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Abstract

The most basic problem considered in Machine Learning is the supervised binary data classifi-
cation, where one is given a training sample – a random sample (xi, yi), i = 1, ..., ` of examples
– attribute vectors xi equipped with labels yi = ±1 – drawn from unknown distribution P , and
the goal is to build, based on this sample, a classifier – a function f(x) taking values ±1 such
that the generalization error ProbP {(x, y) : f(x) 6= y} is as small as possible. This general prob-
lem has numerous applications in classification of documents, texts and images, in computerized
medical diagnostic systems, etc.

The SVM approach is the most frequently used technique for solving the outlined problem
(same as other classification problems arising in Machine Learning). With this approach the
classifier is given by an optimal solution to a specific convex optimization problem. While
the theoretical background of SVM is given by a well-developed and deep Statistical Learning
Theory, the computational tools used traditionally in the SVM context (that is, numerical
techniques for solving the resulting convex programs) are not exactly state-of-the-art of modern
Convex Optimization, especially when the underlying data sets are very large (tens of thousands
of examples with high-dimensional attribute vectors in the training sample). In the large-scale
case, one cannot use the most advanced, in terms of the rate of convergence, convex optimization
techniques (Interior Point methods), since the cost of an iteration in such a method (which
grows nonlinearly with the sizes of the training data) becomes too large to be practical. At the
same time, from the purely optimization viewpoint, the “computationally cheap” optimization
methods routinely used in the large-scale SVM’s seem to be somehow obsolete.

The goal of the thesis is to investigate the potential of recent advances in “computationally
cheap” techniques for extremely large-scale convex optimization in the SVM context. Specifi-
cally, we intend to utilize here the Mirror Prox algorithm (A. Nemirovski, 2004). The research
will focus on (a) representing the SVM optimization programs in the specific saddle point form
required by the algorithm, (b) adjusting the algorithm to the structure of the SVM problems,
and (c) software implementation and testing the algorithm on large-scale SVM data, with the
ultimate goal to develop a novel theoretically solid and computationally efficient optimization
techniques for SVM-based supervised binary classification.
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Notation

R Set of real numbers
S Training sample
` Training sample size
x Attribute vectors
y Vector of labels
X A set (usually a subset of a certain Rn)
f(x), φ(x) Classifier function
F Family of real valued functions (classifiers)
γ The margin of a classifier
D Distribution function
〈x, y〉 Inner product
E Hilbert space
E∗ A space dual to E
‖x‖, φ() Norm
‖x‖∗ Dual norm
ξ Slack vector
K(x, y) Kernel function
O() Complexity
t Iteration number
R radius of the ball containing the data
L Lipschitz constant
C, ρ Constant parameters
cπ, r, k, p Positive reals
N Dimension of feature space
M A certain set
Q Matrix
η vector of primal variables (α or w)
N (F , `, γ) ell-covering number of F
fatF (γ) Fat shattering dimension
ω(z) distance-generating function
ωz(ζ) local distance
Dz0 [Z] Bregman diameter
Pz(ξ) Prox mapping
Ω Complexity parameter
δ Confidence
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Chapter 1

Introduction

In this chapter, we present a brief overview on Support Vector Machines along with outline and
motivation of the goals of our research, and summarize the results of the Thesis.

1.1 Supervised Binary Classification via Support Vector Ma-
chines

1.1.1 Supervised Binary Data Classification

Supervised Binary Classification is the most basic problem of Machine Learning. In this problem,
one is given a training sample S comprised of ` examples (xi, yi), i = 1, ..., `, where the feature
vectors xi are points of a given set X (usually, a subset of certain Rn), and the labels yi are either
+1, or −1. It is assumed that this sample is picked at random from an unknown distribution
D on X × {−1; 1}, and the goal is to build a classifier capable to predict well the label y of a
tentative example via the attribute vector x of this example. Formally speaking, a classifier is a
function φ(·) on X taking values in {−1; 1}, and the quality of such a classifier is quantified by
its generalization error

errD(φ) = ProbD {(x, y) : φ(x) 6= y} ;

the less is the error, the better.
In applications, the attribute (sometimes called input) vectors x usually are collections of

numerical or categorical measurements taken from a certain object (e.g., results of a number
of medical tests taken from a patient), while the labels mark the fact that the object belongs
(y = 1) or does not belong (y = −1) to certain set (e.g., a patient has or does not have a
particular decease). The problem is of also of interest in the situations when there exists some
correlation between the attributes and the labels, so that in principle it is possible to predict, to
some extent, the value of the label via the values of the attributes. At the same time, we do not
know in advance a good predictor and should therefore build it by learning the available data.

The goal of the problem we have just outlined, is to seek for binary classifier based on
a training sample where the examples are already classified “by supervisor” (hence the name
“supervised binary classification”). Machine Learning considers various modifications of this
problem, e.g., supervised classification in more than two classes, or the regression estimation
problem, where the “labels” may take arbitrary real values rather than to be ±1, or unsupervised
classification (called usually clustering) where no labels are given, and the classification should

11



be carried out solely in terms of a given set of feature vectors. In this wide spectrum of problems,
supervised binary classification seems to be the most basic and most frequently used one.

Machine Learning in general, and supervised binary classification in particular, has an ex-
tremely wide spectrum of applications, including those in Medical Diagnostics, Bio-informatics,
Automatized Classification of Texts and Images (see: [1], Chapter 8), etc.

1.1.2 Supervised Binary Classification via Support Vector Machines

Representing a classifier

The standard way to specify a binary classifier φ(x) is to represent it in the form

φ(x) = sign(f(x)), (1.1.1)

where f(x) is a real-valued function. For the sake of brevity, we use the word “classifier” for
both φ and f , speak about the generalization error errD(f) of f(·), etc.; this slight ambiguity is
not dangerous, since it will be always clear from the context which interpretation of the word
“classifier” is meant.

Generic scheme for building a classifier

The most general scheme for building classifiers is as follows. Given in advance a set X of
possible values of attribute vectors, we fix a family of tentative classifiers f , that is, a family
F of real-valued functions on X. Next, given a training sample S = {(xi, yi)}`

i=1, we find in
this family a classifier f which exhibits the “best possible classification abilities” on the training
sample, and this is the classifier yielded by the sample. The major “degrees of freedom” of this
conceptual scheme are

• the underlying family F of tentative classifiers,
and

• the way in which the “classification abilities” of a tentative classifier f ∈ F are quantified.
Specifying these “degrees of freedom”, referred to as a setup, we specify the outlined conceptual
classification scheme and can investigate its quality in terms of the resulting generalization error.

Margin and Soft Margin-based affine classifiers

We are about to present two setups of primary importance for modern Machine Learning; these
are the setups we intend to deal with. In both cases, it is assumed that X is a bounded
subset of Euclidean (or real Hilbert) space E with inner product 〈·, ·〉 and the associated norm
‖x‖ =

√〈x, x〉.

Example 1: Linear margin-based classification. This setup is as follows:

• F is the set of all continuous affine functions f(x) = 〈w, x〉+ b on E ⊃ X, or, which is the
same, of functions of the indicated form associated with all possible weights w ∈ E and
all possible shifts b ∈ R.

• A tentative classifier f(x) = 〈w, x〉 + b is called feasible on a given training sample S =
{(xi, yi)}`

i=1, if
min

i
yif(xi) ≥ 1, i = 1, ..., `; (1.1.2)

12



the “classification ability” exhibited by such a classifier on S is 1/‖w‖, the larger is this
quantity, the better. Thus, the optimal classifier is given by the optimal solution to the
optimization problem

min
w,b

{
1
2
〈w, w〉 : 1− yi[〈w, xi〉+ b] ≤ 0, i = 1, ..., `

}
. (1.1.3)

The outlined setup admits a transparent geometric interpretation. A classifier f(x) = 〈w, x〉+
b ∈ F is feasible on the training sample S if and only if the stripe Π between two parallel
hyperplanes Π+ = {x : f(x) = 1} and Π− = {x : f(x) = −1} orthogonal to w separates
the set S+ = {xi : yi = 1} of (attribute vectors of) “positive” examples from S and the set
S− = {xi : yi = −1} of “negative” examples, so that all positive points xi ∈ S+ are on and
above Π+, and all points xi ∈ S− are on and below Π−, the “above” given by the direction of
w. The geometric width of Π (called the geometric margin of the classifier) clearly is 1/‖w‖,
which is exactly the “classification ability” of the classifier as defined above. It follows that the
classifier yielded by the setup corresponds to the widest possible strip separating S− and S+;
such a classifier does exist and is unique, provided that both S+ and S− are nonempty and can
be separated by a strip of positive width.

A drawback of the margin-based linear classification is that its does not work at all when the
sets of positive and negative examples S+ and S− cannot be separated by a stripe of positive
width, which may be caused by just few “outliers”. The second setup we are about to consider
is aimed at overcoming this drawback.

Example 2: Linear classification based on soft margin. Here, as above, the family F
of tentative classifiers is comprised of affine functions f(x) = 〈w, x〉+ b with w ∈ E and b ∈ R.
With such a classifier and a training sample S = {(xi, yi)}`

i=1, we associate the slack margin
vector ξ = (ξ1, ..., ξ`) defined as

ξi = ξi(w,S) ≡ max[0, 1− yif(xi)], i = 1, ..., `.

The “classification ability” of f on S is quantified by the quantity 1/
√
‖w‖+ C2‖ξ‖2

2, where
‖ξ‖2 =

√
ξT ξ is the standard Euclidean norm on R`, and C > 0 is a positive constant. Thus,

the optimal classifier is given by the optimal solution to the optimization problem

min
w,b,ξ

{
1
2

[
〈w,w〉+ C2ξT ξ

]
: 1− yi[〈w, xi〉+ b] ≤ ξi, i = 1, ..., `, ξ ≥ 0

}

m
min
w,b

{
1
2

[
〈w,w〉+ C2ξT (w, S)ξ(w, S)

]
: ξi(w, S) = max[0, 1− yi[〈w, xi〉+ b]], i = 1, ..., `

}
.

(1.1.4)
This setup admits a geometric interpretation similar to the one in Example 1. Same as in this
Example, we associate with the (w, b)-part of a feasible solution to (1.1.4) a stripe Π between
the parallel hyperplanes Π± = {x : 〈w, x〉 + b = ±1}, but now we do not require from this
stripe to separate the sets S+ of “positive” and S− of “negative” attribute vectors from the
sample. Instead, we quantify the “mis-placements” of xi’s with respect to the stripe Π by the
quantities ξi(w, S) and penalize the original objective in (1.1.3) by the squared norm of the
resulting residual vector ξ(w, S). It is well known that the setup in Example 2 can, essentially,
be reduced to the one of Example 1 as applied to properly transformed attribute vectors; we
will consider this issue in more details in Chapter 2.
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Support Vector Machines

The techniques for building classifiers presented in Examples 1 and 2 and in their natural
modifications to be considered in the main body of this Thesis are commonly referred to as
Support Vector Machines (SVMs)1). SVMs originate from the pioneering work of Boser, Guyon
and Vapnik [?] and Cortes and Vapnik [?] and are now considered as a classic techniques for
processing problems of Supervised Binary Classification. The associated body of knowledge
consists, essentially, of 3 parts:

1. Statistical Learning Theory – a deep and highly nontrivial theory capable to quantify
the quality (the generalization error) of a classifier yielded by an SVM (and by similar
techniques associated with more general families F of tentative classifiers). We shall review
this theory in more details in Chapter 2; for the time being, it suffices to say that this
theory provides theoretical justification of the SVM approach along with general guidelines
on its implementation;

2. Computational SVM machinery. An extremely attractive feature of SVMs, not shared by
other techniques for solving classification problems of Machine Learning, is that building
the associated “theoretically justified” classifiers reduces to solving well-structured convex
optimization problems like (1.1.3), (1.1.4), and as such can be carried out in a computa-
tionally efficient manner. This is a key to real-world applications which more often than
not require processing really large-scale data sets (samples with many hundreds/thousands
of examples with the dimensions of the attribute vectors up to tens and hundreds of thou-
sands), which makes computational efficiency of the approaches a real must. Over the
years, the computational aspects of SVMs were subject of intensive research and test-
ing, and the corresponding algorithms and software include a wide spectrum of convex
optimization tools adjusted to SVM optimization models;

3. Methodology of adjusting SVM models to specific data sets and experience gained in aca-
demic and real world applications. In fact, the SVM machinery is by far more flexible
than it is suggested by Examples 1, 2. A crucial new “flexibility dimension” is added
by a possibility to pre-process the models presented in these examples by an appropriate
nonlinear embedding x 7→ φ(x) of the set X of possible values of attribute vectors into
a Euclidean/Hilbert feature space F with inner product 〈·, ·〉F . Given such an embed-
ding, we can identify the attribute vectors x with their images φ(x) in the feature space;
with this identification, affine classifiers f(·) = 〈w, ·〉F + b on F induce nonlinear classi-
fiers sign(f(φ(x))) on the original attribute space, thus bringing into the scope of linear
SVMs wide families of highly nonlinear classifiers. A nice feature of such a construction
is that its implementation usually does not require explicit specification of the embed-
ding x 7→ φ(x); all which matters is the associated kernel K(x′, x′′) ≡ 〈φ(x′), φ(x′′)〉F .
Such a kernel can be an arbitrary real-valued function on X × X satisfying the well-
known Merser conditions (see, e.g., [1], Chapter 3) and can be specified without explicit
reference to the underlying embedding (as it is the case with popular Gaussian kernels
K(x′, x′′) = exp{−‖x′ − x′′‖2

2/σ2} on subsets X of Rn). There are numerous real world

1)The name comes from the fact that the w-component w∗ of the unique optimal solution to (1.1.3) is a linear
combination, with nonnegative coefficients, of the vectors yixi associated with support feature vectors xi from
the training sample – those belonging to the boundary hyperplanes Π± of the widest stripe Π separating S+ and
S−. These support vectors are fully responsible for the resulting classifier – the latter remains unchanged when
one removes from the training sample “non-support” examples.
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situations where affine classification of reasonable quality is impossible in the original at-
tribute space but is possible in a properly defined feature space (that is, with properly
chosen kernel), so that the “flexibility dimension” becomes really vital for the success. At
the same time, utilizing the just outlined option requires various techniques for choosing
and adjusting kernels (and other elements of of SVM models, like the parameter C in
(1.1.4)). These techniques and related experience form the concluding part of the SVM
body of knowledge.

1.2 Computational Machinery of SVMs and Positioning of the
research

Our research is focused on the second major component of the SVM machinery, that is, on
computational tools for processing SVM models. Our major goal is to investigate the potential
in the SVM context of novel “computationally cheap” techniques for extremely large-scale op-
timization, specifically, the Mirror Prox (MP) algorithm originating from [3]. To motivate this
goal, we start with brief outline of the state-of-the-art in modern Convex Optimization.

1.2.1 Modern Convex Optimization and SVMs

Interior Point Methods – advantages and limitations

During the last two decades, the major emphasis in convex optimization was on Interior Point
Methods (IPM) – theoretically efficient polynomial time algorithms capable to obtain high-
accuracy solutions of various families of well-structured convex optimization problems (like those
of Linear, Quadratic and Semidefinite Programming) at a relatively low iteration count. As a
result, today essentially all Convex Programming is “within the reach” of IPMs; in particular,
these methods were used successfully to process SVM models of medium size. However, it
eventually became clear that aside of Linear Programming, the scope of practical applications
of IMP methods is restricted by problems with at most few thousands of decision variables. This
restriction comes from the fact that IPMs have “computationally demanding” iterations with
the number of arithmetic operations growing nonlinearly with the design dimension n of the
problem, namely, as O(n3), unless problem’s data possess favourable sparsity structure. As a
matter of fact, the latter is often the case with Linear Programming programs of real-life origin
and is not the case with nonlinear problems. Fast – cubic – growth of computational effort
per iteration makes it practically too expensive or even impossible to handle problems with
tens and hundreds thousands of design variables – fast, in terms of iteration count, convergence
does not help much when the very first iteration “lasts forever”. In situations like this, high
accuracy turns out to be too computationally expensive; what one would like to do, is “to offer
reduced accuracy at reduced price”, but this is impossible when already a single iteration is too
computationally costly. Note that problems of sizes prohibitively large for IPMs arise in many
applications, including those in SVM.

“Cheap” optimization techniques for extremely large-scale convex problems

From practical viewpoint, design dimension n about 104 makes inapplicable methods with it-
eration cost O(n3); n like 105 and more makes a must nearly linear in n arithmetic cost of
iteration. At the present level of our knowledge, these requirements rule out IPMs and other
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polynomial time methods and leave us with “cheap” first order computational methods like
gradient descent, conjugate gradients, quasi-Newton methods with restricted memory, etc. Our
options are further restricted by the necessity to handle constraints, even simple ones (which do
arise in the SVM context). These limitations imply important theoretical consequences. Indeed,
all known “computationally cheap” optimization techniques are black box oriented – they are
unable to utilize full a priori knowledge of problem’s data and structure and progress solely on
the basis of local information on the problem (the values and the derivatives of the objective
and the constraints) collected along generated sequence of iterates. As a result, these methods
obey limits of performance established by Information-Based Complexity Theory (see, e.g., [5])
which state, in particular, that in the large-scale case, black box oriented methods can exhibit
only slow – sublinear – rate of convergence. The achievable convergence rate depends on the
smoothness of the objective and the geometry of the feasible set and is never better than O(1/t2)
(that is, the inaccuracy in terms of the objective goes to 0 with the number t of objective’s eval-
uations not faster than O(1/t2)); in the large-scale nonsmooth case, the best guaranteed rate of
convergence is as slow as O(1/

√
t). A practical conclusion of the outlined limits of performance

is that in the large-scale case, one cannot hope to get high-accuracy solutions in reasonable
time. Note, however, that in most practical applications there is no need in high-accuracy so-
lutions, already medium-accuracy ones are sufficient. What is really important in large-scale
applications, is whether medium-accuracy solutions can be obtained at dimension-independent
convergence rate, or the corresponding iteration count deteriorates with the problem’s dimen-
sion. And in this respect, there are good news: on problems with favourable geometry (which
is the case for many SVM models), properly designed computationally cheap methods possess
dimension-independent rate of convergence and thus are well-suited for the large-scale case.

It should be added that sometimes, optimization to high accuracy is not merely redundant,

it is even counter-productive. This phenomenon usually takes place in situations where
the optimization by itself is a tool rather than a goal and, besides this, the data of the
optimization problem to be solved are subject to perturbations (e.g., are random). A simplest
example here is the Maximum Likelihood parameter estimation. Closer to our subject,
this is the situation with SVM models as well – what we are interested in, is a classifier
with good generalization error, which is not exactly the same as the classifier with the best
possible classification abilities on our (random!) training sample. What happens in numerous
situations of the outlined type is as follows: at the beginning of the optimization process,
progress in purely optimization terms (that is, progress in the value objective function)
goes along with progress in the “actual quality” of the approximate solution (the estimation
error in the Maximum Likelihood example or the generalization error in the SVM one).
At certain point in time, everything changes – further progress in terms of the objective
function is accompanied by deteriorating, sometimes dramatic, of the “actual” quality of
the solution. This behaviour, called “overfitting” in the SVM literature, admits informal
“phenomenological” explanation as follows: at the beginning of the optimization process,
when the “major portion” of initial non-optimality in terms of the objective function is
eliminated, this happens via adjusting the solution to the “representative” component of the
data. At a certain point, further progress in the objective is caused by adjusting the solution
to “individual”, statistically meaningless, features of the particular data we are handling,
which may be counter-productive as far as our actual goals are concerned. Sometimes we
have in our disposal a possibility to quantify the “actual” quality of an intermediate solution
(in the SVM context, this can be done by testing an intermediate classifier on the validation

sample, see Chapter 5). In situations like this, an optimization process with many cheap
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steps could be more preferable than a process with few expensive ones even when both the
processes require the same overall effort. Indeed, in the first case we can better localize the
“turning point” and as a result end up with a solution of better quality (cf., e.g., numerical
results in Chapter 5).

The fact that simple first order optimization methods are unavoidable when processing large
data sets via SVM is, of course, a common knowledge in the Machine Learning community. What
seems to be not a common knowledge there, are recent advances in the area of these methods,
advances which can make the first order algorithms commonly used in SVMs somehow obsolete.

1.2.2 Recent advances in theory of “cheap” computational methods for ex-
tremely large-scale optimization

Traditionally, “cheap” optimization methods deal with convex optimization programs of the
form

min
x∈X

f(x), (1.2.1)

where X is a simple convex compact set in RN and f(x) is a Lipschitz continuous convex
function on X. A sufficient for our purposes sample of basic results on limits of performance of
black-box-oriented methods on large-scale problems of this type are as follows (for details, see,
e.g., [5, 7, 6, 3])

• The case of ‖ · ‖2-geometry: X is a subset of ‖ · ‖2-ball of radius R in RN .

– [Nonsmooth case] f is Lipschitz continuous, with constant L, convex function on X:
|f(x)− f(y)| ≤ L‖x− y‖2.
Here the unimprovable in the large-scale case efficiency estimate (that is, upper bound
on the residual ε = f(x) − min

X
f in terms of the number t of required steps, with

single evaluation of f(x), f ′(x) per step) is

ε = O(1)
LR√

t
(1.2.2)

(from now on, all O(1)’s are absolute constants).

– [Smooth case] f possesses Lipschitz continuous, with constant L, gradient on X:
‖f ′(x)− f ′(y)‖2 ≤ L‖x− y‖2 for all x, y ∈ X.
Here the unimprovable in the large-scale case efficiency estimate is

ε = O(1)
LR2

t2
(1.2.3)

• The case of ‖ · ‖1-geometry: X is a subset of ‖ · ‖1-ball of radius R in RN .

– [Nonsmooth case] f is Lipschitz continuous, with constant L, convex function on X:
|f(x)− f(y)| ≤ L‖x− y‖1.
Here the unimprovable in the large-scale case efficiency estimate is

ε = O(1)
LR

√
logN√
t

(1.2.4)
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– [Smooth case] f possesses Lipschitz continuous, with constant L, gradient on X:
‖f ′(x)− f ′(y)‖∞ ≤ L‖x− y‖1 for all x, y ∈ X.
Here the unimprovable in the large-scale case efficiency estimate is

ε = O(1)
LR2logN

t2
. (1.2.5)

Note that the outlined efficiency estimates are (nearly) dimension independent; the correspond-
ing methods are “cheap” (single computation of f , f ′ per step plus overhead of O(n)), pro-
vided that X is simple enough. Note that the outlined dimension-independent rate of conver-
gence is impossible when passing from ‖ · ‖2 and ‖ · ‖1-balls X to, e.g., boxes. For example,
when X is the ‖ · ‖∞-ball of radius R and f is convex with Lipschitz continuous gradient:
‖f ′(x) − f ′(y)‖2 ≤ L‖x − y‖∞, the best known efficiency estimates are proportional to the
design dimension N .

As we see, the limits of performance of black-box-oriented methods for solving (1.2.1) heavily
depend on the smoothness properties of the objective. Unfortunately, smoothness is a “rare
commodity” – the cases when one can reformulate a convex problem in the form of (1.2.1) and
end up with both smooth f and “simple” X (the latter is necessary when a cheap optimization
method is sought) are pretty rare.

For example, SVM models (1.1.3), (1.1.4) “as they are” possess smooth convex objectives
but complicated feasible sets. It is not difficult to convert these problems to the form of
(1.2.1) with simple X. For example, assuming w.l.o.g. that E is RN with the standard inner
product, (1.1.3) can be rewritten as

min
‖w‖2≤1,|β|≤1

f(w, β) = max
i
−yi[wT xi + Rβ], R = max

i
‖xi‖2 (1.2.6)

(the optimal value in this problem is minus the geometric margin of the best possible affine
classifier on the training sample). The feasible sets of the resulting problem is a simple
subset of Euclidean ball of radius R, R = max

i
‖x‖i, and the objective is convex Lipschitz

continuous, with constant O(1), function, although a nonsmooth one. Thus, the problem
can be solved with dimension-independent efficiency estimate O(1)Rt−1/2.

A recent (2003) breakthrough in this area, due to Yu. Nesterov [6], is that exploiting a priori
knowledge of the structure of the objective f (in Convex Optimization, this knowledge is a rule
rather than exception), one usually can convert a nonsmooth minimization problem (1.2.1) into
a saddle point problem

min
x∈X

max
y∈Y

φ(x, y) (1.2.7)

with smooth (Lipschitz continuous gradient) convex-concave cost function φ. As a result, in the
case of favourable geometry of X,Y , the dimension-independent efficiency estimate achievable
for “cheap” optimization methods improves from O(1)t−1/2 (see (1.2.2), (1.2.4)) to O(1)t−1.
Note that this acceleration, quite important from the practical viewpoint, does not contradict
the “ultimacy” of the limits of performance of black-box-oriented methods as established by
the Information-Based Complexity Theory, since passing from nonsmooth optimization problem
(1.2.1) to smooth saddle point problem (1.2.7) utilizes a priori knowledge of the structure of the
original objective and thus is not black-box-based.

A simple and important observation of Nesterov made it possible to introduce cheap com-
putational techniques for solving extremely large-scale convex programs by utilizing a priori
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knowledge of problem’s structure – an option which was previously available only in the context
of Interior Point methods (and thus impossible to use in the really large-scale case). During
years 2003 – 2004, three essentially different “cheap” optimization algorithms were developed,
utilizing saddle point reformulation of (1.2.1) were introduced in order to ensure in favourable cir-
cumstances dimension-independent O(1)t−1-rate of convergence. They are called:smoothening
algorithm of Yu. Nesterov [6], Mirror Prox algorithm of A. Nemirovski [3] and Dual extrapola-
tion algorithm of Yu. Nesterov [9].

1.2.3 Goals of the Thesis

The primary goal of our research is to investigate the potential of the outlined recent progress in
“computationally cheap” techniques for extremely large-scale convex optimization in the SVM
context. Specifically, we intend to utilize here the Mirror Prox algorithm. The research focuses
on

(a) representing the SVM optimization programs in the specific saddle point form required
by the algorithm,

(b) adjusting the algorithm to the structure of the SVM problems, and
(c) software implementation and testing the Mirror Prox algorithm on large-scale SVM

data, with the ultimate goal to develop a novel theoretically solid and computationally efficient
optimization techniques for SVM-based large-scale Supervised Binary Classification.

1.3 Structure of Thesis and Overview of results

In this section, we describe the structure of the main body of the Thesis and outline our major
results.

The main body of Thesis consists of four chapters:

• Chapter 2 reviews the basics of the Statistical Learning Theory;

• Chapter 3 presents the necessary background on the Mirror Prox algorithm, which is the
main computational tool we intend to exploit in the SVM context;

• Chapter 4 converts the basic SVM models to saddle point problems to be solved by the
Mirror Prox algorithm;

• Chapter 5 describes our implementation of the MP algorithm as applied to SVM-
originating saddle point problems, discusses and motivates the methodology of our nu-
merical experimentation, present a detailed summary of our numerical results and makes
recommendations and conclusions on processing SVM models via MP.

In more details, the contents of the Thesis can be described as follows.

1.3.1 Statistical Learning Theory

In this section, we primarily overview some well-known SVM-related results on Statistical Learn-
ing Theory; our exposition mainly follows the one in [1], with some extensions which, to the best
of our knowledge, are new. These results form a theoretical justification of the SVM machinery;
roughly speaking, they bound from above the generalization error of a classifier taken from a
given class F in terms of
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(a) the length of the training sample,
(b) the behaviour exhibited by the classifier on this sample, and
(c) the “richness” of the family F of tentative classifiers. When applied to the SVM-based

classifiers, these bounds are as follows.

