
Advances in Convex Optimization: Conic

Programming

Arkadi Nemirovski∗

Abstract. During the last two decades, major developments in Convex Optimization
were focusing on Conic Programming, primarily, on Linear, Conic Quadratic and Semidef-
inite optimization. Conic Programming allows to reveal rich structure which usually is
possessed by a convex program and to exploit this structure in order to process the pro-
gram efficiently. In the paper, we overview the major components of the resulting theory
(conic duality and primal-dual interior point polynomial time algorithms), outline the
extremely rich “expressive abilities” of Conic Quadratic and Semidefinite Programming
and discuss a number of instructive applications.

Mathematics Subject Classification (2000). Primary 90C22,90C25,90C51,90C90;

Secondary 49N15.

Keywords. Convex, conic and semidefinite programming, duality, polynomial time al-

gorithms.

1. Conic Programming – motivation

1.1. Efficiency issues in Mathematical Programming. Mathe-
matical Programming is about solving optimization programs of the form

Opt = min
x∈Rn

{f0(x) : fi(x) ≤ 0, i = 1, ...,m} , (1)

where the objective f0(·) and the constraints fi(·) are given functions on Rn,
usually assumed to be smooth (at least C1). The corresponding body of knowl-
edge, in its mathematical aspects (that is, aside of modelling and implementation
issues), focuses on characterization of optimal solutions (necessary/sufficient op-
timality conditions), their sensitivity to program’s data and on developing and
theoretical investigation of computational algorithms aimed at building approxi-
mate solutions. It should be stressed that the ultimate goal is to find a solution
rather than to prove its existence, uniqueness, etc. As a matter of fact, the situa-
tions where a “closed analytic form solution” is available are rare exceptions, this
is why the focus is on algorithms capable to approximate optimal solutions within
(any) desired accuracy. Moreover, what matters is not just the convergence of

∗ISYE, Georgia Institute of Technology, and Technion – Israel Institute of Technology.



2 Arkadi Nemirovski

an algorithm, but its efficiency – a “reasonable” dependence of the computational
effort on the required accuracy. The emphasis on the algorithmic and efficiency
aspects is what makes the major difference between Mathematical Programming
(MP) and its “pure” counterparts, like Calculus of Variations, and gives the MP
theory its specific flavour.

Mathematical Programming arose in early 1950’s as a natural extension of
Linear Programming (LP). The latter, invented around 1947 by George Dantzig,
focuses on optimization programs with linear objective and constraints. Significant
post-war demand on techniques for modelling and processing logistic and planning
problems, nice duality theory allowing, among other things, for far-reaching inter-
pretations in Economics, excellent practical performance of the famous LP Simplex
algorithm (Dantzig 1947), availability of new computational devices – computers
– all these factors were crucial for emerging and rapid development of theory and
algorithms for LP and MP. Eventually, in these developments the problem of theo-
retically efficient solvability of various classes of MP programs was addressed. This
problem was posed first for Linear Programming, and the corresponding story is
an excellent example of the “specific flavour” of MP we have mentioned. At the
first glance, the problem of finding a solution to a system of m linear inequali-
ties with n real unknowns (this is what LP is about) seems completely trivial –
invoking the standard characterization of extreme points of polyhedral sets, it re-
duces to solving at most

(
m
n

)
systems of linear equations. The difficulty is that

the number of systems blows up exponentially with the sizes m, n of the system,
which makes this naive approach completely impractical already with m,n like few
tens. Dantzig’s Simplex algorithm inspects the systems in a “smart” order, which
in practice allows to arrive at a solution pretty fast; however, in the worst case,
exponentially many systems should be inspected, so that the Simplex method is
not theoretically efficient. Developing theoretically efficient algorithms for LP is an
extremely challenging and deep problem, and it took over 20 years to find the first
such algorithm (Khachiyan, 1978). Note that all known efficient LP algorithms do
something completely different from inspecting the above systems of linear equa-
tions.

Informally, the question we are interested in is: given a class of MP programs,
does it admit an efficient solution algorithm, and the first issue here is what does
efficiency mean. In Combinatorial Complexity Theory (CCT), there are good rea-
sons to qualify a ‘fully finite” algorithm (e.g., Turing Machine) converting finite
binary words – data of instances of a discrete problem – into solutions to the in-
stances as efficient, if the conversion time is polynomial in the bit length of the
input (see, e.g., [21]). For problems with continuous data and decision variables,
similar reasons lead to the concept of a Real Arithmetic polynomial time algo-
rithm as follows ([8]; cf. [12]). Consider a generic MP problem P – a family of
instances of the form (1), with instance p specified within P by its data vector
Data(p) ∈ RN(p).

E.g., LP can be naturally considered as a generic problem, with the data vector Data(p)

of an LP program p defined as follows: the first 2 entries are the numbers m = m(p) of

constraints and n = n(p) of variables, and the remaining (m(p) + 1)(n(p) + 1)− 1 entries



Advances in Convex Optimization: Conic Programming 3

are the vectors of coefficients of the objective and constraints stacked atop each other

into a single column.

A solution algorithm B for P is a code for an idealized Real Arithmetic computer
capable to store real numbers and to perform exact Real Arithmetic operations
(a.o.) – four arithmetic operations, comparisons and computations of univariate
elementary functions, like

√·, exp{·}, etc. Loaded with this code and an input
comprised of Data(p), p ∈ P, and ε > 0, the computer should terminate in a fi-
nite number N(p, ε) of operations and output either an ε-solution to p – a vector
xε ∈ Rn(p) such that f

(p)
i (xε) ≤ ε, i = 1, ...,m(p), and

f
(p)
0 (xε) ≤ ε + Opt(p), Opt(p) = inf

x
{f (p)

0 (x) : f
(p)
i (x) ≤ 0, i = 1, ..., m(p)}

(here n(p) is number of variables in p, f
(p)
0 , ..., f

(p)
m(p) are the objective and the

constraints of p), or a correct claim that p is infeasible (i.e., Opt(p) = +∞), or
a correct claim that p is unbounded (i.e., Opt(p) = −∞). A solution method
B is polynomial time (“computationally efficient”), if N(p, ε) is bounded by a
polynomial in the size Size(p) = dimData(p) of the instance and the number of
accuracy digits in an ε-solution defined as

Digits(p, ε) = log
(
[Size(p) + ‖Data(p)‖1 + ε2]/ε

)
= (1 + o(1)) log(1/ε), ε → 0.

Finally, generic problem P is called polynomially solvable (“computationally tra-
ctable”), if it admits a polynomial time solution algorithm.

The standard informal interpretation of polynomiality is that with solution time fixed,

a 10-fold progress in computer’s performance allows for both (a) a constant factor progress

in the sizes of instances which can be solved to a given accuracy, and (b) a constant factor

progress in the number of accuracy digits to which an instance of a given size can be

solved. (a), (b) compare favourably polynomial time algorithms with methods suffering

from “curse of dimensionality” (N(p, ε) can grow with Size(p) as exp{Size(p)}), same as

with sublinearly converging methods (N (p, ε) can grow as 1/εc, c > 0, when ε → 0).

1.2. Convex programming – solvable case of MP. At early 1980’s
it became clear that what forms the “efficiently solvable case” in MP, is Convex
Programming – programs (1) with convex objective and constraints. Specifically,
it was proved that generic convex problems, under mild computability and bound-
edness assumptions, are polynomially solvable. In contrast to this, no efficient al-
gorithms for typical generic non-convex problems are known, and there are strong
reasons to believe that no such algorithms exist (e.g., programs with quadratic
objective and constraints are not polynomially solvable unless P=NP).

Here is a basic example of a “convex programming solvability statement” (cf. [8,
Theorem 5.3.1]):

Theorem 1.1. A generic MP problem P with convex instances is polynomially solvable,
provided it possesses the following properties:

(i) [polynomial computability] There exists an algorithm O which, given on input
Data(p), a point x ∈ Rn(p) and a tolerance δ > 0, computes in polynomial in Size(p) and
Digits(p, δ) number of a.o. δ-accurate approximations to the values and subgradients of



4 Arkadi Nemirovski

the objective and the constraints of p at x;
(ii) [polynomial growth] max

0≤i≤m(p)
|f (p)

i (x)| ≤ (χ[Size(p) + ‖Data(p)‖1 + ‖x‖1])χ Sizeχ(p)

for all x (here and below χ is an instance-independent constant);
(iii) [polynomial boundedness of feasible sets] If x is feasible for an instance p, then

‖x‖1 ≤ (χ[Size(p) + ‖Data(p)‖1])χ Sizeχ(p).

Note that in fact (i) can be weakened to the possibility to compute in polynomial in

Size(p) and Digits(p, ε) time δ-approximations solely to the values of the objective and

the constraints at x.

Polynomial time solvability results like the one stated by Theorem 1.1 are
based upon existence of linearly converging black box oriented methods for solving
general-type convex programs, i.e., methods which work solely with local informa-
tion on the program – the values and the subgradients of f0, f1, ...fm at successively
generated search points, with no direct access to program’s data. Historically, the
first method of this type was the Ellipsoid algorithm proposed independently in
[43] and [65] (for detailed study of the algorithm and its theoretical consequences,
see [26]), and the corresponding result is as follows.

Theorem 1.2. Let (1) be a convex program with n variables, and let the feasible
set X = {x : fi(x) ≤ 0, i ≥ 1} be contained in the ball B = {x : ‖x‖2 ≤ R} and
contain a ball of radius r > 0, with R, r known. Assume that we have an access to

• a first order oracle O capable to compute the value f0(x) and a subgradient
f ′0(x) at every given point x ∈ B;

• a separation oracle S which, given on input a point x ∈ B, reports whether
x ∈ X, and if it is not the case, returns a linear form which separates x and X.

In this environment, certain explicit algorithm (the Ellipsoid method) finds, for
every accuracy ε > 0, a feasible ε-solution to (1) at the cost of no more than

N(ε) ≤ Ceil
(
2n2 [log(R/r) + ln (1 + VarB(f0)/ε)]

)
+1, VarB(f0) = max

B
f0−min

B
f0

subsequent calls to O and S plus O(1)n2 a.o. per call to process oracle’s answer.

In spite of their crucial role in demonstrating polynomial solvability of Convex
Programming, black-box-oriented techniques like the Ellipsoid method are too slow
to be of actual practical interest; indeed, for all known methods of this type, the
computational effort per accuracy digit grows with the design dimension n at least
as O(n4), which, in reality, makes it problematic to process already medium-scale
(few hundreds of variables) convex programs. This contrast between theoretical
properties and practical performance is especially sharp in LP: on the theoreti-
cal side, the Ellipsoid method allowed to resolve affirmatively the long-standing
problem of whether LP with rational data admits a CCT-polynomial time solution
algorithm (Khachiyan [34], 1979), while practical performance of the method in LP
is incomparably worse than the one of the “theoretically bad” (with exponential in
the size of an LP program worst-case complexity) Simplex method. Comparing ex-
tremely powerful in practice Simplex method with its black-box-oriented rivals, it
is easy to guess from where the weakness of the rivals comes: the Simplex method
fully utilizes the rich structure of an LP program and works directly on program’s



Advances in Convex Optimization: Conic Programming 5

data, which is not the case with “nearly blind” black-box-oriented algorithms.
Note, however, that while in reality a convex program usually has a lot of struc-
ture (otherwise, how could we know that the program is convex?), the standard
way to think about nonlinear convex programs, suggested by representation (1),
made it extremely difficult to reveal and to utilize this structure. In retrospect,
tremendous developments in Convex Programming during what is called “Interior
Point Revolution” (started in 1984 when Karmarkar [33] invented his famous prac-
tically efficient polynomial time algorithm for LP) were mainly focused on finding
and utilizing novel “structure revealing” representations of convex programs, most
notably, in the form of conic programs.

Remark 1.3. A “classically oriented” mathematician might be surprised by the
attention we pay to representation issues. Indeed, finally an optimization problem
is to minimize a function over a set; why should we bother about representations
of these, completely transparent by themselves, entities? The answer is, that an
algorithm cannot work with abstract entities, it can work only with their repre-
sentations, and different representations of the same entities may be of completely
different “algorithmic value”.

