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Lecture I.

From Linear to Conic Programming

• Convex Programming: solvable case in
Optimization

• Convex Programming in structure-revealing
form: Conic Programming

• Calculus of conic programs
• Conic duality
• Illustration: semidefinite relaxations of

difficult problems
• Illustration: Lyapunov Stability Analysis

and S-Lemma



A man searches for a lost wallet at the
place where the wallet was lost.
A wise man searches at a place with
enough light...

♣ Where should we search for a wallet? Where is

“enough light” – what Optimization can do well?

The most straightforward answer is: we can solve

well convex optimization problems.

The very existence of what is called Mathemati-

cal Programming stemmed from discovery of Lin-

ear Programming (George Dantzig, late 1940’s) –

a modeling methodology accompanied by extremely

powerful in practice (although “theoretically bad”)

computational tool – Simplex Method. Linear Pro-

gramming still underlies the majority of real life

applications of Optimization, especially large-scale

ones.



♣ Around mid-1970’s, it was shown that

• Linear and, more generally, Convex Programming

problems are efficiently solvable – under mild com-

putability and boundedness assumptions, generic

Convex Programming problems admit polynomial

time solution algorithms.

As applied to an instance of a generic problem, like

Linear Programming

LP =

{ instance︷ ︸︸ ︷
min
x
{cTx : Ax ≥ b} :

A ∈ Rm×n, b ∈ Rm,
c ∈ Rn,m, n ∈ Z

}
,

a polynomial time algorithm solves it to a whatever

high required accuracy ε, in terms of global optimal-

ity, in a number of arithmetic operations which is

polynomial in the size of the instance (the number

of data entries specifying the instance, O(1)mn in

the case of LP) and the number ln(1/ε) of required

accuracy digits.

⇒ Theoretical (and to some extent – also practical)

possibility to solve convex programs of reasonable

size to high accuracy in reasonable time



• No polynomial time algorithms for general-type

nonconvex problems are known, and there are strong

reasons to believe that no such methods exist.

⇒ Solving general nonconvex problems of not too

small sizes is usually a highly unpredictable process:

with luck, we can improve somehow the solution we

start with, but we never have a reasonable a pri-

ory bound on how long it will take to reach desired

accuracy.



Polynomial Time Solvability of Convex

Programming

♣ From purely academical viewpoint, polynomial

time solvability of Convex Programming is a straight-

forward consequence of the following statement:

Theorem [circa 1976] Consider a convex problem

Opt = min
x∈Rn

{
f(x) :

gi(x) ≤ 0, 1 ≤ i ≤ m
|xj| ≤ 1, 1 ≤ j ≤ n

}
normalized by the restriction

|f(x)| ≤ 1, |gj(x)| ≤ 1 ∀x ∈ B = {|xj| ≤ 1 ∀j}.

For every ε ∈ (0,1), one can find an ε-solution

xε ∈ B : f(xε)−Opt ≤ ε, gi(xε) ≤ ε∀i

or to conclude correctly that the problem is infeasible

at the cost of at most

3n2 ln
(

2n

ε

)
computations of the objective and the constraints,

along with their (sub)gradients, at subsequently gen-

erated points of intB, with O(1)n(n+m) additional

arithmetic operations per every such computation.



♣ The outlined Theorem is sufficient to establish

theoretical efficient solvability of generic Convex

Programming problems. In particular, it underlies

the famous result (Leo Khachiyan, 1979) on poly-

nomial time solvability of LP – the first ever mathe-

matical result which made the C2 page of New York

Times (Nov 27, 1979).

♣ From practical perspective, however, polynomial

type algorithms suggested by Theorem are too slow:

the arithmetic cost of an accuracy digit is at least

O(n2n(m+ n)) ≥ O(n4),

which, even with modern computers, allows to solve

in reasonable time problems with hardly more than

100 – 200 design variables.

♣ The low (although polynomial time) performance

of the algorithms in question stems from their black

box oriented nature – these algorithms do not ad-

just themselves to the structure of the problem and

use a priori knowledge of this structure solely to

mimic First Order oracle reporting the values and

(sub)gradients of the objective and the constraints

at query points.



Note: A convex program always has a lot of structure

– otherwise how could we know that the problem is

convex?

A good algorithm should utilize a priori knowledge

of problem’s structure in order to accelerate the so-

lution process.

Example: The LP Simplex Method is fully

adjusted to the particular structure of an LP

problem. Although not a polynomial time

one, this algorithm in reality is capable to

solve LP’s with tens and hundreds of thou-

sands of variables and constraints – a task

which is by far out of reach of the theoreti-

cally efficient “universal” black box oriented

algorithms underlying the Theorem.