A. Bounding generalization error via margin. The corresponding result (Theorem 2.3 –
an extension of Theorem 4.18 in [1]) is as follows:

[Theorem 2.3] Let (E, ‖ · ‖ be a κ-regular normed space, let X be a subset of the
centered at the origin ‖ · ‖-ball of radius R, and let γ ∈ (0, R]. Further, let D be a
probability distribution on X × {−1, 1}, ` be a positive integer and δ ∈ (0, 1). Then
the following is true, up to D-probability of bad sampling ≤ δ:

If S = {(x1, y1), ..., (x`, y`)} is an `-element training sample drawn from D and an
affine function

f(x) = 〈w, x〉+ b

with ‖w‖∗ ≤ 1 and |b| ≤ R has margin γ on S:

yif(xi) ≥ γ i = 1, ..., `,

then the generalization error of the classifier sign(f(x)) admits upper bound as fol-
lows:

errD(f) ≤ O(1)
`

[
κ

R2

γ2
log2

(
`
R

γ

)
+ log

2
δ

]
. (1.3.1)

The prototype of this statement – Theorem 4.18 in [1] – deals with the case when (E, ‖ · ‖) is a
Hilbert space with the inner product norm and 〈·, ·〉 is the inner product on E; to the best of
our knowledge, this is the only situation considered in the literature so far. The novelty is that
we allow for (E, ‖ · ‖) to be a κ-regular normed space, where the latter notion, taken from [4])
is defined as follows: Let E be a normed space with a norm ‖ · ‖, and let π(x) be an equivalent
norm on E, that is, π(·) is another norm on E satisfying the relation

∀x ∈ E : ‖x‖2 ≤ π2(x) ≤ cπ‖x‖2 (∗)

with a certain constant cπ < ∞. The notion of a κ-regular normed space (E, ‖ · ‖) is defined as
follows (see [4]):

Definition 2.4Let (E, ‖ · ‖) be a normed space.

(i) Let π(·) be a norm on E which is equivalent to ‖ · ‖, and r be a positive real.
We say that π(·) is r-smooth, if the function P (x) = π2(X) is continuously Frechet
differentiable and satisfies the inequality

∀(x, z ∈ E) : P (x + z) ≤ P (x) + 〈P ′(x), z〉+ rP (z).

(ii) Let κ be a positive real. We say that ‖ · ‖ is κ-regular, if there exists r and r-
smooth norm π(·) on E such that rcπ ≤ κ, where cπ is the “compatibility constant”
of π(·) and ‖ · ‖, see (∗).

Basic examples of regular normed spaces include, e.g.,
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1. Hilbert space. The inner product norm ‖x‖E =
√〈x, x〉E on a Hilbert space E with inner

product 〈·, ·〉E clearly is 1-smooth. Consequently, a Hilbert space is 1-regular;

2. Spaces `p(M), 2 ≤ p < ∞. Let M be a set, and let 1 ≤ p < ∞. The space `p(M) is
comprised of all real-valued functions φ(·) on M with countable supports {µ ∈ M : φ(µ) 6=
0} and finite ‖ · ‖p-norms

‖φ(·)‖p =


 ∑

µ∈M

|φ(µ)|p



1/p

;

the linear operations on `p(M) are defined in the standard point-wise fashion. The space
`∞(M) is defined similarly, up to the fact that now we define the norm (and require it to
be finite) as

‖φ(·)‖∞ = sup
µ∈M

|φ(µ)|.

It is easily seen (see [4]) that when 2 ≤ p < ∞, the norm ‖ · ‖p is r-smooth with r = p− 1.
Thus,

The spaces `p(M), 2 ≤ p < ∞, are (p− 1)-regular.

The upper bounds on the “level of regularity” κ in the above example deteriorates when
p →∞. This indeed happens in the case of an infinite-dimensional space; however, in the
finite-dimensional situation κ can be bounded, uniformly in 2 ≤ p ≤ ∞, solely in terms of
the dimension, and this bound extremely slowly – logarithmically - deteriorates with the
dimension, as can be seen from the following example:

Space `p(M), 2 ≤ p ≤ ∞, associated with a finite set M , is κ-regular with

κ ≤ O(1)min{p− 1, log(Card(M) + 1)},

where O(1) is an appropriate absolute constant.

For more examples of regular normed spaces, see Section 2.3.1
In Theorem 2.3, 〈ξ, x〉 is the value of a continuous linear functional ξ on a vector x ∈ E, and

‖ξ‖∗ = sup|〈ξ, x〉|, x ∈ E : ‖x‖ ≤ 1 is the conjugate (to norm ‖ · ‖) norm on the dual to (E, ‖ · ‖)
space E∗ of continuous linear functionals on E; in the case of Hilbert space E with the inner
product norm ‖·‖, E∗ is canonically identified with E; with this identification, ‖·‖∗ becomes ‖·‖,
and Theorem 2.3 becomes a well-known standard result of Machine Learning theory. The power
of the latter result in the SVM context comes from the fact that the associated upper bound on
the generalization error is “dimension-independent” – what matters is solely the ratio R/γ of the
Hilbert ball containing the set of tentative feature vectors to the geometric margin γ exhibited
by the (normalized) affine classifier on the training sample. The dimension-independent nature
of the result allows to work with extremely high-dimensional, and even infinite-dimensional,
Hilbert feature spaces. Theorem 2.3 extends this option to a much wider family of feature
spaces. As an extreme example, consider the case where E is the space `∞(M) associate with
a finite set M , that is, E is the space RN of the dimension N = Card(M) equipped with the
uniform norm ‖ · ‖∞. Here E∗ can be naturally identified with E = RN ; with this identification,
〈ξ, x〉 becomes just ξT x, and ‖ · ‖∗ becomes the norm ‖ · ‖1 on E∗ = E = RN . The problem of
finding a normalized classifier with the largest possible geometric margin on the training sample
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becomes now the popular SVM model with ‖ · ‖1-normalization of tentative classifiers. Theorem
2.3 states that the “generalization abilities” of this model are, up to factor logN , the same as
for the standard “Euclidean” model with ‖ · ‖2 in the roles of ‖ · ‖ and ‖ · ‖∗. Thus, unless
the dimension of the feature space becomes astronomically large, ‖ · ‖1-SVMs (that is, SVM
models obtained from (1.1.3) by replacing the objective ‖w‖2

2 ≡ 〈w, w〉 with ‖w‖2
1) are nearly as

theoretically valid as the standard ‖ · ‖2-SVMs (1.1.3).

In this respect, it is worthy to mention that in a ‖ · ‖1-SVM we are seeking to separate the
sets S+ = {xi : yi = 1} and S− = {xi : yi = −1} of the positive and the negative training
input vectors by a stripe with the largest possible ‖ · ‖∞-width, while in the ‖ · ‖2-model the
goal is to find the separating strip of the largest ‖ · ‖2-width. One could think that since
the ‖ · ‖∞-width of a strip always is ≤ the ‖ · ‖2-width, the ‖ · ‖1-SVM always is inferior as
compared to the ‖ · ‖2-one – the numerical value γ1 of the geometric margin in the former
model always is ≤ the value γ2 of the margin in the latter model. This conclusion, however,
overlooks the fact that what matters is not the numerical value of the geometric margin
itself, but the ratio of this value to the radius R of the smallest ball containing the set X

of tentative input vectors. For ‖ · ‖1-SVM, R = R1 should be taken w.r.t. the norm ‖ · ‖∞,
and for ‖ · ‖2-SVM, R = R2 should be taken w.r.t. the norm ‖ · ‖2. It is clear that R1 ≤ R2,
so that in the ratios γ1/R1 and γ2/R2 to be compared both numerators and denominators
are linked by similar inequalities. As a result, we cannot say in advance which one of the
ratios is larger (that is, which one of the SVM models is better from the viewpoint of the
generalization error); the answer depends on the particular geometry of X, and there are
cases when ‖ · ‖1-SVM is much better than the ‖ · ‖2-one. This observation, we believe,
makes it clear that our extension of bounds on generalization error from the case of a Hilbert
feature space to the case of a regular feature space is more than just an academic exercise.

B. Bounding generalization error via margin and margin slacks. The corresponding
result (Theorem 2.4 – an extension of Theorems 4.22 and 4.24 in [1]) is as follows:

[Theorem 2.4] Let (E, ‖ · ‖) be a κ-regular normed space, and let X be a subset of
the centered at the origin ‖ · ‖-ball of radius R. Let us fix p ∈ [2,∞] with p < ∞
when X is infinite, and real γ ∈ (0,

√
2R].

Further, let D be a probability distribution on X × {−1, 1} such that

Prob((x,y),(x′,y′))∼D×D{x = x′, y 6= y′} = 0,

` be a positive integer and δ ∈ (0, 1). Then the following is true, up to D-probability
of bad sampling ≤ δ:

If an affine function

f(x) = 〈w, x〉+ b

with |b| ≤ √
2R has on `-element training sample S = {(x1, y1), ..., (x`, y`)} drawn

from D slack variable vector ξ w.r.t. γ, S:

ξi = max[0, γ − yif(xi)], i = 1, ..., `,

such that √
‖w‖2∗ + R−2‖ξ‖2

p∗ ≤ 1, p∗ =
p

p− 1
,
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then f induces a classifier with generalization error satisfying the bound

errD ≤ O(1)
`

[
κ̂(p)

R2

γ2
log2

(
`
R

γ

)
+ log

2
δ

]
,

where, for all regular spaces listed so far,

κ̂ ≤ O(1) [κ + min[p− 1, logCard(X)]] .

Here again we manage to extend the theoretical results known for the case of Hilbert feature
space E with the inner product norm ‖ · ‖ = ‖ · ‖E and for the Euclidean norm ‖ · ‖2 of the
slack vector (p = 2) to the case of regular normed spaces (E, ‖ · ‖) and ‖ · ‖ p

p−1
-norm of the slack

vector, with p ∈ [2,∞) for general X and p ∈ [2,∞] for finite X.

1.3.2 Background on the Mirror Prox algorithm

In Chapter 3, we present the detailed description of the construction and the convergence prop-
erties of the Mirror Prox algorithm developed in [3]. For the time being, it suffices to indicate
that the performance of this algorithm depends on the choice of a distance-generating function;
this choice allows to adjust, to some extent, the MP to the geometry of the saddle point problem.
Our presentation, as compared to [3], contains few minor novelties aimed at “good” choice of the
distance-generating function for a couple of geometries (p-balls with 1 < p ≤ 2 and “extended
simplexes”), which were not considered in [3]; these novelties are summarized in Proposition 3.3.

1.3.3 Saddle Point reformulations of the SVM models

In Chapter 4, we make the major step towards our ultimate goal of processing SVM models
via the Mirror Prox algorithm. Specifically, we derive here the saddle point reformulations of
SVM models (recall that this is problem’s format required by MP). We present the required
reformulations (see (4.2.4), (4.3.4), Theorem 4.1)) for a wide variety of SVM’s, both kernel-
generated and plain ones. In both cases, the SVM models build an affine classifier in the feature
space. For the kernel-generated models, the final form of this classifier is

f(x) =
∑̀

i=1

K(x, xi)yjαi + b, (1.3.2)

where K(x′, x′′) : X×X → R is a given Merser kernel on the set X of tentative values of attribute
vectors, xi are the attribute vectors from the training sample, yi are their labels, and αi are the
“weights” finally yielded by the optimal solution to an SVM-type optimization problem (which
we further convert to a saddle point problem); in the SVM slang, (1.3.2) represents the desired
classifier as a combination of support input vectors. In contrast to this, in a plain SVM model
we work directly in the feature space (which we always assume to be certain RN ) and look for
an affine classifier in the form of

f(x) = wT φ(x) + b

where x → φ(x) is a given “lifting” of attribute vectors into the feature space.
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We demonstrate that in all cases, the saddle point reformulations of various SVM “soft
margin” models are of the generic form

min
ζ:‖ζ‖≤ρ

max
λ∈B+

p (1):
∑
i

yiλi=0

[∑
i

λi + λT Qζ

]
,

[
B+

p (1) = {λ ≥ 0 : ‖λ‖p ≤ 1}
] (1.3.3)

where

• ζ stands for the vector of “primal variables” (either α, or w, depending on whether we are
working with a kernel-generated or a plain SVM model);

• ‖ζ‖ is an appropriate norm (which is either the kernel-generated 2-norm ‖ζ‖2
K =∑

i,j
ζiζjyiyjK(xi, xj), or ‖ · ‖r with 1 ≤ r ≤ 2),

• parameter p ∈ [2,∞] is responsible for how we measure the norm of the margin slack
vector ξ (the latter norm is ‖ξ‖ p

p−1
);

• parameter ρ > 0 is a setup parameter of the SVM model (cf. parameter C in (1.1.4))

• Q is a given matrix.

1.3.4 Implementation, experimentation, numerical results and conclusions

In concluding Chapter 5, we

1. Work out in full details algorithmic implementation of the MP algorithm as applied to
(1.3.3) (Section 5.1).

2. Present our experimentation methodology and describe the data sets used in our experi-
ments (Section 5.2).

3. Describe the numerical results yielded by our experiments (Section 5.3) and formulate
recommendations and conclusions suggested by these results (Section 5.4).

A brief overview of our experimentation methodology is as follows. Since our goal is to investigate
the potential of the Mirror Prox algorithm in the SVM context rather than to process specific
classification problems, we focused solely on plain SVM models; in our opinion, this restriction
should not cause much bias in answering the question we are actually interested in, while allowing
at the same time to avoid time-consuming (and essentially irrelevant in our context) issues
of choosing appropriate kernels and adjusting their parameters for various data sets. In our
MATLAB-based experimentation, we use 17 data sets, mainly found in Internet; 9 of these 17
data sets are qualified as “large-scale ones”, with attribute(≡feature) dimensions varying from
500 to 100,000 and sizes of training samples varying ftom 40 to 15,000, while the remaining 8
data sets were medium- and low-dimensional (attribute dimension from 8 to 166). Every one
of these data sets was processed several times, with different parameters ρ, p, r of the SVM
model and in relevant cases – with several competitive MP setups, with the total number of
experiments amounting to 316. Our goal was to evaluate the performance characteristics of MP
in the particular SVM context we are interested in rather than to characterize the performance
of MP from purely optimization perspective. In particular, we paid systematic attention to
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what happens with the generalization error, as evaluated on dedicated validation sample, of
intermediate classifiers generated in course of running the method.

Detailed statistical data on various performance characteristics of different versions of MP
as recorded in our experiments are presented in Section 5.3; here we restrict ourselves with just
few highlights:

• MP yielded classifiers of quite respectable quality with average generalization error, as
evaluated on the validation samples, about 19% in all experiments, and about 18% in
large-scale experiments. In about 50% of the latter experiments, the validation error was
below 10%;

• The quality of the classifiers yielded by MP was better than the one for classifiers yielded
by “precise” Interior Point methods (see the above comments on “overfitting”), and these
classifiers were obtained much faster than with the IPM’s. For example, the total CPU time
used to build “good” classifiers for all 9 of our large-scale data sets by the recommended
version of MP (the one with early termination and p = r = 2, see Section 5.3.2) was as
small as 455 sec, which is less than 15% of the CPU time required to process just one
of these data sets by a high-performance commercial IPM solver mosekopt. It should
be added that the IPM solver failed to process one of the large-scale data sets (“out of
memory” abnormal termination) and failed to meet its built-in convergence criteria on two
other large-scale data sets. In contrast to this, computational behaviour exhibited in our
experiments by MP was quite reliable.

The bottom line, as suggested by our experimental results, is as follows:

The Mirror Prox algorithm seems to be a highly attractive computational tool for processing
large-scale SVM models; it allows to get reasonably good classifiers at an essentially lower
computational cost than the Interior Point polynomial time methods. In addition, the quality
of MP-originating classifiers in all our experiments has never been worse, and in many cases –
essentially better than the quality of classifiers associated with the precise Interior Point solutions
to the corresponding optimization models.
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Chapter 2

Basics from Statistical Learning
Theory

In this Chapter, we outline some basic facts of Statistical Learning Theory, one of the two major
components of our research. The presentation follows, with certain modifications (which might
be of interest by their own right), the one in [1], Section 4.3.

2.1 The setup

In what follows, we focus on the basic model of supervised learning with binary classification.

2.1.1 The model

The basic model of supervised binary classification is as follows. There exists an unknown
probability distribution D supported on a given set X × {−1, 1}, so that realizations of the
corresponding random variable, called examples, are pairs (x, y), where x ∈ X and y = ±1 (y is
called the label of the example). If not otherwise stated, we assume from now on, that X is a fi-
nite, although perhaps a very large, set. We are given a training sample S = {(x1, y1), ..., (x`, y`)}
of ` examples drawn, independently of each other, from the distribution D, and our goal is to
build, based on this data, a classifier – a function f(z) : X → R which we intend to use to
“predict” the label y of a new example (z, y) given the z-part of the example. The predicted
label, by definition, is

ŷ = sign(f(z)), (2.1.1)

where for a real a sign(a) equals to 1 if a ≥ 0 and equals to 0 otherwise.
The quality of a classifier f is measured by its generalization error

errD(f) ≡ ProbD {(x, y) : sign(f(x)) 6= y} . (2.1.2)

Our ideal goal would be to find for a given S a classifier belonging to a pre-specified class F of
functions f : X → R with as small generalization error as possible.

Based on the results of the Statistical Learning Theory we are interested in providing an
upper bounds on the generalization error in terms of:

(a) The capacity (“richness”) of the family F of potential classifiers.
(b) The cardinality ` of the training sample.
(c) The behaviour of a particular classifier f ∈ F on the training sample.
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The role of results of this type in building classification algorithms stems from the fact that
they, essentially, say what kind of behaviour on a given training sample S should we require from
a classifier f ∈ F in order to have an appropriate generalization error. With this understanding
at hand, we can choose a classifier with the best possible, over f ∈ F , behaviour on S.

In fact, the existing results of Statistical Learning Theory are too rough to yield re-
ally accurate bounds on the generalization error of candidate classifiers. Besides this,
there are situations when it is too difficult computationally to implement straight-
forwardly theoretical recommendations (to optimize the corresponding criterion over
f ∈ F). As a result, the theory, essentially, suggests the structure of the criterion to
be optimized, while “fine tuning” of the criterion is upon the researcher working on
a particular application.

2.1.2 Reliability of error bounds

An immediate observation is that aside of trivial cases, one never can guarantee such a desired
upper bound on the generalization error of a classifier from a given family F and a given training
sample. Indeed, the training sample S is drawn from D at random, and thus has chances to be
“pathological” (e.g., be of large cardinality, but with very close to each other, or even identical
to each other, examples; given such a “low informative” sample, one hardly can build upon it a
good classifier). To overcome this difficulty, the theoretical error bounds include a (un)reliability
parameter δ, and a typical result on theoretical error bound looks as follows:

(*) Let X and F satisfy certain assumptions, let S be a training sample of cardinality
`, and let f ∈ F exhibit a certain behaviour on S. Then, up to probability of “bad
sampling” ≤ δ, the generalization error of f does not exceed a certain quantity (the
latter quantity may depend on `, F , the quantities characterizing the behaviour of
f on S and on δ).

Here the words “up to probability of bad sampling ≤ δ” mean the following. (*) means im-
plication of the form “If f exhibits certain behaviour on S, then the generalization error of f
does not exceed certain quantity”. In general, the validity of this implication can depend on
S – the implication can be true for “good” training samples and false for bad ones. Since S is
random, we may speak about the “probability mass” of bad training samples (those for which
the implication is false). The precise meaning of (*) is that the probability mass of bad training
samples is ≤ δ.

2.2 Bounds on the generalization errors

2.2.1 Quantifying capacity of F
From the Statistical Learning Theory we are interested to learn about the “capacity” of a pre-
specified class of potential classifiers. The capacity is measured by the covering numbers of the
class, which are defined as follows.

Definition 2.1 [cf. [1], Definition 4.8] Let X be a set, F be a family of real-valued functions
defined on X, let γ > 0, and let ` be a positive integer.

(i) Given a sequence M of ` points x1, ..., x` ∈ X, we say that a finite subset B ⊂ F is
a γ-net for M , if the restriction on M of every function f ∈ F can be approximated, within
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accuracy γ, by the restriction onto M of an appropriately chosen function g ∈ B. Thus, B ⊂ F
is a γ-net for M if and only if

∀(f ∈ F)∃g ∈ B : |f(xi)− g(xi)| < γ, i = 1, ..., `.

We define the quantity M(F ,M, γ) as the minimal, over all γ-nets for M , cardinality of the
net.

(ii) We define the `-th covering number of F as the quantity

N (F , `, γ) = max
M

{M(F , M, γ) : M = (x1, ..., x`) with xi ∈ X}

For X, F fixed, the covering numbers form a function of `; this function depends on γ as on a
parameter and clearly grows as γ > 0 decreases.

2.2.2 Quantifying behaviour of a classifier on a sample: margin and margin
slacks vector

The behaviour of a potential classifier f ∈ F on a given training sample S = {(x1, y1), ..., (x`, y`)}
is quantified by its margin slack vector with respect to a given margin γ > 0. Those notions are
defined as follows:

Definition 2.2 [cf. [1], Definition 4.20] Let f : X → R, let γ > 0 be a real, and
S = {(x1, y1), ..., (x`, y`)} be training sample with ` examples.

(i) We say that f has margin γ on S, if

yif(xi) ≥ γ, i = 1, ..., `

(that is, f separates by 2γ the positive (yi = 1) and the negative (yi = −1) examples from the
training sample: f(xi) ≥ γ for positive examples, and f(xi) ≤ −γ for negative ones.)

(ii) The margin slack vector ξ of f w.r.t. S, γ is defined as the vector from R` with the
coordinates

ξi = max[0, γ − yif(xi)]

Note that the margin slack vector ξ of f w.r.t. S, γ is always nonnegative, and it is zero if and
only if f has margin γ on S. ξ can be though of as the vector of smallest corrections in the
values f(xi), i = 1, ..., ` ensuring that the corrected classifier has margin γ on S.

2.2.3 Bounds on generalization error in terms of margin and covering num-
bers

The first result of the Statistical Learning Theory which will be important for us is as follows:

Theorem 2.1 [[1], Theorem 4.9] Let γ > 0, let F be a set of real-valued functions on X, D be a
probability distribution on X ×{−1, 1}, let ` be a positive integer and δ > 0. Then the following
is true, up to D-probability of bad sampling ≤ δ:

if S is an `-element training sample and f has margin γ on S, then

errD(f) ≤ 2
`

[
log2 (N (F , 2`, γ/2)) + log2

2
δ

]
. (2.2.1)
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Theorem 2.2.1 gives an upper bound on the generalization error in terms of the margin γ
exhibited by a candidate classifier on the training sample; the larger is the margin, the smaller
is the bound (recall that covering numbers N (F , 2`, γ/2) can only decrease when γ increases).
Thus, Theorem suggests to quantify the behaviour of a candidate classifier f on training sample
S by the margin of f on S and to take, as a classifier yielded by S, the classifier f ∈ F which
has as large margin on S as possible.

Bounding the covering numbers

Theorem 2.1 expresses the bounds on the generalization error in terms of classifier’s behaviour
on training sample (the margin) and the covering numbers of F . To extract from this Theorem
the actual error bounds, one needs to evaluate these latter quantities. This can be done in terms
of fat-shattering dimension fatF (γ) defined as follows.

Definition 2.3 [cf. [1], Definition 4.12] Let F be a family of real-valued functions on X and let
γ > 0.

(i) Given a set M = {x1, ..., x`} ⊂ X of cardinality `, we say that M is γ-shattered by F ,
if there exist reals r1, ..., r` such that for every partition of the index set I = {1, ..., `} into two
non-overlapping subsets I+ and I− there exist f ∈ F such that

f(xi)

{
≥ ri + γ, i ∈ I+

< ri − γ, i ∈ I−

(ii) The fat-shattering dimension fatF (γ) is the largest ` such that there exists `-element
subset of X which is γ-shattered by F .

The fact that F γ-shatters M says that the restriction of F on M is a “rich enough” family of
functions on M ; namely, for every partition of M into two non-overlapping parts there exists a
function f ∈ F such that f(·) is ≥ r(·) + γ on the first part and f(·) < r(·) − γ on the second
part; here r(·) is a function associated with M (and thus independent of the partition). The
definition of fat-shattering dimension makes sense when γ = 0, and fatF (0) is very similar to
the famous Vapnik-Chervonenkis (VC) dimension of F (the latter is defined exactly in the same
fashion as fatF (0), up to the fact that all ri in (i) are set to 0).

The relation between the covering numbers and the fat-shattering dimension of F is given
by the following proposition:

Proposition 2.1 [[1], Lemma 4.13] Let F be a family of real-valued functions on X taking
values in a finite segment [a, b] on the axis. For 0 < γ < b− a, and all integer ` ≥ d ≡ fatF (γ),
one has

log(N (F , `, γ)) ≤ 1 + d log
(

2e` · b− a

γ

)
log

(
4`

(b− a)2

γ2

)
. (2.2.2)

Proposition (2.1) says that as far as the dependence of the bound (2.2.2) on F is concerned,
the bound is “nearly proportional” (that is, proportional up to a logarithmic factor) to the
fat-shattering dimension fatF (γ) of F . Thus, computing the upper bound (2.2.2) on the gener-
alization error of a candidate classifier reduces to bounding the fat-shattering dimension fatF (γ)
of F . In the context of SVM, this latter problem should be solved for the simple case when F
is comprised of affine functions, and this is the case we are about to consider.
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2.3 Affine classifiers

From now on, we assume that our “universe” X is a bounded subset of real vector space E
equipped with a norm ‖·‖, and that our family F of potential classifiers is the family FAff(E, ‖·‖)
of normalized affine functions on E.

The family FAff(E, ‖ · ‖) is defined as follows. Let E∗ be the space of continuous linear
functionals on E. As usual, we denote the value of a functional w ∈ E∗ at a vector x ∈ E by
〈w, x〉, so that 〈w, x〉 is bilinear in w ∈ E∗ and x ∈ E. Space E∗ is equipped with the dual norm

‖w‖∗ = sup
x∈E

{〈w, x〉 : ‖x‖ ≤ 1} .

Note that by definition of this norm, we have

|〈w, x〉| ≤ ‖w‖∗‖x‖ ∀w, x; (2.3.1)

in fact, for every x ∈ E there exists w ∈ E∗, ‖w‖∗ = 1, which makes this inequality an equality
(Hahn-Banach Theorem).

The family FAff(E, ‖ · ‖) is comprised of all affine functions

f(x) = 〈w, x〉+ b

with w running through the unit ‖ · ‖∗-ball of E∗:

FAff(E, ‖ · ‖) = {f(x) = 〈w, x〉+ b : w ∈ E∗, ‖w‖∗ ≤ 1} . (2.3.2)

Remark 2.1 Note that in the context of binary classification, the classifiers f(·) and λf(·),
λ > 0, are exactly the same, since what counts, is sign(f(·)). It follows that “learning abilities”
of the family of all (continuous) affine classifiers are exactly the same as those of classifiers
from FAff(E, ‖ · ‖). The only purpose of the normalization ‖w‖∗ ≤ 1 is to simplify the definition
of the margin of a classifier on a training sample; without normalization, we were supposed to
define the margin as min

i
f(xi)/‖w‖∗.

2.3.1 Bounding the fat-shattering dimension of the family of normalized
affine functions

To the best of our knowledge, the traditional Statistical Learning Theory deals with computing
the fat-shattering dimension of the family of normalized affine functions only in the case when
E is a Hilbert space and ‖ · ‖ is the inner product norm on E:

‖x‖ =
√

(x, x).

Here (·, ·) denotes the inner product on E. In this case, E∗ can be canonically identified with E;
specifically, every w ∈ E defines a continuous linear form (w, ·) on E, and the resulting mapping
of E into E∗ is a norm preserving one-to-one correspondence between E and E∗. In the sequel,
we extend the results on fat-shattering dimension of FAff from the case of Hilbert space E to
a wider family of normed spaces, the so called spaces of type 2, or, as we prefer to call them,
κ-regular normed spaces.
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Regular normed spaces. Let E be a normed space with a norm ‖ · ‖, and let π(x) be an
equivalent norm on E, that is, π(·) is another norm on E satisfying the relation

∀x ∈ E : ‖x‖2 ≤ π2(x) ≤ cπ‖x‖2, (2.3.3)

with certain constant cπ < ∞. The notion of a κ-regular normed space (E, ‖ · ‖) is defined as
follows (see [4]):

Definition 2.4 Let (E, ‖ · ‖) be a normed space.
(i) Let π(·) be a norm on E which is equivalent to ‖ · ‖, and r be a positive real. We say

that π(·) is r-smooth, if the function P (x) = π2(X) is continuously Frechet differentiable and
satisfies the inequality

∀(x, z ∈ E) : P (x + z) ≤ P (x) + 〈P ′(x), z〉+ rP (z). (2.3.4)

(ii) Let κ be a positive real. We say that ‖ · ‖ is κ-regular, if there exists r and r-smooth
norm π(·) on E such that rcπ ≤ κ, where cπ is the “compatibility constant” of π(·) and ‖ · ‖, see
(2.3.3).

Here are basic examples of regular normed spaces:

1. Hilbert space. The inner product norm ‖ · ‖E on a Hilbert space E clearly is 1-smooth.
Consequently, a Hilbert space is 1-regular (take π(·) ≡ ‖ · ‖E).
Note that Hilbert spaces are “as regular as a normed space could be”. Indeed, setting x = 0 in
(2.3.4), we see that r ≥ 1; from (2.3.3) follows that cπ ≥ 1 as well, so that nontrivial (that is, of
positive dimension) κ-regular spaces with κ < 1 do not exist.