1.3. Conic programs. When passing from a Linear Programming program

min
x

{
cT x : Ax− b ≥ 0

}
(2)

to its nonlinear extensions, the most natural way is the one used in MP – to
replace the linear objective cT x and left hand sides [Ax−b]i in the constraints with
nonlinear ones, thus arriving at (1). As far as Convex Programming is concerned,
there is an equivalent, less trivial and, as it turns out, much more convenient way
to introduce nonlinearity, namely, replacing the standard coordinate-wise vector
inequality

a ≥ b ⇔ a− b ≥ 0 ⇔ a− b ∈ Rm
+ = {y ∈ Rm : yi ≥ 0, i = 1, ...,m}

with another “good” vector inequality given by a subset K ⊂ Rn according to

a ≥K b ⇔ a− b ≥K 0 ⇔ a− b ∈ K.

The evident necessary and sufficient condition for the resulting binary relation
to be a partial order compatible with linear operations on Rm is for K ⊂ Rm

to be a nonempty convex pointed (K ∩ (−K) = {0}) cone. From the analytical
perspective, it makes sense also to require from K to be closed with a nonempty
interior. Given a regular (convex, pointed, closed and with a nonempty interior)
cone K, we define a conic program on K as the optimization program

min
x

{
cT x : Ax− b ≥K 0︸ ︷︷ ︸

⇔Ax−b∈K

}
(CP)

Preliminary observations about this representation are that (a) in (CP), it is easy
to distinguish between the “structure” (given by the cone K) and the data (c, A, b),



6 Arkadi Nemirovski

and (b) independently of values of the data, (CP) is a problem of optimizing a lin-
ear objective over a convex set, and thus is a convex problem (thus, the convexity
in (CP) is “built in”, while in (1) it should be “added from outside”). At the same
time, it is easily seen that every convex program can be represented in the form
of (CP). By themselves, (a), (b) do not say much in favour of conic representation
of a convex program as compared to its MP form – a general-type convex cone is
not a “better structured” entity than a general-type convex function. The crucial
advantage of conic representation is that it possesses outstanding “unifying abili-
ties” – as a matter of fact, just 3 families of cones allow to represent an extremely
wide spectrum of convex programs. These 3 families are

LP: nonnegative orthants Rm
+ giving rise to LP programs (2),

CQP: finite direct products of Lorentz cones Lk+1 = {(y, t) ∈ Rk+1 = Rk×R :
t ≥ ‖y‖2}; the MP form (1) of the resulting conic quadratic programs is

min
x

{
cT x : ‖Aix− bi‖2 ≤ cT

i x− di, i = 1, ..., m
}

, (3)

where Ai, bi, ci, di are matrices and vectors of appropriate dimensions. A constraint
‖Ax− b‖2 ≤ cT x− d is called a CQI (Conic Quadratic Inequality);

SDP: direct products of semidefinite cones Sm
+ . Sm

+ is the cone of positive
semidefinite (psd) matrices in the Euclidean space Sm of real symmetric m ×
m matrices equipped with the Frobenius inner product 〈A,B〉 = Tr(AB). The
resulting semidefinite programs (sdp’s) are of the form

min
x

{
cT x : Aix−Bi ≡ x1A

i
1 + ... + xnAi

n −Bi º 0, i = 1, ..., m
}

, (4)

where Ai
j , B

i ∈ Ski and A º B means that A−B is psd. A constraint
∑

i xiAi −
B º 0 is called LMI (Linear Matrix Inequality).

It is immediately seen that LP ⊂ CQP ⊂ SDP; indeed, a linear inequality
is a particular case of CQI, which, in turn, is a particular case of LMI due to

(y, t) ∈ Lk+1 iff
[

t yT

y tIk

]
º 0.

In the sequel, we intend to overview the main elements of the theory of Conic
Programming, specifically, (1) duality, (2) interior point polynomial time algo-
rithms, and (3) “expressive abilities” and applications.

2. Conic Duality

Duality in Optimization stems from the desire to find a systematic way to bound
from below the optimal value of a minimization problem; it turns out that a good
answer to this question is crucial for building optimality conditions, solution algo-
rithms, etc. As applied to MP, the standard Lagrangian duality associates with (1)
the Lagrange function L(x, λ) = f0(x)+

∑m
i=1 λifi(x) and observes that whenever

λ ≥ 0, one has L∗(λ) = infx L(x, λ) ≤ Opt; thus, we get a family L∗(λ), λ ≥ 0,
of (computable under favourable circumstances) lower bounds on Opt and can
now associate with (1) the dual problem maxλ≥0 L∗(λ) of finding the best lower



Advances in Convex Optimization: Conic Programming 7

bound available from the outlined mechanism. When (1) is convex and satisfies
mild additional assumptions1), the dual problem is solvable with the optimal value
Opt (“strong duality”). In the case of (CP), essentially the same Lagrange recipe
results in the dual problem of the form

max
λ

{
bT λ : AT λ = c, λ ≥K∗ 0

}
, (D)

where K∗ = {λ : λT ξ ≥ 0∀ξ ∈ K} is the cone dual to K (and thus regular along
with K). (D) again is a conic problem, and in fact the duality is fully symmetric.
Indeed, assuming the columns of A to be linearly independent (which in fact does
not restrict generality), we can pass in (CP) from original variables x to primal
slack ξ = Ax− b, ending up with equivalent primal reformulation

min
ξ

{
dT ξ : ξ ∈ [L − b] ∩K

} [L = ImA, d : AT d = c
]

(Pr)

of (CP) as a problem of minimizing a linear objective over the intersection of a
cone and an affine plane. Observe that the linear constraints in (D) read AT λ =
c = AT d, or, equivalently, λ ∈ Ker AT + d = L⊥ + d. Thus, (D) is the problem

max
λ

{
bT λ : λ ∈ [L⊥ + c] ∩K∗

}
(Dl)

of the geometry completely similar to the one of (Pr). Moreover, (L⊥)⊥ = L and
(K∗)∗ = K, so that the problem dual to (Dl) is exactly (Pr) – the duality indeed
is symmetric. The “notational difference” between (CP) and (D) comes from the
fact that in (CP) we represent a geometric entity (affine subspace L − b) as the
image of an affine embedding, while in (D) a similar entity is represented as the
solution set of a system of linear equations. The relations between the primal and
the dual problem are summarized in the following theorem (see, e.g., [45, 1, 46]):

Theorem 2.1. Assuming A in (CP) is of full column rank, the following is true:
(i) The duality is symmetric: (D) is a conic problem, and the conic dual to (D)

is (equivalent to) (CP);
(ii) [weak duality] Opt(D) ≤ Opt(CP);
(iii) [strong duality] If one of the programs (CP), (D) is bounded and strictly

feasible (i.e., the corresponding affine plane intersects the interior of the associated
cone), then the other is solvable and Opt(CP) = Opt(D). If both (CP), (D) are
strictly feasible, then both programs are solvable and Opt(CP) = Opt(D);

(iv) [optimality conditions] Assume that both (CP), (D) are strictly feasible.
Then a pair (x, λ) of feasible solutions to the problem is comprised of optimal
solutions iff cT x = bT λ (“zero duality gap”), same as iff λT [Ax − b] = 0 (“com-
plementary slackness”).

It is highly instructive to compare Lagrange duality with its “particular case”
– conic duality. The general Lagrange duality is “asymmetric” (in general, L∗(·)

1)The standard assumptions are the existence of a feasible solution where all nonlinear con-
straints are satisfied as strict inequalities and below boundedness of the objective on the feasible
set.



8 Arkadi Nemirovski

“does not remember” the underlying program (1)) and usually results in implicitly
given dual problem. In contrast to this, Conic duality is “fully algorithmic” –
building a dual problem is a simple purely mechanical process – and completely
symmetric. As it turns out, these advantages make Conic duality an extremely
useful tool in processing, analytical as well as computational, of conic programs.

Finally, conic duality looks completely similar to the standard LP duality, with
the only exception that in the LP case strong duality is ensured by mere feasibility
and not a strict one. For “good” cones, like those associated with CQP and SDP,
there exist more advanced (still “fully algorithmic”, although non-symmetric) ver-
sion of duality [59] which is free of this shortcoming – whenever the primal optimal
value is finite, the dual is solvable with the same optimal value.

While Conic Programming and Conic duality as “well-established” research
subjects arose in early 1990’s, initially due to the desire to extend Karmarkar’s
polynomial time LP algorithm to the non-polyhedral case, there are wonderful
earlier examples of using what is now called Semidefinite duality (by Lovasz [40]
in connection with his famous θ-function, by A. Shapiro [64] in connection with
certain statistical problems, and perhaps more...)
In hindsight, Conic Duality Theorem can be traced to at least as early as 1958, namely,

to written by L. Hurwicz chapter 4 of [5] (see [5], Corollary IV.3). Unfortunately, this pa-

per, aimed at infinite-dimensional extensions of the optimality conditions in the “usual”

(finite-dimensional) Convex Programming, overlooks the symmetric conic duality itself –

the latter is, essentially, a finite-dimensional phenomenon. To the best of our knowledge,

the remarkable paper in question made no “observable” impact on the development of

Mathematical Programming and now is nearly completely forgotten.

3. Interior point polynomial time methods in Conic
Programming

Conic programs are convex, and thus the issue of their polynomial time solvability
can be resolved via the general results presented in Section 1.2; modulo minor
technicalities, in order to ensure polynomial time solvability of a generic conic
problem, it suffices for the associated cones to be “computationally tractable”
(to admit polynomial time membership/separation oracles), and for the instances
– to include upper bounds on the norms of candidate solutions. For example,
LP/CQP/SDP problems with bounds ‖x‖∞ ≡ maxi |xi| ≤ R on variables 2), are
polynomially solvable. The point, however, is that conic programs associated with
“good” cones admit much faster polynomial time algorithms than those coming
from black-box-oriented techniques like the Ellipsoid method. The first “really
fast” (and completely non-traditional) polynomial time algorithm for LP was dis-
covered by Karmarkar in 1984 [33]; the subsequent intensive research in the emerg-
ing area of interior point (IP) polynomial time algorithms for LP resulted, among

2)These bounds clearly do not affect the possibility to represent a problem as an
LP/CQP/SDP.



Advances in Convex Optimization: Conic Programming 9

other things, in developing much more transparent (and theoretically even more
efficient) than Karmarkar’s method polynomial time algorithms for LP (Renegar,
1986 [60]; Gonzaga [24]) and brought the area in a position where non-polyhedral
extensions became possible. These extensions, primarily due to Yu. Nesterov, led
to a general theory of polynomial time IP methods in Convex Programming [46].
We start with outlining the basic elements of the theory and then will overview
briefly the current state of this area.

3.1. Basics on IP methods. The starting point in all IP constructions is
a well-known interior penalty scheme for solving a convex program

min
x∈X

cT x (P)

where X ⊂ Rn, int X 6= ∅, is closed and convex. The scheme, going back to Fiacco
and McCormic [19], is to equip X with an interior penalty – a smooth and strictly
convex function F (x) : intX → R which blows up to ∞ along every sequence
xi ∈ intX converging to a boundary point of X – and to associate with (P) a
parametric optimization problem

x∗(t) = argminx∈int X Ft(x), Ft(x) = tcT x + F (x).

Under mild assumptions, the central path x∗(t) is well-defined for t > 0 and con-
verges to the optimal set of (P) as t → ∞. In the interior penalty scheme, one
“traces” this path by generating iterates (xi, ti) such that xi − x∗(ti) → 0 and
ti → ∞ as i → ∞. Specifically, given (xi, ti) with xi “close” to x∗(ti), one in-
creases somehow ti, thus getting ti+1, and then applies a whatever method of
unconstrained minimization to the function ti+1c

T x + F (x), starting the method
at xi, to get a “tight” approximation xi+1 to the minimizer x∗(ti+1) of this func-
tion. A standard “working horse” here is the Newton method, commonly believed
to be the fastest method for unconstrained minimization.

