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Robust Mean-Squared Error Estimation in the
Presence of Model Uncertainties

Yonina C. Eldar, Member, IEEE, Aharon Ben-Tal, and Arkadi Nemirovski

Abstract—We consider the problem of estimating an unknown
parameter vector x in a linear model that may be subject to
uncertainties, where the vector x is known to satisfy a weighted
norm constraint. We first assume that the model is known ex-
actly and seek the linear estimator that minimizes the worst-case
mean-squared error (MSE) across all possible values of x. We show
that for an arbitrary choice of weighting, the optimal minimax
MSE estimator can be formulated as a solution to a semidefinite
programming problem (SDP), which can be solved very efficiently.
We then develop a closed form expression for the minimax MSE
estimator for a broad class of weighting matrices and show that it
coincides with the shrunken estimator of Mayer and Willke, with
a specific choice of shrinkage factor that explicitly takes the prior
information into account.

Next, we consider the case in which the model matrix is subject to
uncertainties and seek the robust linear estimator that minimizes
the worst-case MSE across all possible values of x and all possible
values of the model matrix. As we show, the robust minimax MSE
estimator can also be formulated as a solution to an SDP.

Finally, we demonstrate through several examples that the min-
imax MSE estimator can significantly increase the performance
over the conventional least-squares estimator, and when the model
matrix is subject to uncertainties, the robust minimax MSE esti-
mator can lead to a considerable improvement in performance over
the minimax MSE estimator.

Index Terms—Data uncertainty, linear estimation, mean
squared error estimation, minimax estimation, robust estimation.

I. INTRODUCTION

THE problem of estimating a set of unknown deterministic
parameters observed through a linear transformation

, and corrupted by additive noise , arises in a large variety
of areas in science and engineering, e.g., communication,
economics, signal processing, seismology, and control.

Owing to the lack of statistical information about the pa-
rameters , often, the estimated parameters are chosen to opti-
mize a criterion based on the observed signal . The celebrated
least-squares (LS) estimator [1]–[3], which was first used by
Gauss to predict movements of planets [4], seeks the linear esti-
mate of that results in an estimated data vector that
is closest, in a LS sense, to the given data vector
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so that is chosen to minimize the Euclidian norm of the data
error . However, in an estimation context, the objective
typically is to minimize the size of the estimation error ,
rather than that of the data error .

To develop an estimation method that is based directly on the
estimation error, we may seek the estimator that minimizes
the mean-squared error (MSE), where the MSE of an estimate

of is the expected value of the squared norm of the esti-
mation error and is equal to the sum of the variance and the
squared norm of the bias. Since the bias generally depends on
the unknown parameters , we cannot choose an estimator to
directly minimize the MSE. A common approach is to restrict
the estimator to be linear and unbiased and then seek the esti-
mator of this form that minimizes the variance or the MSE. It is
well known that the LS estimator minimizes the variance in the
estimate among all unbiased linear estimators. However, this
does not imply that the LS estimator leads to a small variance or
a small mean-squared error (MSE). A difficulty often encoun-
tered in this estimation problem is that the resulting variance can
be very large, particularly in nonorthogonal and ill-conditioned
problems.

Various modifications of the LS estimator for the case in
which the data model holds i.e., with and
known exactly, have been proposed. Among the alternatives
are Tikhonov regularization [5], which is also known in the
statistical literature as the ridge estimator [6], the shrunken
estimator [7], and the covariance shaping LS estimator [8], [9].
In general, these LS alternatives attempt to reduce the MSE
in estimating by allowing for a bias. However, each of the
estimators above is designed to optimize an objective which
does not depend directly on the MSE, but rather depends on the
data error .

In many engineering applications, the model matrix is also
subject to uncertainties. For example, the matrix may be es-
timated from noisy data, in which case, may not be known
exactly. If the actual data matrix deviates from the one assumed,
then the performance of an estimator designed based on alone
may deteriorate considerably. Various methods have been pro-
posed to account for uncertainties in . The Total LS method
[10], [11] seeks the parameters and the minimum perturbation
to the model matrix that minimize the data error. Although
the total LS method allows for uncertainties in , in many cases,
it results in correction terms that are unnecessarily large. In par-
ticular, when the model matrix is square, the total LS method
recuse to the conventional LS method, which does not take the
uncertainties into account. Recently, several methods [12]–[14]
have been developed to treat the case in which the perturba-
tion to the model matrix is bounded. These methods seek
the parameters that minimize the worst-case data error across
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all bounded perturbations of and possibly bounded perturba-
tions of the data vector. In [15], the authors seek the estimator
that minimizes the best possible data error over all possible per-
turbations of . Here again, the above objectives depend on the
data error and not on the estimation error or the MSE.