2. Spaces `p(M), 2 ≤ p < ∞. Let M be a set, and let 1 ≤ p < ∞. The space `p(M) is
comprised of all real-valued functions φ(·) on M with countable supports {µ ∈ M : φ(µ) 6=
0} and finite ‖ · ‖p-norms

‖φ(·)‖p =


 ∑

µ∈M

|φ(µ)|p



1/p

;

the linear operations on `p(M) are defined in the standard point-wise fashion. The space
`∞(M) is defined similarly, up to the fact that now we define the norm (and require it to
be finite) as

‖φ(·)‖∞ = sup
µ∈M

|φ(µ)|.

It is easily seen (see [4]) that when 2 ≤ p < ∞, the norm ‖ · ‖p is r-smooth with r = p− 1.
Thus,

The spaces `p(M), 2 ≤ p < ∞, are (p− 1)-regular.

Note that the Hilbert space case is covered by the latter result, where one should set p = 2.

3. Similarly to the previous item, the functional spaces Lp(Ω) associated with a measure µ
on a closed subset Ω ⊂ RN are (p− 1) regular whenever 2 ≤ p < ∞.

4. The space Mm,n of m × n matrices (m, n < ∞) equipped with the norm |A| = ‖σ(A)‖p,
where σ(A) is the vector of singular values of A, is (2p− 1)-regular, provided 2 ≤ p < ∞.
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The upper bounds on the “level of regularity” κ in the above examples deteriorates when p →
∞. This indeed happens in the case of an infinite-dimensional space; however, in the finite-
dimensional situation κ can be bounded, uniformly in 2 ≤ p ≤ ∞, solely in terms of the
dimension, and this bound extremely slowly – logarithmically - deteriorates with the dimension,
as can be seen from the following examples:

1. Space `p(M), 2 ≤ p ≤ ∞, associated with a finite set M , is κ-regular with

κ ≤ O(1)min{p− 1, log(Card(M) + 1)}, (2.3.5)

where O(1) is an appropriate absolute constant.
Indeed, we already know that `p(M) is (p − 1)-regular independently of whether M is or is not finite. Now let M
be of finite cardinality N . W.l.o.g. we may assume that N ≥ exp{2}, since otherwise (2.3.5) is evident. When
2 ≤ p ≤ logN , (2.3.5) holds true, since the minimum in the right hand side is p − 1. When p > logN ≥ 2, we can
use the evident relation

2 ≤ s ≤ s′ ≤ ∞⇒ ‖x‖s ≤ ‖x‖s′ ≤ N
1
s′−

1
s , x ∈ RN

to conclude that when choosing π(x) = ‖x‖logN , (2.3.3) holds true with an absolute constant (namely, exp{2})
in the role of cπ . Since the norm ‖ · ‖logN is, as we already know, (logN − 1)-smooth, we conclude that ‖ · ‖p is

O(1)logN -regular.

2. Space Mm,k of m× k matrices equipped with the norm | · |p, 2 ≤ p ≤ ∞, is κ-regular with

κ = O(1) min{p, log(min[m, k] + 1)}.

An important fact on κ-regular normed spaces is as follows:

Proposition 2.2 [see [4]] Let E, ‖·‖ be κ-regular, and let ηi, i = 1, ..., n, be independent random
vectors taking values in E and such that

E{ηi} = 0, E{‖ηi‖2} < ∞, i = 1, ..., n.

Then

E

{
‖

n∑

i=1

ηi‖2

}
≤ κ

n∑

i=1

E{‖ηi‖2}. (2.3.6)

Proof. Let us set Si =
i∑

s=1
ηs, i = 1, ..., n, and let π(·) be an r-smooth norm on E satisfying

(2.3.3) and such that rcπ ≤ κ. Setting P (x) = π2(x), we have

E{P (Si+1)} ≤︸︷︷︸
(a)

E {P (Si) + 〈P ′(Si), ηi+1〉+ rP (ηi+1)}

=︸︷︷︸
(b)

E {P (Si) + rP (ηi+1)}

≤︸︷︷︸
(c)

E {P (Si)}+ rcπE
{‖ηi+1‖2

}
,

where (a) is given by (2.3.4), (b) comes from the fact that E{ηi+1} = 0 and ηi+1 is independent
of Si, and (c) comes from the definition of P (·) and from the second inequality in (2.3.3). From
the resulting recurrence and the fact that rcπ ≤ κ it follows that

E

{
π2(

n∑

i=1

ηi)

}
≤ κ

n∑

i=1

E{‖ηi‖2}.

Invoking the left inequality in (2.3.3), formula (2.3.6) follows.

33



Bounding the fat-shattering dimension. We are now in a position to estimate the fat-
shattering dimension of FAff(E, ‖ · ‖) w.r.t. X ⊂ E. The result is as follows:

Theorem 2.2 Let (E, ‖ · ‖) be a κ-regular space, and let X be a subset of a ‖ · ‖-ball, centered
at the origin, of radius R. Then

fatFAff(E,‖·‖)(γ) ≤ 18κ
R2

γ2
. (2.3.7)

Proof mimics, with some modifications, the proof of Theorem 4.16 in [1].

10. Let us set E+ = E×R2, so that a generic element of E+ is (x, u) with x ∈ E and u ∈ R2.
We equip E+ with the norm

‖(x, u)‖ =
√
‖x‖2 + ‖u‖2

2;

note that the dual to E+ space E∗
+ clearly can be identified with E∗ ×R2, with

〈(w, v), (x, u)〉 = 〈w, x〉+ vT u

and
‖(w, v)‖∗ =

√
‖w‖2∗ + ‖v‖2

2.

Moreover, E+ is κ-regular. Indeed, if π(·) is an r-smooth norm on E which is cπ-compatible
with the norm ‖ · ‖ on E in the sense of (2.3.3) and rcπ ≤ κ, then the norm

π+((x, u)) =
√

π2(x) + ‖u‖2
2

on E+ clearly is r-smooth and satisfies the relation

‖(x, u)‖ ≤ π+((x, u)) ≤ cπ‖(x, u)‖ ∀(x, u) ∈ E+,

and therefore E+ is κ-regular.

20. Now let γ > 0, and let M = {x1, ..., x`} be a subset of X which is γ-shattered by F ≡
FAff(E, ‖ · ‖), and let ri, i = 1, ..., `, be the associated reals given by Definition 2.3. We should
prove that ` does not exceed the right hand side of (2.3.7); there is nothing to prove when ` = 1,
thus, we assume that ` ≥ 2.

We start with several simple observations.
(a) The property of the pair M, {r1, ..., r`} expressed in Definition 2.3 remains unchanged when
we simultaneously shift all ri’s by the same quantity ∆.
Indeed, let r+

i = ri + ∆, and let I+ ∪ I− be a partition of the index set I = {1, ..., `}; we should
verify that there exists an affine function

f+(x) = 〈w, x〉+ b+, ‖w‖∗ ≤ 1

satisfying the relations

f+(xi)

{
≥ r+

i + γ, i ∈ I+

< r+
i − γ, i ∈ I−

, (2.3.8)

observe that due to the origin of M, {r1, ..., r`}, there exists an affine function

f(x) = 〈w, x〉+ b, ‖w‖∗ ≤ 1,
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which satisfies relations of the same type as in (2.3.8), but with r+
i = ri + ∆ replaced with ri.

It follows that setting b+ = b + ∆, we get a function which indeed satisfies (2.3.8).
In view of (a), we can assume w.l.o.g. that

ρ ≡ max ri = −min ri (2.3.9)

(to this end, it suffices to shift ri’s by ∆ = −1
2

[
min

i
ri + max

i
ri

]
).

(b) We have ρ + γ ≤ R.
Indeed, recall that ` ≥ 2, so that w.l.o.g. we may assume that −ρ = r1 ≤ r2 ≤ ... ≤ r` = ρ.
Consider a partitioning I = I+ ∪ I− such that 1 ∈ I− and ` ∈ I+. There should exist a function

f(x) = 〈w, x〉+ b

such that f(x1) < r1 − γ ≡ −ρ− γ and f(x`) ≥ r` + γ = ρ + γ, whence

2(ρ + γ) ≤ f(x`)− f(x1) = 〈w, x` − x1〉 ≤︸︷︷︸
(∗)

‖w‖∗‖x` − x1‖ ≤︸︷︷︸
(∗∗)

2R,

where (∗) comes from the definition of the dual norm, and (∗∗) - from the fact that xi ∈ X and
X is contained in the ‖ · ‖-ball of radius R centered at the origin. (b) is proven.

30. Now let us “lift” xi from E to E+ by setting

x+
i = (xi, (ri, R)), i = 1, ..., `,

so that
‖x+

i ‖ =
√
‖xi‖2 + r2

i + R2 ≤ R
√

3, (2.3.10)

(since |ri| ≤ ρ ≤ R by (2.3.9) and (b)).
Let us fix a partition I = I+ ∪ I−. There exists an affine function

f(x) = 〈w, x〉+ b, ‖w‖∗ ≤ 1,

such that

〈w, xi〉+ b

{
≥ ri + γ, i ∈ I+

< ri − γ, i ∈ I−
(2.3.11)

We claim that the constant term b in this affine function can be modified in such a way that the
new function still satisfies (2.3.11), but the updated constant term, let it be called b′, satisfies
|b′| ≤ 2R. Indeed, when i runs through I, the right hand side quantities in (2.3.11) remain,
by (b), in the segment [−R,R], while the quantities 〈w, xi〉 remain in the same segment due to
‖w‖∗ ≤ 1, ‖xi‖ ≤ R (see (2.3.1)). It follows that when “projecting” b onto [−2R, 2R], that is,
replacing b with 2R in the case of b > 2R, replacing b with −2R in the case of b < −2R and
keeping b intact in all remaining cases, we preserve validity of (2.3.11).

Assuming |b| ≤ 2R, let us associate with f the functional

w+ = (w, (−1, b/R)) ∈ E∗
+.

Observe that
‖(w, (−1, b/R))‖∗ =

√
‖w‖2∗ + 1 + b2/R2 ≤

√
6 (2.3.12)

35



(recall that |b| ≤ 2R and ‖w‖∗ ≤ 1).
Now let us set

x+
I+,I− =

∑

i∈I+

x+
i −

∑

i∈I−

x+
i ∈ E+

and observe that

‖w+‖∗‖x+
I+,I−‖ ≥ 〈w+, x+

I+,I−〉 =
∑

i∈I+

[〈w, xi〉 − ri + b]− ∑
i∈I−

[〈w, xi〉 − ri + b]

≥ `γ,

where the first ≥ is given by (2.3.1), and the last one – by (2.3.11). Invoking (2.3.12), we
conclude that

‖x+
I+,I−‖ ≥

`γ√
6
. (2.3.13)

40. Relation (2.3.13) says that for every collection of reals si ∈ {−1, 1}, one has

‖
∑̀

i=1

six
+
i ‖ ≥

`γ√
6
;

in particular, if ξi are independent of each other random variables taking values ±1 with prob-
ability 1/2, then

E

{
‖

∑̀

i=1

ξix
+
i ‖2

}
≥ `2γ2

6
. (2.3.14)

On the other hand, E+, ‖ · ‖ is κ-regular, whence, applying Proposition 2.2 to random vectors
ηi = ξix

+
i and invoking (2.3.10), we get

E

{
‖

∑̀

i=1

ξix
+
i ‖2

}
≤ κ

∑̀

i=1

‖x+
i ‖2 ≤ 3R2κ`.

Combining this relation with (2.3.14), we arrive at (2.3.7). .
Note that the structure of the above proof is identical to the one for the case when E is a Hilbert
space (see the proof of Theorem 4.16 in [1]). The only (but crucial) role of the assumption that
E is κ-regular is to enable the randomized argument in 40, which in the case of inner product
norm is given “for free” by specific algebraic properties of the norm.

2.3.2 Bounding generalization error via margin

When considering the family FAff(E, ‖ · ‖) of affine classifiers in the case when X is inside the
centered at the origin ‖ ·‖-ball of E, the margin γ of a whatever classifier on a whatever training
sample S = {(x1, y1), ..., (x`, y`)} containing both positive and negative examples can not be
larger than R. Indeed, if i, j are such that yi = −1 and yj = 1 and f(x) = 〈w, x〉 + b is a
classifier from the family with margin ≥ γ on S, then we should have

〈w, xi〉+ b ≤ −γ, 〈w, xj〉+ b ≥ γ,

whence 2γ ≤ 〈w, xj − xi〉; the latter quantity is ≤ 2R due to ‖w‖∗ ≤ 1 and ‖xj − xi‖ ≤ 2R,
whence γ ≤ R. It follows that when S is a training sample with both positive and negative
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examples and f(x) = 〈w, x〉+ b is a classifier from FAff(E, ‖ · ‖) with margin ≥ γ, then |b| ≤ R,
since with i and j as above we should have

b ≤ −γ − 〈w, xi〉 ≤ R, b ≥ γ − 〈w, xj〉 ≥ −R.

It follows that when X ⊂ {x ∈ E : ‖x‖ ≤ R}, we lose nothing when restricting FAff(E, ‖ · ‖) to

F ≡ FR
Aff(E, ‖ · ‖) = {f(x) = 〈w, x〉+ b : ‖w‖∗ ≤ 1, |b| ≤ R}.

Note that the classifiers from the latter family, when restricted to X, take their values in the
segment [−2R, 2R], so that Proposition 2.1 implies the following upper bound on the covering
numbers of the family:

logN (F , `, γ) ≤ O(1)fatF (γ)log2
(

`
R

γ

)
, 0 < γ ≤ R;

from now on, O(1) are appropriate absolute constants. Combining this bound and Theorems
2.1, 2.2, we arrive at the following

Theorem 2.3 [cf. [1], Theorem 4.18] Let E, ‖ · ‖ be a κ-regular normed space, let X be a subset
of the centered at the origin ‖ · ‖-ball of radius R, and let γ ∈ (0, R]. Further, let D be a
probability distribution on X×{−1, 1}, ` be a positive integer and δ ∈ (0, 1). Then the following
is true, up to D-probability of bad sampling ≤ δ:

If S = {(x1, y1), ..., (x`, y`)} is an `-element training sample drawn from D and an affine
function

f(x) = 〈w, x〉+ b

with ‖w‖∗ ≤ 1 and |b| ≤ R has margin γ on S:

yif(xi) ≥ γ i = 1, ..., `,

then the generalization error of the classifier sign(f(x)) admits upper bound as follows:

errD(f) ≤ O(1)
`

[
κ

R2

γ2
log2

(
`
R

γ

)
+ log

2
δ

]
. (2.3.15)

Comments. In the case of Hilbert space E with the inner product norm ‖·‖, E∗ is canonically
identified with E; with this identification, ‖·‖∗ becomes ‖·‖, and Theorem 2.3 becomes Theorem
4.18 in [1], which is one of the well-known standard results of Machine Learning theory. The
power of the latter result in the SVM context comes from the fact that the associated upper
bound on the generalization error is “dimension-independent” – what matters, is solely the
ratio R/γ of the Hilbert ball containing the set of tentative feature vectors to the geometric
margin γ exhibited by the (normalized) affine classifier on the training sample. The dimension-
independent nature of the result allows to work with extremely high-dimensional, and even
infinite-dimensional, Hilbert feature spaces. Theorem 2.3 extends this option to a much wider
family of feature spaces. As an extreme example, consider the case where E is the space `∞(M)
associate with a finite set M , that is, E is the space RN of the dimension N = Card(M)
equipped with the uniform norm ‖ · ‖∞. Here E∗ can be naturally identified with E = RN ; with
this identification, 〈ξ, x〉 becomes just ξT x, and ‖ · ‖∗ becomes the norm ‖ · ‖1 on E∗ = E = RN .
The problem of finding a normalized classifier with the largest possible geometric margin on
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the training sample becomes now the popular SVM model with ‖ · ‖1-normalization of tentative
classifiers. Theorem 2.3 states that the “generalization abilities” of this model are, up to factor
logN , the same as for the standard “Euclidean” model with ‖ · ‖2 in the roles of ‖ · ‖ and ‖ · ‖∗.
Thus, unless the dimension of the feature space becomes astronomically large, ‖ · ‖1-SVMs (that
is, SVM models obtained from (1.1.3) by replacing the objective ‖w‖2

2 ≡ 〈w, w〉 with ‖w‖2
1) are

nearly as theoretically valid as the standard ‖ · ‖2-SVMs (1.1.3).

In this respect, it is worthy to mention that in a ‖ · ‖1-SVM we are seeking to separate the
sets S+ = {xi : yi = 1} and S− = {xi : yi = −1} of the positive and the negative training
input vectors by a stripe with the largest possible ‖ · ‖∞-width, while in the ‖ · ‖2-model the
goal is to find the separating strip of the largest ‖ · ‖2-width. One could think that since
the ‖ · ‖∞-width of a strip always is ≤ the ‖ · ‖2-width, the ‖ · ‖1-SVM always is inferior as
compared to the ‖ · ‖2-one – the numerical value γ1 of the geometric margin in the former
model always is ≤ the value γ2 of the margin in the latter model. This conclusion, however,
overlooks the fact that what matters is not the numerical value of the geometric margin
itself, but the ratio of this value to the radius R of the smallest ball containing the set X

of tentative input vectors. For ‖ · ‖1-SVM, R = R1 should be taken w.r.t. the norm ‖ · ‖∞,
and for ‖ · ‖2-SVM, R = R2 should be taken w.r.t. the norm ‖ · ‖2. It is clear that R1 ≤ R2,
so that in the ratios γ1/R1 and γ2/R2 to be compared both numerators and denominators
are linked by similar inequalities. As a result, we cannot say in advance which one of the
ratios is larger (that is, which one of the SVM models is better from the viewpoint of the
generalization error); the answer depends on the particular geometry of X, and there are
cases when ‖ · ‖1-SVM is much better than the ‖ · ‖2-one. This observation, we believe,
makes it clear that our extension of bounds on generalization error from the case of a Hilbert
feature space to the case of a regular feature space is more than just an academic exercise.

Similar comments are applicable to Theorem 2.4 below which handles the case of soft margin.

2.3.3 Bounding generalization error via margin and margin slacks

The bounds on generalization error given by Theorem 2.3 do not help much when a “typical”
training sample does not admit affine classifiers with reasonable margin (or even with a positive
one). The latter situation arises in many applications, and in this case one is interested in bounds
on generalization error expressed via margin and margin slack vector of an affine classifier. We
are about to derive bounds of this type, following the approach presented in [1], Section 4.3,
which we extend from the “Hilbert space case” to the one where X is a bounded subset of a
κ-regular normed space.

Assumptions

From now on we assume that X is a bounded (not necessary finite) subset of a κ-regular normed
space (E, ‖ · ‖), moreover, that we know in advance R > 0 such that X is contained in the
‖ · ‖-ball, centered at the origin, of radius R. Besides this, we make the following

Assumption A: The distribution D to be learnt is such that if (x, y), (x′, y′) are two
random examples drawn independently from the distribution, then the probability
of the event {x = x′, y 6= y′} is 0.

Assumption A implies that the probability to draw from D a “contradictory” training sample
S = {(x1, y1), ..., (x`, y`)} – such that xi = xj and yi 6= yj for certain pair i, j – equals to 0.
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Preliminaries

Extending E to a wider space. Let us fix p ∈ [2,∞] (it is the parameter of construction to
follow), with the restriction that the choice p = ∞ is allowed only in the case when X is finite.
Let us set

Êp = E × `p(X),

where, as above, `p(X) is the space of all functions g : X → R for which the norm

‖g‖p =





(
∑

x∈X
|g(x)|p

)1/p

, p < ∞
sup
x∈X

|g(x)|, p = ∞

is finite (which, in the case of infinite X, implies that the set of points x ∈ X where g(x) 6= 0 is
countable). A generic element of E is a pair (x, g) with x ∈ E and g(·) ∈ `p(X), and we equip
Êp with the norm

‖(x, g)‖ =
√
‖x‖2 + ‖g‖2

p
1) (2.3.16)

It is easily seen that the dual to Êp space is

Ê∗
p = E∗ × `p∗(X), p∗ =

p

p− 1
, 2)

with the value of a functional (w, h) ∈ Ê∗
p on a vector (x, g) ∈ Êp given by

〈(w, h), (x, g)〉 = 〈w, x〉+
∑

u∈X

h(u)g(u),

and the dual norm given by

‖(w, h)‖∗ =
√
‖w‖2∗ + ‖h‖2

p∗ . (2.3.17)

Note that (E, ‖·‖) is κ-regular by assumption, while `p(X) is O(1)min[p−1, logCard(X)]-regular
(see the list of examples of regular spaces in Section 2.3.1). In view of these observations, a
reasoning completely similar to the one in item 10 of the proof of Theorem 2.1 shows that Êp is
κ̂(p)-regular, where

κ̂(p) ≤ O(1)κmin[p− 1, logCard(X)]; (2.3.18)

in fact, the aforementioned reasoning demonstrates that when E is any one of the regular spaces
listed in Section 2.3.1, κ̂(p) admits a better bound:

κ̂(p) ≤ O(1) [κ + min[p− 1, logCard(X)]] . (2.3.19)

1)To avoid messy expressions, we use the same notation ‖ · ‖ for norms in E and in Ê; which one of these
norms is meant, will be alway clear from the context.

2)Recall that X is finite when p = ∞.
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Embedding X into Êp. For x ∈ X, let δx(·) be the function on X given by

δx(x′) =

{
1, x = x′

0, x 6= x′

Consider the embedding of X into Êp given by

x 7→ x̂ = (x,Rδx(·)),

and let X̂ ⊂ Êp be the image of X under this embedding. Note that since X belongs to the
centered at the origin ‖ · ‖-ball in E of radius R, one has

x̂ ∈ X̂ ⇒ ‖x̂‖ ≤ R̂ ≡
√

2R. (2.3.20)

Note that an example (x, y) with x ∈ X induces example (x̂, y) with x̂ ∈ X̂, so that the
distribution D to be learnt induces a distribution D̂ on X̂ × {−1, 1}, and a training sample
S = {(x1, y1), ..., (x`, y`)} drawn from D induces training sample Ŝ = {(x̂1, y1), ..., (x̂`, y`)}
drawn from D̂.

Augmenting affine classifiers. Let

f(x) = 〈w, x〉+ b

be an affine classifier on E, S = {(x1, y1), ..., (x`, y`)} be a training sample with xi ∈ X which is
“non-contradictory” (that is, such that xi = xj implies yi = yj) and γ > 0 be a margin, and ξ
be the slack vector of f w.r.t. S, γ (Definition 2.2), that is,

ξi = max[0, γ − yif(xi)], i = 1, ..., `. (2.3.21)

We associate with f, S, γ the augmented classifier – the affine function f̂(·) on Êp defined as
follows:

• In the case when x1, ..., x` differ from each other, we set

f̂((x, g)) = f(x) + 〈
∑̀

i=1

R−1yiξiδxi(·), g(·)〉 ≡ f(x) +
∑̀

i=1

R−1yiξig(xi). (2.3.22)

• If not all of the vectors x1, ..., x` are distinct, we partition the index set I = {1, ..., `} into
appropriate number of subsets I1, ..., I`′ in such a way that xi = xj when i, j belong to the same
subset and xi 6= xj when i, j belong to different subsets. Note that since S is non-contradictory,
we have ξi = ξj for all i, j belonging to the same subset of the partition; let ξs be the common
value of ξi, i ∈ Is, xs be the common value of xi, i ∈ Is, and ys be the common value of yi,
i ∈ Is. We set

f̂((x, g)) = f(x) + 〈
`′∑

s=1

R−1ysξsδxs(·), g(·)〉 ≡ f(x) +
`′∑

s=1

R−1ysξsg(xs). (2.3.23)

Note that (2.3.22) is a particular case of (2.3.23) corresponding to the situation when s = ` and
all Is are singletons.

We make the following simple observation:
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(!) Let Ŝ = {(x̂1, y1), ..., (x̂`, y`)} be the training sample on X̂ associated with S.
Then

1. The classifier f̂ has margin ≥ γ on Ŝ;

2. If x ∈ X differs from x1, ..., x`, then

f̂(x̂) = f(x) ≡ 〈w, x〉+ b;

3. One has
f̂((x, g)) = 〈ŵ, (x, g)〉+ b, (2.3.24)

where

ŵ = (w, R−1
`′∑

s=1

ysξsδxs(·)),

and therefore
‖ŵ‖∗ ≤

√
‖w‖2∗ + R−2‖ξ‖2

p∗ . (2.3.25)

Indeed, let i ≤ ` and si ≤ `′ be such that i ∈ Isi
. Then

yif̂(x̂i) = yif(xi) + yi〈R−1
`′∑

s=1
ysξsδxs(·), Rδxi(·)〉

= yif(xi) + yi

`′∑
s=1

ysiξsiδxs(xi)

=︸︷︷︸
(a)

yif(xi) + yiy
siξsi = yif(xi) + ξi ≥︸︷︷︸

(b)

γ,

where equality (a) follows from the fact that δxs(xi) 6= 0 if and only if s = si, in which case δxs(xi) = 1,
ys = yi and ξs = ξi, while inequality (b) is given by (2.3.21). We have proven item 1 of (!). Items 2 and
3 are evident.

Bounding generalization error via margin and margin slacks

We now are in a position to prove the following extension of Theorem 2.3:

Theorem 2.4 [cf. [1], Theorems 4.22, 4.24] Let (E, ‖ · ‖) be a κ-regular normed space, and let
X be a subset of the centered at the origin ‖ · ‖-ball of radius R. Let us fix p ∈ [2,∞] with p < ∞
when X is infinite, and real γ ∈ (0,

√
2R].

Further, let D be a probability distribution on X × {−1, 1} satisfying Assumption A, ` be a
positive integer and δ ∈ (0, 1). Then the following is true, up to D-probability of bad sampling
≤ δ:

An `-element training sample S = {(x1, y1), ..., (x`, y`)} drawn from D is non-contradictory,
and if an affine function

f(x) = 〈w, x〉+ b

with |b| ≤ √
2R has slack variable vector ξ w.r.t. γ, S:

ξi = max[0, γ − yif(xi)], i = 1, ..., `,

and the following norm bound holds true:
√
‖w‖2∗ + R−2‖ξ‖2

p∗ ≤ 1, p∗ =
p

p− 1
, (2.3.26)
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then the generalization error of the classifier sign(f̂(x̂)), where f̂(·) is the augmentation of f(·)
as defined by S, γ, satisfies the bound

errD̂(f̂) ≤ O(1)
`

[
κ̂(p)

R2

γ2
log2

(
`
R

γ

)
+ log

2
δ

]
. (2.3.27)

Here κ̂(p) is given by (2.3.18) (general case) or by (2.3.19), if (E, ‖ · ‖) is any one of the regular
spaces listed in Section 2.3.1.

Proof. The fact that a random sample S drawn form D is non-contradictory with probability 1
is readily given by Assumption A. The remaining statements follow directly from Theorem 2.3
as applied to Êp and the norm (2.3.16) in the role of (E, ‖ · ‖), X̂ in the role of X, D̂ in the
role of D, Ŝ in the role of S, R̂ =

√
2R in the role of R and f̂ in the role of f ; applicability of

Theorem 2.3 to the -̂data is guaranteed by (2.3.20) and (!).
Note that for S, γ > 0 given, every affine classifier f(x) = 〈w, x〉 + b, we can always find

two positive scale factors λ in such a way that the classifier λf(x) and its margin slack vector
taken with respect to S and the margin γ̄ = λγ satisfies the norm bound (2.3.26); bound
(2.3.27) suggests that the generalization error of the corresponding augmented classifier will be
the less the larger is γ̄3). Thus, Theorem 2.4 suggests, given a training sample S, to impose
on a candidate affine classifier f and “target margin” γ the normalization constraint (2.3.26)
(which is a restriction on f and γ, since ξ depends on both f and γ) and to seek, under this
constraint, for the pair (f, γ) with the largest possible γ, that is, to use the classifier yielded by
the optimization problem

max
γ,w,b

{
γ : ‖w‖2∗ + R−2‖ξ(w, b, γ)‖2

p∗ ≤ 1
}

,

ξi(w, b, γ) = max[0, γ − yi(〈w, xi〉+ b)]
(Pp(S))

Another recommendation inferred by Theorem 2.4 is in how to choose p. According to bound
(2.3.27), the best possible choice of p ∈ [2,∞] is p = 2. Indeed, this choice makes κ̂(p) as small
as possible (in fact, equal to κ) and simultaneously increases the optimal value in the problem
(Pp(S)), since when p grows from 2 to ∞, p∗ = p

p−1 decreases from 2 to 1, so that the norm
‖ξ‖p∗ is nondecreasing in p. It therefore follows that (P2(S)) has a wider feasible set than any
one of the problems (Pp(S)), 2 ≤ p ≤ ∞, and thus has the largest optimal value.