Self-concordance. The traditional theory of the Newton method (and all other
methods of unconstrained minimization, for this matter) did not suggest polyno-
miality of the outlined path-following scheme, vice versa, it predicted inevitable
slowing down of the path-tracing process. It turned out that there exist interior
penalty functions – self-concordant barriers – which do allow for polynomial time
path-tracing, and that the associated self-concordant-based theory of IP methods
[46] allows to explain all IP methods previously developed for LP and to extend
them onto non-polyhedral convex case. Specifically, an interior penalty function
F is called a ϑ-self-concordant barrier (ϑ-s.c.b.) for X, if F is C3 and convex on
intX and satisfies, for all x ∈ intX, h ∈ Rn, the differential inequalities

(a) |D3F (x)[h, h, h]| ≤ 2
(
D2F (x)[h, h]

)3/2 [self-concordance]
(b) |DF (x)[h]| ≤

√
ϑ

(
D2F (x)[h, h]

)1/2 [barrier quantification]
(5)

which can be interpreted as follows: the convex function F at a point defines a
“local” Euclidean norm ‖h‖x,F =

√
D2F (x)[h, h] on Rn; self-concordance (5.a)



10 Arkadi Nemirovski

means that the Hessian of F is Lipschitz continuous, with constant 2, w.r.t. to the
corresponding local metric, while (5.b) says that F itself is Lipschitz continuous,
with constant

√
ϑ, in this metric.

Self-concordance-based path-tracing. It turns out that self-concordant func-
tions – those satisfying (5.a) alone – are extremely well suited for Newton mini-
mization, which ensures nice properties of the “centering” xi 7→ xi+1 in the path-
tracing, while (5.b) is responsible for the possibility to increase penalty parameter
t at a constant rate, thus avoiding slowing down. The bottom line is as follows: as-
sume that X does not contain lines, the level sets {x ∈ X : cT x ≤ a} are bounded,
and that F is ϑ-s.c.b. Then x∗(t) is well-defined and ∇2F (x) Â 0 on intX, so that
the Newton decrement λ(x, t) =

√
∇FT

t (x)[∇2Ft(x)]−1∇Ft(x) of Ft at x ∈ intX
is well-defined; note that x∗(t) is characterized by λ(x, t) = 0. Let us say that x is
close to x∗(t), if λ(x, t) ≤ 0.1. Given a starting point (x0, t0) with t0 > 0 and x0

close to x∗(t0), consider the path-tracing scheme
[

ti
xi

]
7→

[
ti+1 = (1 + 0.1ϑ−1/2)ti
xi+1 = xi − 1

1+λ(xi,ti+1)
[∇2Fti+1(xi)]−1∇Fti+1(xi)

]
. (6)

Then the process is well-defined, ensures closeness of xi and x∗(ti) and the relation

cT xi −min
X

cT x ≤ 2ϑ/ti ≤ 2 exp{−0.05iϑ−1/2}ϑt−1
0 .

Thus, the path-tracing scheme (6) with a single Newton-like step per updating
the penalty converges linearly, and it takes O(

√
θ) iterations to get an extra accu-

racy digit. Of course, to run the outlined scheme, we should once come close to
the central path; this can be done by applying the same path-tracing technique
to an appropriate auxiliary problem. It follows that if we are smart enough to
equip the feasible domains of instances (written in the form of (P)) of a generic
convex problem P with self-concordant barriers computable, along with their first
and second order derivatives, in time polynomial in the size of an instance, and
the parameters ϑ of these barriers are bounded by a polynomial of instance’s size,
then the outlined path-tracing scheme provides a polynomial time algorithm for
P.

As about being “smart enough” to equip generic convex problems with “good”
s.c.b.’s, the situation is as follows. In principle, every closed convex set X ⊂ Rn,
intX 6= ∅, admits an O(1)n-s.c.b.; assuming w.l.o.g. that X does not con-
tain lines, this universal barrier is F (x) = O(1) ln mesn(Px), where Px = {y :
yT (z − x) ≤ 1∀z ∈ X} is the polar of X w.r.t. x [46]. In the case when X
is a cone, this construction results in the logarithm of the characteristic func-
tion F (x) =

∫
K∗

exp{−xT y}dy of the cone K∗ [27]. This existence theorem has
restricted algorithmic content, since the universal barrier rare is efficiently com-
putable. There exists, however, a simple “calculus” of s.c.b.’s [46] which shows
that basic convexity-preserving operations with sets, e.g., taking intersections, di-
rect products, affine images and inverse affine images (as well as taking inverse
images under specific nonlinear mappings, most notably a kind of Siegel domain
construction) can be equipped with simple rules which allow to combine s.c.b.’s for



Advances in Convex Optimization: Conic Programming 11

the operands into an s.c.b. for the resulting set. E.g., summing up ϑi-s.c.b.’s for
sets Xi, i = 1, ...,m, we get a (

∑
i ϑi)-s.c.b. for the intersection of the sets; superpo-

sition F (Ax+b) of a ϑ-s.c.b. F with affine mapping is ϑ-s.c.b. for the inverse image
of the domain of F under the mapping, etc. These and more advanced “calculus
rules” allow to build “from scratch” (from the only observation that the function
− ln t is 1-s.c.b. for R+) explicit efficiently computable s.c.b.’s with moderate val-
ues of the parameter for a wide variety of interesting convex sets. This family
includes the cones underlying LP, CQP, SDP, ‖ · ‖p-cones {(x, t) : ‖x‖p ≤ t},
feasible sets of Geometric Programming programs, intersections, direct products,
affine and inverse affine images of the above, and much more. The related empir-
ical observation is that all generic polynomially solvable convex problems arising
in applications admit “good” explicit s.c.b.’s, and that the outlined scheme is the
source of the best known so far complexity bounds and polynomial time algorithms
for these generic problems.

Aside of their role in constructing polynomial time algorithms, s.c.b.’s seem to be

pretty interesting entities by their own right – their properties are closely related to

the geometry of their domains. E.g., a closed convex domain X not containing lines is

bounded if and only if (any, and then all) s.c.b. F for X attains it minimum on int X,

let the (automatically unique) minimizer be x̄. When it is the case, the Dikin ellip-

soid Dx̄ = {x : ‖x − x̄‖x̄,F ≤ 1} of F gives an O(ϑ)-rounding of X: Dx̄ ⊂ X ⊂ {x :

‖x− x̄‖x̄,F ≤ ϑ + 2
√

ϑ} ([46, 32]; note that Dx̄ ⊂ X for all x̄ ∈ int X, not only when x̄ is

a minimizer of F [46]). This combines with elementary facts of barrier calculus to imply,

e.g., the following: if the intersection of m ellipsoids in Rn has a nonempty interior, it

is in-between two efficiently computable concentric similar ellipsoids with similarity ratio

not exceeding m + 2
√

m. We are not aware of a direct proof of this, useful in some

applications, geometric fact.

Path-tracing and Riemannian geometry. An s.c.b. F defines a Riemannian

structure on its domain Xo = {x : F (x) < ∞}, the metric tensor being ∇2F (x). Var-

ious short step interior point methods associated with F can be described as follows:

in order to solve (P), the method generates a sequence of points xi ∈ Xo such that

(a) the Riemannian distance from xi to xi+1 does not exceed an absolute constant, say,

0.2, and (b) the shift xi+1 − xi is defined solely in the “local” terms – in terms of the

objective c and the quantities F (xj),∇F (xj),∇2F (xj), 0 ≤ j ≤ i (cf. (6)). The com-

plexity of such a method is quantified by the number of steps required to reach the set

Xo
ε = {x ∈ Xo : cT x − infx′∈Xo cT x′ ≤ ε} of ε-solutions to (P). Clearly, the complexity

of a short step method is below bounded by the Riemannian distance from x0 to Xo
ε .

Ideally, we would like to have the complexity within an absolute constant factor of this

“ultimate” lower bound; it, however, is unclear how to build such a method – how to

describe the shortest path from x0 to Xo
ε in local terms? (cf. climbing a mountain in a

fog and without map). It can be proved [55] that the short step path-following method

(6) is not that far from being ideal: its performance is within the factor O(1)ϑ1/4 of the

lower bound, provided that Xo is bounded and x0 is close to argmin F .

3.2. Interior point methods in Conic Programming. Barriers es-
pecially well-suited for conic problems are ϑ-logarithmically homogeneous s.c.b.’s,



12 Arkadi Nemirovski

that is, C3 convex functions F : int K → R, K being a regular cone, satisfying (5.a)
and the identity F (tx) = F (x)−ϑ ln t, t > 0. This implies that F is a ϑ-s.c.b. for K
and that the conjugate barrier F∗(y) = maxx

[−yT x− F (x)
]

is a ϑ-logarithmically
homogeneous s.c.b. for K∗; the mappings x 7→ −∇F (x), y 7→ −∇F∗(y) turn
out to be inverse to each other one-to-one correspondences between intK and
intK∗. Given a pair of strictly feasible primal-dual conic problems (Pr), (Dl)
and a pair of conjugate to each other ϑ-logarithmically homogeneous s.c.b.’s F ,
F∗ for the cones K, K∗, one can develop primal-dual interior point methods si-
multaneously solving (Pr), (Dl). The most popular primal-dual path-following
scheme is as follows. When both (Pr) and (Dl) are strictly feasible, the corre-
sponding primal and dual central paths ξ∗(t) = argmin

[
tdT ξ + F (ξ) : ξ ∈ L − b

]
and λ∗(t) = argmin

[−tbT λ + F∗(λ)
]

are well-defined and linked to each other:
λ∗(t) = −t−1∇F (ξ∗(t)), ξ∗(t) = −t−1∇F∗(λ∗(t)), and one can apply Newton-
based path-tracing to the primal-dual central path (ξ∗(t), λ∗(t)), thus solving (Pr)
and (Dl) simultaneously. It turns out that processing both problem together has
a lot of advantages, allowing, e.g., for

• on-line adjustable “long step” policies [47] which are less conservative than
the worst-case-oriented policy (6) and thus exhibit much better practical perfor-
mance, while still ensuring the theoretical complexity bounds,

• an elegant way (“self-dual embedding”, see, e.g., [72, 77, 4, 42, 35, 58]) to
initialize the path-tracing even in the case when no feasible solutions to (Pr) and
(Dl) are available in advance,

• building certificates of strict (i.e., preserved by small perturbations of the
data) primal or dual infeasibility [51] when it is the case, etc.

It should be added that the primal-dual central path (ξ∗(·), λ∗(·)) is “nearly geodesic”

w.r.t. the Riemannian structure on the primal-dual feasible set given by the metric tensor

∇2(F (ξ) + F∗(λ)): the Riemannian length of every segment of the path is within factor√
2 of the Riemannian distance between the endpoints of the segment [54].

3.3. The case of symmetric cones: LP/CQP/SDP. Interior point
constructions achieve maximal flexibility for cones with a lot of symmetries, most
notably for symmetric cones – those which are homogeneous (i.e., the group of lin-
ear authomorphisms of the cone acts transitively on its interior) and self-dual w.r.t.
an appropriate Euclidean structure on the embedding space. Classification theory
due to Vinberg [71] says that all symmetric cones are direct products of irreducible
ones, specifically, Lorentz cones, real semidefinite cones (in particular, nonnegative
rays), the cones of Hermitian psd complex matrices, the cones of Hermitian psd
quaternion matrices, and, finally, copies of exceptional 27-dimensional octonian
cone. The latter 3 cones are cross-sections of the semidefinite cone of “the same”
(within factor 4) real dimension and therefore do not add much, as far as the as-
sociated families of conic problems are concerned; therefore we lose nearly nothing
when focusing on the cones which are direct products of Lorentz and semidefinite
cones, thus arriving at problems of minimizing linear objective under a mixture of
conic quadratic and LMI constraints (the latter include also linear constraints
which are merely 1-dimensional LMI’s). Now, we can equip a direct product



Advances in Convex Optimization: Conic Programming 13

K = K1 × ...×Km of Lorentz and semidefinite cones with the canonical logarith-
mically homogeneous s.c.b. F (x1, ..., xm) =

∑
i Fi(xi), the barriers for the Lorentz

factors Ki = {xi = (ui, si) : si ≥ ‖ui‖2} being Fi(xi) = − ln(s2
i − uT

i ui) (ϑ = 2)
and the barriers for the semidefinite factors Ki = Smi

+ being Fi(xi) = − ln det xi

(ϑ = mi). The parameter of the resulting barrier is the sum of those of the
components, i.e., it is twice the number of Lorentz factors plus the total row
size of the semidefinite ones. The canonical barrier F respects the symmetries
x 7→ Ax of the underlying cone (F (Ax) = F (x) + const(A)) and its self-duality
(F∗(x) = F (x) + const) and possesses a number of advanced properties which can
be utilized in the interior point algorithms, e.g., in developing long-step policies.
Discovery of these properties and the ways to utilize them in the IP context by
Nesterov and Todd [48, 49] was one of the most important breakthroughs in de-
veloping of IP theory and algorithms.