♣ Since mid-1970’s, Convex Programming is the

most rapidly developing area in Optimization, with

intensive and successful research primarily focusing

on

• discovery and investigation of novel well-structured

generic Convex Programming problems (“Conic

Programming’, especially Conic Quadratic and

Semidefinite)

• developing theoretically efficient and powerful

in practice algorithms for solving well-structured

convex programs, including large-scale nonlinear

ones

• building Convex Programming models for a wide

spectrum of problems arising in Engineering,

Signal Processing, Machine Learning, Statistics,

Management, Medicine, etc.

• extending modelling methodologies in order to

capture factors like data uncertainty typical for

real world situations

• software implementation of novel optimization

techniques at academic and industry levels



“Structure-Revealing” Representation of

Convex Problem: Conic Programming

♣ When passing from a Linear Programming pro-

gram

min
x

{
cTx : Ax− b ≥ 0

}
(∗)

to a nonlinear convex one, the traditional wisdom is

to replace linear inequality constraints

aTi x− bi ≥ 0

with nonlinear ones:

gi(x) ≥ 0 [gi are concave]

♠ There exists, however, another way to introduce

nonlinearity, namely, to replace the coordinate-wise

vector inequality

y ≥ z ⇔ y − z ∈ Rm+ = {u ∈ Rm : ui ≥ 0 ∀i}
[y, z ∈ Rm]

with another vector inequality

y ≥K z ⇔ y − z ∈ K [y, z ∈ Rm]

where K is a regular cone (i.e., closed, pointed and

convex cone with a nonempty interior) in Rm.



y ≥K z ⇔ y − z ∈ K [y, z ∈ Rm]

K: closed, pointed and convex cone in Rm with a

nonempty interior.

Requirements on K ensure that ≥K obeys the usual

rules for inequalities:

• ≥K is a partial order:

x ≥K x∀x [reflexivity]
(x ≥K y & y ≥K x)⇒ x = y [antisymmetry]
(x ≥K y, y ≥K z)⇒ x ≥K z [transitivity]

• ≥K is compatible with linear operations: the va-

lidity of ≥K inequality is preserved when we mul-

tiply both sides by the same nonnegative real and

add to it another valid ≥K-inequality;

• in a sequence of ≥K-inequalities, one can pass

to limits:

ai ≥K bi, i = 1,2, ... & ai → a &bi → b
⇓

a ≥K b



• one can define the strict version >K of ≥K:

a >K b⇔ a− b ∈ intK.

Arithmetics of >K and ≥K inequalities is com-

pletely similar to the arithmetics of the usual

coordinate-wise ≥ and >.



♣ LP problem:

min
x

{
cTx : Ax− b ≥ 0

}
⇔ min

x

{
cTx : Ax− b ∈ Rm+

}
♣ General Conic problem:

min
x

{
cTx : Ax− b ≥K 0

}
⇔ min

x

{
cTx : Ax− b ∈ K

}
• (A, b) – data of conic problem

• K - structure of conic problem

♠ Note: Every convex problem admits equivalent

conic reformulation

♠ Note: With conic formulation, convexity is “built

in”; with the standard MP formulation convexity

should be kept in mind as an additional property.

♣ (??) A general convex cone has no more structure

than a general convex function. Why conic reformu-

lation is “structure-revealing”?

♣ (!!) As a matter of fact, just 3 types of cones

allow to represent an extremely wide spectrum (“es-

sentially all”) of convex problems!



min
x

{
cTx : Ax− b ≥K 0

}
⇔ min

x

{
cTx : Ax− b ∈ K

}
♠ Three Magic Families of cones:

• LP: Nonnegative orthants Rm+ – direct products
of m nonnegative rays R+ = {s ∈ R : s ≥ 0} giv-
ing rise to Linear Programming programs

min
s

{
cTx : aT` x− b` ≥ 0,1 ≤ ` ≤ q

}
.

• CQP: Direct products of Lorentz cones

Lp+ = {u ∈ Rp : up ≥
(∑p−1

i=1 u
2
i

)1/2
} giving rise to

Conic Quadratic programs
min
x

{
cTx : ‖A`x− b`‖2 ≤ cT` x− d`,1 ≤ ` ≤ q

}
.

• SDP: Direct products of Semidefinite cones
Sp+ = {M ∈ Sp : M � 0} giving rise to Semidefi-
nite programs

min
x

{
cTx : λmin(A`(x)) ≥ 0︸ ︷︷ ︸

⇔A`(x)�0

, 1 ≤ ` ≤ q
}
.

where Sp is the space of p×p real symmetric ma-
trices, A`(x) ∈ Sp are affine in x and λmin(S) is
the minimal eigenvalue of S ∈ Sp.
• Note: Constraint stating that a symmetric matrix

affinely depending on decision variables is � 0 is called

LMI – Linear Matrix Inequality.



What can be reduced to LP/CQP/SDP ?

Calculus of Conic programs

♣ Let K be a family of regular cones closed w.r.t.

taking direct products.

♠ Definition: • A K-representation of a set X ⊂ Rn

is a representation

X = {x ∈ Rn : ∃u ∈ Rm :Ax+Bu− b ∈ K} (*)

where K ∈ K.