3)Strictly speaking, this conclusion is not fully justified at the moment – Theorem 2.4 assumes that the margin
is fixed in advance, while we now make it depending on a candidate classifier. This flaw in the reasoning can be
eliminated, at the cost of a number of additional technical considerations leading to extra logarithmic factors in
the right hand side of (2.3.27). All these nuances are, however, irrelevant, as far as the practical algorithms and
applications are concerned.
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Chapter 3

The Mirror Prox Algorithm

In this Chapter we outline the basic theory of Proximal Mirror algorithm (MP) proposed in [3],
which will be the “working horse” we intend to use in the context of Support Vector Machines.
The presentation below follows [3].

3.1 MP: the construction

3.1.1 Saddle Point form of a convex optimization problem

The Mirror Prox algorithm, similar to other advanced first order algorithms for large-scale “well-
structured” convex programs [6, 3, 9], is aimed at solving convex programs given in the saddle
point form

min
x∈X

max
y∈Y

F (x, y), (3.1.1)

where
• X ⊂ Rn, Y ⊂ Rm are closed and bounded convex sets,
• F (x, y) : Z ≡ X × Y → R is a smooth (with continuous gradient) function on Z which is

convex in x ∈ X for every y ∈ Y and is concave in y ∈ Y for every x ∈ X.
The saddle point problem (3.1.1) gives rise to a pair of convex optimization problems:

• the primal problem

min
x∈X

f(x), f(x) = max
y∈Y

F (x, y); (P )

• the dual problem

max
y∈Y

g(y), g(y) = min
x∈X

F (x, y). (D)

The basic facts on these problems are as follows (recall that X,Y are convex compact sets, and
F is continuously differentiable convex-concave function on Z = X × Y ; to keep the statements
to follow true, continuous differentiability of F can be replaced with Lipschitz continuity):

1. The primal and the dual problems are convex, specifically, f is convex on X, and g is
concave on Y Lipschitz continuous functions;

2. The optimal values in the problems are equal to each other:

Opt(P ) = Opt(D). (3.1.2)
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In particular, if x ∈ X and y ∈ Y , the duality gap

DualityGap(x, y) ≡ f(x)− g(y) = [f(x)−Opt(P )]+ [Opt(P )−Opt(D)]︸ ︷︷ ︸
=0

+[Opt(D)− g(y)]

is always nonnegative and is the sum of residuals, in terms of the objectives, of x and y as
approximate solutions to the respective problems.

3. x∗ ∈ X and y∗ ∈ Y are optimal solutions to the respective problems if and only if (∗x∗, y∗)
is a saddle point of F on X × Y , that is, if and only if

∀(x, y) ∈ X × Y : F (x, y∗) ≥ F (x∗, y∗) ≥ F (x∗, y).

Note that in typical applications the problem of interest is just one of the problems (P ), (D)
(say, the primal one). Nevertheless, it turns out that solving the primal-dual pair (P ), (D) of
problems simultaneously is more efficient than solving solely the problem of interest (P ), since
the problems are closely related, and the approximate solutions of one of them carry important
information on the other one, e.g., provide bounds on the respective optimal values:

∀(y ∈ Y ) : g(y) ≤ Opt(P ); ∀(x ∈ X) : f(x) ≥ Opt(D)

and thus allow to quantify the quality of a candidate solution.

3.1.2 MP: the setup

From now on, speaking about saddle point problem (3.1.1), we set Z = X × Y ⊂ E = Rn+m.
We denote by 〈z, w〉 the standard inner product zT w on R·.

Setup for MP as applied to (3.1.1) is given by
• A norm ‖ · ‖ on E used to quantify various characteristics of the entities to follow,
• A distance-generating function ω(z) : Z → R which should be continuously differentiable

on Z and should be strongly convex on Z, meaning that

〈ω′(z′)− ω′(z′′), z′ − z′′〉 ≥ κ‖z′ − z′′‖2 ∀z′, z′′ ∈ Z (3.1.3)

for certain κ > 0 (called the modulus of strong convexity of ω(·) w.r.t. ‖ · ‖).
Note that in spite of the fact that ω(·) is strongly convex on Z is independent of a
particular choice of norm ‖ · ‖, the modulus of strong convexity does depend on this
choice.

The norm ‖ · ‖ and the distance-generating function ω(·) define several entities which will
play important role in the sequel, specifically,

1. Conjugate norm ‖ · ‖∗ on E given by

‖ξ‖∗ = max
z
{〈ξ, z〉 : z ∈ E, ‖z‖ ≤ 1} ; (3.1.4)

2. Local distance (“prox-term”, “Bregman distance”) from a variable point ζ ∈ Z to a given
point z ∈ Z; this distance is

ωz(ζ) = ω(ζ)− 〈ζ − z, ω′(z)〉 − ω(z). (3.1.5)

44



Note that this “distance” not necessarily should be a metric on Z (it can be non-symmetric
w.r.t. z, ζ and need not satisfy the triangle inequality). The only property of metric
inherited by local distance is positivity:

ωz(ζ) ≥ κ

2
‖ζ − z‖2, (3.1.6)

which is an immediate consequence of (3.1.3).

3. Bregman diameter Dz0 [Z] of Z w.r.t. a point z0 ∈ Z and Bregman diameter of Z are given
by

Dz0 [Z] = max
z∈Z

ωz0(z),

D[Z] = max
ζ,z∈Z

ωz(ζ) = max
z∈Z

Dz[Z]. (3.1.7)

Note that Dz0 [Z] ≤ D[Z] < ∞ due to compactness of Z and the fact that ω(·) is continu-
ously differentiable on Z.

4. Prox-mapping Pz(ξ) which, for given z ∈ Z, maps a vector ξ ∈ E onto the point

Pz(ξ) = argmin
ζ∈Z

[〈ξ, ζ〉+ ωz(ζ)] = argmin
ζ∈Z

[〈ξ − ω′(z), ζ〉+ ω(ζ)
] ∈ Z. (3.1.8)

Since Z is a compact set, the function φξ,z(ζ) = 〈ξ − ω′(z), ζ〉+ ω(ζ) attains its minimum
on Z, and since ω(·) is strongly convex, the minimizer is unique. It follows that the prox-
mapping is well defined. In fact, this mapping is Lipschitz continuous w.r.t. ξ, as stated
in the following

Proposition 3.1 Let z ∈ Z, and let ξ, η ∈ E. Then

‖Pz(ξ)− Pz(η)‖ ≤ 1
κ
‖ξ − η‖∗, (3.1.9)

Proof. Due to the origin of Pz(ξ) and Pz(η), we have

(a) 〈ξ + ω′(Pz(ξ))− ω′(z), Pz(ξ)− w〉 ≤ 0∀w ∈ Z,
(b) 〈η + ω′(Pz(η))− ω′(z), Pz(η)− w〉 ≤ 0∀w ∈ Z.

Applying (a) to w = Pz(η) and (b) to Pz(ξ) and summing up the results, we get

〈(ξ − η) + (ω′(Pz(ξ))− ω′(Pz(η)), Pz(ξ)− Pz(η)〉 ≤ 0,

or, which is the same,

〈ξ − η, Pz(ξ)− Pz(η)〉 ≤ −〈ω′(Pz(ξ))− ω′(Pz(η)), Pz(ξ)− Pz(η)〉.

By strong convexity of ω(·), the right hand side in this inequality is ≤ −κ‖Pz(ξ)−Pz(η)‖2,
while the left hand side is ≥ −‖ξ − η‖∗‖Pz(ξ)− Pz(η)‖, and we arrive at the relation

−‖ξ − η‖∗‖Pz(ξ)− Pz(η)‖ ≤ −κ‖Pz(ξ)− Pz(η)‖2,

and (3.1.9) follows.
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3.1.3 The conceptual MP algorithm

Given a saddle point problem (3.1.1), we associate with its cost function F : Z → R the mapping
Φ : Z → E defined as

Φ(x, y) = (F ′
x(x, y),−F ′

y(x, y)) ∈ E, z = (x, y) ∈ Z, (3.1.10)

(the so called monotone mapping associated with convex-concave function F ); note that F is
continuously differentiable on Z, so that Φ is well-defined. Moreover, since F has Lipschitz
continuous gradient on Z, mapping Φ is Lipschitz continuous, so that

‖Φ(z′)− Φ(z′′)‖∗ ≤ L‖z′ − z′′‖ ∀z′, z′′ ∈ Z. (3.1.11)

Where we denote by L the Lipschitz constant of this mapping w.r.t. the pair of norms ‖ · ‖,
‖ · ‖∗. The “conceptual” algorithm for solving (3.1.1), is as follows:

Conceptual MP algorithm:

Initialization. Choose starting point z0 ∈ Z and a sequence of tolerances δt ≥ 0,
t = 1, 2, ....

Step t, t = 1, 2, ...: Given zt−1, check whether

Pzt−1(Φ(zt−1)) = zt−1. (3.1.12)

If it is the case, claim that zt−1 is the solution to the saddle point problem (3.1.1)
and terminate. Otherwise choose γt > 0 and a point wt ∈ Z such that

〈wt − Pzt−1(γtΦ(wt)), γtΦ(wt)〉
+

[
ω(zt−1) + 〈ω′(zt−1), Pzt−1(γtΦ(wt))− zt−1〉 − ω(Pzt−1(γtΦ(wt)))

] ≤ δt.
(3.1.13)

Set
zt ≡ (xt, yt) = Pzt−1(γtΦ(wt)),

zt ≡ (xt, yt) =
(

t∑
τ=1

γτ

)−1 t∑
τ=1

γτwτ

and pass to step t + 1.

Note: zt is the approximate solution built in course of t steps.

Convergence properties of the Conceptual MP (CMP) algorithm are summarized in the following
proposition:

Proposition 3.2 If CMP as applied to convex-concave saddle point problem (3.1.1) terminates
at certain step t according to (3.1.12), then zt−1 is a saddle point of F on Z = X × Y , so that
xt−1 is optimal for (P ), and yt−1 is optimal for (D). Further, for every t ≥ 1 such that CPM
does not terminate at or before step t, the following efficiency estimate holds true:

DualityGap(xt, yt) ≤

t∑
τ=1

δτ + Dz0 [Z]

t∑
τ=1

γτ

. (3.1.14)
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Proof. Assume that CPM terminates at step t according to (3.1.12). Then the convex function
φ(z) = 〈Φ(zt−1)−ω′(zt−1), z− zt−1〉+ω(z) attains its minimum over z ∈ Z at z = zt−1, whence

〈Φ(zt−1), z − zt−1〉 ≥ 0 ∀z ∈ Z,

or, setting zt−1 = (xt−1, yt−1) and recalling the definition of Φ,

〈F ′
x(xt−1, yt−1), x− xt−1〉+ 〈−F ′

y(xt−1, yt−1), y − yt−1〉 ≥ 0∀z = (x, y) ∈ X × Y.

Recalling also that F is convex in x and concave in y (the left hand side of this inequality is
≤ [F (x, yt−1)− F (xt−1, yt−1)] + [F (xt−1, yt−1)− F (xt−1, y)]) we arrive at the following relation

F (x, yt−1)− F (xt−1, y) ≥ 0 ∀(x, y) ∈ X × Y.

Minimizing the left hand side in x ∈ X, y ∈ Y , we get

g(yt−1)− f(xt−1) ≥ 0,

whence
DualityGap(xt−1, yt−1) = f(xt−1)− g(yt−1) ≤ 0.

Since the duality gap is always nonnegative and is zero iff the corresponding x, y are optimal
solutions to the respective problems (P ), (D), we conclude that xt−1 is an optimal solution to
(P ), yt−1 is an optimal solution to ()D), and thus (xt−1, yt−1) is a saddle point of F , as claimed.

Now assume that CMP did not terminate at or before step t. For z, u ∈ Z let us set

Hz(u) = 〈ω′(z), z − u〉 − ω(z). (3.1.15)

Let u ∈ Z. For 0 ≤ τ ≤ t we have

zτ = Pzτ−1(γτΦ(wτ )) = argmin
z∈Z

[〈γτΦ(wτ )− ω′(zτ−1), z〉+ ω(z)
]
,

which gives us the first inequality in the following chain:

0 ≥ 〈γτΦ(wτ ) + ω′(zτ )− ω′(zτ−1), zτ − u〉
= 〈γτΦ(wτ ), wτ − u〉+ 〈γτΦ(wτ ), zτ − wτ 〉

+ [〈ω′(zτ ), zτ − u〉 − ω(zτ )]︸ ︷︷ ︸
Hzτ (u)

+ω(zτ )

− [〈ω′(zτ−1), zτ−1 − u〉 − ω(zτ−1)]︸ ︷︷ ︸
Hzτ−1(u)

−ω(zτ−1)− 〈ω′(zτ−1), zτ − zτ−1〉

= Hzτ (u)−Hzτ−1(u) + 〈γτΦ(wτ ), wτ − u〉
+

[〈γτΦ(wτ ), zτ − wτ 〉+ [ω(zτ )− ω(zτ−1)− 〈ω′(zτ−1), zτ − zτ−1〉]
]

︸ ︷︷ ︸
≥−δτ by (3.1.13)

It follows that

1 ≤ τ ≤ t ⇒ 〈γτΦ(wτ ), wτ − u〉 ≤ Hzτ−1(u)−Hzτ (u) + δτ ;
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summing up these inequalities over τ = 1, ..., t, we get

t∑
τ=1

γτ 〈Φ(wτ ), wτ − u〉 ≤ Hz0(u)−Hzt(u) +
t∑

τ=1
δτ

=
t∑

τ=1
δτ + [〈ω′(z0), z0 − u〉 − ω(z0)− 〈ω′(zt), zt − u〉+ ω(zt)]

=
t∑

τ=1
δτ +

[
〈ω′(z0), z0 − u〉 − ω(z0) + [ω(zt) + 〈ω′(zt), u− zt〉]︸ ︷︷ ︸

≤ω(u)

]

≤
t∑

τ=1
δτ +

[
ω(u)− 〈ω′(z0), u− z0〉 − ω(z0)

]

≤
t∑

τ=1
δτ + Dz0 [Z].

We have arrived at the inequality

t∑

τ=1

γτ 〈Φ(wτ ), wτ − u〉 ≤
t∑

τ=1

δτ + Dz0 [Z]; (3.1.16)

setting wt = (ξt, ηt), u = (x, y), the left hand side in this inequality is

t∑
τ=1

γτ

[
〈F ′

x(ξτ , ητ ), ξτ − x〉+ 〈F ′
y(ξτ , ητ ), y − ητ 〉

]

≥
t∑

τ=1
γτ [[F (ξτ , ητ )− F (x, ητ )] + [F (ξτ , y)− F (ξτ , ητ )]] =

t∑
τ=1

γτ [F (ξτ , y)− F (x, ητ )]
[

since 〈F ′
x(ξτ , ητ ), ξτ − x〉 ≥ F (ξτ , ητ )− F (x, ητ ) by convexity of F in x and

〈F ′
y(ξτ , ητ ), y − ητ 〉 ≥ F (ξτ , y)− F (ξτ , ητ ) by concavity of F in y

]

≥
(

t∑
τ=1

γτ

) [
F (xt, y)− F (x, yt)

]

[due to zt = (xt, yt) =
(

t∑
τ=1

γτ

)−1 t∑
τ=1

γτ (ξτ , ητ ) and convexity-concavity of F ]

Thus, (3.1.16) implies that

F (xt, y)− F (x, yt) ≤

t∑
τ=1

δτ + Dz0 [Z]

t∑
τ=1

γτ

.

The resulting inequality is valid for all u = (x, y) ∈ X×Y , and the right hand side is independent
of u. The maximum of the left hand side in u = (x, y) ∈ Z is f(xt)−g(yt) = DualityGap(xt, yt),
and (3.1.14) follows.

3.1.4 From conceptual to implementable algorithm

The error bound (3.1.14) suggests that what we would be interested in is to ensure that the
“residuals” δτ are as small as possible (ideally, δτ = 0) and stepsizes γτ are as large as possible.
The question, of course, is how to ensure the crucial condition (3.1.13), that is,

〈wt − Pzt−1(γtΦ(wt)), γtΦ(wt)〉
+

[
ω(zt−1) + 〈ω′(zt−1), Pzt−1(γtΦ(wt))− zt−1〉 − ω(Pzt−1(γtΦ(wt)))

] ≤ δt.
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with “small” δt and “large” γt. Note that the quantity in the parentheses in the left hand side
of our target inequality is ≤ 0 due to the convexity of ω(·) and in fact is even ≤ −κ

2‖zt−1 −
Pzt−1(γtΦ(wt)‖2 due to strong convexity of ω(·), so that all we need is to make small enough the
first term 〈wt − Pzt−1(γtΦ(wt)), γtΦ(wt)〉 in the left hand side of the inequality. A conceptually
simplest way to do this would be to ensure that

Pzt−1(γtΦ(wt)) = wt,

that is, wt should be a fixed point of the mapping

w 7→ Ψzt−1(w) ≡ Pzt−1(γtΦ(w)) : Z → Z.

The outlined approach (corresponding to the so called “idealized” proximal point algorithm)
seems (and in general is) impractical – to find a fixed point of a nontrivial mapping is not easier
than to solve the problem of interest. The crucial observation made in [3] is that finding the
desired fixed point is relatively easy, provided that γt is not too large. Specifically, the mapping
w 7→ Ψzt−1(w) is the superposition of two mappings:

• the mapping w 7→ γtΦ(w) : Z → E; by (3.1.11), this mapping is Lipschitz continuous with
constant γtL, from the metric on Z given by ‖ · ‖ to the metric on E given by ‖ · ‖∗;

• the mapping ξ 7→ Pzt−1(ξ) : E → Z which is Lipschitz continuous, with constant κ−1, from
the metric on E given by ‖ · ‖∗ to the metric on Z given by ‖ · ‖ (Proposition 3.1).
It follows that the mapping w 7→ Ψzt−1(w) : Z → Z is Lipschitz continuous, with constant
κ̂ = κ−1γtL w.r.t. the metric on Z given by ‖ · ‖. In particular, when κ̂ ≤ 1/

√
2 (that is,

γt ≤ κ√
2L

), the mapping is a contraction, with coefficient ≤ 1/
√

2, so that its fixed point w∗
(which does exist – the mapping is a contraction!) can be rapidly approximated by iterating the
mapping itself:

w0 ∈ Z, ws = Ψzt−1(w
s−1) ≡ Pzt−1(γtΦ(ws−1)) ⇒ ‖ws−w∗‖ ≤ κ̂s‖w0−w∗‖ ≤ 2−s/2‖w0−w∗‖.

(3.1.17)
Thus, we arrive at the following basic implementation of step t in the Conceptual MP algorithm:

Algorithm 3.1 [Mirror-Prox Algorithm, Basic Implementation]
Step t, t = 1, 2, ...: Given zt−1 ∈ Z, set γt = κ√

2L
, check whether zt−1 = Pzt−1(γtΦ(zt−1)). If it

is the case, terminate and claim that zt−1 is a saddle point of F on X × Y , otherwise iterate,
starting with

w0 = zt−1

using the updating
ws−1 7→ ws = Pzt−1(γtΦ(ws−1)) (3.1.18)

until the termination condition

〈ws−1 − Pzt−1(γtΦ(ws−1)), γtΦ(ws−1)〉
+ [ω(zt−1) + 〈ω′(zt−1), ws − zt−1〉 − ω(ws)] ≤ 0

(3.1.19)

is met. When it happens for the first time, the value of s being st, set

wt = wst−1, zt = wst ,

thus ensuring (3.1.13) with δt = 0, and pass to step t + 1.
The approximate solution generated during t steps is the point

zt =

(
t∑

τ=1

γτ

)−1 t∑

τ=1

γτwτ . (3.1.20)
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Note that when w∗ differs from zt−1 (which is the case exactly when zt−1 6= Pzt−1(γtΦ(zt−1))),
the iterates ws converge to w∗, so that the quantity

[
ω(ws) + 〈ω′(zt−1), ws − zt−1〉 − ω(ws)

]

has a negative limit, while the quantity

〈ws−1 − Pzt−1(γtΦ(ws−1))︸ ︷︷ ︸
ws−1−ws

, γtΦ(ws−1)〉

converges to 0 as a geometric progression with the ratio 2−1/2 (since ‖ws−1−ws‖ ≤ ‖ws−1−w∗‖+
‖ws−w∗‖ ≤ 21−(s−1)/2‖w0−w∗‖ by (3.1.17), while ‖γtΦ(ws−1)‖∗ remains bounded by (3.1.11).
It follows that the termination condition (3.1.19) eventually will be met, and the associated
number st of the “inner steps” is, for all practical purposes, a moderate constant. In fact,
the situation is even better: the analysis carried out in [3] demonstrates that the termination
condition is met in at most 2 inner steps, that is, st ≤ 2. We have arrived at the following result:

Theorem 3.1 [3]. Let the convex-concave saddle point problem (3.1.1) satisfying (3.1.11) be
solved by Basic MP algorithm (that is, Conceptual MP algorithm with Basic implementation of
the steps). Then the approximate solution zt = (xt, yt) obtained during t = 1, 2, ... steps is either
an exact solution to the saddle point problem, or an approximate solution with duality gap which
can be bounded as

DualityGap(xt, yt) ≤
√

2LDz0 [Z]
κt

, (3.1.21)

and every step requires at most 2 computations of Φ(·) and at most 2 computations of the values
of the prox-mapping Pz(ξ).

Proof. The error bound (3.1.21) is readily given by (3.1.14) (we are in the situation of δτ ≡ 0
and γτ ≡ κ√

2L
). The complexity of a step is readily given by the preceding remarks.

Remark 3.1 From (3.1.21) it follows that the influence of the choice of the distance-generating
function ω(·) and the starting point on the theoretical performance of MP can be “summarized”
by the complexity parameter

Ω =
Dz0 [Z]

κ
.

3.2 Optimizing the setup

3.2.1 Building blocks

Error bound (3.1.21) explains, in particular, how the performance of the MP algorithm depends
on the choice of the “parameters” ‖ · ‖, ω(·) underlying the construction and allows to optimize,
to some extent, the algorithm w.r.t. these parameters. We present here the corresponding
recommendations (cf. [3]), restricting ourselves with the situations which are relevant to our
intended SVM applications. Specifically, assume that

1. Both X and Y in (3.1.1) are closed convex subsets of standard sets X̂, Ŷ , where a standard
set Ŵ is a set representable as

Ŵ = V1 × ...× Vk,

with the direct factors (“standard blocks”) V` ∈ Rn` , ` = 1, ..., k being of the following
types:
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(a) p-ball Bp(R) = {v ∈ Rd : ‖v‖p ≤ R}, or the nonnegative part B+
p (R) = {v ∈ Bp(R) :

v ≥ 0}, of such a ball, where 1 ≤ p ≤ ∞.
We shall refer to B2(R) as to an Euclidean ball, to B1(R) as to a hyperoctahedron,
to B+

1 (R) as to a full-dimensional simplex, and to B∞(R) as to a box;

(b) Standard simplex {v ∈ Rd : v ≥ 0,
∑
`

v` = R};

(c) Extended simplex {v = (v1, ..., vL) : vs ∈ Rns ,
L∑

s=1
‖vs‖2 ≤ R}

(this block was not considered in [3]; it is relevant to SVM problems with “adjustable”
kernels, see Section 4.1.3).

We denote by Xi, i = 1, ..., kX , the standard blocks corresponding to X, so that

X ⊂ X1︸︷︷︸
⊂Rn1

×...× XkX︸ ︷︷ ︸
⊂R

nkX

⊂ Rn = Rn1+...+nkX ,

and by Yj , j = 1, ..., kY , the standard blocks corresponding to Y , so that

Y ⊂ Y1︸︷︷︸
⊂Rm1

×...× YkY︸︷︷︸
⊂R

mkY

⊂ Rm = Rm1+...+mkY .

Consequently,

Z ≡ X × Y ⊂ Z1 × ...× Zk ∈ E,
E = Rn1 × ...×RnkX ×Rm1 × ...×RmkY ≡ Rd1 × ...×Rdk ,

k = kX + kY , Zp =

{
Xp, p ≤ kX

Yp−kX
, kX < p ≤ k

, dp =

{
np, p ≤ kX

mp−kX
, kx < p ≤ k

(3.2.1)

Thus, z = (x, y) ∈ E is representable as z = (z[1], ..., z[k]), where z[p] ∈ Rdp .

2. The cost function F (x, y) is bilinear:

F (x, y) = aT x + bT y +
kX∑

i=1

kY∑

j=1

zT [kX + j]Aijz[i], z = (x, y) ∈ Z, (3.2.2)

where Aij are mi × nj matrices. We now define dp × dq matrices Bpq, p, q = 1, ..., k, as
follows:

Bpq =





0dp×dq , p, q ≤ kx or p, q > kx

[Ap,q−kx ]T , p ≤ kx, q > kx

−Aq,p−kx , p > kx, q ≤ kx

(3.2.3)

and define (d1 + ... + dk) × (d1 + ... + dk)-matrix B as a block matrix with blocks Bpq,
1 ≤ p, q ≤ k; note that this matrix is skew-symmetric: Bpq = −[Bqp]T . With this
notation, the mapping Φ(z), z = (x, y), associated, via (3.1.10), with the bilinear cost
function (3.2.2) becomes the affine mapping

Φ(z) = φ + Bz, φ =

[
a
−b

]
. (3.2.4)
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We associate with every one of the blocks Zp, 1 ≤ p ≤ k (see (3.2.1)) “local data” – respective
norm ‖ · ‖, distance-generating function ω(·), starting point and parameters κ, D – according to
the following rules. Let V be the block in question. Then

1. When V = Bp(R) is a p-ball in Rd, 1 ≤ p ≤ 2, or V = B+
p (R) is the nonnegative part of

such a ball, we set

p̂ = max
[
p, 1 + 1

2log(d)

]
,

‖v‖ = ‖v‖p, ω(v) = 1
p̂

d∑
i=1

|vi|p̂, v(0) = 0, κ = (p̂− 1)d
2

p̂
− 2

p Rp̂−2, D = 1
p̂
Rp̂,

Ω = O(1)R2d

2
p− 2

p̂

p̂−1
≤ O(1)R2log(d);

(3.2.5)

Here and in what follows v(0) is the starting point associated with the block, κ is the
modulus of strong convexity of ω(·) w.r.t. ‖ · ‖ on V , D is an upper bound on the quantity
Dv(0) [V ] and Ω is an upper bound on the complexity parameter D

κ ;

2. When V = Bp(R) is a p-ball in Rd, 2 ≤ p ≤ ∞, or V = B+
p (R) is the nonnegative part of

such a ball, we set

‖v‖ =
√

vT v, ω(v) =
1
2
vT v, v(0) = 0, κ = 1, D =

1
2
d

1− 2
p R2, Ω =

R2d
1− 2

p

2
; (3.2.6)

3. When V = {v ∈ Rd : v ≥ 0,
∑
`

v` ≤ R} is a full-dimensional simplex or V = {v ∈ Rd : v ≥
0,

∑
`

v` = R} is a standard simplex, we set

‖v‖ = ‖v‖1, ω(v) =
∑
`
(R−1v` + d−1δ)log(R−1v` + d−1δ),

v(0) = d−1(R, ..., R)T , κ = R−2(1 + δ), D = (1 + δ)log(d), Ω = O(1)R2log(d),
(3.2.7)

where δ ∈ (0, 1) is a once for ever fixed “regularization parameter” which we set to 1.e-3;

4. When V = {v ∈ Rd : ‖v‖1 ≤ R} is a hyperoctahedron, we set

‖v‖ = ‖v‖1, v(0) = 0, κ = R−2(1 + δ), D = (1 + (2d)−1δ)log(2d), Ω = O(1)R2log(2d)

ω(v) = min
u,w





∑
i
[uilog(ui) + wilog(wi)] :

u, w ≥ 0
u− w = R−1v∑
i
[ui + wi] = 1 + δ





=
∑
i

√
R−2v2

i +θ(v)−R−1vi

2 log
(√

R−2v2
i +θ(v)−R−1vi

2

)

+
∑
i

√
R−2v2

i +θ(v)+R−1vi

2 log
(√

R−2v2
i +θ(v)+R−1vi

2

)
,

θ(v) :
∑
i

√
R−2v2

i + θ(v) = 1 + (2d)−1δ

(3.2.8)
Here, as in the previous item, δ = 1.e-3 is a regularization parameter.