It should be noted that the theory of IP methods on symmetric cones is one of
few (alas!) “avenues of contact” of Convex Optimization and modern Mathematics,
specifically, the theory of Euclidean Jordan algebras; the latter turned out to be a
natural way to treat the IP methods on symmetric cones, see [62, 63, 17, 18, 29]
and references therein. Another such avenue is the theory of hyperbolic polyno-
mials originating from PDEs. Recall that a real homogeneous, of a degree m,
polynomial p(·) on Rn is called hyperbolic in a direction d, p(d) > 0, if the uni-
variate polynomial φ(t) = p(x + td) has all its roots real whenever x ∈ Rn. It is
well known that the component of d in the set p(·) > 0 is the interior of a closed
convex cone K – the hyperbolicity cone of p. As discovered in [28], − ln det p(x)
is an m-logarithmically homogeneous s.c.b. for K with a number of useful proper-
ties mimicking those of canonical barriers (the latter are built from logs of specific
hyperbolic polynomials det(x) : Sm → R and x2

k+1 −
∑k

i=1 x2
i : Rk+1 → R). For

further links between convex optimization and hyperbolic polynomials, see [6, 31]
and references therein.

We conclude this section with complexity bounds for generic LP/CQP/SDP
problems with bounds on variables. For all these problems, the complexity of
building ε-solution, measured both in the number of IP iterations and in the
total number of a.o., is proportional to the required number of accuracy digits
Digits(·, ε), so that we can speak about “number of iterations/a.o. per accuracy
digit”; these are the complexity characteristics to be indicated below.

LP: for an LP program minx∈Rn

{
cT x : Ax ≥ b ∈ Rm, ‖x‖∞ ≤ R

}
, the size is

O(mn), and the complexity is O(1)
√

m + n IP iterations and O(1)(m + n)3/2n2

a.o. per accuracy digit. With smart implementation of subsequent Newton steps
(“Karmarkar acceleration”), the # of a.o. per accuracy digit can be reduced to
O(1)[(m + n)n2 + m1.5n] (see [60]); thus, to find an ε-solution to an LP with
m ≤ O(n2) is, up to factor ln(1/ε), not more difficult than to find the least squares
solution to a system of m + n linear equations with n unknowns;

CQP: for a CQP minx∈Rn

{
cT x : ‖Aix− bi‖2 ≤ cT

i x− di, i ≤ m, ‖x‖2 ≤ R
}

with ki × n matrices Ai, the size is O(n
∑

i ki), and the complexity is O(1)
√

m
IP iterations and O(1)m1/2n

(
mn + n2 +

∑
i ki

)
a.o. per accuracy digit (provided

the matrices AT
i Ai are computed in advance).



14 Arkadi Nemirovski

SDP: for an sdp minx∈Rn

{
cT x :

∑
j xjA

i
j −Bi º 0, i ≤ m, ‖x‖2 ≤ R

}
with

ki × ki matrices Ai
j , the size is O(n

∑
i k2

i ), and the complexity is O(1)
√∑

i ki

IP iterations and O(1)
√∑

i kin(n2 + n
∑

i ki +
∑

i k3
i ) a.o. per accuracy digit.

Empirical behaviour of well-implemented IP methods is better than the one pre-

dicted by the worst-case theoretical analysis. Theoretically, iteration count in LP and

SDP should be O(
√

m), where m is the number of linear constraints in LP and is the

total row size of LMIs in SDP. In reality, no essential growth of the iteration count with

m is observed, and a high accuracy solutions are found in something like 30-50 iterations.

What limits the practical scope of IP methods is the complexity of a single iteration where

a Newton-type system of n linear equations with n unknowns is formed and solved, n

being the design dimension of the program. With n ∼ 104 and more, solving Newton

system in reasonable time is possible only when it is highly sparse; the latter is usually

the case with real-world LP’s, but typically is not the case with sdp’s.

4. Expressive abilities and applications of LP/CQP/
SDP

As we have already mentioned, the IP machinery is especially well suited for solving
conic problems on symmetric cones, which makes it natural to ask: when a convex
program can be reformulated as a conic program on such a cone, specifically, as an
LP/CQP/SDP program? Usually, the original formulation of a convex program is
in (or can be immediately converted to) the form

min
x∈X

cT x, X =
m⋂

i=1

Xi, (7)

where Xi are convex sets, most typically given as the level sets of convex functions:
Xi = {x : fi(x) ≤ 0}. What we need are tools to recognize that (7) can be
reformulated as, say, an sdp, and to build such a reformulation when possible, and
we start with an overview of the corresponding “toolkit”.

4.1. Calculus of LP/CQP/SDP-representable sets and func-
tions. Let K be a family of regular cones closed w.r.t. passing from a cone to
its dual and closed w.r.t. taking direct products; note that these properties are
shared by the families LP/CQP/SDP . Let us ask ourselves when program (7) can
be reformulated as a K-program – a conic program on a cone from K. A natural
(and somehow tautological) answer is: it suffices for X to be a K-representable set
(“K-s.” for short), meaning that there exists a K-representation (“K-r.”) of X:

X = {x ∈ Rn : ∃u ∈ Rm : A(x, u) ≥K 0}, (8)

where K ∈ K and A(·) is an affine mapping; in other words, X is the projection of
the inverse image of K under appropriate affine mapping. Indeed, given represen-
tation (8) of X, we can pose (7) as the K-program minx,u

{
cT x : A(x, u) ≥K 0

}
.



Advances in Convex Optimization: Conic Programming 15

It turns out that K-sets admit a kind of simple calculus comprised of “raw
materials” (list of “basic” K-s.’s) and “calculus rules” (list of operations preserving
K-representability). This calculus is the “toolkit” we are looking for: whenever we
see that the set X in question is obtained from “raw materials” via calculus rules,
we can be sure that X is a K-s. (and in fact, as we shall see, can point out an
explicit K-r. of X, thus converting (7) to an explicit K-program).

Since a convex set often arise as a level set of a convex function, it makes sense
to define a K-representable function (“K-f.” for short) f : Rn → R ∪ {+∞} as a
function with K-representable epigraph Epi{f}. An immediate observation is that
a K-r. of Epi{f} induces K-r.’s of all level sets of f . Indeed,(

f(x) ≤ t ⇔ ∃u : A(x, t, u) ≥K 0
) ⇒ (

f(x) ≤ a ⇔ B(x, u) ≡ A(x, a, u) ≥K 0
)
.

4.1.1. “Calculus rules”. It turns out (see, e.g., [8]) that all basic convexity-
preserving operations with functions/sets preserve K-representability. E.g.,

• A polyhedral set is K-s.
• Finite intersections, arithmetic sums and direct products of K-s.’s are K-s.’s.

While the above statement looks as an existence theorem, it in fact is “fully algorithmic”:

given K-r.’s for the operands Xi, we can efficiently build a K-r. for the resulting set. E.g.,

if Xi = {x : ∃ui : Ai(x, ui) ≥Ki 0}, i = 1, ..., m, then
⋂m

i=1 Xi = {x : ∃u = (u1, ..., um) :

A(x, u) ≡ (A1(x, u1), ..., Am(x, um)) ≥K1×...×Km 0}, and the cone K = K1 × ...×Km is

in K, since this family is closed w.r.t. taking direct products. It should be stressed that

all calculus rules to follow are equally simple and algorithmic.

• The image and the inverse image of a K-s. under an affine mapping is a K-s.
• The polar cone X∗ = {(y, t) : yT x ≤ t∀x ∈ X} of a K-s. X given by strictly

feasible K-r. is a K-s. In other words, the support function of X (its epigraph is
exactly X∗) is K-f., and thus the polar of X 3 0 (which is the 1-level set of the
support function) is K-s.
As an instructive example, let us build a K-r. of X∗. If X = {x : ∃u : Ax+Bu+ c ≥K 0}
is a strictly feasible K-r. for X, then X∗ = {(y, t) : supx,u

{
yT x : Ax + Bu + c ≥K 0

} ≤
t} = {(y, t) : minv

{
cT v : AT v = −y, BT v = 0, v ≥K∗ 0

} ≤ t} = {(y, t) : ∃v : AT v =

−y, BT v = 0, v ≥K∗ , c
T v ≤ t}, with the second ”=” in the chain given by conic duality.

We see that X∗ is the projection onto the (y, t)-space of the set Y = {(y, t, v) : AT v =

−y, BT v = 0, v ≥K∗ , c
T v ≤ t}. Y is a K-s. Indeed, K∗ is K-s. since K is closed

w.r.t. passing to dual cones, and Y is the direct product of K∗ and a polyhedral set

(the space of (y, t)) intersected with another polyhedral set; all these operations preserve

K-representability. The same is true for projection, thus X∗ is K-s. along with Y .

• Two useful operations with sets – taking closed conic hull cl{(t, x) : t >
0, t−1x ∈ X} of X and taking the closed convex hull of the union of finitely many
convex sets Xi – “nearly preserve” K-representability, meaning that K-r.’s of the
operands readily provide a K-r. of a convex set Ŷ which is in-between the “true”
result Y of the operation and the closure of Y (in particular, we end up with K-r.
of exactly Y when Y is closed). As far as the possibility of conic reformulation of
a program miny∈Y cT y is concerned, a K-r. of a convex set Ŷ which is in-between
the true set Y and its closure is, essentially, as good as a K-r. of Y itself.

• Sometimes, getting a K-r. of a result of an operation requires mild regularity



16 Arkadi Nemirovski

assumptions on the K-r.’s of operands. E.g., let {x : ∃u : Ax + Bu + c ≥K 0}
be a K-r. of a convex set X such that Bu ∈ K implies that u = 0. Then the
closed conic hull of X and the recessive cone of X are K-s.’s with representations,
respectively, {x : ∃(u, t ≥ 0) : Ax + Bu + tc ≥K 0} and {x : ∃u : Ax + Bu ≥K 0}.
“Functional analogies” of the outlined calculus rules are as follows:

• The maximum, a linear combination with nonnegative coefficients, and a direct sum

of finitely many K-f.’s is again a K-f.

• If f(·) is a K-f., then so is g(y) = f(Ay + b).

• If f(ξ, η) is a K-f. and the infimum φ(ξ) = infη f(ξ, η) is achieved for every ξ for

which this infimum is < +∞, then φ is a K-f.

• The Legendre transformation (“the conjugate”) f∗(ξ) = supx[ξT x − f(x)] of a

function f with Epi{f} given by a strictly feasible K-r. is a K-f.

• Let fi, i = 1, ..., m, be K-f.’s on Rm and g be a nondecreasing, w.r.t. the usual

partial order ≤, K-f. on Rm. Then the superposition g(f1(x), ..., fm(x)) is again a K-f.

A good news expressed by the above facts is that with K-r.’s of the involved
entities in use, all basic constructions of Convex Analysis (including “advanced
ones”, like taking polar, support function, Legendre transformation, etc.) become
“explicitly representable” and thus much better suited for analytical/algorithmic
processing than in their original abstract form.

Equipped with “calculus” of K-representable sets and functions, we are in a
position to investigate the “expressive abilities” of LP/CQP/SDP. The situation
with LP seems to be clear: LP-s.’s are exactly the polyhedral sets, and LP-f.’s are
finite maxima of affine functions. To understand what can be expressed via CQP
and SDP, we need to know what are the corresponding “raw materials”. These are
the issues we are about to address in the next two sections.