In this paper, we consider the case in which the (possibly
weighted) norm of the unknown vector is bounded and de-
velop robust estimators of , whose performance is reason-
ably good across all possible values of in the region of uncer-
tainty, by minimizing objectives that depend explicitly on the
MSE.

We first consider the case in which is known exactly and
develop a minimax linear robust estimator that minimizes the
worst-case MSE across all possible bounded values of , i.e.,
over all values of such that for some constant
and weighting matrix . The minimax MSE estimator for the
special case in which and the covariance matrix of
the noise vector is given by for some
has been developed in [16]. Here, we extend the results to ar-
bitrary and and show that the minimax MSE estimator
can be formulated as the solution to a semidefinite programming
problem (SDP) [17]–[19], which is a tractable convex optimiza-
tion problem that can be solved efficiently, e.g., using interior
point methods [19], [20]. We then develop a closed-form solu-
tion to the minimax estimation problem for the case in which the
weighting and have the same eigenvector matrix.
In particular, when , we show that the optimal estimator is
a shrunken estimator proposed by Mayer and Willke [7], with a
specific choice of shrinkage factor, that explicitly takes the prior
information into account. We demonstrate through simulations,
that the minimax MSE estimator can increase the performance
over the conventional LS approach.

We then consider the case in which the model matrix is
not known exactly, but is rather given by , where
is known, and is a bounded perturbation matrix. Under
this model, we seek a robust linear estimator that minimizes
the worst-case MSE across all possible values of and .
Here again, we show that the optimal estimator can be found
by solving an SDP. In the special case in which the weighting

and have the same eigenvector matrix and
and have the same eigenvector matrix, we show that the
minimax MSE estimator can be found by solving a convex op-
timization problem in two unknowns, regardless of the problem
dimension.

We note that an alternative way to account for bounds on
is through regularization methods, such as Tikhonov regular-
ization [5]. A more general regularization method that takes
uncertainties in , as well as possibly other data uncertainties,
into account, was developed in [21]. However, these methods
are based on minimizing a weighted data error, whereas our
approach directly minimizes the estimation error. In a com-
panion paper [27], we consider a minimax regret approach that
also depends explicitly on the MSE rather than the data error.

The paper is organized as follows. In Section II, we consider
the case in which is known and develop an SDP formula-
tion of the linear minimax MSE estimator that minimizes the
worst-case MSE across all possible bounded parameters . In
Section III, we develop a closed-form expression for the min-
imax linear estimator in the case in which the weighting and

have the same eigenvector matrix. In Section IV, we
consider the case in which both and the model matrix are
subject to uncertainties and show that the minimax MSE esti-
mator that minimizes the worst-case MSE in the region of un-
certainty can again be formulated as an SDP. We then consider,
in Section V, the special case in which and have
the same eigenvector matrix and and have the same
eigenvector matrix. Examples illustrating the performance ad-
vantage of the minimax MSE estimator over the LS estimator,
and the advantage of the robust minimax MSE estimator over
the minimax MSE estimator in the presence of model uncer-
tainties, are discussed in Section VI.

II. MINIMAX MSE ESTIMATION WITH KNOWN

We denote vectors in by boldface lowercase letters and
matrices in by boldface uppercase letters. denotes the
identity matrix of appropriate dimension, denotes the Her-
mitian conjugate of the corresponding matrix, and denotes
an estimated vector or matrix. The notation means that

is positive semidefinite.
Consider the problem of estimating the unknown determin-

istic parameters in the linear model

(1)

where is a known matrix with full rank , and is a
zero-mean random vector with covariance . We assume that

is known to satisfy the weighted norm constraint
for some positive definite matrix and scalar , where

.
We estimate using a linear estimator so that for

some matrix . The MSE of the estimator is
given by

Tr (2)

The second term in (2) (the squared norm of the bias ) de-
pends on the unknown parameters ; thus, in general, we cannot
construct an estimator to directly minimize the MSE. Instead,
we seek the linear estimator that minimizes the worst-case MSE
across all possible values of satisfying . Thus, we
consider the problem