Remark 3.2 Note that hyperoctahedron is equipped with two “local data” – those given by
(3.2.5) in the case of p = 1 and those given by (3.2.8). While both sets of data share the
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common norm and the same complexity parameter, they differ in the choice of the distance
generating function. In the sequel, working with hyperoctahedrons, we will use the latter
data (which seem to result in the slightly better practical performance of MP) rather than
the former ones.

5. Finally, when V = {v = (v1, ..., vL) : vs ∈ Rns ,
L∑

s=1
‖vs‖2 ≤ R} is an extended simplex, we

set

θ =

{
2, L ≤ 2
1 + 1

log(L)
, L ≥ 3 ‖v‖ =

L∑
s=1

‖vs‖2

v(0) = 0 κ = (θ − 1)L1−θR−2 ≥ R−2 exp{−1}
max[1,log(L)]

D = θ−1 Ω = O(1)R2 max[1, log(L)]

ω(v) = θ−1R−θ
L∑

s=1
‖vs‖θ

2

(3.2.9)

We have the following

Proposition 3.3 In all aforementioned cases the function ω(·) is strongly convex, with the
indicated modulus κ w.r.t. the indicated norm ‖ · ‖, on V , D ≥ Dv(0) [V ] and Ω ≥ D

κ .

Proof. 10. We start with the following simple fact:

Lemma 3.1 Let ‖ · ‖ be a norm on Rd, let V ⊂ RD be a closed convex set with a nonempty
interior, and let ω(·) be a continuously differentiable function on V which is twice continuously
differentiable everywhere on V outside the union U of finitely many proper linear subspaces
of Rd. Then the necessary and sufficient condition for ω(·) to be strongly convex on V , with
modulus κ > 0 w.r.t. ‖ · ‖, is that

hT ω′′(v)h ≥ κ‖h‖2 ∀(v ∈ (intV )\U, h ∈ Rd). (3.2.10)

Proof. Necessity: Assume that ω(·) is strongly convex on V , with modulus κ w.r.t. ‖·‖, and let
us prove that (3.2.10) takes place. Let v ∈ V ′ ≡ V \U and h ∈ E. The set V ′ is open, so that for
all small enough positive t we have [v, v + th] ∈ V ′. We have 〈ω′(v + th)− ω′(v), th〉 ≥ κ‖th‖2,
whence

〈ω
′(v + th)− ω′(v)

t
, h〉 ≥ κ‖h‖2.

When t → +0, the left hand side in this relation converges to hT ω′′(v)h, and (3.2.10) follows.
Sufficiency: Assume that (3.2.10) takes place, and let us verify that ω(·) is strongly convex,

with modulus κ w.r.t. ‖ · ‖, on V , that is,

〈ω′(v′′)− ω′(v′), v′′ − v′〉 ≥ κ‖v′ − v′′‖2 ≥ 0

whenever v′, v′′ ∈ V . Since ω′(·) is continuous on V , the left hand side in the target inequality
is continuous in v′, v′′ ∈ V ; therefore it suffices to verify this inequality for v′, v′′ belonging
to a dense in V subset, e.g., for v′, v′′ ∈ V ′. Assuming v′, v′′ ∈ V ′, and taking into account
the structure of V ′, all but finitely many points of the segment [v′, v′′] belong to V ′. In other
words, setting h = v′′ − v′ and vt = v′ + th, 0 ≤ t ≤ 1, there exist finitely many values
[0 <]t1 < t2 < ... < tk[< 1] of the parameter t such that the point vt belongs to V ′ whenever
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t ∈ [0, 1] is distinct from t1, ..., tk. The points t1, ..., tk split the segment [0, 1] into k+1 segments
∆0, ...,∆k. Let τ ′ < τ ′′ be two points of one of these segments, and let us verify that

〈ω′(vτ ′′)− ω′(vτ ′), h〉 ≥ κ(τ ′′ − τ ′)‖h‖2. (3.2.11)

Indeed, the function φ(τ) = ω(vτ ) is twice continuously differentiable on [τ ′, τ ′′], and

φ′′(τ) = hT ω′′(vτ )h ≥ κ‖h‖2

by (3.2.10) due to vt ∈ B′, whence

〈ω′(vτ ′′)− ω′(vτ ′), h〉 ≡ φ′(τ ′′)− φ′(τ ′) ≥ (τ ′′ − τ ′)κ‖h‖2,

as claimed. Now, since ω′ is continuous on V , relation (3.2.11) implies, by continuity in τ ′, τ ′′,
that

〈ω′(vt`+1
)− ω′(vt`), h〉 ≥ κ(t`+1 − t`)‖h‖2,

where t`, t`+1 are the left and the right endpoints of ∆` (so that t0 = 0 and tk+1 = 1). Summing
up the resulting inequalities over ` = 0, 1, ..., k, we get

〈ω′(v′′)− ω′(v′), v′′ − v′〉 ≡ 〈ω′(v′′)− ω′(v′), h〉 ≥ κ(tk+1 − t0)‖h‖2 ≡ κ‖v′′ − v′‖2,

as claimed.
20. Now let us prove the results stated in Proposition for the case when V is the p-ball

Bp(R) in Rd or a nonnegative part of such a ball and 1 ≤ p ≤ 2. Let us verify first that

ω(v) = 1
p̂

d∑
i=1

|vi|p̂ is κ-strongly convex w.r.t. ‖ · ‖p on V . The function is clearly continuously

differentiable everywhere on V and is twice continuously differentiable on the set V ′ = {v ∈
intV : vi 6= 0, i = 1, ..., d}. Now let v ∈ V ′ and h ∈ Rd. We have

hT ω′(v) =
d∑

i=1

|vi|p̂−1sign(vi)hi ⇒ hT ω′′(v)h = (p̂− 1)
d∑

i=1

|vi|p̂−2h2
i , (3.2.12)

whence,

p̂ = 2 ⇒ hT ω′′(v)h = ‖h‖2
2 ≥ d

2

p̂
− 2

p ‖h‖2
p, (3.2.13)

where the concluding inequality is readily given by the standard inequality

u ∈ Rd, 1 ≤ s ≤ r ≤ ∞⇒ ‖u‖r ≤ ‖u‖s ≤ d
1
s
− 1

r ‖u‖r. (3.2.14)

Now let p̂ < 2. Then

‖h‖2
p̂

=
(∑

i
|hi|p̂

) 2

p̂ =


∑

i

[
|h|2i |vi|p̂−2

] p̂
2

[
|vi|p̂

] 2−p̂
2




2

p̂

≤



(∑
i
|hi|2|vi|p̂−2

) p̂
2

(∑
i
|vi|p̂

) 2−p̂
2




2

p̂

[we have used Hölder Inequality]

=
(∑

i
|hi|2|vi|p̂−2

) (∑
i
|vi|p̂

) 2−p̂

p̂

≤
‖v‖2−p̂

p̂

p̂−1
hT ω′′(v)h

[we have used (3.2.12)]

.
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We have arrived at the relation

p̂ < 2 ⇒ hT ω′′(v)h ≥ p̂− 1

‖v‖2−p̂

p̂

‖h‖2
p̂
≥ (p̂− 1)d

2

p̂
− 2

p

‖v‖2−p̂
p

‖h‖2
p, (3.2.15)

where the concluding inequality is given by (3.2.14) combined with p ≤ p̂. Observing that

2
p̂
− 2

p
= 2

p− p̂

pp̂

{
= 0, p̂ = p
≥ − 1

log(d)
, p̂ > p ,

we obtain from (3.2.13), (3.2.15), by taking into account that ‖v‖p ≤ R for v ∈ V and the
definition of κ in (3.2.5), that

hT ω′′(v)h ≥ κ‖h‖2
p

for all v ∈ V ′ and all h ∈ Rd; invoking Lemma 3.1, we see that ω(·) is κ-strongly convex w.r.t.
‖ · ‖ on V . Further, we have

Dv(0) [V ] = max
v∈V

[
1
p̂

∑

i

|vi|p̂ − 0− 〈0, v〉
]

=
1
p̂

max
v∈V

‖v‖p̂

p̂
≤ Rp̂ = D,

and finally Ω =
D

v(0) [V ]

κ = R2d

2
p− 2

p̂

p̂−1
≤ O(1)R2log(d), as claimed.

30. Now consider the case when V is p-ball Bp(R) in Rd or the nonnegative part of such a
ball and 2 ≤ p ≤ ∞. The fact that the function ω(v) = 1

2vT v is 1-strongly convex w.r.t. the
norm ‖v‖ ≡ ‖v‖2 =

√
vT v is evident, so that all we need is to show that D0[V ] is bounded from

above by the quantity D indicated in (3.2.6). This is immediate:

D0[V ] = max
v∈V

[
1
2vT v − 1

20T 0− vT · 0
]

= max
v∈V

1
2vT v

≤ max
v:‖v‖p≤R

1
2‖v‖2

2

≤ R2d
1− 2

p

2 ,

where the concluding ≤ (in fact, it is equality) is given by (3.2.14).
40. For simplexes (both full-dimensional and standard) the results stated in Proposition 3.3

are proved in [3] (where also the case of p-ball with p = 2 is considered). For hyperoctahedron,
the required results can be easily derived from those related to the standard simplex; we skip
the derivation. The only case which remains to be considered is the one of extended simplex,
and this is the case we shall investigate now.

In view of Lemma 3.1, in order to prove that ω(·) is strongly convex on V , with modulus κ
w.r.t. the norm ‖ · ‖, we should verify that

hT ω′′(v)h ≥ κ‖h‖2 ∀(v ∈ V ′, h ∈ E = Rn1 × ...×RnL), (3.2.16)

where V ′ = {v ∈ intV : vs 6= 0, s = 1, ..., L}. Let us demonstrate that this indeed is the case.
Let v = (v1, ..., vL) ∈ V ′ and h = (h1, ..., hL) ∈ E, and let us set

dνs = d
dt

∣∣∣∣
t=0
‖vs + ths‖2 = rT

s hs, rs = ‖vs‖−1
2 vs;

d2νs = d2

dt2

∣∣∣∣
t=0
‖vs + ths‖2 = [hs]T (I−rsrT

s )hs

‖vs‖2 .
(3.2.17)
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We now have

RθhT ω′(v + th) = d
dtθ

−1
L∑

s=1
‖vs + ths‖θ

2 =
L∑

s=1
‖vs + ths‖θ−1

2
d
dt‖vs + ths‖2

⇒ RθhT ω′′(v)h = d
dt

∣∣∣∣
t=0

RθhT ω′(v + th) = d
dt

∣∣∣∣
t=0

[
L∑

s=1
‖vs + ths‖θ−1

2
d
dt‖vs + ths‖2

]

= (θ − 1)
L∑

s=1
‖vs‖θ−2

2

(
d
dt

∣∣∣∣
t=0
‖vs + ths‖2

)2

+
L∑

s=1
‖vs‖θ−1

2
d2

dt2

∣∣∣∣
t=0
‖vs + ths‖2

=
L∑

s=1

[
(θ − 1)‖vs‖θ−2

2 (dνs)2 + ‖vs‖θ−1
2 d2νs

]

=
L∑

s=1

[
(θ − 1)‖vs‖θ−2

2 (rT
s hs)2 + ‖vs‖θ−1

2 ‖vs‖−1
2 ([hs]T (I − rsr

T
s )hs)

]

≥ (θ − 1)
L∑

s=1
‖vs‖θ−2

2 ‖hs‖2
2.

We, therefore, have arrived at the inequality

hT ω′′(v)h ≥ R−θ(θ − 1)
L∑

s=1

‖vs‖θ−2
2 ‖hs‖2

2. (3.2.18)

We now have

‖h‖2 =

(
L∑

s=1
‖hs‖2

)2

=

(
L∑

s=1
[‖hs‖2‖vs‖

θ−2
2

2 ]‖vs‖
2−θ
2

2

)2

≤
(

L∑
s=1

‖hs‖2
2‖vs‖θ−2

2

) (
L∑

s=1
‖vs‖2−θ

2

)

[Cauchy Inequality]

≤
[
hT ω′′(v)h

] Rθ
L∑

s=1

‖vs‖2−θ
2

θ−1

[see (3.2.18)]

whence

hT ω′′(x)h ≥ (θ − 1)R−θ

L∑
s=1

‖vs‖2−θ
2

‖h‖2. (3.2.19)

When L ≤ 2, we have θ = 2, and (3.2.19) implies that

hT ω′′(v)h ≥ R−2‖h‖2. (3.2.20)

Now let L ≥ 3, so that θ = 1 + δ, δ = 1
log(L)

∈ (0, 1). Then

L∑
s=1

‖vs‖2−θ
2 =

L∑
s=1

‖vs‖1−δ
2 ≤ max

ts≥0,
L∑

s=1

ts≤R

L∑
s=1

t1−δ
s

= L(R/L)1−δ = R1−δLδ = R1−δ exp{1},
so that (3.2.19) results in the relation

hT ω′′(v)h ≥ (θ − 1) exp{−1}R−2‖h‖2, (3.2.21)
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which combines with (3.2.20) to imply (3.2.16) and thus, the fact that ω(·) is κ-strongly convex
w.r.t. ‖ · ‖ on V . The relation

v ∈ V ⇒ ω(v)− ω(0)− vT ω′(0) ≡ ω(v) = θ−1R−θ
L∑

s=1

‖vs‖θ
2 ≤ D ≡ θ−1

is evident (note that θ > 1 and
∑
s
‖vs‖2 ≤ R for v ∈ V ). The fact that Ω given by (3.2.9) is an

upper bound on D/κ is equally evident.

3.2.2 The setup for MP

The outlined rules equip every block Zp with a certain norm ‖ · ‖(p) on Rdp , distance-generating
function ωp(·) on Zp which is κp-strongly convex on Zp w.r.t. ‖ ·‖(p), starting point z(p) ∈ Zp, an
upper bound Dp on the quantity Dz(p) [Zp], and an upper bound Ωp on the complexity parameter
dp/κp. The setup for MP as applied to problem (3.1.1) with the bilinear cost function (3.2.2) is
“assembled” from the outlined data, specifically, as follows.

• Let Lpq be the norm of the linear mapping

v 7→ Bpqv : Rdq → Rdp

induced by the norm ‖ · ‖(q) on the argument space and the norm ‖ · ‖∗(p) (the norm conjugate
to ‖ · ‖(p)) on the image space:

Lpq = max
u∈Rdq

{
‖Bpqu‖∗(p) : ‖u‖(q) ≤ 1

}
,

or, recalling the definition of a conjugate norm,

Lpq = max
u∈Rdq ,v∈Rdp

{
vT Bpqu : ‖v‖(p) ≤ 1, ‖u‖(q) ≤ 1

}
= Lqp, (3.2.22)

where the concluding equality is readily given by the fact that Bqp = −[Bpq]T .
• Let us look at “assemblings” of the form

z0 = (z(1), ..., z(k)), ω(z) =
k∑

p=1
γpωp(z[p]),

‖z‖ =

√
k∑

p=1
µ2

p‖z[p]‖2
(p)

[
⇔ ‖z‖∗ =

√
k∑

p=1
µ−2

p [‖z[p]‖∗(p)]
2

] (3.2.23)

where µp > 0, γp > 0 are parameters of the construction. We can easily express the bounds
on the associated quantities Dz0 [Z], κ, and L in terms of µ, γ. A straightforward computation,
based on Proposition 3.3, implies that

Dz0 [ω] ≤ D̃ =
∑
p

γpDp, κ ≥ κ̃ = min
p

γpκp

µ2
p

, L ≤ L̃ = λmax

([
µ−1

p µ−1
q Lpq

]
p,q

)
, (3.2.24)

where λmax(A) is the maximal eigenvalue of a symmetric matrix A. Now, what matters for the
error bound of MP, the setup being given by ω(·), ‖ · ‖, z0, is the quantity κ−1Dz0 [Z]L – the less
it is, the better. It is natural to look for the assembling which results in the smallest possible
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upper bound κ̃−1D̃L̃ on this quantity. This problem can be easily solved; the optimal solution
is given by (3.2.23) with the parameters γp, µp defined as

γp =
σp

Dp
, µp =

√
γpκp, where σp =

∑
q

Mpq

∑
p,q

Mpq
and Mpq = Lpq

√
DpDq

κpκq
. (3.2.25)

For the resulting assembling, one has

κ̃ = D̃ = 1, L̃ =
∑
p,q

Lpq

√
DpDq

κpκq
. (3.2.26)

The efficiency estimate for the resulting MP algorithm as applied to (3.1.1), (3.2.2) is

DualityGap(xt, yt) ≤

√
2

∑
p,q

Lpq

√
DpDq

κpκq

t
≤

√
2

∑
p,q

Lpq
√

ΩpΩq

t
. (3.2.27)
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Chapter 4

Saddle Point Reformulation of SVM
Models

4.1 Kernel-generated SVM models

As we have seen in Chapter 2, Statistical Learning Theory in its SVM-oriented form suggests to
associate with a given training sample S = {(xi, yi)}`

i=1, an optimization problem of the form

max
γ,w,b

{
γ : ‖w‖2∗ + R−2‖ξ(w, b, γ)‖2

p∗ ≤ 1
}

,

ξi(w, b, γ) = max[0, γ − yi(〈w, xi〉+ b)]
(Pp(S))

and to use the augmented classifier (2.3.23) given by an optimal solution to this problem. In
the above optimization problem,

• xi ∈ X ⊂ E are the feature vectors from the sample, yi are their labels, and X is a subset
in a given normed space (E, ‖·‖) known to support the marginal distribution of the feature
vectors;

• R < ∞ is (a given upper bound on) the radius of ‖ · ‖-ball, centered at the origin, which
contains X;

• The design variable w varies in the space E∗ dual to E, and ‖ · ‖∗ is the norm on E∗ dual
to the norm ‖ · ‖ on E;

• p ∈ [2,∞] is a given parameter (which should be finite in the case when X is infinite), and
p∗ = p

p−1 .

4.1.1 The kernel-generated case

In the majority of SVM models, E is a specific inner product space defined as follows:

1. We start with

• The attribute space – a given abstract set X̃ which, in order to avoid unessential
technical difficulties, we assume to be finite. The points of X̃ are called attribute
vectors (usually they indeed are vectors, since X̃ typically is given as a subset in
certain Rd).
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• A kernel – a real-valued function K(u, v) : X̃×X̃ → R, which possesses the following
properties:

(a) K(u, v) = K(v, u) for all u, v ∈ X̃;
(b) Whenever m is a positive integer and u1, ..., um are m distinct points from X̃,

the matrix [K(ui, uj)]1≤i,j≤m is positive definite;
(c) K(u, u) ≤ R2 for all u and certain R ∈ (0,∞).

2. The kernel K defines an Euclidean space E, namely, as follows: the elements of E are
real-valued functions g[·] : X̃ → R, and the inner product on E is given by

〈g[·], h[·]〉K =
∑

u,v∈X̃

K(u, v)g[u]h[v] (4.1.1)

(due to the properties of K, this indeed is an inner product). The corresponding norm is

‖g‖K =
√ ∑

u∈X̃

K(u, u)g2(u) (4.1.2)

3. Note that X̃ can be naturally embedded into E; specifically, we can associate with a point
u ∈ X̃ the element φ(u) ∈ E given by

φ(u)[v] =

{
1, v = u
0, v 6= u

,

so that
〈φ(u), φ(v)〉K = K(u, v), ‖φ(u)‖K =

√
K(u, u). (4.1.3)

4. Finally, the actual distribution D̃ to be learnt is a distribution on X̃×{−1, 1}, so that the
actual training sample S̃ is the sequence of examples (x̃i, yi) with x̃i ∈ X̃ and yi ∈ {−1, 1}.
Identifying feature vectors x̃i with their images xi = φ(x̃i), we identify the “attribute
space” examples (x̃i, yi) with their “feature space images” (xi, yi). With this identification
of examples, D̃ becomes identified with a distribution D on X × {−1, 1}, where X is the
image of X̃ under the embedding u 7→ φ(u) : X̃ → E, samples S̃ drawn from D̃ become
identified with samples S drawn from D, etc. Note that by (4.1.3) X is contained in the
centered at the origin ‖ · ‖K-ball of radius R = max

u∈X̃

√
K(u, u).

In the just outlined framework, E is an Euclidean space, so that E can be naturally identified
with its dual; with this identification, the linear functional associated with w ∈ E is just w(x) =
〈w, x〉K , x ∈ E. Needless to say that with this identification the norm dual to ‖ ·‖K is this norm
itself, so that problem (Pp(S)) reads

max
γ,w,b

{
γ : 〈w,w〉K + R−2‖ξ(w, b, γ)‖2

p∗ ≤ 1
}

,

ξi(w, b, γ) = max[0, γ − yi(〈w, xi〉K + b)]
(4.1.4)

where xi = φ(x̃i) ∈ E are given points from X (“feature vectors of the examples”) and yi are
their labels.
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4.1.2 Reformulating problem (4.1.4)

Let γ, w, b be a feasible solution to (4.1.4). When replacing w with its orthogonal projection w′

onto the linear span of xi, i = 1, ..., `, we preserve the validity of the constraints and can only
reduce the value of the objective. It follows that we lose nothing when adding to the constraints
of (4.1.4) an additional requirement w ∈ Lin(x1, ..., x`), or, equivalently, the requirement that

w =
∑̀
j=1

αjyj x̃j . Treating αj and γ, b as our new variables, problem (4.1.4) becomes

γopt = max
α∈R`,γ,b,ξ





γ :

∑̀
i,j=1

K(x̃i, x̃j)yiyjαiαj + R−2‖ξ‖2
p∗ ≤ 1

ξ ≥ 0

ξi ≥ γ − yi

(
∑
j

K(x̃i, x̃j)yjαj + b

)
,

i = 1, ..., `





(4.1.5)

Our first goal is to rewrite this problem in an equivalent, better suited for our further goals,
form and, second, to add some extra flexibility to the resulting problem.

Equivalent reformulation of (4.1.5). Note that the optimal value in (4.1.5) clearly is pos-
itive, and the problem can be rewritten in the form of

Opt = min
α∈R`,b,ξ





√√√√√
∑̀

i,j=1

K(x̃i, x̃j)yiyjαiαj + R−2‖ξ‖2
p∗ :

ξ ≥ 0
ξi ≥ 1− yi

∑
j

K(x̃i, x̃j)yjαj + b,

i = 1, ..., `





.

(4.1.6)
Indeed, if (α, γ > 0, b, ξ) is a feasible solution to (4.1.5), then the collection (γ−1α, γ−1b, γ−1ξ) is a
feasible solution to (4.1.6) with the value of the objective ≤ γ−1; vice versa, if (α, b, ξ) is a feasible
solution to (4.1.6) with certain value of the objective a, then the collection (a−1α, a−1, a−1b, a−1ξ)
is a feasible solution to (4.1.5) with the value of the objective a−1. It follows that (4.1.5) has
positive optimal value the optimal values in (4.1.5) and (4.1.6) are linked by the relation

Opt =
1

γopt
, (4.1.7)

and whenever (α, b, ξ) is an optimal solution to (4.1.6), the collection Opt−1(α, 1, b, ξ) is an
optimal solution to (4.1.5).

From an optimization program to a classifier. Note that the classifier yielded by an
optimal solution (α∗, b∗, ξ∗) to (4.1.6) at every attribute vector x̃ distinct from the attribute
vectors x̃i, i = 1, ..., ` from the training sample equals to f∗(x̃) = 〈∑

j
α∗jyjxj , x〉K + b∗ (see

Statement (!) in Section 2.3.3). Recalling the definition of 〈·, ·〉K , we see that

x̃ 6∈ {x̃i}`
i=1 ⇒ f∗(x̃) =

∑̀

j=1

K(x̃, x̃j)yjα
∗
j + b∗, (4.1.8)

so that not only the problem yielding the classifier, but the classifier itself can be expressed
solely in terms of the kernel K.
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Adding flexibility. We have seen in Chapter 2 that the “soft margin” SVM approach results
in optimization problem (Pp(S)) which, in the kernel-generated case, can be posed as (4.1.6); in
fact, theory suggests a specific choice of p, namely, p = 2. Note, however, that the Statistical
Learning Theory underlying this formulation is, in some sense, too “rough” to provide detailed
SVM-oriented optimization models. For this reason, in the SVM practice, one adds some flexi-
bility to (4.1.6), which allows to “adjust”, to some extent, the SVM optimization program to a
specific classification problem in order to get better generalization error, or to get a sparse (with
a relatively small number of nonzero αi’s) separator, etc.

The major “adjustable components” in (4.1.6) are as follows.

1. Adding flexibility to the objective, specifically, by replacing the objective
√√√√√

∑̀

i,j=1

K(x̃i, x̃j)yiyjαiαj + R−2‖ξ‖2
p∗

with one of the form √√√√√
∑̀

i,j=1

K(x̃i, x̃j)yiyjαiαj + Γ‖ξ‖2
p∗ , (4.1.9)

where Γ > 0 is a control parameter. When building a classifier, one solves problem (4.1.6)
with the objective modified according to (4.1.9) for a series of values of Γ and chooses
“seemingly the best” of the corresponding classifiers by applying additional tests, e.g., by
measuring the quality of a classifier on a validation sample, see Section 5.2.2.
Observe that adjusting the parameter Γ > 0 in the resulting parametric optimization
problem

min
α∈R`,b,ξ





√√√√√
∑̀

i,j=1

K(x̃i, x̃j)yiyjαiαj + Γ‖ξ‖2
p∗ :

ξ ≥ 0

ξi ≥ 1− yi

(
∑
j

K(x̃i, x̃j)yjαj + b

)
,

i = 1, ..., `





,

(4.1.10)
is equivalent to adjusting parameter ρ > 0 in the parametric problem

min
α∈R`,b,ξ





‖ξ‖p∗ :

‖α‖2,y,K ≡
√∑

i,j
K(x̃i, x̃j)yiyjαiαj ≤ ρ

ξ ≥ 0

ξi ≥ 1− yi

(
∑
j

K(x̃i, x̃j)yjαj + b

)
,

i = 1, ..., `





. (4.1.11)

Indeed, let αΓ, bΓ be the (α, b)-component of an optimal solution to (4.1.10). By evident
reasons, with ρ = ‖αΓ‖2,y,K , every optimal solution to (4.1.11) is optimal for (4.1.10). It
would be easy to show that under mild regularity assumptions the opposite is also true:
the optimal solution of (4.1.11) corresponding to a given value ρ > 0 of the parameter, is
an optimal solution to (4.1.10) for a properly chosen value Γ(ρ) > 0 of Γ, but we do not
need such a result: from what we have already seen it is clear that the parametric problem
(4.1.11) is at least as flexible as (4.1.10), so that we lose nothing when focusing on the
former problem rather than on the latter one.
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2. Replacing ‖α‖2,y,K with another norm ‖α‖ on R` adds even more flexibility to (4.1.11).
The resulting parametric family of optimization problems is

min
α,b,ξ




‖ξ‖p∗ :

‖α‖ ≤ ρ
ξ ≥ 0
ξi ≥ 1− ((Qα)i + byi) ,

i = 1, ..., `





, (4.1.12)

where
Q = [Qij = yiK(x̃i, x̃j)yj ]1≤i,j≤` ∈ R`×`. (4.1.13)

Aside of the choice ‖α‖ = ‖α‖2,y,K , a notable candidate to the role of the norm ‖ · ‖ is the
`1-norm

‖α‖1 =
∑̀

i=1

|αi|;

in many cases, this choice results in “sparse classifier” – with much smaller number of
nonzero coefficients α∗i in (4.1.8) than the one yielded by the choice ‖ · ‖ = ‖ · ‖2,y,K .

Remark 4.1 When ‖ · ‖ = ‖ · ‖2,y,K , from optimality conditions as applied to (4.1.12) it follows
that at the optimum, all α-variables are nonnegative. Thus, in the case of ‖ · ‖ = ‖ · ‖2,y,K we
lose nothing when adding to the constraints of (4.1.12) the constraint α ≥ 0.