4.2. Expressive abilities and applications of CQP. Basic CQP-
representable sets and functions include, along with trivial examples, like affine
function or the Euclidean norm f(x) = ‖x‖2, several less trivial examples, e.g.:

• Convex quadratic forms f(x) = xT AT Ax+bT x+c: {t ≥ f(x) ⇔ (2(Ax)T , t−
bT x− c + 1, t− bT x− c + 1)T ≥L 0};

• Univariate power functions (max[0, x])p, |x|p and p-norms ‖ · ‖p on Rn, pro-
vided p ≥ 1 is rational,

• Power monomials (−∏m
i=1 xpi

i ) with xi ≥ 0 and rational exponentials pi ≥ 0
such that

∑
i pi ≤ 1 (the latter is necessary and sufficient for the convexity of the

monomial), same as monomials
∏m

i=1 x−pi

i with xi > 0 and rational pi ≥ 0.
In view of calculus rules, already these “raw materials” allow for CQP reformula-
tions of a wide variety of convex programs, including (but by far not restricted to)
convex quadratic quadratically constrained programs.

Example: Truss topology design. A nontrivial example of a CQP-f. is given by

Compl(t) = min{τ :

[
τ fT

f AT Diag{t}A
]
º 0} of nonnegative vector variable t. This

function is associated with an important application of CQP – truss topology design,
see [73, Chapter 15] and references therein. In the TTD problem, one is looking for a
construction comprised of elastic bars (like railway bridge, electric mast, or Eiffel Tower)
most rigid w.r.t. a given set of (non-simultaneous) loading scenarios. The data are given



Advances in Convex Optimization: Conic Programming 17

by a finite 2D or 3D mesh of nodes, where the would-be bars can be linked to each other,
boundary conditions restricting virtual displacements of the nodes to given linear sub-
spaces in the embedding physical space, k loads – collections of external forces acting at
the nodes, and the total weight w of the construction. A design is specified by a collection
t ∈ Rn of weights of the bars, and its rigidity w.r.t. a load is measured by the compliance
– the energy capacitated by the construction in the static equilibrium under the load
(the less is the compliance, the better). With properly defined matrix A (readily given
by the nodal mesh and the boundary conditions) and vector f representing the load, the
compliance is exactly Compl(·), so that the TTD problem, in its simplest form, reads

min
t,τ

{
τ :

[
2τ fT

i

fi AT Diag{t}A
]
º 0, i = 1, ..., k, t ≥ 0,

∑
j

tj ≤ w
}
. (9)

The applied importance of this problem stems from the fact that it allows to optimize not
only the sizing, but also the topology of truss. To this end one starts with a fine nodal
mesh where all pairs of nodes can be linked by bars; in the optimal solution just few of
the bars get positive weights, and the solution recovers the (nearly) optimal topology.

As it arises, (9) is an sdp. However, passing to the SDP dual of (9) and more or
less straightforwardly processing it, one concludes that the dual is equivalent to a CQP
program, whence, again applying duality, one gets an equivalent CQP reformulation of
(9) and recovers a CQP-r. of the compliance:

τ ≥ Compl(t) ⇔ ∃(q, r) : AT q = f, r ≥ 0,
∑

i

ri ≤ 2τ, (2qi, ri − ti, ri + ti)
T ∈ L3 ∀i. (10)

This example is very instructive. After the CQP-r. (10) of compliance is guessed, its

validity can be easily proved directly. The power of Conic Programming machinery is

that there is no necessity to guess (and to the best of our knowledge, (10) never was

guessed, in spite of its a posteriori transparent mechanical interpretation) – it can be

computed in a purely mechanical way. Besides this, the CQP equivalent of the dual to

(9) – which again is given by a mechanical computation – is of incomparably smaller

design dimension than the original problem. Indeed, to capture the topology design, the

mesh cardinality N already in the 2D case should be of order of thousands; when all pair

connections are allowed, this results in the design dimension n of (9) of about N2/2, i.e.,

in the range of millions, which is too much for actual computations. In contrast, the

design dimension of the CQP reformulation of the dual to (9) is of order of kN ¿ N2,

and this is how the TTD problem is actually solved. This example, among many others,

shows that Conic Programming is not just a good framework for number crunching; it is

a good framework for instructive analytical processing of convex programs.

Example: Robust Linear Programming. In reality, the data c, A, b in an LP pro-

gram minx

{
cT x : Ax ≥ b

}
usually are uncertain – not known exactly when the program

is solved. It turns out that even pretty small from practical viewpoint perturbations of the

data, like 0.01%, can make the nominal optimal solution (one corresponding to the nom-

inal data) heavily infeasible and thus practically meaningless. One way to “immunize”

solutions against data uncertainty is to assume that the data (c, A, b) are “uncertain-

but-bounded”, i.e., belong to a given in advance uncertainty set U , and to require from

candidate solutions to be robust feasible, i.e., to satisfy the constraints whatever be a

realization of the data from U . Treating in the same worst-case-oriented fashion the ob-

jective, one associates with uncertain LP its Robust Counterpart (RC) – the problem



18 Arkadi Nemirovski

minx,t

{
t : cT x ≤ t, Ax− b ≥ 0 ∀(c, A, b) ∈ U}

of minimizing the worst-case value of the

objective over robust feasible solutions. While improving significantly “reliability” of re-

sulting decisions in the face of data uncertainty, the RC, as an optimization program,

has a drawback: when U is infinite (which is typical), the RC is a semi-infinite (that is,

with infinitely many linear constraints) program; programs of this type not necessarily

are computationally tractable. Fortunately, in this respect uncertain LP (in contrast to

uncertain CQP/SDP) is simple – the RC of an uncertain LP problem is computation-

ally tractable, provided that the (convex) uncertainty set is so. For example, if K is

a family of regular cones closed w.r.t. taking direct product and passing from a cone

to its dual, and U is given by a strictly feasible K-r., the RC can be straightforwardly

reformulated as an explicit K-program (an immediate corollary of K-representability of

the polar cone of a K-s., see Section 4.1). Now, typical uncertainty sets in uncertain LP

are CQP-representable, most notably – intersections of boxes (coming from upper and

lower bounds on uncertain coefficients) and ellipsoids (which allow to model reasonably

well random uncertainty). As a result, RC’s of uncertain LP programs are CQP’s.

For other applications of CQP, see [39, 2, 14].
The above suggests that “expressive abilities” of CQP are much stronger, and

applications are much wider than those of LP. Surprisingly, the “gap” here is
smaller than one could think – conic quadratic programs with bounds on vari-
ables are polynomially reducible to linear programs. The reduction is given by fast
polyhedral approximation of Lorentz cones [9]. Specifically, given m-dimensional
Lorentz cone Lm+1 = {(x, t) ∈ Rm × R : t ≥ ‖x‖2} and ε ∈ (0, 1/2), one can
point out an explicit system of O(m ln(1/ε)) linear inequalities Px + tp + Qu ≥ 0
in original variables x, t and O(m ln(1/ε)) additional variables u such that the pro-
jection Pm of the cone {(x, t, u) : Px+tp+Qu ≥ 0} onto the space of x, t-variables
satisfies Lm ⊂ Pm ⊂ {(x, t) : ‖x‖2 ≤ (1 + ε)t}. Exaggerating, we could say that
CQP does not exist as an independent entity. It is interesting whether the same
is true for SDP; to the best of our knowledge, this question is completely open.

4.3. Expressive abilities and applications of SDP.

4.3.1. Basic SDP-representable sets and functions. As it was already men-
tioned, the Lorentz cone is a cross-section of the semidefinite one, so that all
CQP-representable functions and sets are SDP-representable as well. In fact the
expressive abilities of SDP are much wider than those (already pretty rich) of CQP.
The essentially new functions/sets we can handle are as follows [8, Section 4.2]:

• Functions of eigenvalues of symmetric matrices. For X ∈ Sn, let λ(X) =
(λ1(X), ..., λn(X))T be the vector of eigenvalues of X taken with their multiplici-
ties in the non-ascending order. We start with observation (see, e.g., [46]) that the
sum of k largest eigenvalues of a symmetric matrix X is an SDP-f.:

t ≥ λ1(X) + ... + λk(X) ⇔ ∃(Z, s) : 0 ¹ Z,X ¹ Z + sI, t ≥ Tr(Z) + ks.

As a result, whenever f(·) : Rn → R ∪ {+∞} is a symmetric w.r.t. permutations
of arguments SDP-f., the function f(λ(X)) : Sn → R ∪ {+∞} is an SDP-f. with
SDP-r. readily given by an SDP-r. of f . In particular, the following functions



Advances in Convex Optimization: Conic Programming 19

on Sn admit explicit SDP-r.’s: (a)
∑k

i=1 λi(X); (b) ‖X‖ = maxi |λi(X)|; (c)
−detq(X), X º 0, q ≤ 1

n is rational; (d) det−q(X), X Â 0, q > 0 is rational; (e)

‖X‖p = (
∑m

i=1 |λi(X)|p)1/p, p ≥ 1 is rational; (f) (
∑m

i=1 maxp[λi(X), 0])1/p, p ≥ 1
is rational.

• Functions of singular values. Singular values σ1(X) ≥ σ2(X) ≥ ... ≥ σm(X)
of a rectangular m× n, m ≤ n, matrix X are closely related to the eigenvalues of

the linearly depending on X (n+m)×(n+m) symmetric matrix X̂ =
[

X
XT

]
:

eigenvalues of X̂ are ±σi(X), i = 1, ...,m, and n−m zeros. Therefore SDP-r.’s of
functions of eigenvalues of symmetric matrices admit “singular value counterparts”.
E.g., if f : Rm

+ → R ∪ {+∞} is a nondecreasing symmetric w.r.t. permutations of
arguments SDP-f., then the function f(σ(X)) : Rm×n → R ∪ {+∞} is an SDP-
f. with SDP-r. readily given by one of f . In particular, the following functions
on Rm×n admit explicit SDP-r.’s: (a)

∑k
i=1 σi(X); (b) ‖X‖ = maxi σi(X); (c)

‖X‖p = (
∑m

i=1 σp
i (X))1/p, p ≥ 1 is rational.

• Sets of the form {X ∈ Sn : λ(X) ∈ A}, where A is a symmetric w.r.t.
permutations of coordinates SDP-s. in Rn, and their “singular value” analogies
{X ∈ Rm×n : σ(X) ∈ A} with symmetric and monotone (0 ≤ x′ ≤ x ∈ A ⇒ x′ ∈
A) SDP-s. A.

• The set {(A, a, α) ∈ Sn×Rn×R : xT Ax+2aT +α ≥ 0∀(x : xT Bx+2bT x+β ≥
0)} of quadratic forms nonnegative on the level set of a given quadratic form which
is positive somewhere: ∃x̄; x̄T Bx̄ + 2bT x̄ + β > 0. By the famous S-Lemma, an

SDP-r. of the set in question is {(A, a, α) : ∃λ ≥ 0 :

[
α aT

a A

]
º λ

[
β bT

b B

]
}.

• Sets Pn(R) of (vectors of coefficients of) real algebraic polynomials of degree
≤ n which are nonnegative on the entire axis, same as sets of algebraic polynomials
of degree ≤ n nonnegative on a given segment or ray, and sets of trigonometric
polynomials of degree≤ n nonnegative on a given segment. The same is true for the
cones of psd on a given segment matrix-valued univariate algebraic/trigonometric
polynomials of degree ≤ n.

SDP-r. of Pn(R) is readily given by the following observation [53]: if φi(z), 1 ≤
i ≤ m are functions on a given set Z, L is the linear space in RZ spanned by the

functions φi(·)φj(·) and K ⊂ L is the cone of sums-of-squares (i.e., functions which are

sums of squares of linear combinations of φi), then K is an SDP-s., specifically, the

image of Sm
+ under the linear mapping [Xij ]

m
i,j=1 7→

∑
i,j Xijφi(z)φj(z) : Sm → L. This

simple observation underlies recent techniques for testing nonnegativity of a multivariate

polynomial on a given domain, see [22, 57, 38] and references therein.

• Some sets given by nonlinear matrix inequalities can be represented by LMI’s
as well. E.g., cl{X, Y, Z : Y Â 0, XT Y −1X ¹ Z} = {X, Y, Z :

[
Z XT

X Y

]
º 0}, and

cl{(X, Y ) : X Â 0, Y ¹ (CT X−1C)−1} = {(X, Y ) : ∃Z : Y ¹ Z, Z º 0, X ≥ CZCT }, provided
C is of full column rank.