Tr (3)

To develop the solution to (3), we first determine the worst
possible parameters , i.e., the parameters that are the solution
to the inner problem in (3):

(4)

By introducing the change of variable , we have that

(5)
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where is the largest eigenvalue of
. We can express as the solution to

(6)

subject to

(7)

From (5)–(7), it follows that the problem (3) can be reformulated
as

Tr (8)

subject to (7), which in turn is equivalent to

(9)

subject to

Tr

(10)

We now show that the problem of (9) and (10) can be
formulated as a standard semidefinite program (SDP) [17]–[19],
which is the problem of minimizing a linear objective subject
to linear matrix inequality (LMI) constraints. An LMI is a
matrix constraint of the form , where the matrix
depends linearly on . The advantage if this formulation is
that it readily lends itself to efficient computational methods.
Indeed, by exploiting the many well known algorithms for
solving SDPs [17], [18], e.g., interior point methods1 [19], [20],
the optimal estimator can be computed efficiently in polynomial
time. Furthermore, SDP-based algorithms are guaranteed to
converge to the global optimum.

A. Semidefinite Programming Formulation of the Estimation
Problem

We now establish our claim that the problem of (9)
and (10) can be formulated as an SDP. To this end, let

vec , where vec denotes the vector
obtained by stacking the columns of . With this notation, the
constraints (10) become

(11)

The constraints (11) are not in the form of an LMI because of the
terms and in which the elements

of do not appear linearly. To express these inequal-
ities as LMIs in the variables , , and we rely on the
following lemma [22, p. 472]:

1Interior point methods are iterative algorithms that terminate once a
prespecified accuracy has been reached. A worst-case analysis of interior
point methods shows that the effort required to solve an SDP to a given
accuracy grows no faster than a polynomial of the problem size. In practice,
the algorithms behave much better than predicted by the worst-case analysis,
and in fact, in many cases, the number of iterations is almost constant in
the size of the problem.

Lemma 1 (Schur’s Complement): Let

be a Hermitian matrix with . Then, if and only if
, where is the Schur complement of in and is

given by
From Lemma 1, it follows that the constraints (11) are satis-

fied if and only if

(12)

Note that the constraints (12) are indeed LMIs in the variables
, , and . We conclude that the problem of (3) is equivalent

to the SDP defined by (9) and (12).
In the next section, we develop an explicit expression for

the optimal estimator that minimizes the worst-case estimation
error in the case in which the weighting matrix and the matrix

have the same eigenvector matrix.

III. MINIMAX MSE ESTIMATOR FOR AND

JOINTLY DIAGONALIZABLE

We now consider the case in which and have
the same eigenvector matrix. Thus, if has an eigende-
composition , where is a unitary matrix
and is a diagonal matrix, then for some diagonal
matrix . We then have the following proposition.

Proposition 1: Let denote the deterministic unknown pa-
rameters in the model , where is a known
matrix with rank , and is a zero-mean random vector with
positive definitive covariance . Let
where is a diagonal matrix with diagonal elements ,
and let , where is a diagonal matrix with diag-
onal elements . Then, the solution to
the problem

is given by

where

(13)

is an orthogonal projection onto the space spanned by the
last columns of

(14)

and is the smallest index such that and

(15)
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Before proving Proposition 1, we note that there always exists
a satisfying (15). Indeed, for , we
have that

(16)

so that . For particular values of and , there may
be smaller values of for which (15) is satisfied.

Proof: The proof of Proposition 1 is comprised of three
parts. First, we show that the optimal minimizing the worst-
case MSE has the form

(17)

for some matrix . We then show that can be chosen
as a diagonal matrix. Finally, we derive the optimal values of
the diagonal elements of .

We begin by showing that the optimal has the form given
by (17). To this end, note that the MSE of (2) depends on only
through and Tr . Now, for any choice of

Tr Tr

Tr

Tr (18)

where

(19)

is the orthogonal projection onto the range space of .
In addition, since

. Thus, to minimize Tr , it is sufficient to
consider matrices that satisfy

(20)

Substituting (19) into (20), we have

(21)

for some matrix . Denoting by the matrix
, (21) reduces to (17).