4.1.3 Adjusting the kernel

In the outlined presentation, the kernel K was treated as a given in advance entity. In SVM
practice, the choice of the kernel, which is the crucial component of the approach, is based
mainly on utilizing a specific structure of a particular classification problem at hand. However,
this structure usually suggests to use a kernel from certain parametric family, e.g., from the
family of Gaussian kernels

K(x̃, ỹ) = exp{‖x̃− ỹ‖2
2/(2σ2)} [x̃, ỹ ∈ X̃ ⊂ Rd]

while the question of how to choose kernel’s parameter(s) (e.g., σ for a Gaussian kernel) remains
open. It would be attractive to make these parameters part of decision variables in problem
(4.1.12), but such an attempt usually results in a nonconvex and thus difficult ro solve optimiza-
tion model. Instead, practitioners usually adjust the kernel by solving (4.1.12) for a number
of different values of the kernel parameters and then use “seemingly the best” of the result-
ing classifiers (cf. the situation with tuning the parameter ρ). To the best of our knowledge,
there exists only one particular case where adjusting the kernel can be made a part of the
optimization process. This case is as follows. Assume that we are given L candidate kernels
Ks(u, v) : X̃ × X̃ → R, s = 1, ..., L. Further, let λs > 0 be “scale parameters” for these kernels.
According to the outlined scheme, every one of the kernels λsKs(·, ·) defines a Euclidean “feature
space” (Es, 〈·, ·〉s); the elements of this space are real-valued functions φ[u] on X̃, and the inner
product is

〈φ[·], ψ[·]〉s = λs

∑

u,v∈X̃

Ks(u, v)φ[u]ψ[v].

We can now consider the direct product

E = E1 × ...× EL
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of the resulting Euclidean spaces as our new feature space; the elements of this space are ordered
collections −→φ = (φ1, ..., φL) of real-valued functions on −→X , and the inner product is

〈−→φ ,
−→
ψ 〉E =

L∑

s=1

〈φs, ψs〉s.

We now can embed the set X̃ into E via the mapping

x̃ 7→ −→x ≡ −→
φ (x̃) = (φ1(x̃), ..., φL(x̃)) ∈ E,

where, as above,

φ(x̃)[u] =

{
1, u = x̃
0, u 6= x̃

.

Note that when x̃′, x̃′′ ∈ X̃, we have

〈−→x′ ,−→x′′〉E =
L∑

s=1

λsKs(x̃′, x̃′′). (4.1.14)

With this embedding in the role of our previous embedding x̃ 7→ x = φ(x̃), the analogy of
problem (4.1.4) is

max
γ,{ws}L

s=1,b,ξ





γ :

L∑
s=1

λs〈ws, ws〉Ks + Γ‖ξ‖2
p∗ ≤ 1

ξ ≥ 0

ξi ≥ γ − yi

(
L∑

s=1
λs〈ws, xi〉Ks + b)

)
, i = 1, ..., `





. (4.1.15)

Same as in the single-kernel case, the latter problem is equivalent to the problem (cf. (4.1.6))

min
{αs∈R`}L

s=1
,

b,ξ





√√√√ ∑̀

i,j=1

L∑
s=1

λsKs(x̃i, x̃j)yiyjαs
i α

s
j + Γ‖ξ‖2p∗ :

ξ ≥ 0

ξi ≥ 1− yi

(
∑̀
j=1

L∑
s=1

λsKs(x̃i, x̃j)yjα
s
j + b

)




,

(4.1.16)
and the resulting problem can be viewed as a member of the parametric family (cf. (4.1.11))

min
{αs∈R`}L

s=1,b,ξ





‖ξ‖p∗ :

√
∑̀

i,j=1

L∑
s=1

λsKs(x̃i, x̃j)yiyjαs
iα

s
j ≤ ρ

ξ ≥ 0

ξi ≥ 1− yi

(
∑̀
j=1

L∑
s=1

λsKs(x̃i, x̃j)yjα
s
j + b

)





(4.1.17)

with ρ > 0 being the parameter. The classifier yielded by a candidate solution to this problem,
evaluated at a point x̃ distinct from all attribute vectors x̃i, i = 1, ..., `, from the training sample,
is (cf. (4.1.8))

f(x̃) =
∑̀

j=1

L∑

s=1

λsKs(x̃, x̃j)yjα
s
j + b. (4.1.18)

For the time being, we have tacitly considered the weights λs as parameters of the construction;
starting from this point, let us treat them as decision variables of (4.1.17). When multiplying
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the weights λs and ρ by a common positive factor, we clearly do not change the optimization
problem; therefore we lose nothing when normalizing λ’s as

∑
s

λs = 1.

We, therefore, have arrived at the parametric optimization problem

min
{αs∈R`}L

s=1,b,ξ,λ





‖ξ‖p∗ :

√
∑̀

i,j=1

L∑
s=1

λsKs(x̃i, x̃j)yiyjαs
iα

s
j ≤ ρ

ξ ≥ 0

ξi ≥ 1− yi

(
∑̀
j=1

L∑
s=1

λsKs(x̃i, x̃j)yjα
s
j + b

)

λ > 0,
∑
s

λs = 1





. (4.1.19)

As it is written, this problem is not convex, due to the presence of products of λ’s and α’s. We
are about to demonstrate that this difficulty can be overcome. Indeed, let us pass in (4.1.19)
from variables αs

j to βs
j = λsα

s
j . The resulting problem is

min
{βs∈R`}L

s=1,b,ξ,λ





‖ξ‖p∗ :

√√√√ L∑
s=1

λ−1
s

[
∑̀

i,j=1
Ks(x̃i, x̃j)yiyjβs

i β
s
j

]
≤ ρ

ξ ≥ 0

ξi ≥ 1− yi

(
∑̀
j=1

L∑
s=1

Ks(x̃i, x̃j)yjβ
s
j + b

)

λ > 0,
∑
s

λs = 1





. (4.1.20)

Now, for reals as, s = 1, ..., L, the quantity

inf
λ

{
L∑

s=1

λ−1
s a2

s : λ > 0
L∑

s=1

λs = 1

}

clearly equals to
(
∑
s

|as|)2.

This observation as applied with as =
√∑

i,j
Ks(x̃i, x̃j)yiyjβs

i β
s
j allows to carry out partial opti-

mization in λ in (4.1.20); the resulting problem is

min
{βs∈R`}L

s=1,b,ξ





‖ξ‖p∗ :

L∑
s=1

‖βs‖2,y,Ks ≤ ρ

ξ ≥ 0

ξi ≥ 1− yi

(
∑̀
j=1

L∑
s=1

Ks(x̃i, x̃j)yjβ
s
j + b

)





. (4.1.21)

This parametric problem is convex; moreover, this problem is of the form (4.1.12), with the
vector (β1, ..., βL) in the role of α, the norm

‖(β1, ..., βL)‖ =
L∑

s=1

‖βs‖2,y,Ks
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in the role of ‖ · ‖ and the `× L` matrix

[Q1, ..., QL] , Qs = [yiKs(x̃i, x̃j)yj ]1≤i,j≤` (4.1.22)

in the role of Q. Note that the feasible domain in the variables β as given by the norm constraint
‖β‖ ≤ ρ of the resulting optimization problem

min
β=(β1,...,βL)∈RL`,b,ξ




‖ξ‖p∗ :

‖β‖ ≡
L∑

s=1
‖βs‖2,y,Ks ≤ ρ

ξ ≥ 0
ξi ≥ 1− ((Qβ)i + byi)





(4.1.23)

is an extended simplex. Note also that the classifier (4.1.18) is readily given by the β-variables:

f(x̃) =
∑̀

j=1

L∑

s=1

Ks(x̃, x̃j)yjβ
s
j + b. (4.1.24)

4.2 Saddle point reformulation of SVM models

Our current goal is to reformulate the SVM optimization problem (4.1.12) (which includes, as
particular cases, all other SVM problems considered so far) in a saddle point form, as required
by the Mirror Prox Algorithm. We start with the following simple observation:

Lemma 4.1 Let u ∈ Rd, and let ξ be the vector with coordinates

ξi = max[0, ui].

Then, for every p ∈ [1,∞], one has

‖ξ‖p∗ = max
λ∈B+

p (1)
λT u ≡ max

λ

{
λT u : λ ≥ 0, ‖λ‖p ≤ 1

}
; (4.2.1)

here, as always, p∗ = p
p−1 .

Proof. By Hölder Inequality, whenever λ ∈ B+
p (1), we have

‖ξ‖p∗ ≥ ‖λ‖p‖ξ‖p∗ ≥ λT ξ ≥ λT u,

where the concluding inequality follows from the fact that λ ≥ 0 and ξ ≥ u. Thus, the right
hand side in (4.2.1) is ≤ the left hand side one. To prove the opposite inequality, it suffices to
consider the case when ξ 6= 0 (otherwise the desired inequality is evident). Assuming 1 < p < ∞,
setting

λi =
ξp∗−1
i(

∑
j

ξp∗
j

) 1
p

,

and taking into account that p(p∗ − 1) = p∗, we get λ ≥ 0,

‖λ‖p =

∑
i

ξp∗
i

(∑
i

ξp∗
i

) = 1
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and

∑

i

λiui =

∑
i:ξi>0

ξp∗−1
i ui

(
∑
j

ξp∗
j

) 1
p

=

∑
i:ξi>0

ξp∗−1
i ξi

(
∑
j

ξp∗
j

) 1
p

= ‖ξ‖p∗− p∗
p

p∗ = ‖ξ‖p∗ .

Thus, the right hand side in (4.2.1) is ≥ the left hand side one.
Now, for α, b fixed, the optimal, in terms of the objective, choice of ξ clearly is the vector

with the coordinates
ξi = max [0, 1− ((Qα)i + byi)] ,

and the corresponding value of the objective is the p∗-norm of this vector, that is, by Lemma
4.1, the quantity

F (α, b) ≡ max
λ∈B+

p (1)

[∑

i

λi − λT Qα− b
∑

i

λiyi

]
.

Thus, problem (4.1.12) is nothing but the saddle point problem

min
α:‖α‖≤ρ,b∈R

max
λ∈B+

p (1)

[∑

i

λi − λT Qα− b
∑

i

λiyi

]
(4.2.2)

with bilinear cost function.
In fact, we can eliminate the variable b, thus arriving at a problem which is better suited for

solving via MP. To this end, note that for α given, minimization of F (α, b) in b ∈ R is just an
explicit univariate convex program and as such can be easily solved by Bisection. Thus, problem
(4.1.12), which is in fact,

min
α:‖α‖≤ρ,b∈R

F (α, b)

can be reduced to the problem

min
α:‖α‖≤ρ

F̃ (α), F̃ (α) = inf
b∈R

F (α, b). (4.2.3)

We now have

F̃ (α) = inf
b∈R

F (α, b) = inf
b∈R

max
λ∈B+

p (1)

[∑
i

λi − λT Qα− b
∑
i

λiyi

]

= max
λ∈B+

p (1)
inf
b∈R

[∑
i

λi − λT Qα− b
∑
i

λiyi

]

[by von Neumann Lemma]

= max
λ∈B+

p (1)


∑

i
λi − λT Qα +





0,
∑
i

λiyi = 0

−∞,
∑
i

λiyi 6= 0




= max
λ∈B+

p (1):
∑
i

yiλi=0

[∑
i

λi − λT Qα

]
.

Consequently, problem (4.2.3) reduces to the saddle point problem

min
α:‖α‖≤ρ

max
λ∈B+

p (1),
∑
i

yiλi=0

[∑

i

λi − λT Qα

]
(4.2.4)

We have therefore arrived at the following
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Theorem 4.1 The SVM problem (4.1.12) can be reduced to the saddle point problem (4.2.4)
with bilinear cost function.

4.3 “Plain” SVM models

In the previous Section, we have been focusing on the case where the feature space E is generated
by a kernel, and we have been seeking for an affine classifier in the form of a linear combination
of feature vectors from the training sample. An alternative is to represent E as the standard
coordinate space RN with the inner product 〈x, y〉 = xT y and represent tentative affine classifiers
in the form f(x) = wT x + b, without taking care of representing w as a linear combination of
sample feature vectors and even of whether such a representation is possible. We may think of
this alternative as of the case where

• the set X̃ of possible values of attribute vectors is a subset of RN , the feature vectors are
identical with the attribute ones, and

• the kernel is “linear”:

K(x̃i, x̃j) = x̃T
i x̃j . (4.3.1)

In this case the Euclidean space E as defined in Section 4.1.1 can be naturally identified with
the linear span of X̃. Indeed, we can associate with a function g[·] : X̃ → R the vector
xg =

∑
x̃∈X̃

g[x̃]x̃ ∈ RN , thus identifying elements of E with vectors from RN . It is immediately

seen that with this identification, the kernel-generated inner product in E becomes the standard
inner product xT y, the mapping X̃ 7→ X becomes the identity, and E itself becomes the linear
span of X̃. If the latter space is less than the entire RN , we lose nothing by extending E to RN .

The situation in question is a particular case of the general kernel-generated situation con-
sidered in Section 4.1.1. In this situation, problem (4.1.4), which was the starting point of all
our developments in Section 4.1.1, reads

max
γ,w∈RN ,b

{
γ : wT w + R−2‖ξ(w, b, γ)‖2

p∗ ≤ 1
}

,

ξi(w, b, γ) = max[0, γ − yi(wT xi + b)]
.

(4.3.2)

Our first step in Section 4.1.1 was to observe that at optimality, w is a linear combination of xi,
so that we can pass from the decision vector w to the vector α of coefficients in the representation
w =

∑
i

αiyixi. In our current situation, we can skip this step and work with decision vector w

“as it is”. Depending on the structure of the data, this modification may have two important
advantages. First, it may happen that the dimension N of our attribute≡feature space RN

is much less than the cardinality ` of the training sample; whenever this is the case, problem
(4.3.2) is of much smaller dimension than the associated “α-problem” (4.1.5). Second, in many
cases, especially in large-scale ones, the feature vectors are sparse, and as we shall see below,
when working with w-variables “as they are”, we have better possibilities to utilize this sparsity
than when working with α-variables.

We now can process problem (4.3.2) in exactly the same fashion as in Sections 4.1, 4.2,

68



arriving first at the optimization problem

min
w∈RN ,b,ξ




‖ξ‖p∗ :

‖w‖ ≤ ρ
ξ ≥ 0
ξi ≥ 1− yi

(
wT xi + b

)
,

i = 1, ..., `





(4.3.3)

(this is the “w-analogy” of problem (4.1.12)) and then converting the latter problem to the
saddle point form

min
w:‖w‖≤ρ

max
λ∈B+

p (1),
∑
i

yiλi=0

[∑

i

λi[1− yiw
T xi]

]
(4.3.4)

(this is the analogy of (4.2.4)). In order to distinguish the current SVM models from those
derived in Sections 4.1, 4.2, we shall refer to the former models as to plain SVM models, and to
the latter ones as to kernel SVM models. Note that in fact both types of models are associated
with kernels (the plain ones – with the linear kernel (4.3.1)); the actual difference is in how we
represent a classifier, either as a combination of the linear forms associated with training feature
vectors (kernel models) or just as a linear form on E = RN (plain models).

We are now in a position to explain what are the computational advantages, of plain models
as compared to kernel ones in the case of sparse data. Indeed, let us compare the saddle point
problem (4.3.4) with its kernel version, assuming, for the sake of definiteness, that we use in
both cases the 2-norm of classifiers:

• Plain model:

min
w:wT w≤ρ2

max
λ∈B+

p (1),
∑
i

yiλi=0

[∑

i

λi − wT Pλ

]
, P = [y1x1, ..., y`x`]

• Kernel model w ← Pα:

min
α:αT Qα≤ρ2

max
λ∈B+

p (1),
∑
i

yiλi=0

[∑

i

λi − αT Qλ

]
, Q = P T P.

When solving the outlined saddle point problems by Mirror-Prox Algorithm (or any other first-
order iterative method), the computational effort per step is dominated by the necessity to
multiply given vectors by P and P T in the case of plain model and multiply by Q, in the case of
the kernel model. When P is sparse, Q is typically much less so, and the required multiplications
in the case of the plain model are much cheaper computationally than in the case of the kernel
one, provided that we work with Q “as a whole” and do not keep in mind the multiplicative
representation Q = P T P (the latter is not directly suggested by the kernel model).
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Chapter 5

Processing SVM Models via MP

In this chapter, we explain how to process the SVM models in their saddle point forms derived
in Chapter 4 via the mirror Prox Algorithm, discuss the corresponding implementation issues
and present some numerical results.

5.1 The strategy

5.1.1 The target

Observe that the saddle point reformulations (4.2.4), (4.3.4) of the kernel, and the corresponding
plain SVM models are of the same generic form

min
ζ:‖ζ‖≤ρ

max
λ∈B+

p (1),
∑
i

yiλi=0

[
1T λ− λT Qζ

]

︸ ︷︷ ︸
F (ζ)[

1 = (1, ..., 1)T ∈ R`, B+
p (1) =

{
ξ ∈ R` : ξ ≥ 0, ‖ξ‖p ≤ 1

}]
,

(5.1.1)

where
• In the case of a kernel SVM model from Section 4.1.1

Q = [yiK(x̃i, x̃j)yj ]1≤i,j≤` ∈ R`×`, (5.1.2)

ζ ∈ R` is what was called α in Section 4.1.2, the classifier yielded by a candidate solution (ζ, λ)
to (5.1.1) is

f(x̃) =
∑̀

j=1

K(x̃, x̃j)yjζj + b(ζ), (5.1.3)

where
b(ζ) ∈ Argmin

b
‖ξ[ζ]‖p∗ , (ξ[ζ])i = max [0, 1− (Qζ)i − byi] (5.1.4)

and the norm ‖ζ‖ is either the kernel norm

‖ζ‖2,y,K =
√

ζT Qζ,

or it is another norm on R` (from now on, we restrict this norm to be a standard ‖ · ‖r-norm
with 1 ≤ r ≤ 2), cf. (4.1.12), (4.1.13), (4.2.4);
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• In the case of an SVM model with adjustable kernel from Section 4.1.3,

Q =
[
[yiK1(x̃i, x̃j)yj ]i,j︸ ︷︷ ︸

Q1

, [yiK2(x̃i, x̃j)yj ]i,j︸ ︷︷ ︸
Q2

, ..., [yiKL(x̃i, x̃j)yj ]i,j︸ ︷︷ ︸
QL

]
∈ R`×L`, (5.1.5)

ζ ∈ RL` is what was called β = (β1, ..., βL) in Section 4.1.3, the classifier yielded by a candidate
solution (ζ, λ) to (5.1.1) is

f(x̃) =
L∑

s=1

∑̀

j=1

λsKs(x̃, x̃j)yjζ
s
j + b(ζ), (5.1.6)

where ζ1, ..., ζL are consecutive blocks of size ` in ζ and b(ζ) is given by (5.1.4), and ‖ζ‖ is the
norm

‖ζ‖ =
L∑

s=1

‖ζs‖2,y,Ks ≡
L∑

s=1

√
[ζs]T Qsζs, (5.1.7)

cf. (4.1.23), (4.1.24), (4.2.4);
• In the case of plain SVM models from Section 4.3,

Q =




y1x
T
1

y2x
T
2

· · ·
y`x

T
`


 ∈ R`×N , (5.1.8)

N being the dimension of the attribute≡feature space, ζ ∈ RN is what was called w in Section
4.3, the classifier yielded by a candidate solution (ζ, λ) to (5.1.1) is

f(x̃) = ζT x̃ + b(ζ), (5.1.9)

where b(ζ) is given by (5.1.4), and ‖ · ‖ is a norm on RN (which from now on we restrict to be
a standard ‖ · ‖r-norm with 1 ≤ r ≤ 2), cf. (4.3.3), (4.3.4).

5.1.2 The method

The setup

Our strategy is to solve problem (5.1.1) by the Mirror Prox Algorithm from Chapter 3 with the
setup presented in Section 3.2. Specifically, our setup is as follows.

ζ-component. The domain X of ζ in (5.1.1) is the ‖ · ‖-ball of radius ρ in certain RM , and
the norm for this component (we use in the MP setup) is exactly the norm ‖ · ‖. The distance-
generating function for this component is chosen as follows:
• ‖ · ‖ is the kernel-generated norm ‖ · ‖2,y,K (kernel-generated SVM model with the kernel norm
of α ≡ ζ):

ωX(ζ) = 1
2‖ζ‖2

2,y,K = 1
2

∑
i,j

yiyjK(x̃i, x̃j)αiαj

[
κ = 1, D = 1

2ρ2
] ; (5.1.10)

here and in what follows, κ, D are characteristic parameters of the pair “norm, distance-
generating function” introduces in Chapter 3. Note that (5.1.10) is given by (3.2.5) with p = 2;
indeed, we are in the situation where X is a ball of radius ρ in Euclidean space.
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• ‖ζ‖ is the norm
L∑

s=1
‖ζs‖2,y,Ks (SVM model with adjustable kernel, see (5.1.5) – (5.1.7)):

ωX(ζ) = θ−1ρ−θ
L∑

s=1
‖ζs‖θ

2,y,Ks
, θ =

{
2, L ≤ 2
1 + 1

log(L)
, L ≥ 3[

κ = (θ − 1)L1−θρ−2, D = 1
2ρ2

] (5.1.11)

this relation is given by (3.2.9); indeed, we are in the case when X is an extended simplex.
• ‖ · ‖ is the standard ‖ · ‖r-norm, 1 ≤ r ≤ 2 (kernel-generated SVM model with non-kernel
norm of ζ ≡ α and plain SVM model):

ωX(ζ) = 1
r̂

M∑
i=1

|ζi|r̂, r̂ = max
[
r, 1 + 1

2log(M)

]
,

[
(r̂ − 1)M

2

r̂
− 2

r ρr̂−2, D = 1
r̂
ρr̂

] , (5.1.12)

where M is the dimension of ζ (see (3.2.5) and note that what was called p in the latter formula
is now denoted by r).

For the case of r = 1, we have an alternative distance-generating function (see (3.2.8))

ωX(ζ) = min
u,w





∑
i
[uilog(ui) + wilog(wi)] :

u,w ≥ 0
u− w = ρ−1ζ∑
i
[ui + wi] = 1 + δ





=
∑
i

√
ρ−2ζ2

i +θ(ζ)−ρ−1ζi

2 log
(√

ρ−2ζ2
i +θ(ζ)−ρ−1ζi

2

)

+
∑
i

√
ρ−2ζ2

i +θ(ζ)+ρ−1ζi

2 log
(√

ρ−2ζ2
i +θ(ζ)+ρ−1ζi

2

)
,

θ(ζ) :
∑
i

√
ρ−2ζ2

i + θ(ζ) = 1 + (2d)−1δ
[
κ = ρ−2(1 + δ), D = (1 + δ)log(2M)

]

(5.1.13)

where M is the dimension of ζ and δ = 1.e-3.

λ-component. The domain Y of λ in (5.1.1) is the intersection of the nonnegative part of
the unit p-ball in R` and the hyperplane {λ :

∑
i yiλi = 0} passing through the origin. For

computational reasons, we restrict ourselves with the cases of p = 2 and p = ∞ only1) and equip
the space of λ’s with the norm and the distance-generating function as given by (3.2.6), that is,

‖λ‖ = ‖λ2‖ ≡
√

λT λ

and
ωY (λ) = 1

2λT λ[
κ = 1, D = 1

2`
1− 2

p

]
.

(5.1.14)

The starting point for MP is the origin in the (ζ, λ)-space.
After X, Y are equipped with the respective norms and distance-generating functions, the

norm and the distance-generating function for the domain Z = X × Y of the saddle point
problem (5.1.1) is built as explained in Section 3.2.2.

1)“Theoretically valid” range of p is 2 ≤ p ≤ ∞; replacing this set with its endpoints hardly makes any practical
difference.
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Computing the prox-mapping

Due to simplicity of the domain Z of the saddle point problem (5.1.1), computing the prox-
mapping is a computationally easy task which requires just Bisection. Indeed, due to the direct
product structure of Z and the additive structure of ω(·), the computation reduces to solving a
pair of optimization problems

min
ζ:‖ζ‖≤ρ

[ωX(ζ) + 〈ξ, ζ〉] (5.1.15)

and
min

λ≥0,‖λ‖p≤1,
∑
i

yiλi=0

[
ωY (λ) + ξT λ

]
, (5.1.16)

where 〈ξ, ζ〉 is either the kernel-generated inner product (kernel-type SVM models with kernel-
generated norm of ζ), or the standard inner product ξT ζ (kernel-type SVM models with r-norm
of ζ and plain SVM models).
We explain next how to solve these problems in two particular cases, skipping explanation for
the remaining (equally easy) situations.

Solving (5.1.15) in the case of (5.1.2). In view of (5.1.10), (5.1.15) reduces to

min
ζ:ζT Qζ≤ρ2

{
1
2
ζT Qζ + ξT Qζ

}
,

where Q is the positive definite matrix given by (5.1.2). The solution ζ∗ is immediate: we
compute γ =

√
ξT Qξ and set

ζ∗ =

{
−ξ, γ ≤ ρ
− ρ

γ ξ, γ > ρ

Solving (5.1.16). Recalling that B+
p (1) = {λ ∈ R` : λ ≥ 0, ‖λ‖p ≤ 1} and applying Lagrange

duality, we observe that the optimal solution to (5.1.16) is

λ∗ = argmin
λ∈B+

p (1)

{
1
2
λT λ + (ξ + θ∗y)T λ

}
,

where
θ∗ = argmax

λ∈B+
p (1)

φ(θ), φ(θ) = min
λ∈B+

p (1)

{
1
2
λT λ + (ξ + θy)T λ

}
. (5.1.17)

Since the only cases we are interested in are those of p = 2 and p = ∞, the value and a
supergradient of the (clearly concave) function φ(·) are easily computable. For example, in the
case of p = ∞, the minimizer λ(θ) of the function

{
1
2λT λ + (ξ + θy)T λ

}
over λ ∈ B+

p (1) is
readily given by the relations

(λ(θ))i =





0, ξi + θyi ≥ 0
−(ξi + θyi), −1 ≤ ξi + θyi ≤ 0
1, ξi + θyi ≤ −1

;

with λ(θ) being computed, we immediately get φ(θ) and

φ′(θ) = yT λ(θ).

We can find now the solution θ∗ to the univariate concave optimization program (5.1.17) by
Bisection, and thus get the solution λ(θ∗) to the problem of interest (5.1.16).
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The algorithm

The proposed version of the MP algorithm follows the description of the Basic MP algorithm
(Algorithm 3.1) up to two points: incorporating “aggressive” stepsize policy and mechanism for
building optimality gap.

Aggressive stepsize policy. Recall that the only requirement on the stepsize γt > 0 and
the point wt = wst−1 in the Mirror Prox algorithm is to satisfy the target inequality (3.1.19).
Theorem 3.1 states that with the constant stepsize γt = γsafe ≡ κ√

2L
, this inequality is satisfied

after at most two inner iterations (3.1.18). At the same time, by Proposition 3.2 the accuracy
t-th approximate solution zt = (ζt, λt) measured in terms of our objective

min
‖ζ‖≤ρ

F (ζ), F (ζ) = max
λ∈B+

p (1),
∑
i

yiλi=0

[
1T λ− λT Qζ

]
(5.1.18)

associated with the saddle point problem (5.1.1) is given by

F (ζt)− min
‖ζ‖≤ρ

F (ζ) ≤ A
t∑

τ=1
γt

, (5.1.19)

where A is defined solely by the data and the setup and completely independent of the stepsize
policy. From the latter bound, it follows that the (upper bound on the) accuracy after t steps is

governed by the quantity Γt =
T∑

τ=1
γt, while the “computational cost” of this accuracy is the total

number It of inner iterations in course of t steps of the algorithm. Thus, the quantity Θt = Γt/It

can be though of as the “performance to cost” ratio for our algorithm – the larger is Θt, the
better. With Basic implementation, this ratio is, independently of t, the quantity Θsafe = γsafe/2
(indeed, with this implementation, Γt = tγsafe, while It is (at most) 2t. Note, however, that the
performance-to-cost ratio Θsafe comes from the worst-case-oriented theoretical considerations
and as such could perhaps be improved in practical computations. The aggressive stepsize
policy, we use in our implementation of the MP algorithm, tries to improve the performance-
to-cost ratio in the simplest possible fashion, specifically, as follows. We fix some “threshold”
number k of inner iterations per step of the algorithm (in our implementation, this threshold
is 3). When running inner iterations at step t, we start with certain (recursively defined, see
below) initial value γ1

t ≥ γsafe of the stepsize and run the inner iterations

ws = Pzt−1(γ
s
t Φ(ws−1)), s = 0, 1, ... (5.1.20)

(cf. (3.1.18)) with γ1
t = γ2

t = ... = γk
t . If step t is terminated according to the rule

〈ws−1 − Pzt−1(γ
s
t Φ(ws−1)), γs

t Φ(ws−1)〉
+ [ω(zt−1) + 〈ω′(zt−1), ws − zt−1〉 − ω(ws)] ≤ 0

(5.1.21)

(cf. (3.1.19)) in course of the first k inner iterations, we set γt = γs
t and start the step t+1 with

increased value of the stepsize: γ1
t+1 = γ+γt, (γ+ > 1 is a fixed factor). In the opposite case

(step t does not terminate in course of the first k inner iterations), we start to reduce the current
stepsizes by another fixed factor γ− < 1 until the value γsafe is reached, that is, we continue
inner iterations (5.1.20) with

γs+1
t = max[γ−γs

t , γsafe]
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until the termination condition (5.1.21) is met. We then set γt = γs
t and start the step t + 1

with γ1
t+1 = γt.