A seemingly interesting question is to characterize SDP-representable sets. Clearly,

such a set is convex and semi-algebraic. Is the inverse also true? This question can be

relaxed, e.g., to whether an epigraph of convex multivariate polynomial is an SDP-s. (this



20 Arkadi Nemirovski

indeed is true in the univariate case), or: whether the hyperbolicity cone of a hyperbolic

polynomial is an SDP-s. (due to recently proved Lax conjecture [41], this indeed is true

for polynomials of 3 variables), etc. This question seems to be completely open.

4.3.2. Applications of SDP. Due to its tremendous expressive abilities and
powerful computational tools, SDP has an extremely wide spectrum of applica-
tions, including those in Combinatorics (SDP relaxations of difficult problems),
Engineering (Robust Control, design of mechanical structures, electrical circuits
and arrays of antennae, communications), Signal Processing, design of statistical
experiments, etc. Over the last decade, the spectrum of applications of SDP has
been constantly growing, and we believe this tendency is to continue in the foreseen
future. We are about to overview an instructive sample of SDP applications; for
more examples, see [13, 69, 16, 14, 73, Part III].

SDP relaxations of difficult combinatorial problems. The simplest way to
derive SDP relaxations of combinatorial problems goes back to N. Shor [66, 67]
and is as follows: consider a quadratic quadratically constrained program

Opt = min
x
{f0(x) : fi(x) ≤ 0, i = 1, ..., m} , fi(x) = xT Aix+2bT

i x+ci, i ≥ 0; (11)

note that quadratic constraints can easily express combinatorial restrictions (like
x2

i − xi = 0 ⇔ xi ∈ {0, 1}), and let us try to bound the optimal value from
below (this is important, e.g., for various branch-and-bound algorithms). To this
end, setting x+ = (1, xT )T , observe that the objective and the constraints in (11)
are linear in the matrix X(x) = x+xT

+: fi(x) = Tr(QiX(x)), i = 0, ..., m, where

Qi =
[

ci bT
i

bi Ai

]
. When x runs through Rn, X(x) runs through the set cut off the

convex set {X º 0, X11 = 1} by the requirement Rank(X) = 1. Removing this
requirement (and thus extending problem’s feasible set), we arrive at the sdp

Opt(SDP) = min
X
{Tr(Q0X) : Tr(QiX) ≤ 0, i = 1, ..., m, X º 0, X11 = 1} ; (12)

due to the origin of this program, we have Opt(SDP) ≤ Opt.
Another way to arrive at (12) is to use Lagrange relaxation: whenever λ ≥ 0, the

quantity L∗(λ) ≡ inf
x
{f0(x) +

∑m
i=1 λifi(x)} is a lower bound on Opt. Maximizing

this bound over λ ≥ 0, we again get a lower bound on Opt; at the same time, the
fact that all fi are quadratic makes the program maxλ≥0 L∗(λ) an explicit sdp,
which is nothing but the semidefinite dual of (12).

Seemingly the first application of SDP in building computable bounds on difficult
combinatorial entities is the famous Lovasz capacity number θ(G) of a graph G – a
computable upper bound on the stability number of G introduced in [40]. The bound is

θ(G) = minλ,X {λ : λI º X, Xij = 1 when (i, j) is not an arc}
= maxY

{∑
i,j Yij : Y º 0, Tr(Y ) = 1, Yij = 0 when (i, j) is an arc

}
.

(13)

θ(G) is in-between the stability number α(G) of G and the chromatic number ξ(Ḡ) of the
complementary graph: α(G) ≤ θ(G) ≤ ξ(Ḡ) (“Lovasz sandwich theorem”); it coincides
with α(G) for perfect graphs, and possesses a number of other interesting and important



Advances in Convex Optimization: Conic Programming 21

properties. In hindsight, θ(G) can be obtained by Lagrange relaxation from the repre-
sentation α(G) = maxx

{∑
i xi : x2

i − xi = 0, xixj = 0 whenever (i, j) is an arc
}
. Lovasz

capacity is one of the earliest precursors to SDP, and the second equality in (13) found
in [40] seems to be the first example of SDP duality.

Yet another way to think about the relaxation (this way in hindsight can be traced
back to Grothendieck [25], 1953) is to imagine that we are looking for a random
vector ξ which at average satisfies the constraints of the original problem and min-
imizes under this restriction the expected value of the objective; X in (12) can
be thought of as the covariance matrix E

{
(1, ξT )T (1, ξT )

}
. The advantage of the

latter interpretation is that it suggests a way to produce suboptimal solutions to
(11) from the optimal solution X∗ to (12). Specifically, given X∗, we can point out
(in fact, in many ways) a random vector ξ such that Cov(ξ) = X∗, thus getting
a random solution to (11) which at average is feasible with expected value of the
objective Opt(SDP), i.e., better than the true optimal value Opt. In favourable
circumstances it is possible to convert, at a controllable cost in terms of the objec-
tive, the “feasible at average” random solution into an actually feasible solution;
whenever it is the case, SDP relaxation yields a suboptimal solution to the problem
of interest with known level of non-optimality. Examples include:

• The famous MAXCUT-related result of Goemans and Williamson [23] stating
that SDP relaxation bound in the MAXCUT problem is tight up to factor 1.1382...

In the MAXCUT problem, one is given a graph with arcs assigned nonnegative weights
and is looking for a cut (coloring of nodes into two colors) of maximal weight (the total
weight of arcs linking nodes of different colors). MAXCUT can be posed in the form of
(11), specifically, as

Opt = max
x

{
xT Lx : x2

i ≤ 1, i = 1, ..., n
}

(14)

where L ∈ Sn is the Laplace matrix of the graph (and thus satisfying L º 0, Lij ≤ 0
when i 6= j and

∑
j Lij = 0) and n is the number of nodes in the graph. MAXCUT is

an NP-complete combinatorial problem; it is known [30] that it is NP-hard to approxi-
mate Opt within 4%-accuracy, even when randomized algorithms are allowed. In spite of
this “severe computational intractability” of MAXCUT, Goemans and Williamson show
that the SDP relaxation of (14) yields a surprisingly tight bound Opt(SDP) on Opt:
1 ≤ Opt(SDP)/ Opt ≤ 1.1382... The proof goes as follows: the optimal solution X∗ to
the SDP relaxation, which is the problem maxX {Tr(LX) : X º 0, Xii = 1∀i}, is treated
as the covariance matrix of a Gaussian random vector ξ with zero mean; this “feasible at
average” random solution ξ is corrected to (sign(ξ1), ..., sign(ξn)), thus yielding a feasible
solution with the expected value of the objective at least Opt(SDP)/1.1382... For exten-
sions and modifications of this result, see [73, Chapter 12] and references therein.

• Nesterov’s π
2 theorem [52] stating that for an arbitrary matrix L º 0 in (14),

the SDP relaxation yields a π
2 -tight upper bound on Opt, and that this remains

true when the constraints x2
i ≤ 1 in (14) are replaced with an arbitrary system of

linear equality and inequality constraints on x2
i (for extensions and applications,

see [75, 73, Chapter 13]).
One of far-reaching consequences of this fact is a tight efficiently computable upper

bound on the (p, r)-norm ‖A‖p,r = maxx{‖Ax‖r : ‖x‖p ≤ 1}. Computing (p, r)-norm is
known to be easy only in the cases p = 1, r = ∞ and p = r = 2, and is known to be NP-
hard when p > r. Nesterov [73, Theorem 13.2.4] shows that when ∞ ≥ p ≥ 2 ≥ r ≥ 1,



22 Arkadi Nemirovski

the efficiently computable quantity

Ψ(A) =
1

2
min

µ∈Rn,ν∈Rm

{
‖µ‖ p

p−2
+ ‖ν‖ r

2−r
:

[
Diag{µ} AT

A Diag{ν}
]
º 0

}

is an upper bound, tight within the factor 1
2
√

3
π
− 2

3

= 2.2936..., on ‖A‖p,r. When r = 2 or

p = 2, the tightness factor can be improved to
√

π/2 = 1.2533.... Finally, we clearly have

‖A‖∞,1 = 1
2

max‖z‖∞≤1 zT

[
A

AT

]
z; the fact that the sdp relaxation of the latter

problem yields a tight, within an absolute constant factor, upper bound on ‖A‖∞,1 is

nothing but a rephrasing of the Grothendieck inequality discovered as early as in 1953

[25]3). In the case in question, the tightness factor of the sdp relaxation bound can

be improved to π

2 ln(1+
√

2)
≈ 1.7822... [37], which is better than Nesterov’s “universal”

constant 2.2936... For further results on efficient bounding of ‖A‖∞,1, see [3].

• “Approximate S-Lemma” [11] stating that the SDP relaxation of the problem
Opt = maxx

{
xT Lx : xT Qix ≤ 1, i = 1, ..., m

}
with Qi º 0 and possibly indefinite

L results in an efficiently computable upper bound Opt(SDP) on Opt which is
tight within the factor O(1) ln(m + 1) (and indeed can differ from Opt by factor
O(ln(m + 1)) even when L º 0);

• “Matrix Cube theorem” [10] to be discussed later.

Applications in Structural Design. We have already considered one of these
applications – Truss Topology Design, which can be reduced to CQP. SDP offers
a natural way to treat Structural Design problems in more complicated settings,
most notably in the Free Material Optimization one, see [7, 73, Chapter 15] and
references therein. In Free Material Optimization, one seeks for a construction
comprised of material distributed over a given 2D/3D domain with varying from
point to point mechanical properties and capable to withstand best of all a number
of external loads. After Finite Element discretization, the problem reads

min
{ti}

{
max

1≤`≤k
Compl`(t) = max

P`v≤p`

[
f t

`v − vT A(t)v/2
]

: ti º 0,
∑

i

Tr(ti) ≤ w

}
,

(15)
where A(t) =

∑
i,s bistib

T
is is the stiffness matrix, ti ∈ Sd are rigidity tensors of the

material in the finite element cells (d = 3 for 2D and d = 6 for 3D constructions),
P`v ≤ p` are constraints on virtual displacements of the nodes of finite element
cells given by rigid obstacles in `-th loading scenario, f` represents the `-th load,
and Compl`(t) is the corresponding compliance – potential energy capacitated in
the construction in the static equilibrium under `-th load. Same as in the TTD
case, the main advantage of the FMO model is that it allows to find the topology
of the optimal construction; this topology serves as a starting point in actual
engineering design restricted to traditional materials and taking into account a lot
of complicating details ignored in the FMO model.

3)this paper implies, in particular, that the absolute constant π/2 in Nesterov’s π/2 theorem
cannot be improved.



Advances in Convex Optimization: Conic Programming 23

Same as in truss design, compliance in (15) admits an SDP-r., and (15) can
be reformulated as the SDP program

min
t,τ,µ



τ :

[
2τ − 2pT

` µ` µT
` P` − fT

`

P T
` µ` − f` A(t)

]
º 0∀` ≤ k

ti º 0∀i, ∑i Tr(ti) ≤ w, µ` ≥ 0∀` ≤ k



 . (16)

Same as in the TTD case, semidefinite duality admits for instructive and better
suited for numerical processing equivalent reformulations of (16), in particular,
those where the Newton systems to be solved in IP methods are sparse (a rare
case in SDP!). As a result, when the number of loading scenarios is small (like 2
or 3), IP methods allow to solve real world FMO problems with design dimension
as large as many tens of thousands [36].

Another application of SDP in Structural Design relates to ensuring dynamical
stability of a construction, i.e., imposing a lower bound on its eigenfrequencies.
This can be modelled by the constraint A(t) º ω2M(t), where t is the vector of
design parameters, A(t), M(t) are the stiffness and the mass matrices and ω is
the desired lower bound. Whenever A(t), M(t) are affine in t (as it is the case for
trusses and in FMO), the constraint in question is an LMI.