We now show that can be chosen as a diagonal matrix.
Since , we can express the constraints (10)
as

Tr (22)

and

(23)

which is equivalent to

(24)

Thus, our problem reduces to finding , , and that minimize
subject to (22) and (24).
Let be any diagonal matrix with diagonal elements equal

to . If satisfies the constraints (22) and (24), then so does
. Indeed

Tr Tr

Tr (25)

where we used the fact that diagonal matrices commute and that
. Similarly

(26)

Since if and only if
, we conclude that

if satisfies (24), then so does . Therefore, if is an
optimal matrix that minimizes subject to (22) and (24), then

is also an optimal solution. Now, since the problem of
minimizing subject to (22) and (24) is convex, the set of
optimal solutions is also convex [23], which implies that if

is optimal for any diagonal with diagonal elements ,
then so is , where the summation is
over all diagonal matrices with diagonal elements . It
is easy to see that is a diagonal matrix. Therefore, we have
shown that there exists an optimal diagonal solution .

Denote by the diagonal elements of . Then, our problem
reduces to

(27)

subject to

(28)

Since the problem of (27) and (28) is a convex optimization
problem, from Lagrange duality theory [24], it follows that the
value of the minimum in (27), which we denote by , is equal
to the optimal value of the dual problem, namely

(29)

where the Lagrangian is given by

(30)
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Differentiating with respect to and equating to 0

(31)

For this choice of

(32)

so that

otherwise.
(33)

The dual problem associated with (27) and (28) is therefore

(34)

subject to

(35)

(36)

To solve (34) subject to (35) and (36), we form the Lagrangian

(37)

where from the Karush–Kuhn–Tucker (KKT) conditions [24],
. Differentiating with respect to and equating to 0

(38)

so that . If , then from (38), , and from the
KKT conditions, . If , then to satisfy (38), we
must have that . In this case

(39)

Thus, the optimal value of is

(40)

where is chosen to satisfy (36).
We now show that there is a unique satisfying (36).

Defining

(41)

is a root of . Clearly, is monotonically decreasing
for , where . In addition,
for , and for . Therefore, there is a
unique satisfying (36).

Substituting the optimal value of into (31), we have that

(42)

where

(43)

and is chosen as the smallest index for which .
Denoting completes the proof of the proposition.

In the special case in which , we can immediately verify
that so that the optimal estimator reduces to

(44)

where

Tr (45)

is the variance corresponding to the LS estimator. The estimator
given by (44) is a shrunken estimator proposed by Mayer and
Willke [7], which is simply a scaled version of the LS estimator,
with an optimal choice of shrinkage factor. We therefore con-
clude that this particular shrunken estimator has a strong opti-
mality property: Among all linear estimators of in the linear
model (1) such that , it minimizes the worst-case esti-
mation error.

As we expect intuitively, when , of (44) reduces
to the LS estimator. Indeed, when the norm of can be made
arbitrarily large, the MSE will also be arbitrarily large unless
the bias is equal to zero. Therefore, in this limit, the worst-case
estimation error is minimized by choosing an estimator with
zero bias that minimizes the variance, which leads to the LS
estimator.

We summarize our results in the following theorem.
Theorem 1: Let denote the deterministic unknown param-

eters in the model , where is a known
matrix with rank , and is a zero-mean random vector with
positive definite covariance . Then, the problem

is equivalent to the semidefinite programming problem

subject to

where vec . In addition, we have the following.
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1) If and have the same eigenvector matrix so
that , where is diagonal with diag-
onal elements and , where is diagonal
with diagonal elements , then

where is an orthogonal projection onto the space
spanned by the last columns of and is defined
by (13), is defined by (14), and is the smallest index
such that and

2) If , then

where Tr is the variance corre-
sponding to the LS estimator.

In Section VI, we provide several examples that illustrate the
performance advantage of the minimax MSE estimator over the
conventional LS estimator. In [28], we prove analytically that
the MSE of the minimax MSE estimator is smaller than that of
the LS estimator for all .

Before proceeding to the case in which is also subject to
uncertainties, we note that in Theorem 1, the bound on the
norm of is assumed to be known. If is not given a priori,
then one possibility is to choose to be equal to the norm of the
LS estimator of , namely

(46)

IV. MINIMAX ESTIMATION WITH UNKNOWN

In the previous section, we developed the optimal estimator
that minimizes the worst-case estimation error across all pos-
sible values of that are bounded. In our development, we as-
sumed that the model matrix is known exactly. However, in
many engineering applications, the model matrix is subject
to uncertainties, for example, it may have been estimated from
noisy data, in which case, is an approximation to some nom-
inal underlying matrix. If the true data matrix is for
some unknown perturbation matrix , then the actual perfor-
mance of an estimator designed based on alone may perform
poorly.