In our implementation, we use γ+ = 1.2 and γ− = 0.5. Numerous experiments demonstrate
that although the outlined stepsize policy usually requires, at average, more than 2 inner itera-
tions per step of the algorithm, this increase in the computational price of a step is more than
compensated by progress in the resulting average stepsize γt, so that the “performance-to-cost”
ratios Θt usually are by order of magnitudes larger than the “benchmark” ratio Θsafe.

Generating approximate solutions and optimality gaps. Observe that if (ζ̄, λ̄) is a
feasible solution to (5.1.1) and we have already computed the vectors Qζ̄ and QT λ̄, then we can
easily compute the quantities

F (ζ̄) = max
λ∈B+

p (1),
∑
i

yiλi=0

[
1T λ− λT Qζ̄

]

F (λ̄) = min
ζ:‖ζ‖≤ρ

[
1T λ̄− λ̄T Qζ

]
.

Note that F (ζ̄) is the value at ζ̄ of the actual objective we are interested to minimize over
ζ ∈ X = {ζ : ‖ζ‖ ≤ ρ}; consequently, the approximate solution of the problem min

X
F (ζ) (we can

build at certain moment) is the best (with the smallest value of F ) of the ζ-components of all
feasible pairs (ζ, λ) for which we have computed so far the vectors Qζ and QT λ. We denote by
F t the value of F at this best found so far solution. Now, for λ̄ ∈ Y = {λ ∈ B+

p (1),
∑
i

yiλi = 0},
the quantities F (λ̄) are lower bounds on the optimal value F∗ in the problem of interest:

F∗ ≡ min
ζ∈X

max
λ∈Y

[
1T λ− λT Qζ

]
≥ min

ζ∈X

[
1T λ̄− λ̄T Qζ

]
= F (λ̄).

It follows that we can build lower bounds on the optimal value in the problem as the largest
of the quantities F (λ), λ ∈ Y , computed so far. Denoting by Ft the lower bound built after
t steps, the t-th optimality gap is the quantity ∆t = F t − Ft; the gap bounds from above the
non-optimality, in terms of the objective F , of the best approximate solution to the problem
min
X

F built in course of steps 1, ..., t.

The bottom line is as follows: In the Algorithm 3.1, an approximate solution ζt to the
problem built after t steps is the ζ-component of the weighted average (3.1.20) of the search
points wτ = (ζτ , λτ ), τ ≤ t; without additional computations, we even do not know what F (ζt)
is. In actual computations it seems to be more reasonable to choose as ζt the best (with the
smallest value of F ) of the points ζ ∈ X, where we have computed so far the values F (ζ) of
the objective. The MP algorithm, as applied to (5.1.1), computes at every inner iteration the
vector Φ(ζ, λ) at a current search point (ζ, λ) of the saddle point problem, that is, computes Qζ
and QT λ, and we can use “for free” these matrix-vector products in order to build approximate
solutions to the problem and the lower bounds on its optimal value. In contrast to this, in the
Basic MP method we do not compute Φ(·) at approximate saddle points (zt, λt) given by (3.1.20),
and thus do not compute the associated values of the objective F and of the lower bound F .
In our implementation we add these computations in order to include the approximate saddle
points (ζt, λt) in the outlined scheme for building approximate solutions and optimality gaps.
However, to reduce the total computational effort, we compute Φ(ζt, λt) (and thus F (ζt) and
F (λt)) for a sub-sequence of values of t only (in our implementation - once per every 25 steps
of the method).
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## Data Attributes Density Training sample Validation sample
1 arcene60 40 10000 0.5 60 = 29 + 31 40 = 15 + 25
2 dexter200 100 20000 0.005 200 = 100 + 100 100 = 50 + 50
3 dorothea600 200 100000 0.009 600 = 58 + 542 200 = 20 + 180
4 gisette4000 2000 5000 0.1 4000 = 2038 + 1962 2000 = 962 + 1038
5 madelon1500 500 500 1.0 1500 = 769 + 731 500 = 231 + 269
6 g5000x15000x05 2000 5000 0.04 15000 = 7462 + 7538 2000 = 1039 + 961
7 internet ads2500 780 1558 0.01 2500 = 364 + 2136 780 = 95 + 685
8 lymphoma60 36 4026 1.00 60 = 40 + 20 36 = 22 + 14
9 colon40 22 2000 1.00 40=12+28 22=10+12
10 bupa245 100 6 1.0 245 = 105 + 140 100 = 40 + 60
11 cleveland heart200 97 13 0.75 200 = 93 + 107 97 = 44 + 53
12 ionosphere251 100 34 0.9 251 = 161 + 90 100 = 64 + 36
13 mushroom6000 2124 22 0.2 6000 = 3120 + 2880 2124 = 1088 + 1036
14 musk1300 176 166 1.0 300 = 141 + 159 176 = 66 + 110
15 pima600 168 8 0.9 600 = 214 + 386 168 = 54 + 114
16 sonar108 100 60 1.0 108 = 64 + 44 100 = 57 + 43
17 wdbc400 169 30 1.0 400 = 152 + 248 169 = 60 + 109

Table 5.1: 17 data sets used in numerical experiments.

5.2 Experiments: data and methodology

The outlined version of the Mirror Prox algorithm was implemented in MATLAB and tested
on a number of SVM data. In this section, we describe the data and our experimentation
methodology.

5.2.1 The data

Basically all data used in our experiments were found in Internet; the only exception is the data
set g5000x15000x05 2000 we have generated. We have no detailed knowledge of the origin of
most of the data (which in any case is irrelevant in our primarily computational context). All we
know is that the first five data sets were used in the competition in feature selection techniques
which preceded the NIPS Workshop on Feature Extraction (Whistler British Colombia, Canada,
2003). The remaining data seemingly are real-life ones.

Information on the 17 data sets we have used is presented in Table 5.1. This information
includes the dimension of the attribute vectors x̃i, data density – average fraction of nonzero
entries in these vectors, cardinality ` of the training sample and the numbers `+, `− of positive
(with yi = 1) and negative (yi = −1) examples in the sample (in Table 5.1, these numbers are
presented as ` = `+ + `−) and similar numbers for the validation sample. The latter is not used
in the SVM model itself; its only purpose is to test the quality of the classifier yielded by this
model. Note that in all data sets available for us, only training samples are present; we have
split each of these samples in two parts to be used as the training and the validation samples
in our experiments. The examples from the original sample were split into the two parts at
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random, with chosen in advance cardinalities of the parts; this partitioning was never revised.
By reasons which will be explained in a moment, it is natural to divide the data in Table

5.1 into “large-scale data” 1 – 9 (the dimension of the attribute vectors ranging from 500 to
100,000) and “low-dimensional data” 10 – 17 (the attribute dimension ranging from 6 to 166).

5.2.2 Methodology of experimentation

The experimentation methodology we have used stems from the fact that the goal of our research
is to investigate the potential of advanced large-scale convex optimization techniques, specifically,
the Mirror Prox algorithms, in the context of SVM models rather than to solve actual binary
classification problems. This goal motivates a number of important decisions we have made as
far as experimentation is concerned, specifically

1. In our experimentation, we focus solely on plain SVM models.

The reason is that for our purposes already results obtained on plain SVM models
provide sufficient, although, perhaps, not 100% complete, understanding of the potential
of the MP algorithm in the SVM applications; at the same time, working with plain
models, we have no need in choosing an appropriate kernel, which by itself is a highly
time-consuming and heavily data-dependent task; since we do not know the origin of
the majority of our data sets, we are not in a position to carry this task out. It should
be added that at the most large-scale data sets (## 1 – 6 in Table 5.1), to the best of
our understanding, do not require kernels to be processed reasonably well; the same is
true for a significant part of the remaining data sets.

Another argument in favour of plain models in our context can be best of all explained
on an example. Consider, e.g., the data mushroom6000 2124 (# 13 in Table 5.1). All
we need to process the corresponding plain SVM model is to store in RAM a 6000× 22
data matrix Q with the attribute vector being the rows; the computational cost of an
inner iteration in MP is, essentially, the cost of computing Qζ and QT λ for given ζ, λ.
Thus, the required RAM is about 1 megabytes (Mb), assuming double precision (that is,
8 bytes per real), and the cost of an inner iteration is just about 500,000 floating point
operations. Now assume that we intend to process the same data set via a kernel-type
SVM model with, say, Gaussian kernel. The corresponding matrix Q given by (5.1.2)
is a symmetric 6000× 6000 matrix which is fully dense. It takes as much as 144 Mb of
RAM to store the (lower triangular part of the) matrix, and as much as 72,000,000 of
floating point operations to multiply this matrix by a vector – we get over than 100-fold
increase in computational resources per inner iteration of MP. This dramatic growth in
computational effort when passing from the plain to the kernel-generated SVM could
perhaps be justified if our goal were to build as good classifier for mushroom6000 2124

as possible, but it hardly could be justified with our actual goal.

2. We do not pay too much attention to tuning the parameters of the SVM models, for ex-
ample, the parameter ρ in (5.1.1).

If our only goal were to get good classifiers for the data sets, our primary effort would be
on the “optimal” choice of ρ and two other model parameters r and p (these parameters
are responsible for the choice of the norm in the constraint ‖ζ‖ ≤ ρ and the norm in
which the vector of slacks is measured). For example, we tune the model parameters by
processing a series of problems (5.1.1) coming from the same data set and differing from
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each other in model parameters only, to test the resulting classifiers on the validation
sample and to apply a kind of rough optimization over model parameters aimed at
specifying the parameters resulting in the smallest possible classification error at the
validation sample. With our actual goal, that is, evaluating the potential of MP in the
SVM context, such a “fine tuning” would be more or less waste of time: if MP performs
well for a “representative”, although small, set of different model parameters, there are
all reasons to expect that it will perform equally well for other values of the parameters
in their “represented” range.

3. When evaluating the performance of MP, we keep in mind the ultimate purpose of the
computational process – building classifier instead of focusing on optimization aspects only.

Methodologically, this point is very important when “computationally cheap” techniques
for large-scale convex optimization are concerned. As it was explained in Introduction,
these techniques are unable to guarantee high-accuracy solutions with reasonable itera-
tion count; at the present level of our knowledge, the latter is possible only with polyno-
mial time optimization techniques with prohibitively expensive, in the large-scale case,
iterations. Thus, the only point in solving large-scale convex problems by computation-
ally cheap methods stems from the desire “to buy reduced accuracy at reduced (and
thus affordable) price”, in hope that the “reduced accuracy” already is sufficient for our
applications. Whether this hope is or is not justified, and thus whether it makes or does
not make sense to use “cheap” methods, depends on the method and on the application.
It follows that in our context, at least one of the major criteria for evaluating MP is
how rapidly the quality of the resulting classifiers stabilizes with the iteration count.
Note that this criterion has little in common, both with the quality of the classifier
produced by the SVM model and with the rate of convergence of the MP, as applied
to this model. Indeed, imagine that in the first few iterations MP produces a classifier
with the classification error, as evaluated at the validation sample, as large as 15%,
while a high-accuracy solution of the same SVM problem (obtained in much larger time
by an interior point method or with many iterations of MP) produces a classifier with
error 14%. By itself, classification error of 14% or 15% is “meaningful”, nevertheless,
in terms of the particular application, the method could be qualified as pretty good –
just in few (cheap!) iterations, it produces a solution, which in terms of the particular

application we are interested in, is almost as good as a much more computationally
expensive high-accuracy solution.

5.2.3 Organization of experiments

Our implementation of the guidelines outlined in the previous Section is as follows:

1. With every one of the 17 data sets presented in Table 5.1, we associate several saddle point
problems (5.1.1) corresponding to with ‖ζ‖ ≡ ‖ζ‖r. All these problems represent plain
SVM models and differ from each other only in the values of the model parameters ρ, r, p.
Specifically, we allow for the parameters to take, independently of each other, the values
as follows:

ρ : 0.1, 1.0, 10.0; r : 1, 2; p : 1,∞,

which gives us 12 = 3× 2× 2 problems per data set.
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Restricting the values of r and p with the endpoints of the respective theoretically
allowed segments 1 ≤ r ≤ 2 and 2 ≤ p ≤ ∞ seems quite natural. Our preliminary
experiments (which we do not report here) demonstrate that the chosen values 0.1, 1.0,
10.0 of ρ are “representative” for the majority of our data sets.

2. Recall that in the case when the domain X of ζ in (5.1.1) is ‖ · ‖1-ball (that is, the model
parameter r is 1), we have two alternative choices of the corresponding distance-generating
function, namely, the function (5.1.12) with r = 1 and the function (5.1.13); in the sequel,
we refer to these distance-generating functions as to the power-like and the entropy-like,
respectively. Thus, 6 of the above 12 saddle point problems – those with r = 1 – can be
processed by two different versions of MP each. As a result, every data set from Table 5.1
gives rise to 18 = 12 + 6 numerical experiments, which amounts to total of 17 · 18 = 306
numerical experiments. In fact the number of numerical experiments was slightly larger –
316, since some of the data were processed with additional values of ρ.

3. A particular numerical experiment was run until the first occurrence of any one of the
following two events:

• Arriving at 1% “semi-relative accuracy”: Accur(t) ≤ 0.01, where

Accur(t) =
∆t

max[1, F (ζt)]
(5.2.1)

Recall that ζt is the approximate solution built in course of t steps, F (ζ) =
max

λ∈B+
p (1),

∑
i

yiλi=0

[
1T λ− λT Qζ

]
is the objective of interest, and ∆t is the opti-

mality gap built in course of t steps, which is an upper bound on the quantity
F (ζt)− min

‖ζ‖≤ρ
F (ζ)

• Executing 1000 steps of the MP algorithm.

4. Once per every 25 iterations and upon termination, the computational process was inter-
rupted in order to test the classification errors of the “current classifier” (the one yielded
by the best found so far solution to the problem of interest min

‖ζ‖≤ρ
F (ζ)).

5. In course of every experiment, we have recorded the following quantities describing the
computational process:

(a) Progress in optimality gap

PrG(t) =
∆t

∆1
=

F t − Ft

F 1 − F1
(5.2.2)

(recall that F t = F (ζt) and Ft are the best found in t steps upper, respectively, lower
bound on the optimal value in the problem of interest min

‖ζ‖≤ρ
F (ζ));

(b) Relative accuracy

RelAccur(t) =
F t − LwB
F t + 1.e-12

, (5.2.3)

where LwB is the best known lower bound on the optimal value in the problem
of interest (in most of the cases, this is the lower bound FT built by MP upon
termination.
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(c) Classification errors ErrTr(t), ErrVl(t) of the classifier built at iteration t on the
training and the validation samples, respectively; these quantities are in the sequel
referred to as training and validation errors, respectively.

(d) The total number InnerItr(t) of inner iterations in course of t steps; this is the natural
“intrinsic” computational cost of t steps, not directly affected by the size of the data
and computer’s performance.

(e) CPU time CPU(t) required to run t steps, with time used to test the classifiers ex-
cluded; this is the actual (affected by the size of the data and computer’s performance)
cost of t steps of the algorithm.

6. Finally, SVM models with r ∈ {1, 2} and p ∈ {1,∞} in their optimization form

min
ζ:‖ζ‖r≤ρ,b∈R,ξ

{‖ξ‖p∗ : ξi ≥ max[0, 1− ((Qζ)i + yib)], i = 1, ..., `}

clearly are just linear programs (r = 1, p = ∞), or linearly constrained convex quadratic
programs (r = 1, p = 2), or convex quadratically constrained quadratic programs (r = 2);
all these problems can be solved by Interior Point polynomial-time methods. In order
to get a kind of benchmark for evaluating the MP algorithm, part of our experiments
were accompanied by solving the problems by the state-of-the-art commercial IP solver
mosekopt, which is known as nearly the best commercial solver for linear and linearly
constrained convex quadratic programs, and the only commercial solver capable to solve
quadratically constrained programs.

5.3 Experiments: numerical results

It would be unreasonable to present detailed data on every one of 316 numerical experiments
we have carried out; even detailed data on 18 experiments related to a single data set would
be too much. What we are about to do, is to present a number of “integral slices” of the all
accumulated information and then detailed information on selected experiments.

5.3.1 Statistics of results

Overall performance

Data on the overall performance of the MP algorithm on our data are given in Table 5.2 and on
Figures 5.1 – 5.2. In Table 5.2, we display the averages of various performance characteristics
of the MP algorithm, while the histograms on Figures 5.1 – 5.2 give an impression on the
distributions of the performance characteristics, which are most important in our context, that
is,

• relative accuracy, which seems to be the major characteristic of the solution process con-
sidered in purely optimization perspective, and

• the resulting validation error (i.e., classification error on the validation sample) which is
the major entity of interest in the SVM context.
A detailed explanation of what is presented in Table 5.2 is given in the footnotes accompanying
the table; explanation of what is displayed at the figures is in their captions. There are, however,
two specific points related to our tables and figures:
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1. When displaying statistics of “time-dependent” performance characteristics (like progress
in optimality gap, or current relative accuracy, or classification error of current classifier
– all these quantities depend on the iteration number), one should take into account that
strictly speaking, these entities exist in an experiment-dependent “time horizon”; indeed,
what is relative accuracy at step 200, if the solution process has reached the required
relative accuracy 0.01 and thus was terminated (see item 3 in Section 5.2.3) as early as at
step 100? How should the results of such an experiment contribute to the distribution of
relative accuracy at step 200? Discarding these results from the corresponding statistics
would be misleading – it could give an impression that the distribution of accuracy reached
by the method “spoils” as the number of steps grows, which definitely is not the case. Our
remedy here is to think of all experiments as lasting for all our allowed 1000 steps of MP
and to extend the performance characteristics, like progress in optimality gap, beyond
their actual “life span” by the values they have reached at the end of this span.

Another difficulty of the same flavour stems from the fact that the error, as evaluated on
the validation sample (same as on the training one), of the classifier built in course of t
steps not necessarily decreases as t grows; in many experiments, this error first decreases
and then grows or oscillates (this phenomenon could be thought of as “over-tuning”).
Needless to say, in actual applications the classifier to be forwarded to the end-user should
be the best, as evaluated on the validation sample, of the classifiers built in course of
the solution process, rather than the classifier associated with the best solution to the
optimization model we are processing. To capture this point in our statistics, we define
the classification error obtained during t steps as the error of the best classifier we have
built and tested so far (which is not the same as the error of the last classifier we have
tested so far).

2. Another specific remark has to do with Figure 5.1 (and all subsequent figures representing
relative accuracy). In the SVM models it is possible to reach the exact optimal value in a
finite number of steps. The latter is what should be expected in the case when an “ideal”
affine classification is possible (that is, a classification resulting in the zero slack vector).
In these cases, ideal classification is given by a “massive” (with a nonempty interior) set
of affine classifiers, and it may happen (and indeed it happened in our experiments) that
our iterative process reaches this optimal set in finite number of steps. As a result, in part
of our experiments the optimality gap reaches zero value, which makes it impossible to
display the relative accuracy on a histogram with logarithmic scale along the accuracy axis.
In order to avoid this difficulty, when drawing histograms of the progress in optimality gap,
we replaced all values of RelAccur, which are < 1.e-10 with 1.e-10, which results in “high
bins” at the very left of the corresponding histograms; in fact, these bins represent the
percentage of problems solved to optimality.

Comments on the performance characteristics of MP presented in Table 5.2 and on Figures
5.1 – 5.2 are as follows:

1. Performance of MP as an optimization method seems to be quite reasonable:

• At average, the relative accuracy achieved by the method is about 0.09 (see Tab. 5.2)
vs. our target accuracy 0.01, which is not that attractive, the target accuracy was
achieved in over 80% of the experiments (Fig. 5.1.A.3), with the average number of
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iterations about 3412) (Tab. 5.2), nearly 3 times less than our allowed maximum of
1000 iterations, and average CPU time as small as 73.5 sec3). Moreover, in about
22% of the experiments the optimization problems were solved to optimality (Fig.
5.1.A.3).

• Good news are that the performance characteristics of MP on large-scale data ## 1
– 9 are significantly better than on all the data: while the percentage of experiments
where the target accuracy was achieved is about the same 80%, now the optimality
was reached in as much as 40% of the experiments. Moreover, in 22% of the experi-
ments, optimality was reached in less than 50 iterations, and in 38% of them – in less
than 200 iterations, see Fig. 5.1.B. The average iteration count on large-scale data
was 264 (cf. the average 341 over all data), with average CPU time of 130 sec.

2. As far as the quality of classifiers yielded by the MP algorithm, the situation seems to be
really nice:

• At average, the classification error of the resulting classifiers, as evaluated on the
validation samples, is about 19% (all data) and about 18% (large-scale data), see
Table 5.2. In over 35% of experiments with all data and in over 47% of experiments
with large-scale data, the errors of the resulting classifiers were less than 10%, see Fig.
5.2. By itself, these results primarily reflect the properties of the data sets and do
not say much about the performance of the MP algorithm in our application. What
does say a lot of this performance – and what are really good news about it – is that
the best classification error achieved in course of an experiment is, typically, achieved
pretty fast. Indeed, data in Table 5.2 indicate that

– at average, both for all data and for the large-scale data, the classification error
achieved in just 50 steps of an experiment, is pretty close to the error achieved
during the entire experiment;

– the average number of steps resulting in the best classifier is as small as 131.5
for all data, and 105.2 for large-scale data, the corresponding average CPU times
being just 21.1, respectively, 35.6 sec;

– the average number of steps before a “nearly the best” classifier is built (that is,
with the error within the factor 1.1 of the best error achieved in the experiment)
is just 100.4 for all data and 87.0 for large-scale data.

This phenomenon – “what can be achieved, can be achieved fast” – is also clearly
seen on Fig. 5.2 – the percentage of experiments where a “good” (less than 10%)
classification error is achieved in just 50 iterations is pretty close to the percentage
of experiments where this error is achieved during the entire run.

3. A nice feature of the classifiers produced by the MP algorithm is their sparsity – the number
of features (in our plain SVM models, these are exactly the same as attributes) used in a
classifier is, at average over all experiments and over experiments with large-scale data ##

2)in the sequel, in order to save space, we do not present the data on the total number of inner iterations
required by experiments, only the data on the number of steps (in the sequel called “iterations”). The reason is
that with our aggressive stepsize policy, both the quantities – the total number of inner iterations and the total
number of steps – are proportional to each other with nearly independent of an experiment coefficient about 4.5.

3)All computations were carried out on IBM ThinkPad PC with Intel Pentium 1.86 GHz processor and 1 Gb
of RAM.
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1 – 9, just about 11%, respectively, 8%, of the total number of attributes. It follows that
the MP-generated classifiers, at least with our data sets, allow for nice feature selection –
selecting relatively small number of features/attributes responsible for classification. This
selection, important by its own right, could be used to reduce computational expenses in
computing classifiers: after a classifier which uses a relatively small number of features
and possesses a reasonable classification error is built (which typically happens essentially
earlier than the computational process terminates), we could discard all attributes/features
not used by the classifier and to resolve the problem on the smaller, in terms of the number
of attributes, and thus easier to process computationally, training sample.

“Common wisdom” says that sparse classifiers usually are yielded by SVM models with
‖ · ‖1-norm in the role of ‖ · ‖ in (5.1.1). At least with our data sets, this is not the case: it
is seen from Tables 5.3 – 5.4 that ‖ · ‖2 in the role of ‖ · ‖ leads to equally sparse classifiers.

When solving an optimization problem by an iterative method, approximate solutions
usually are not sparse, even when the optimal solution is so; typically, entries in ap-
proximate solutions corresponding to zero entries in the optimal one are pretty small,
but not exactly zero. To account for this phenomenon, in our experiments we subject
the classifiers produced by the algorithm to a kind of “purification”. Specifically, at
step t, in order to build the classifier associated with the best found so far solution
ζt, we replace with zeros all “negligible” entries ζt

i in ζt – those satisfying the relation
|ζt

i | ≤ 10−4 max
j
|ζt

j |, while keeping the remaining entries intact. The data on sparsity

and classification errors we present here relate to the “purified” classifiers.

Performance on various SVM models

Recall that in our experiments we deal with four types of plain SVM models differing from each
other in the norms we use to quantify the magnitudes of a linear form on the attribute≡feature
space and of a vector of slack variables. Specifically, we work with ‖ · ‖r-norm in the role of ‖ · ‖
in (5.1.1) and the norm ‖ · ‖ p

p−1
to measure the magnitude of a vector of slacks, allowing for the

following four combinations of the values of r, p:
• r = 1, p = ∞ (this corresponds to the LP SVMs);
• r = 1, p = 2;
• r = 2, p = ∞;
• r = 2, p = 2.

The performance characteristics of MP on every one of the four SVM models in question is
presented in Tables 5.3 – 5.4 and on Figures 5.3 – 5.4.

Comments to the data in Tables 5.3 – 5.4 and on Figures 5.3 – 5.4 are as follows.

1. As far as “purely optimization” performance characteristics of the MP algorithm are con-
cerned, at average all of them are more or less the same for all four SVM models, and it
is difficult to select the “clearly winning” model. Say, the SVM models with r = 1 seem
to result in better relative accuracy and in worse progress in optimality gap than mod-
els with r = 2, see Tables 5.3 – 5.4; note that from purely optimization viewpoint, both
characteristics seem to be equally important... Note, however, that the LP SVM models
(r = 1, p = ∞) require more time-consuming processing. For example, for these models,
average, over all experiments, iteration count and CPU time are 382 iterations and 122
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Subset of data t = 25 t = 50 t = 100 t = 200 t = 400 t = 800 t = 1000

Itr fina) Progress in optimality gap PrG(t)b)

340.8 0.377 0.270 0.193 0.146 0.108 0.077 0.071

CPUc) Relative accuracy RelAccur(t)d)

73.50 0.332 0.270 0.186 0.145 0.128 0.094 0.092

Data ## 1 – 17i) (316 exper.) Itr bste) Classification error, training sample
131.5 0.150 0.127 0.117 0.112 0.108 0.106 0.106

CPU bstf) Classification error, validation sample
21.1 0.228 0.211 0.199 0.194 0.192 0.191 0.191

Itr N bstg) Density of classifierh)

100.4 0.153 0.130 0.120 0.115 0.111 0.109 0.109

Itr fina) Progress in optimality gap PrG(t)b)

264.2 0.353 0.222 0.150 0.121 0.099 0.074 0.068

CPUc) Relative accuracy RelAccur(t)d)

129.35 0.417 0.326 0.186 0.128 0.113 0.098 0.096

Data ## 1 – 9i) (164 exper.) Itr bste) Classification error, training sample
105.2 0.112 0.083 0.073 0.070 0.067 0.065 0.065

CPU bstf) Classification error, validation sample
35.6 0.203 0.188 0.180 0.180 0.179 0.178 0.178

Itr N bstg) Density of classifierh)

87.0 0.117 0.089 0.079 0.076 0.073 0.071 0.070

The data in the table are averages, across all experiments, of the performance characteristics as follows:
a): number of steps of MP before termination, see item 3 in Section 5.2.3
b): see (5.2.2)
c): elapsed CPU time (sec), see item 5e in Section 5.2.3
d): see (5.2.2)
e): step of MP resulting in the best found in the experiment classification error on the validation sample
f): CPU time (sec) required by the first Itr bste) steps
g): the first step of MP where the classification error on the validation sample is at most 1.1 times larger

than the best registered in the experiment
h): the ratio of nonzero entries in the classifier to the dimension of the attribute vectors
i): see Table 5.1

Table 5.2: Average performance characteristics of Mirror Prox algorithm
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A. Data ## 1 – 17 B. Data ## 1 – 9
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Figure 5.1: Distribution of relative accuracy RelAccur(t), see (5.2.3). Along the X-axis: decimal
log of RelAccur(t); along the Y -axis: percentage of experiments in the bin.
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A. Data ## 1 – 17 B. Data ## 1 – 9
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Figure 5.2: Distribution of validation errors ErrVl(t) (in %%), see item 5c in Section 5.2.3.
Along the X-axis: values of error in percent. Along the Y -axis: percentage of experiments in
the bin.
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sec vs. 321 iterations and 31 sec for models with r = p = 2 (Table 5.3); the same averages
for large-scale data are 336 iterations and 219 sec for LP models vs. 208 iterations and 50
sec for models with r = p = 2 (Table 5.4).