Control applications. For the time being, the most “mature” applications of
SDP are those in Control, where for the last decade or so LMI’s became a kind
of standard language to pose and to process various control-related problems (see,
e.g., [13, 16, 73, Chapter 14] and references therein). To give a flavour of related
constructions and results, consider the basic problem of Lyapunov stability anal-
ysis/synthesis. The analysis problem is: given an uncertain n-dimensional linear
dynamical system

ẋ(t) = A(t)x(t), t ≥ 0, (17)

where the only restriction on A(t) is to belong, at any time t, to a given “uncertainty
set” U , certify systems’s robust stability – the fact that all trajectories of (all
realizations of) the system tend to 0 as t →∞. In the “certain” case of A(t) ≡ A,
a necessary and sufficient stability condition is the existence of Lyapunov Stability
Certificate (LSC) – a matrix X º I and α > 0 such that AT X +XA ¹ −αX. For
an uncertain system, the standard sufficient stability condition is the existence of
a common LSC (X, α) for all realizations A ∈ U of system’s matrix; such an LSC
implies that xT (t)Xx(t) ≤ exp{−αt}xT (0)Xx(0) for all trajectories, and thus –
“stability with the decay rate α”. Thus, LSC’s of uncertain system are described
by the infinite system of matrix inequalities

AT X + XA + αX ¹ 0∀A ∈ U (18)

in variables X º I, α > 0. To simplify our presentation, we treat below the decay
rate α as a given positive constant rather than a variable, which makes (18) an
infinite system of LMI’s in X. In some cases, this infinite system can be replaced
with a finite one, thus allowing for efficient computation of an LSC or detecting
that no one exists. The simplest cases of this type are polytopic uncertainty
U = Conv{A1, ..., AN} (the equivalent finite system of LMI’s is merely AT

i X +



24 Arkadi Nemirovski

XAi +αX ¹ 0, i = 1, ..., N) and norm-bounded uncertainty U = {A = Ā+B∆C :
‖∆‖ ≤ ρ} (here the LSC’s are exactly the X-components of the solutions (X, λ) of

the LMI
[

ĀT X + XĀ + αX + λCT C ρXB

ρBT X −λI

]
¹ 0, see [13]). There are also cases

where (18), while being NP-hard, admits provably tight tractable approximation,
most notably, the case of “interval uncertainty of level ρ > 0”:

U = Uρ = {A : |Aij − Āij | ≤ ρδij∀i, j}. (19)

In the case of (19), X solves (18) if and only if the image of the cube {ζ ∈ Rn×n :
‖ζ‖∞ ≤ ρ} under the affine mapping

ζ 7→ B[X]+
∑
i,j

ζijB
ij [X], B[X] = −ĀT X−XĀ−αX, Bij [X] = −δij

[
eje

T
i X + Xeiej

]
,

ei being the basic orths, belongs to the semidefinite cone. Now, the question whether a
“matrix cube” Bρ = {B +

∑N
ν=1 zνBν : ‖z‖∞ ≤ ρ} belongs bo the semidefinite cone is

NP-hard, unless all matrices Bν are of rank 1 (already with Rank Bν = 2, this question
is at least as difficult as the MAXCUT problem [10]). There is, however, an evident
verifiable sufficient condition for the inclusion Bρ ⊂ Sn

+, namely, the existence of matrices
{Xν}N

ν=1 such that Xν º ±Bν and B0 − ρ
∑

ν Xν º 0. It turns out (“Matrix Cube
theorem” [10]) that this condition is tight, provided that all “edge matrices” Bν are
of low rank; specifically, if the condition is not satisfied for certain ρ, then Bϑρ 6⊂ Sn

+,
with ϑ = ϑ(µ) ≤

√
πµ/2 depending solely on µ = maxν Rank Bν ; note that ϑ(1) = 1

and ϑ(2) = π/2. Thus, our verifiable sufficient condition for the inclusion Bρ ⊂ Sn
+

allows to identify, within factor ϑ(µ), the largest ρ for which the inclusion takes place.
Now note that when building an LSC for interval uncertainty (19), we seek for X such
that a specific matrix cube with edge matrices Bij [X] of rank 2, depending on X as on
a parameter, belongs to Sn

+. Replacing the latter constraint with the above verifiable
sufficient condition with its validity, we end up with a system of LMI’s

Xij º ±Bij [X], i, j = 1, ..., n, B[X]− ρ
∑
ij

Xij º 0 (20)

in variables (X, Xij) such that the X-part of a feasible solution to this system is feasible

for the infinite system of LMI’s (18) – (19). The resulting “safe approximation” of (by

itself intractable) system (18) – (19) is “tight within the factor π/2” – whenever (20)

is infeasible, so is the system of interest with increased by factor π/2 uncertainty level.

In particular, we can find efficiently a tight, within the factor π/2, lower bound on the

largest possible uncertainty level for which the stability still can be certified by an LSC.

From practical viewpoint, a shortcoming of (20) is large, although polynomial in n,

design dimension of this system of LMI’s; an n×n matrix variable per each uncertain entry

in the matrix of the original dynamical system is too much... Well, applying semidefinite

duality, one can convert (20) into an equivalent system of LMI’s in X and just ≈ 3
2
n2

additional scalar variables. Here again we see how useful could be the conic programming

machinery in analytical processing of optimization problems.

For the time being, we were focusing on the stability analysis. In the Lyapunov
stability synthesis problem, one is given a controlled dynamical system

ẋ(t) = A(t)x(t) + B(t)u(t), y(t) = C(t)x(t) (21)



Advances in Convex Optimization: Conic Programming 25

where (A(t), B(t), C(t)) is known to belong to a given uncertainty set U , and is
looking for output-based linear feedback control u(t) = Ky(t) which allows to
equip the closed loop system with an LSC (and thus makes it stable). Thus, we
look for both a stabilizing feedback and a LSC for the closed loop system. The
synthesis problem admits a nice LMI-based solution at least when the state-based
feedback is allowed, i.e., when C(t) ≡ I, which we assume from now on. The
Lyapunov matrix inequality (18) for the closed loop system reads

[A + BK]T X + X[A + BK] + αX ¹ 0 ∀[A,B] ∈ U ; (22)

this is not a LMI in our new design variables anymore. However, passing from
X, K to the variables Y = X−1, Z = KY and multiplying both sides in (22) by Y
from the left and from the right, we rewrite (22) as the infinite system of LMI’s

AY + Y AT + BZ + ZT BT + αY ¹ 0 ∀[A, B] ∈ U .

Same as above, this infinite system of LMI’s can be processed efficiently in the case
of polytopic or norm-bounded uncertainty, admits tractable tight approximation
in the case of interval uncertainty, etc.

Not only stability, but many other “desired properties” of a linear time-invariant
dynamical system (passivity, contractiveness, positive realness, nonexpansiveness,
etc.) are certified, in a necessary and sufficient fashion, by solutions to appropriate
LMI’s. Usually, existence of a common certificate of this type for all realizations
of system’s data from a given uncertainty set becomes sufficient condition for the
associated uncertain system to possess the robust version of the property in ques-
tion; this explains the unique role played by SDP in Robust Control.

Extremal ellipsoids. In many situations (see, e.g., [15] and references therein), it
is natural to approximate convex sets by ellipsoids – the latter are especially easy-
to-specify and easy-to-operate convex sets. There are several ways to build ellip-
soidal approximations of a convex solid A ⊂ Rn. When A is given by a membership
oracle, one can find a O(n3/2)-rounding of A, i.e., a pair of concentric similar el-
lipsoids E∗ ⊂ A ⊂ E∗ with the ratio of linear sizes O(n3/2), by a kind of Ellipsoid
method [26]. When A admits an explicit ϑ-self-concordant barrier F , one can build
a (ϑ + 2

√
ϑ)-rounding of A by approximating the minimizer of F over A ([13], cf.

the end of Section 3.1). SDP enters the game when we are interested to find the
“largest” ellipsoid contained in A or the “smallest” ellipsoid containing A. Indeed,
representing ellipsoids in Rn in the form of E = E(y, Y ) = {x = y+Y u : uT u ≤ 1}
with Y ∈ Sn

+, natural “sizes” of E, like (mesn(E))1/n = cn(det(Y ))1/n, or the
smallest half-axis λmin(Y ), or the sum of k smallest half-axes (i.e., the k smallest
eigenvalues of Y ), become SDP-representable concave functions of the parameters
y, Y of the ellipsoid, so that maximizing such a size over all ellipsoids contained
in A becomes a sdp, provided that the set of parameters y, Y of ellipsoids con-
tained in A is an SDP-s. Similarly, representing ellipsoids in Rn in the form of
W = W (z, Z) = {x : (x−Z−1z)T Z2(x−Z−1z) ≤ 1} with Z Â 0, the sizes of W like
(mesn(W ))

1
2n = dn(det(Z))−1/n, or the largest half-axis of W (i.e., 1/λmin(Z)),

or the sum of k largest half-axes of W , become SDP-representable functions of



26 Arkadi Nemirovski

z, Z, so that minimizing such a size over all ellipsoids containing A again is an sdp,
provided that the set of parameters z, Z of ellipsoids W (z, Z) containing A is an
SDP-s. Thus, when seeking for an extremal ellipsoid inscribed into/circumscribed
around a solid A ⊂ Rn reduces to finding an SDP-r. for the parameters y, Y ,
respectively, z, Z of the ellipsoids contained into/containing A. The key positive
result here is as follows [13, Section 3.7]: one has E(y, Y ) ⊂ W (z, Z) if and only

if there exists λ such that




I ZY Zy − z
Y Z λI

yT ZT − zT 1− λ


 º 0, which is an LMI in

(y, Y, λ) when z, Z are fixed, and is an LMI in (z, Z, λ) when y, Y are fixed. As
a result, the problems of finding (a) the smallest outer ellipsoidal approximation
of the union of finitely many ellipsoids, and (b) the largest inner ellipsoidal ap-
proximation of the intersection of finitely many ellipsoids can be posed as explicit
sdp’s. The same is true for the problems of finding the largest inner ellipsoidal
approximation of a polytope given by a list of linear inequalities, and finding the
smallest outer ellipsoidal approximation of the convex hull of finitely many points.
In contrast to this, it is NP-hard to verify that a given ellipsoid is contained in the
convex hull of a given finite set of points or contains a polytope given by a list of
linear inequalities; thus, the problems of inner ellipsoidal approximation of a con-
vex hull of finite set and outer ellipsoidal approximation of the set of solutions of
a finite system of linear inequalities both seem to be computationally intractable.

Concluding remarks. We hope that the outlined constructions and results
demonstrate that Convex Programming is not merely something about number
crunching; its development, stimulated both by intrinsic reasons and by needs of
applications, requires resolving challenging mathematical problems with a specific
“operational” flavour (at the end of the day, we want to understand how to build
something rather than how something is built) which is a nice complement to
typical descriptive flavour of problems arising in purely theoretical areas of Math-
ematics. The most famous, posed in 1960’s and still open, challenge here is to un-
derstand whether LP admits a strongly polynomial algorithm (essentially, a Real
Arithmetic algorithm solving LP’s exactly in time polynomial in the dimension of
the data). Simplex-type LP algorithms are finite, but no one of them is known
to be polynomial (and most are known not to be so); all known exact polynomial
algorithms for LP work with rational data only, with running time polynomial in
the bit length of the data, not in the number of data entries. All known in this
direction is the existence of a strongly polynomial algorithm for LP with integer
and varying in a once for ever fixed finite range data in the constraint matrix and
real data in the objective and the right hand side (Tardos [68], see also [70]).

The major, in our appreciation, recent challenge comes from the desire to
process extremely large-scale (tens and hundreds of thousands of variables) conic
quadratic and semidefinite programs arising in some of applications (relaxations of
combinatorial problems, structural design, etc.). Problems of huge sizes are beyond
the “practical scope” of interior point methods with their Newton-type, and there-
fore too time consuming in the large scale case, iterations and require essentially
different optimization techniques (cf. [56, 44]). Note that in the extremely large



Advances in Convex Optimization: Conic Programming 27

scale case utilizing problem’s structure becomes really crucial, which increases the
importance of “structure-revealing” Conic Programming formulations of convex
programs.

References

[1] Alizadeh, F., Interior point methods in semidefinite programming with applications
to combinatorial problems, SIAM J. Optim. 5 (1995), 13–51.

[2] Alizadeh, F., Goldfarb, D., Second-order cone programming, Math. Program. 95
(2003), 3–51.

[3] Alon, N., Naor, A., Approximating the Cut-Norm via Grothendieck’s Inequality.
Proc. of the 36 ACM STOC, Chicago, ACM Press (2004), 72–80; to appear in SIAM
J. Computing.

