that

The desired inequality holds true when [see (71)], thus,
invoking the Hölder inequality, all we need is to verify that

(74)

When , (74) is implied by (73), so let us assume that
. Let be the -st largest of the magnitudes of

entries in . By (73), we have , and .
Hence, setting , we get

where the concluding inequality is given by (71). Thus,
, while by (73). We see that

, as required in (74).

D. Proof of Proposition 8

a) (i): Let , so
that . Let us fix and , and
let . We have

, so that is a feasible solution to the
optimization problem specifying and therefore

. Denoting by the support of , setting and
acting exactly as when deriving (51), we arrive at

(75)

Further

and therefore

(76)

On the other hand, by (39) we have

Substituting the above bound into (75), we get

whence by elementary calculations

(77)

Invoking (39) and (76), we have

(78)

where the last inequality of the chain is due to . Assuming
for a moment that and denoting by the -st
largest magnitude of entries in , we conclude from the latter
inequality that . Hence, when setting

, we obtain (cf. the verification of (74))
. Invoking (78) one more time we get

The resulting inequality combines with (77) and the Hölder in-
equality to imply that for

(79)

Note that the derivation of (79) was carried out under the ad-
ditional assumption that . This assumption can now
be removed: when , (79) is readily given by (77). When

satisfies (39) for and thus—for every value
of from , meaning that (79) holds true for every ,
whence (79) holds true for as well.

Recalling that relation (79) is valid whenever and
and plugging in the values of and , we arrive at (42). (i)

is proved.
b) (ii): Same as above, let

, so that . Let
us fix , and let be the support of . Let also

. We have
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or, which is the same due to

It follows that

where the last is readily given by the fact that
for . We conclude that

and therefore

(80)

Now, we have

where the concluding inequality is given by (39). Combining
the resulting inequality with (80), we get

Combining this inequality with (80), we get the first inequality
in the following chain:

and since , we arrive at

(81)

Since , the first inequality in (81) is possible only
if

whence

(82)

Invoking (39), we get , which
combines with (82) and (81) to imply that

(83)

Denoting by the -st largest of the magnitudes of entries
in , we conclude from (83) that , whence, denoting

(we have used (81)), which combines with (83) to imply that

(84)

Combining (84), (81) and the Hölder inequality, we get

(85)

Plugging in the value of [see (81)] and recalling that (85) takes
place whenever with , we arrive at
(43).

APPENDIX D
PROOF OF PROPOSITION 9

The proof below follows the lines of the proof of Proposi-
tion 7 of [15]. Given , let

so that .
Let us fix such that , and .
For , by the definition (5) of the norm
and because of , we have

.
We intend to prove the relations by induction in

. First, let us show that implies . Thus,
assume that holds true. Let .
By is supported on the support of . Note that

Then by (49) for any

consequently

(86)

so that the segment of the width
, covers , and the closest to zero point

of this interval is

that is, for all . Since the segment covers
and is the closest to 0 point in , while the width of is at
most , we clearly have

(87)

Since is valid, (87.a) implies that
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and holds. Further, let be the support of . Relation
clearly implies that , and we can write due to (87.b)

Since by (87.b)

we conclude that holds true. The induction step is justified.
It remains to show that holds true. Since is evi-

dent, all we need is to justify . Let

and let . Same as above (cf. (86)), we have for all

Then

Hence

which implies .
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