When passing from average performance characteristics to their distributions, the “win-
ning” SVM model seem to be those with r = 2. For example, for both the models
r = 2, p = ∞ and r = p = 2, the percentage of experiments where the problems were
solved to optimality is over 30% for all experiments and over 50% (!) for experiments with
large-scale data; the corresponding figures for SVM models with r = 1 are about 20% and
35%, respectively.

Note that when passing from p = 2 to p = ∞, the theoretical efficiency bound of MP
“spoils” by factor

√
`, ` being the cardinality of the training sample, see Chapter 3, and

this phenomenon is independent of the value of r. While the data in Tables 5.3 – 5.4
demonstrate that passing from r = 1, p = ∞ to r = 1, p = 2 indeed slows down the
optimization process (although by factor much less than predicted by theory), there is
seemingly no slowing down when passing from r = 2, p = ∞ to r = 2, p = 2.

The bottom line is: from four SVM models in question, those better suited to processing
via the MP algorithm are models with the Euclidean norm ‖ · ‖2 of ζ.

2. The conclusion we have just made is in full accordance with the data on classification errors,
as evaluated on validation samples, of the classifiers yielded by the four SVM models in
question. While the average, over all data, classification errors associated with the four
models in question are nearly the same (Table 5.3), and the average, over large-scale data,
classification errors coming from models with r = 2 are only marginally better than those
coming from models with r = 1, the data on distributions of these errors definitely are
in favour of the former models. Indeed, from Fig. 5.4 we conclude that the models with
r = 1 result in “good” (less than 10%) validation errors in 35% of all experiments and
45% of experiments with large-scale data; for models with r = 2, these figures improve to
over 40% and over 50%.

All in all, the data in Tables 5.3 – 5.4 and on Figures 5.3 – 5.4 witness in favour of SVM models
with r = 2, and among these models – slightly in favour of those with p = 2.

Performance with various setups

Recall that in SVM models with ‖ · ‖1-norm in the role of ‖ · ‖ in (5.1.1), we have two alternative
choices of the distance-generating function for the domain {ζ : ‖ζ‖1 ≤ ρ} of the ζ-component: the
entropy-like function (5.1.13) and the power-like function (5.1.12). A natural research question is
which one of these alternatives is more attractive. The corresponding data are given in Tables 5.5
– 5.6 and on Fig. 5.6. These data suggest that there are no essential difference in performance of
the two versions of MP in question; the power-like distance-generating function yields a slightly
more time-consuming and slightly more accurate, in the optimization perspective, algorithm. At
the same time, both versions of MP are the same as far as the quality of the resulting classifiers
is concerned (the latter could be predicted in advance – in both cases, the classifiers come from
approximate solutions to the same saddle point problem).

88



SVM model t = 25 t = 50 t = 100 t = 200 t = 400 t = 800 t = 1000

Itr fina) Progress in optimality gap PrG(t)b)

r = 1, p = ∞ 382.7 0.394 0.261 0.185 0.142 0.110 0.081 0.076

r = 1, p = 2 311.0 0.447 0.323 0.217 0.159 0.123 0.086 0.080

r = 2, p = ∞ 332.3 0.246 0.196 0.149 0.112 0.077 0.053 0.045

r = 2, p = 2 320.7 0.329 0.256 0.207 0.158 0.107 0.072 0.067

CPUc) Relative accuracy RelAccur(t)d)

r = 1, p = ∞ 121.68 0.354 0.298 0.188 0.129 0.111 0.069 0.064

r = 1, p = 2 62.05 0.314 0.263 0.170 0.132 0.115 0.103 0.102

r = 2, p = ∞ 37.51 0.345 0.262 0.196 0.179 0.163 0.112 0.110

r = 2, p = 2 30.58 0.309 0.231 0.201 0.171 0.158 0.112 0.112

Itr bste) Classification error, training sample

r = 1, p = ∞ 159.4 0.167 0.137 0.126 0.121 0.117 0.114 0.114

r = 1, p = 2 111.6 0.163 0.134 0.121 0.116 0.112 0.111 0.111

r = 2, p = ∞ 122.4 0.119 0.110 0.103 0.099 0.095 0.093 0.092

r = 2, p = 2 121.9 0.120 0.110 0.104 0.098 0.094 0.093 0.093

CPU bstf) Classification error, validation sample

r = 1, p = ∞ 28.4 0.231 0.210 0.198 0.193 0.191 0.190 0.190

r = 1, p = 2 21.0 0.239 0.221 0.205 0.200 0.199 0.198 0.198

r = 2, p = ∞ 14.1 0.216 0.207 0.199 0.193 0.191 0.189 0.189

r = 2, p = 2 12.9 0.210 0.200 0.190 0.186 0.183 0.183 0.183

Itr N bstg) Density of classifierh)

r = 1, p = ∞ 114.9 0.166 0.136 0.125 0.120 0.116 0.114 0.114

r = 1, p = 2 89.9 0.162 0.134 0.120 0.116 0.112 0.111 0.111

r = 2, p = ∞ 104.2 0.135 0.126 0.120 0.116 0.112 0.110 0.109

r = 2, p = 2 87.4 0.137 0.127 0.121 0.115 0.111 0.111 0.110

For footnotes, see Table 5.2.

Table 5.3: Average performance of MP for various SVM models, all data.
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SVM model t = 25 t = 50 t = 100 t = 200 t = 400 t = 800 t = 1000

Itr fina) Progress in optimality gap PrG(t)b)

r = 1, p = ∞ 335.5 0.411 0.238 0.166 0.136 0.116 0.086 0.080

r = 1, p = 2 246.0 0.442 0.281 0.163 0.126 0.109 0.082 0.075

r = 2, p = ∞ 204.4 0.170 0.125 0.105 0.086 0.063 0.045 0.040

r = 2, p = 2 207.8 0.231 0.163 0.137 0.113 0.077 0.062 0.058

CPUc) Relative accuracy RelAccur(t)d)

r = 1, p = ∞ 219.36 0.468 0.402 0.218 0.135 0.122 0.088 0.084

r = 1, p = 2 109.66 0.413 0.337 0.173 0.110 0.085 0.082 0.080

r = 2, p = ∞ 55.17 0.380 0.242 0.150 0.142 0.133 0.124 0.122

r = 2, p = 2 49.97 0.353 0.223 0.180 0.136 0.130 0.126 0.125

Itr bste) Classification error, training sample

r = 1, p = ∞ 130.0 0.139 0.098 0.086 0.084 0.080 0.077 0.077

r = 1, p = 2 92.1 0.129 0.092 0.077 0.074 0.071 0.070 0.070

r = 2, p = ∞ 84.4 0.064 0.059 0.055 0.053 0.049 0.048 0.047

r = 2, p = 2 99.7 0.064 0.058 0.055 0.052 0.048 0.047 0.046

CPU bstf) Classification error, validation sample

r = 1, p = ∞ 48.1 0.209 0.184 0.175 0.174 0.173 0.172 0.172

r = 1, p = 2 36.4 0.219 0.200 0.188 0.188 0.187 0.186 0.186

r = 2, p = ∞ 21.3 0.176 0.173 0.172 0.171 0.170 0.170 0.169

r = 2, p = 2 21.3 0.176 0.173 0.172 0.171 0.170 0.170 0.169

Itr N bstg) Density of classifierh)

r = 1, p = ∞ 103.0 0.138 0.097 0.086 0.083 0.080 0.077 0.077

r = 1, p = 2 81.5 0.128 0.092 0.077 0.074 0.071 0.070 0.070

r = 2, p = ∞ 73.5 0.098 0.093 0.089 0.087 0.083 0.082 0.081

r = 2, p = 2 77.3 0.098 0.093 0.090 0.087 0.083 0.082 0.081

For footnotes, see Table 5.2.

Table 5.4: Average performance of MP on various SVM models, large-scale data ## 1 – 9.
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A. Data ## 1 – 17 B. Data ## 1 – 9
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Figure 5.3: Distribution of relative accuracy RelAccur(t), see (5.2.3), for various SVM models.
Along the X-axis: decimal log of RelAccur(t); along the Y -axis: percentage of experiments in
the bin.
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A. Data ## 1 – 17 B. Data ## 1 – 9
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Figure 5.4: Distribution of validation errors ErrVl(t) (in %%), see item 5c in Section 5.2.3, for
various SVM models. Along the X-axis: values of error in percent. Along the Y -axis: percentage
of experiments in the bin.
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SetUp t = 25 t = 50 t = 100 t = 200 t = 400 t = 800 t = 1000

All data

Itr fina) Progress in optimality gap PrG(t)b)

entropy-like 335.4 0.366 0.262 0.196 0.154 0.121 0.089 0.084

power-like 359.6 0.473 0.319 0.206 0.148 0.112 0.078 0.072

CPUc) Relative accuracy RelAccur(t)d)

entropy-like 73.47 0.322 0.249 0.166 0.131 0.120 0.104 0.100

power-like 111.13 0.348 0.311 0.193 0.129 0.106 0.068 0.066

Itr bste) Classification error, training sample

entropy-like 132.9 0.140 0.127 0.120 0.115 0.113 0.111 0.111

power-like 139.1 0.189 0.144 0.126 0.122 0.117 0.114 0.114

CPU bstf) Classification error, validation sample

entropy-like 21.9 0.222 0.210 0.200 0.195 0.194 0.193 0.193

power-like 27.5 0.248 0.220 0.202 0.198 0.196 0.195 0.194

Itr N bstg) Density of classifierh)

entropy-like 88.8 0.148 0.135 0.129 0.124 0.121 0.120 0.119

power-like 116.1 0.188 0.143 0.125 0.121 0.116 0.114 0.114

Large-scale data ## 1 – 9

Itr fina) Progress in optimality gap PrG(t)b)

entropy-like 253.1 0.344 0.203 0.143 0.122 0.103 0.076 0.072

power-like 328.8 0.505 0.312 0.185 0.140 0.121 0.091 0.083

CPUc) Relative accuracy RelAccur(t)d)

entropy-like 130.77 0.423 0.306 0.162 0.118 0.109 0.102 0.099

power-like 199.36 0.458 0.431 0.228 0.127 0.099 0.069 0.066

Itr bste) Classification error, training sample

entropy-like 95.4 0.095 0.084 0.078 0.076 0.073 0.071 0.071

power-like 126.8 0.171 0.106 0.086 0.082 0.079 0.076 0.076

CPU bstf) Classification error, validation sample

entropy-like 36.9 0.191 0.184 0.181 0.180 0.180 0.179 0.179

power-like 47.6 0.235 0.200 0.182 0.181 0.180 0.179 0.179

Itr N bstg) Density of classifierh)

entropy-like 79.1 0.112 0.100 0.094 0.092 0.089 0.088 0.088

power-like 105.3 0.169 0.105 0.086 0.082 0.078 0.076 0.075

For footnotes, see Table 5.2.

Table 5.5: Average performance characteristics of MP with different setups on SVM models
with r = 1.
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A. Data ## 1 – 17 B. Data ## 1 – 9
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Figure 5.5: Distribution of relative accuracy RelAccur(t), see (5.2.3), for various MP setups
on SVM models with r = 1. Along the X-axis: decimal log of RelAccur(t); along the Y -axis:
percentage of experiments in the bin.
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A. Data ## 1 – 17 B. Data ## 1 – 9
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Figure 5.6: Distribution of validation errors ErrVl(t) (in %%), see item 5c in Section 5.2.3, for
various MP setups on SVM models with r = 1. Along the X-axis: values of error in percent.
Along the Y -axis: percentage of experiments in the bin.
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5.3.2 Results for selected experiments

Tables 5.6 – 5.7 represent the best, in terms of the resulting validation error, results obtained on
various data sets. Specifically, from all experiments with a particular data set from Table 5.1,
we select the one which results in the best validation error, and present detailed information on
this experiment. For description of the quantities displayed in the Tables, see footnotes to Table
5.6.

The data in Tables 5.6 – 5.7 are in full accordance with the observations we have made so
far (the best classifier built in a computational process is built well before the termination of
the process, the SVM model with r = p = 2 appears to outperform other models, etc.). An
important new information presented in Tables 5.6 – 5.7 is the one on comparison of the MP
algorithm with the state-of-the-art Interior Point commercial solver mosekopt (data in brackets
[...] in Tables 5.6 – 5.7). The results of this comparison can be summarized as follows.

1. As it could be expected, on successful termination, mosekopt produces much more accurate
solutions to the optimization problems in question than the MP algorithm (the mosekopt
optimal values, listed in the lower parts of “LwB fino)”-rows in Tables 5.6 – 5.7, are accurate
within all digits presented in the tables). However:

• More accurate IP solutions typically result in worse classifiers than less accurate
MP solutions. Indeed, there is a single data set (data # 16) where the IP classifier is
better than the MP one, and in this case the progress in quality is just marginal (24%
validation error for the IP classifier vs. 25% error for the MP one). In contrast, there
are many cases where the MP classifier is much better than the IP one (validation
errors 20.0% vs. 27.5% for data #1, 7.5% vs. 17.5% for data # 3, 38.4% vs. 47.4%
for data # 5, 9.1% vs. 18.1% for data # 9, 7.2% vs. 14.1% for data # 11...).

2. As it could be expected, on low- and medium-scale data ## 10 – 17 running times of
the IP solver are negligible and significantly less than those of the MP algorithm; this
fact, however, is of minor importance, since all the times in question are pretty small (the
maximal running time of the MP algorithm here is just about 62′). In contrast to this, on
large-scale data, IP is much more time-consuming than MP. Indeed,

• The maximal time of building the best MP-classifier on the data ## 1 – 9 is 238.5′;
the corresponding quantity for IP solver is as large as 2963′, which is 5.3 times the
total CPU time spent by MP to build the best classifiers on all our 9 large-scale data
sets (!).

• In large-scale experiments MP was essentially more reliable than IP; the latter just
failed to process data # 6 (MATLAB “Out of Memory” abnormal termination) and
has severe difficulties with data ## 5, 9 (“Unknown” status of solution as reported
by mosekopt4)).

• Last, but not least, note that straightforward comparison of CPU times is by itself
biased in favour of the IP solver. Indeed, the latter is an optimized .mex-executable,
while MP is implemented via plain MATLAB scripts. Although the dominating, in

4)Such an abnormal termination means that mosekopt is unable to meet its built-in criteria for reaching
optimality. As a result, the solution found by the solver may be pretty far from optimality, as is the case with
data # 9: here the optimal value as reported by the IP solver is 11.666, while the true optimal value, successfully
found by MP, is 0.000
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the large-scale case, computations in MP (that is, the matrix-vector multiplications)
use highly optimized built-in MATLAB functions, about 30% of computations (e.g.,
computing the prox-mappings) could be highly accelerated with a C-implementation.

Early termination. We just have made two claims:
I. The classifiers built by the MP algorithm are essentially better than the classifiers yielded

by the Interior Point algorithm;

II. The MP-based classifiers are significantly cheaper computationally than the IP-based
ones.

While the first of these claims is fully supported by the data in Tables 5.6 – 5.7, the second claim,
strictly speaking, does not follow directly from these data. Indeed, recall that in course of running
the MP, once per every 25 iterations and upon termination we build the classifier associated with
the best found so far solution to the optimization problem and compute the validation error of
this classifier. Note that from the purely optimization perspective, the quality of the best found
so far solution can only improve with time; in contrast to this, the associated validation error
may oscillate with time, so that a “late” classifier can be worse than an “early” one. Clearly,
a current classifier can be easily compared, in terms of its quality, with already built ones, but
not with the classifiers to be built in the future. It follows that the best classifier, independently
of how early it is actually built, can be identified only in retrospective, upon termination of
the solution process. For example, Table 5.6 says that on data # 3, the best classifier was
built after 50 iterations, which took just 109.3 sec; however, this fact can be established only
in retrospective, after the entire computation, which took as many as 1000 iterations (total
CPU time 2767 sec). The question is, whether we can somehow reduce the “wasted” running
time – the one which does not improve classifier’s quality. The simplest policy here could be
to terminate the computations at the first step (among those where the classifiers are built and
tested) where the current classifier turns out to be worse in terms of quality than its predecessor.
Table 5.8 illustrates the performance of this policy. In this table,

• column A1 contains the best validation errors achieved with MP in the experiments listed
in Tables 5.6 – 5.7; columns B1 and C1 display the corresponding iteration count and CPU time,
respectively;

• column A2 presents the validation error obtained with the just outlined rule for early
termination, column B2 – the iteration count corresponding to the classifier underlying this
error, and column B3 – the number of iterations until “early termination”. Columns C2 and C3
display the CPU times corresponding to B2 and B3;

• column A3 displays the validation error of the IP-classifier, and column C4 – the running
time of the IP algorithm modsekopt.

We see that among the large-scale data sets there is a single one (# 7) where our simple
policy for early termination of MP results in a “meaningful” loss in the classification error (6.9%
vs. 3.1%). At the same time, this policy reduces the total CPU time of MP on the large-scale
data ## 1 – 9 from 3515 sec to 455 sec (by factor 7.8) and makes the total running time of MP
on the large-scale data just 15% of the running time of mosekopt on a single large-scale data
set # 4.

Performance of early termination on medium- and small-scale data sets is equally attractive,
but this is of no interest: the running times of the original version of MP on these data sets are
pretty small, and there are no reasons exchange quality for speed.
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Data ##
1 2 3 4 5 6 7 8 9

#Attribu) 10000 20000 100000 5000 500 5000 1558 4026 2000

#Train exv) 60 200 600 4000 1500 15000 2500 60 40

#Valid exw) 40 100 200 2000 500 2000 780 36 22

Err Vl bsta) 0.200 0.080 0.075 0.023 0.384 0.079 0.031 0.056 0.091
[0.275] [0.090] [0.175] [0.026] [0.474] [Failure] [0.031] [0.083] [0.181]

Nnz Vl bstb) 0.987 0.304 0.001 0.160 1.000 0.085 0.990 1.000 0.011
[0.988] [0.305] [0.001] [0.980] [1.000] [Failure] [0.633] [1.000] [0.758]

Itr Vl bstc) 41 11 50 200 100 28 900 10 25

ItrIn Vl bstd) 192 44 236 962 456 116 4672 42 120

CPU Vl bste) 5.000 0.590 109.310 238.460 28.270 48.890 121.200 0.730 2.140
[4.800] [1.000] [26.200] [2963.000] [311.300] [Failure] [6.000] [1.900] [2.900]

Err Tr bstf) 0.000 0.000 0.010 0.000 0.252 0.074 0.024 0.000 0.075
[0.000] [0.000] [0.010] [0.000] [0.219] [Failure] [0.006] [0.000] [0.075]

Nnz Tr bstg) 0.987 0.304 0.001 0.150 0.998 0.085 0.990 1.000 0.008

Itr tr bsth) 25 11 200 150 975 28 900 10 75

ItrIn Tr bsti) 122 44 944 718 4450 116 4672 42 374

CPU Tr bstj) 3.060 0.590 558.890 174.720 276.060 48.890 121.200 0.730 6.520
[4.800] [1.000] [26.200] [2963.000] [311.300] [Failure] [6.000] [1.900] [2.900]

Itr totk) 41 11 1000 233 1000 28 1000 10 124

ItrIn totl) 192 44 4720 1104 4554 116 5180 42 374

CPU totm) 5.00 0.59 2767.48 276.20 276.06 48.89 131.28 0.73 8.61
[4.800] [1.000] [26.200] [2963.000] [311.300] [Failure] [6.000] [1.900] [2.900]

Obj finn) 0.000 0.000 28.359 0.000 31.997 113.511 15.849 0.000 11.666

LwB fino) 0.000 0.000 27.739 0.000 0.000 112.728 0.000 0.000 11.539
[0.000] [0.000] [28.207] [0.000] [?30.226?] [Failure] [7.237] [0.000] [?11.666?]

RelAccur finp) 0.000 0.000 0.022 0.000 1.000 0.007 1.000 0.000 0.011

PrgG finq) 0.000 0.000 0.005 0.000 0.826 0.006 0.480 0.000 0.006

ρr) 10.0 10.0 10.0 0.1 10.0 10.0 10.0 10.0 1.0

rs) 2.0 (p) 2.0 (p) 1.0 (p) 1.0 (p) 2.0 (p) 1.0 (e) 2.0 (p) 2.0 (p) 1.0 (p)

pt) 2.0 2.0 ∞ 2.0 2.0 2.0 2.0 2.0 ∞
a): best validation error achieved m): total CPU time (sec)
b): sparsity of classifier in a) n): best value of F (·) achieved, see (5.1.1)
c): iteration resulting in a) o): best lower bound on min

‖ζ‖≤ρ
F (ζ)

d): # of inner iterations resulting in a) p): final relative accuracy, see (5.2.3)
e): CPU time (sec) resulting in a) q): final progress in optimality gap, see (5.2.2)
f): best training error achieved r): ρ, see (5.1.1)
g): sparsity of classifier in f) s): ‖ζ‖ ≡ ‖ζ‖r in (5.1.1); e/p stands for entropy/power-type
h): iteration resulting in f) distance-generating function
i): # of inner iterations resulting in f) t): p in (5.1.1)
j): CPU time (sec) resulting in f) u): # of attributes
k): total # of iterations v): cardinality of training sample
l): total # of inner iterations w): cardinality of validation sample

Numbers in brackets [...] – results for Interior Point method mosekopt.

Table 5.6: Best experiments, data ## 1 – 9.
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Data ##
10 11 12 13 14 15 16 17

#Attribu) 6 13 34 22 166 8 60 30

#Train exv) 245 200 251 6000 300 600 108 400

#Valid exw) 100 97 100 2124 176 168 100 169

Err Vl bsta) 0.310 0.072 0.100 0.165 0.188 0.220 0.250 0.024
[0.340] [0.144] [0.100] [0.169] [0.290] [0.238] [0.240] [0.030]

Nnz Vl bstb) 1.000 1.000 0.971 1.000 1.000 1.000 1.000 1.000
[1.00] [1.000] [0.971] [0.273] [1.000] [1.000] [1.000] [0.300]

Itr Vl bstc) 50 200 100 125 100 950 25 200

ItrIn Vl bstd) 232 938 484 596 504 4568 112 934

CPU Vl bste) 0.830 3.160 1.560 46.310 3.110 37.460 0.220 6.260
[0.100] [0.100] [0.300] [0.200] [0.500] [0.100] [0.100] [0.100]

Err Tr bstf) 0.237 0.140 0.028 0.166 0.000 0.210 0.028 0.040
[0.249] [0.155] [0.032] [0.167] [0.000] [0.205] [0.037] [0.038]

Nnz Tr bstg) 1.000 1.000 0.971 1.000 1.000 1.000 1.000 1.000

Itr tr bsth) 125 300 100 125 275 200 50 600

ItrIn Tr bsti) 596 1410 484 596 1362 948 230 2794

CPU Tr bstj) 2.120 4.830 1.560 46.310 8.700 7.530 0.580 18.790
[0.100] [0.100] [0.300] [0.200] [0.500] [0.100] [0.100] [0.100]

Itr totk) 253 1000 127 170 550 1000 70 1000

ItrIn totl) 1192 4714 610 802 2698 4798 324 4638

CPU totm) 4.25 15.64 1.97 62.19 17.31 38.46 0.86 30.57
[0.100] [0.100] [0.300] [0.200] [0.500] [0.100] [0.100] [0.100]

Obj finn) 165.070 9.702 5.771 2721.534 0.000 308.801 4.441 46.556

LwB fino) 163.435 7.566 5.714 2700.887 0.000 299.939 4.397 37.679
[164.961] [9.691] [5.758] [2706.000] [0.000] [307.552] [4.421] [41.4089]

RelAccur finp) 0.010 0.220 0.010 0.008 0.000 0.029 0.010 0.191

PrgG finq) 0.008 0.151 0.004 0.004 0.000 0.021 0.004 0.029

ρr) 1.0 10.0 10.0 10.0 10.0 1.0 10.0 2.0

rs) 1.0 (p) 1.0 (e) 2.0 (p) 1.0 (e) 2.0 (p) 1.0 (e) 2.0 (p) 1.0 (e)

pt) ∞ 2.0 2.0 ∞ ∞ ∞ 2.0 ∞
For footnotes, see Table 5.6.

Numbers in brackets [...] – results for Interior Point method mosekopt.

Table 5.7: Best experiments, data ## 10 – 17.
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Data # A1 A2 A3 B1 B2 B3 C1 C2 C3 C4

1 0.200 0.200 0.275 41 41 41 5.00 5.00 5.00 4.800

2 0.080 0.080 0.090 11 11 11 0.59 0.59 0.59 1.000

3 0.075 0.075 0.175 50 50 75 109.31 109.31 197.02 26.200

4 0.023 0.026 0.026 200 125 150 238.46 140.49 174.72 2963.000

5 0.384 0.396 0.474 100 25 50 28.27 6.78 13.67 311.300

6 0.079 0.079 Failure 28 28 28 48.89 48.89 48.89 Failure

7 0.031 0.069 0.031 900 50 75 121.20 6.60 9.99 6.000

8 0.056 0.056 0.083 10 10 10 0.73 0.73 0.73 1.900

9 0.091 0.091 0.181 25 25 50 2.14 2.14 4.31 2.900

10 0.310 0.310 0.340 50 50 75 0.83 0.83 1.27 0.100

11 0.072 0.134 0.144 200 75 100 3.16 1.08 1.49 0.100

12 0.100 0.120 0.100 100 25 50 1.56 0.38 0.75 0.300

13 0.165 0.165 0.169 125 150 170 46.31 55.37 62.19 0.500

14 0.188 0.188 0.290 100 100 125 3.11 3.11 3.88 0.200

15 0.220 0.238 0.238 950 200 225 37.46 7.53 8.48 0.100

16 0.250 0.250 0.240 25 25 50 0.22 0.22 0.58 0.100

17 0.024 0.053 0.030 200 125 150 6.26 3.81 4.67 0.100

A1: best validation error achieved with MP C1: CPU time for B1, sec
A2: best validation error achieved with early termination of MP C2: CPU time for B2, sec
A3: best validation error achieved with IP method C3: CPU time for B3, sec
B1: iteration count for A1 C4: CPU time for mosekopt, sec
B2: iteration count for A2
B3: iteration count before early termination

Table 5.8: Performance of Mirror-Prox algorithm with early termination.
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5.4 Experiments: conclusions

The outlined experimental data suggest the following qualitative conclusion:

The Mirror Prox algorithm seems to be a highly attractive computational tool for processing
large-scale SVM models; it allows to get reasonably good classifiers at an essentially lower
computational cost than the Interior Point polynomial time methods. As an additional bonus,
the quality of MP-originating classifiers in our experiments is never worse, and in many cases
– essentially better than the quality of classifiers associated with the precise Interior Point
solutions to the corresponding optimization models.

The first of these two conclusions is in full accordance with the theoretical considerations
which led us to the idea to use “computationally cheap” first-order methods to process large-
scale SVM models. The second, somehow less expected, conclusion reflects the phenomenon
which is observed in other applications with noisy data (e.g., reconstruction of medical images
from noisy data). In these applications, solving the optimization problem is a tool rather than
a goal, and high accuracy in optimization terms does not automatically mean high quality
in a particular application, and more often than not, it happens that as the optimization
process goes on, this quality first improves and then starts to deteriorate. What happens can
be informally explained as follows. At the initial phase of optimization problem, improving
the objective means adjusting the solution to “essential structure” of the data, and this is
exactly what we want. However, at certain “turning” point in time, due to the noisy nature
of the data, further progress in the objective is achieved mainly by adjusting the solution to
the noise component of the data, which is exactly opposite to what we want. In many cases
it happens that small improvements in the objective after the turning point is passed require
significant (and in fact counter-productive) changes in the solution. In situations like this,
high accuracy is not only expensive – it is counter-productive; and there are good chances
to believe that this is what happens with large-scale SVM models.

Finally, it should be stressed that the encouraging conclusions we have outlined, while fully
supported by our experiments, definitely should not be considered as final – we have worked
with a particular family of SVM data, restricted ourselves with plain SVM models, etc. We,
however, believe that our results justify further research on the potential of advanced techniques
for large-scale convex optimization in the SVM context.
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