[4] Andersen, E.D., Ye, Y., On a homogeneous algorithm for monotone complemntarity
system, Math. Program. 84 (1999), 375–399.

[5] Arrow, K.J., Hurwicz, L., Uzawa, H., Studies in linear and non-linear programming.
Stanford University Press, Stanford, 1958.

[6] Bauschke, H., Güler, O., Lewis, A.S., Sendov, H.S., Hyperbolic polynomials and
convex analysis, Canadian J. of Mathematics 53 (2001), 470–488.

[7] Ben-Tal, A., Kočvara, M., Nemirovski, A., Zowe, J., Free material design via semidef-
inite programming. The multiload case with contact conditions, SIAM J. Optim. 9
(1999), 813–832.

[8] Ben-Tal, A., Nemirovski, A. Lectures on Modern Convex Optimization: Analysis,
Algorithms and Engineering Applications. MPS-SIAM Series on Optimization, SIAM,
Philadelphia, 2001.

[9] Ben-Tal, A., and Nemirovski, A., On polyhedral approximations of the second-order
cone, Math. of Oper. Res. 26 (2001), 193–205.

[10] Ben-Tal, A., and Nemirovski, A., On tractable approximations of uncertain linear
matrix inequalities affected by interval uncertainty”, SIAM J. Optim. v. 12 (2002),
811–833.

[11] Ben-Tal, A., Nemirovski, A., and Roos, C., Robust solutions of uncertain quadratic
and conic-quadratic problems, SIAM J. Optim. 13 (2002), 535–560.

[12] Blum, L., Cucker, F., Shub, M., Smale, S., Complexity and Real Computation.
Springer-Verlag, 1997.

[13] Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V., Linear Matrix Inequalities in
System and Control Theory. SIAM, Philadelphia, 1994.

[14] Boyd, S., Vandenberghe, L., Convex Optimization. Cambridge University Press,
2004.

[15] Chernousko, F.L., State estimation for dynamic systems. CRC Press, 1994.

[16] El Ghaoui, L., Niculescu, S.-I. (Eds.), Advances on Linear Matrix Inequality Methods
in Control. SIAM, Philadelphia, 1999.

[17] Faybusovich, L.. Euclidean Jordan algebras and interior-point algorithms, Positivity
1 (1997), 331–357.



28 Arkadi Nemirovski

[18] Faybusovich, L., Linear system in Jordan algebras and primal-dal interior-point al-
gorithms, J. of Comput. and Appl. Math. 86 (1997), 149–175.

[19] Fiacco, A., McCormic, G.P., Nonlinear Programming: Sequential Unconstrained
Minimization Techniques. J. Wiley & Sons, 1968.

[20] Fu, M., Luo, Z.-Q., Ye, Y., Approximation algorithms for quadratic programming,
J. of Combinatorial Optim. 2 (1998), 29–50.

[21] Garey, M.R., Johnson, D.S. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

[22] Gaterman, K., Parrilo, P.A., Symmetry groups, semidefinite programs, and sums of
squares, J. of Pure and Applied Algebra 192 (2004), 95–128.

[23] Goemans, M.X., Williamson, D.P., Improved approximation algorithms for maxi-
mum cut and satisfability problem using semidefinite programming, J. of Association
for Computing Machinery 42 (1995), 1115–1145.

[24] Gonzaga, C.C., An algorithm for solving linear programming problems in O(n3L)
operations. In: Advances in mathematical programming - Interior point and related
methods (edited by N. Megiddo). Springer-Verlag, New York, 1989.

[25] Grothendieck, A., Résuḿe de la théorie ḿetrique des produits tensoriels
topologiques, Bol. Soc. Mat. Sao Paulo 8 (1953), 179.

[26] Grotschel, M., Lovasz, L., Schrijver, A., Geometric Algorithms and Combinatorial
Optimization. Springer-Verlag, Berlin, 1987.

[27] Güler, O., On the self-concordance of the universal barrier function, SIAM J. Optim.
7 (1997), 295–303.

[28] Güler, O., Hyperbolic polynomials and interior point methods for convex program-
ming, Math. of Oper. Res. 22 (1997), 350–377.

[29] Güler, O., Tunçel, L., Characterization of the barrier parameter of homogeneous
convex cones, Math. Program. 81 (1998), 55–76.

[30] H̊astad, J., Some optimal inapproximability results, J. of ACM 48 (2001), 798–859.

[31] Hildebrand, R., An LMI description for the cone of Lorentz-positive maps,
http://www.optimization-online.org/DB HTML/2005/12/1260.html

[32] Jarre, F., Optimal ellipsoidal approximations around the analytic center, Appl.
Math. Optim. 30 (1994), 15–19.

[33] Karmarkar, N., A new polynomial-time algorithm for linear programming, Combi-
natorica 4 (1984), 373–395.

[34] Khachiyan, L.G., A Polynomial Algorithm in Linear Programming (in Russian),
Doklady Akademii Nauk SSSR 244 (1979), 1093–1097 [English traslation: Soviet
Mathematics Doklady 20, 191–194].

[35] de Klerk, E., Roos, C., Terlaky, T., Initialization in semidefinite programming via a
self-dual skew-symmetric embedding, Oper. Res. Letters 20 (1997), 213–221.

[36] Koçvara, M., Stingl, M., PENNON – A Code for Convex Nonlinear and Semidefinite
Programming, Optim. Methods and Software 18 (2003), 317–333.

[37] Krivine, J.L., Sur la constante de Grothendieck, C. R. Acad. Sci. Paris Ser. A-B
284 (1977), 445-446.



Advances in Convex Optimization: Conic Programming 29

[38] Lasserre, J.B., Global optimization with polynomials and the problem of moments,
SIAM J. Optim. 11 (2001), 796–817.

[39] Lobo, M., Vandenberghe, L., Boyd, S., Lebret, H., Applications of second-order cone
programming, Linear Algebra and Appl. 284 (1998), 193–228.

[40] Lovasz, L., On the Shannon capacity of graphs, IEEE Trans. on Inform. Theory 25
(1979), 1–7.

[41] Lewis, A.S., Parillo, P., Ramana, M., The Lax conjecture is true, Proceedings of the
AMS 133 (2005), 2495–2499.

[42] Luo, Z.-Q., Sturm, J.F., Zhang, S., Coinic convex programming and self-dual em-
bedding, Optim. Methods and Software 14 (2000), 169–218.

[43] Nemirovski, A., Yudin, D., Information-based complexity and efficient methods of
convex optimization (in Russian), Ekonomika i Matematicheskie Metody [English
translation: Matekon] 12 (1976), 357–379.

[44] Nemirovski, A., Prox-method with rate of convergence O(1/t) for variational in-
equalities with Lipschitz continuous monotone operators and smooth convex-concave
saddle point problems, SIOPT J. Optim. 15 (2004), 229–251.

[45] Nesterov, Yu., Nemirovski, A., Conic duality and its applications in Convex Pro-
gramming, Optim. Methods and Software 1 (1992), 95–115.

[46] Nesterov, Yu., Nemirovski, A., Interior Point Polynomial Time Methods in Convex
Programming. SIAM, Philadelphia, 1994.

[47] Nesterov, Yu., Long-step strategies in interior-point primal-dual methods, Math.
Program. 76 (1997), 47–94.

[48] Nesterov, Yu., Todd, M. J., Self-scaled barriers and interior-point methods for Con-
vex Programming, Math. of Oper. Res. 22 (1997), 1–42.

[49] Nesterov, Yu., Todd, M. J., Primal-dual interior-point methods for self-scaled cones,
SIAM J. Optim. 8 (1998), 324–364.

[50] Nesterov, Yu., Nemirovski, A., Multiparameter surfaces of analytic centers and long-
step path-following interior point methods, Math. of Oper. Res. 23 (1998), 1–38.

[51] Nesterov, Yu., Todd, M.J., Ye, Y., Infeasible-start primal-dual methods and infea-
sibility detectors for nonlinear programming problems, Math. Program. 84 (1999),
227–267.

[52] Nesterov, Yu., Semidefinite relaxation and nonconvex quadratic optimization, Op-
tim. Methods and Software 9 (1998), 141-160.

[53] Nesterov, Yu., Squared functional systems and optimization problems. In High Per-
formance Optimization (edited by H. Frenk, T. Terlaky, Sh. Zhang). Kluwer Academic
Publishers, 1999, 405–439.

[54] Nesterov, Yu., Todd, M.J., On the Riemannian geometry defined by self-concordant
barriers and interior-point methods, Found. of Comput. Math. No. 2 (2002), 333–361.

[55] Nesterov, Yu., Nemirovski, A., Central path and Riemannian distances. Discussion
paper 2003/30, CORE, Louvain-la-Neuve, 2003.

[56] Nesterov, Yu., Smooth minimization of non-smooth functions, Math. Program. 103
(2005), 127–152.

[57] Parrilo, P.A., Semidefinite programming relaxations for semialgebraic problems,
Math. Program. Series B 96 (2003), 293–320, 2003.



30 Arkadi Nemirovski

[58] Potra, F.A., Sheng, R., On homogeneous interior-point algorithms for semidefinite
programming, Optim. Methods and Software 9 (1998), 161–184.

[59] Ramana, M., An exact duality theory for semidefinite programming and its com-
plexity implications, Math. Program. Series B 77 (1997), 129–162.

[60] Renegar, J., A polynomial-time algorithm, based on Newton’s method, for linear
programming, Math. Program. 40 (1988), 59–93.

[61] Renegar, J., A Mathematical View of Interior-Point Methods in Convex Optimiza-
tion. MPS-SIAM Series on Optimization, SIAM, Philadelphia, 2001.

[62] Schmieta, S.H., Alizadeh, F., Associative and Jordan Algebras, and Polynomial
Time Interior-Point Algorithms for Symmetric Cones, Math. of Oper. Res. 26 (2001),
543–564.

[63] Schmieta, S.H., Alizadeh, F., Extension of primal-dual interior point methods to
symmetric cones, Math. Program. 96 (2003), 409–438.

[64] Shapiro, A., Extremal problems on the set of nonnegative definite matrices, Linear
Algebra and Appl. 67 (1985), 7–18.

[65] Shor, N.Z., Cut-off method with space extension in convex programming problems,
Cybernetics 12 (1977), 94–96.

[66] Shor, N.Z., Class of global minimum bounds of polynomial functions, Cybernetics,
23 (1987), 731–734.

[67] Shor, N.Z., Nondifferentiable Optimization and Polynomial Problems. Kluwer Aca-
demic Publishers, Dordrecht, 1998.

[68] Tardos, E., A strongly polynomial minimum cost circulation algorithm, Combina-
torica 5 (1985), 247–256.

[69] Vandenberghe, L., Boyd, S., Applications of semidefinite programming, Applied
Numerical Mathematics 29 (1999), 283–299.

[70] Vavasis, S., Ye, Y., A primal-dual interior point method whose running time depends
only on the constraint matrix, Math. Program. 74 (1996), 79–120.

[71] Vinberg, E.B., The theory of homogeneous cones, Trans. of Moscow Math. Soc. 12
(1965), 340–403.

[72] Ye, Y., Todd, M.J., Mizuno, S., An O(
√

nL)-iteration homogeneous and self-dual
linear programming algorithm, Math. of Oper. Res. 19 (1994), 53–67.

[73] H. Wolkowicz, R. Saigal, L. Vandenberghe (Eds.), Handbook of Semidefinite Pro-
gramming. Kluwer Academic Publishers, 2000.

[74] Ye, Y., Interior-Point Algorithms: Theory and Analysis. Wiley-Interscience Series
in Discrete Mathematics and Optimization, John Wiley & Sons, 1997.

[75] Ye, Y., Approximating quadratic programming with bound and quadratic con-
straints, Math. Program. 84 (1999), 219–226.

[76] Ye, Y., Zhang, S., New results on quadratic minimization, SIAM J. Optim. 14
(2003), 245–267.

[77] Xu, X., Hung, P.F., Ye, Y., A simplified homogeneous self-dual linear programming
algorithm and its implementation, Annals of Oper. Res. 62 (1996), 151–171.

ISYE, Georgia Institute of Technology, 765 Ferst Drive, Atlanta GA 30332-0205 USA

E-mail: nemirovs@isye.gatech.edu