In this section, we consider robust estimators that explicitly
take uncertainties in into account. Specifically, suppose now
that the model matrix is not known exactly but is rather given
by , where , and denotes the matrix
spectral norm [22], i.e., the largest singular value of the corre-
sponding matrix. Our problem then is

Tr

(47)

To develop the solution to (47), we first consider the inner
maximization problem

(48)

We note that

(49)

where is the largest eigenvalue of the matrix
. We can

express (49) as the solution to the problem

(49)

subject to

(51)

Using Lemma 1 we can rewrite the constraint (51) as

(52)

which is equivalent to

(53)
where

(54)

We now exploit the following proposition, the proof of which is
provided in the Appendix.

Lemma 2: Given matrices , , with

if and only if there exists a such that

From Proposition 2, it follows that (53) is satisfied if and only
if there exists a such that

(55)
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We conclude that the problem (47) can be expressed as

(56)

subject to the LMI (55) and

Tr (57)

Using Lemma 1, we can express (57) as the LMI

(58)

where vec , so that the problem of (56) subject
to (57) and (55) can be formulated as an SDP.

We summarize our results in the following theorem.
Theorem 2: Let denote the deterministic unknown param-

eters in the model , where is a known
matrix with rank , is an unknown matrix satisfying

, and is a zero-mean random vector with positive
definitive covariance . Then, the problem

is equivalent to the semidefinite programming problem

subject to

where vec .
In Theorem 2, the bound on the norm of is assumed to

be known. If the value of is not specified, then one possibility
is to choose to be equal to the norm of the perturbation matrix
resulting from the total LS estimator.

In Section VI, we demonstrate that the minimax MSE esti-
mator of Theorem 2 explicitly takes the uncertainties in into
account and can in some cases significantly outperform the min-
imax MSE estimator of Theorem 1, which does not account for
uncertainties in the model matrix.

V. MINIMAX ESTIMATOR FOR JOINTLY

DIAGONALIZABLE MATRICES

Suppose now that and have the same
eigenvector matrix , and and have the same
unitary eigenvector matrix . In this case

(59)

where and are diagonal matrices with diagonal ele-
ments , and , , respectively,
and is an diagonal matrix with diagonal elements

, . Note that in the case and
for some , (59) is satisfied.

The assumption (59) is made for analytical tractability. If
and represent convolution with some filter, and is a sta-
tionary process, then , , and will be Toeplitz matrices
and are therefore approximately diagonalized by Fourier trans-
form matrices of appropriate dimensions so that in this case,
(59) is approximately satisfied [25].

We now show that in the case of jointly diagonalizable
matrices as in (59), the minimax MSE estimator of Theorem 2
reduces to a simple convex optimization problem in two
unknowns and can therefore be solved very efficiently, for
example, using the Ellipsoidal method (see, e.g., [17, Ch. 5.2]).
Specifically, we have the following theorem.

Theorem 3: Let denote the deterministic unknown param-
eters in the model , where is a known

matrix with rank , is an unknown matrix satis-
fying , and is a zero-mean random vector with
positive definitive covariance . Let ,
where is a diagonal matrix with diagonal elements ,
let , where is a diagonal matrix with diagonal
elements , and let , where is a diagonal
matrix with diagonal elements . Then, the solution to the
problem

is given by

Here is an diagonal matrix with diagonal elements
, where

and and are the solution to the convex optimization problem

subject to

(60)

Proof: The proof is comprised of three parts. First, we
show that the optimal minimizing the worst-case MSE has
the form

(61)

for some matrix . We then show that can be chosen
as a diagonal matrix. Finally, we derive the optimal values of
the diagonal elements of .

We begin by showing that the optimal has the form (61).
From Theorem 2, it follows that the minimax MSE estimator

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 16,2010 at 17:11:22 EST from IEEE Xplore.  Restrictions apply. 



ELDAR et al.: ROBUST MEAN-SQUARED ERROR ESTIMATION IN THE PRESENCE OF MODEL UNCERTAINTIES 175

with a bounded uncertainty in can be expressed as the solu-
tion to

Tr (62)

subject to

(63)
The constraint (63) is equivalent to for any invert-
ible . Choosing

(64)

and using (59), (63) becomes

(65)
Define

(66)

so that

(66)

Then, the problem of (62) and (65) can be expressed in terms of
as

Tr (68)

subject to

(69)

Let , where is the matrix consisting
of the first columns of , let denote the matrix
with diagonal elements , , let denote the
matrix with diagonal elements , , and let denote
the matrix with diagonal elements ,

. Then, we can express the constraint (69) as

(70)
Clearly, if (70) is satisfied, then

(71)

TABLE I
SIGNAL PARAMETERS

Now, let be any matrix satisfying (70), and de-
fine . Then

(72)

since . In addition

Tr Tr Tr Tr

Tr (73)

Therefore, the optimal value of satisfies so that the
problem of (68) and (69) reduces to

Tr (74)

subject to (71). Once we find the optimal , the optimal can
be found from (66) as

(75)

which is equivalent to (61), thus completing the first part of the
proof.

We now show that the optimal value of can be chosen as
a diagonal matrix. To this end, we first note that if satisfies
(71), then

(76)

Here, is any diagonal matrix with diagonal elements . It
follows from (76) that for any , where .
In addition, we have that Tr Tr . Therefore, if

is an optimal solution, then so is . Since our problem is
convex, the set of optimal solutions is also convex [23], which
implies that the diagonal matrix is also a
solution, where the summation is over all diagonal matrices

with diagonal elements . Therefore, we have shown that
there exists an optimal diagonal solution .
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Fig. 1. Nominal blurring kernel H(z ; z ).

Denote the diagonal elements of by , and let
diag denote the diagonal matrix with
diagonal elements . Then, the constraint can be
written as (77), shown at the bottom of the page. By permuting
the rows and the columns of the matrix in (77), we can trans-
form it into a block diagonal matrix, where the th block is

(78)

so that (77) is satisfied if and only if each of the matrices (78)
is positive semidefinite. Thus, the problem of (74) and (71)
become

(79)

subject to

(80)

We now show that the problem of (79) subject to (80) can be
further simplified. First, we note that to satisfy (80), we must
have that

(81)

Suppose first that . In this case, using Lemma 1, (80) is
equivalent to

(82)

Now, a 2 2 matrix is positive semidefinite if and only if the
diagonal elements and the determinant are non-negative. There-
fore, (82) is equivalent to the conditions

(83)

(84)

(85)

Clearly, (84) and (82) together imply (84). Furthermore, we can
express (84) as

(86)

Since the coefficient multiplying in (86) is negative, it follows
that there exists a satisfying (86) if and only if the discrimi-
nant is non-negative, i.e., if and only if

(87)

which, using the fact that , is equivalent to

(88)

diag diag
diag diag

diag diag
(77)
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TABLE II
MSE USING THE LS, MINIMAX MSE, AND ROBUST MINIMAX MSE ESTIMATORS

If (88) is satisfied, then the set of ’s satisfying (86) are
, where are the roots of the quadratic function

in (86). Since we would like to choose to minimize (79), it
follows that the optimal is

(89)

Thus, if , then the optimal value of is given by (89),
where in addition, conditions (88) and (84) must be satisfied.

Next, suppose that . In this case, to ensure that (80)
is satisfied, we must have that

(90)

(91)

We can immediately verify that (90) and (91) are special cases
of (89) and (88) with . We therefore conclude that
the optimal value of is given by (89), subject to (88) and

(84). Substituting the optimal value of into (79), our problem
becomes

(92)

subject to (60).
Since the problem of (79) subject to (80) is convex, and the

reduced problem (91) subject to (92) is obtained by minimizing
over one of the variables in (79), the reduced problem is also
convex, completing the proof of the theorem.

In Section VI, we illustrate the performance of the estimators
of Theorems 1 and 3.

VI. EXAMPLES

The purpose of this section is to illustrate the performance ad-
vantage of the minimax MSE estimator of Theorem 1 over the
conventional LS estimator and to demonstrate the fact that in the
presence of uncertainties in the model matrix , robust estima-
tion, which explicitly takes these uncertainties into account, can
recover the signal much better, as compared with the total LS
method and (nonrobust) minimax MSE estimation, particularly
in those cases where the latter is expected to perform poorly.
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Fig. 2. Minimax MSE and robust minimax MSE estimation with � = 0:2 for the three different types of perturbations.

In the simulations below, we consider the problem of esti-
mating a two–dimensional (2-D) image from noisy observa-
tions, which are obtained by blurring the image with a blurring
kernel (a 2-D filter) that may not be known exactly, and adding
random Gaussian noise.

Specifically, we generate an image which is the sum
of three harmonic oscillations:

(93)

where

(94)

and are given parameters. Clearly, the image
is periodic with period . Therefore, we can represent the image
by a length- vector , with components

. In the experiments, , and the ampli-
tudes and frequencies of the harmonic components of
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Fig. 3. Minimax MSE and robust minimax MSE estimation with � = 0:6 for the three different types of perturbations.

are given in Table I. Note that the typical magnitude of an entry
in , i.e.,

is 1.578.
The observed image is given by

(95)

where and are randomly chosen shifts (to make
visually distinct from ), is an independent,
zero-mean, Gaussian noise process so that for each and ,

is , and is the noise variance. The
convolutional kernel is given by

(96)

where is a nominal blurring filter defined by

(97)

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 16,2010 at 17:11:22 EST from IEEE Xplore.  Restrictions apply. 



180 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 1, JANUARY 2005

with

(98)
and is a bounded perturbation. The support of the
convolution kernel is, up to a shift, the five-point set

.
By defining the vectors and with components

and , respectively, and defining the matrices and
with the appropriate elements and ,

respectively, the observations can be expressed in the form of
an uncertain linear model .

For our choice of , the norm (maximum singular
value) of is 1, and the condition number of is 987.95.
The magnitude of the Fourier transform , ,
and of is shown in Fig. 1, together with a
histogram of the log of the singular values of .

In the simulations below, we chose the weighting matrix
with or . Note that and

have the same eigenvector matrix since . This choice
of reflects the fact that components of corresponding to
small singular values of should receive a smaller weight
then components corresponding to large singular values. For
each choice of , we choose the bound as . For
the bound on the norm of the perturbation matrix , we used
seven different values:

The case corresponds to the case in which the model ma-
trix is equal to the nominal matrix . Therefore, in this case, the
robust estimator coincides with the (nonrobust) minimax MSE
estimator.

For each value of , we consider three different choices of
the perturbation matrix , which are chosen as follows. For a
given estimator , we define the worst-case perturbation as
the one that maximizes

(99)

Thus

(100)

where is a unit singular vector of corresponding to the
largest singular value. In our simulations, we consider three spe-
cial cases of .

1) worst case with respect to the minimax MSE estimator
(i.e., is chosen as the of the minimax MSE esti-
mator);

2) given by (100) with a randomly chosen unit vector
;

3) worst case with respect to the robust minimax MSE esti-
mator.

For each choice of the perturbation matrix, we compute the MSE

(101)

for the LS, minimax MSE, and robust minimax MSE estimators.
Since, in our problem, is square, the total LS method coin-
cides with the LS method so that the LS performance is also the
total LS performance. The MSE results are given in Table II.

As we expect, for , the minimax MSE and robust esti-
mators coincide. We also see that the minimax MSE estimator
can significantly outperform the LS estimator. For , the
robust estimator that takes uncertainties in into account can
lead to improved performance over the LS, total LS, and min-
imax MSE estimators, which for large values of can be quite
significant. As we expect, the minimax MSE estimator performs
best for case 3, while the robust estimator performs best for case
1. Note that even when the perturbation matrix is chosen to be
worst for the robust estimator, the robust estimator still performs
better than the minimax MSE estimator.

We note that we do not compare our results with those of [13]
and [21] since the later methods require a prior bound on the
norm of the data error, which we do not assume in our model.

In Figs. 2 and 3, we plot the original image, the observed
image, and the estimated images using the minimax MSE es-
timator and the robust minimax MSE estimator for the three
choices of perturbations, where in Fig. 2, , and in Fig. 3,

. Since the error in the LS estimate is so large, we do
not show the resulting image.

APPENDIX

PROOF OF PROPOSITION 2

To prove the proposition, we first note that

(102)

if and only if for every

(103)

Using the Cauchy–Schwarz inequality, we can express (103) as

(104)

We now rely on the following lemma [26, p. 23].
Lemma 3: [ -procedure] Let and

be two quadratic functions of ,
where and are symmetric, and there exists a satisfying

. Then, the implication

holds true if and only if there exists an such that
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Since is equivalent to ,
we can use Lemma 3 to conclude that (104) is satisfied if and
only if there exists a such that

(105)

completing the proof.
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