• X is called K-representable, if X admits a K-r.

♥ Note: Minimizing a linear objective cTx over a

K-representable set X reduces to a conic program

on a cone from K.

Indeed, given (∗), problem min
x∈X

cTx is equivalent to

Opt = minx,u
{
cTx : Ax+Bu− b ∈ K

}
♠ Definition: • A K-representation of a function

f : Rn → R ∪ {+∞} is a K-representation of the epi-

graph of f :
Epi{f} := {(x, t) : t ≥ f(x)}

= {x, t : ∃v : Px+ pt+Qv − q ∈ K}, K ∈ K
• f is called K-representable, if f admits a K-r.



♥ Note: • A level set of a K-r. function is K-r.:

Epi{f} := {(x, t) : t ≥ f(x)}
= {x, t : ∃v : Px+ pt+Qu− q ∈ K}

⇒ {x : f(x) ≤ c} = {x : ∃v : Px+Qu− [q − cp] ∈ K}
• Minimization of a K-r. function f over a K-r. set

X reduces to a conic program on a cone from K:

x ∈ X ⇔ ∃u : Ax+Bu− b ∈ KX
t ≥ f(x) ⇔ ∃v : Px+ pt+Qv − q ∈ Kf

}
⇒

minx∈X f(x)
m

min
t,x,u,v

{
t : [Ax+Bu− b;Px+ pt+Qv − q] ∈ KX ×Kf︸ ︷︷ ︸

∈K

}



♣ Investigating “expressive abilities” of generic Magic

conic problems reduces to answering the question

What are LP/CQP/SDP-r. functions/sets?

♠ “Built-in” restriction is Convexity: A K-

representable set/function must be convex.

♠ Good news: Convexity, essentially, is the only

restriction: for all practical purposes, all convex

sets/functions arising in applications are SDP-r.

Quite rich families of convex functions/sets are

LP/CQP-r.

♥ Note: Nonnegative orthants are direct products

of (1-dimensional) Lorentz cones, and Lorentz cones

are intersections of semidefinite cones and properly

selected linear subspaces ⇒LP ⊂ CQP ⊂ SDP.



♣ Let K be a family of regular cones closed w.r.t.

taking direct products and passing from a cone K to

its dual cone

K∗ = {λ : 〈λ, ξ〉 ≥ 0 ∀ξ ∈ K}
Note: K∗ is regular cone provided K is so, and

(K∗)∗ = K

♠ Fact: K-representable sets/functions admit fully

algorithmic calculus: all basic convexity-preserving

operations with functions/sets, as applied to K-r.

operands, produce K-r. results, and the resulting K-

r.’s are readily given by K-r.’s of the operands.

“Calculus rules” are independent of what K is.

⇒Starting with “raw materials” (characteristic for

K elementary K-r. sets/functions) and applying cal-

culus rules, we can recognize K-representability and

get explicit K-r.’s of sets/functions of interest.



♣ Basics of “calculus of K-representability”:

♠ [Sets:] If X1, ..., Xk are K-r. sets, so are their
• intersections,
• direct products,
• images under affine mappings,
• inverse images under affine mappings.
♠ [Functions:] If f1, ..., fk are K-r. functions, so are

their
• linear combinations with nonnegative coefficients,
• superpositions with affine mappings.

Moreover, if F, f1, ..., fk are K-r. functions, so is the

superposition F (f1(x), ..., fk(x)) provided that F is

monotonically nondecreasing in its arguments.

♠ More advanced convexity-preserving operations

preserve K-representability under (pretty mild!) reg-

ularity conditions. This includes

• for sets: taking conic hulls and convex hulls of (fi-

nite) unions and passing from a set to its recessive

cone, or polar, or support function

• for functions: partial minimization, projective

transformation, and taking Fenchel dual.

♠ Note: Calculus rules are simple and algorithmic

⇒Calculus can be run on a compiler [used in cvx].



Illustration
min cTx+ dTy

y ≥ 0, Ax+By ≤ b
2y
−7

2

1 y−3
2 y

−1

5

3 + 3y
−3

2

2 y
−2

3

4 ≤ eTx+ 4y
1

5

1y
2

5

2y
2

5

3 + 5y
1

3

3y
2

5

4
x1 − x2 x3 + x2
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x5 − 6 x6 + x7 −x8

−x8 x5

 � 0


x1 x2 x3 x4 x5

x2 x6 x7 x8 x9

x3 x7 x10 x11 x12

x4 x8 x11 x13 x14

x5 x9 x12 x14 x15

 � 0

Det



x1 x2 x3 x4 x5

x2 x6 x7 x8 x9

x3 x7 x10 x11 x12

x4 x8 x11 x13 x14

x5 x9 x12 x14 x15


 ≥ 1

Sum of 2 largest singular values of


x1 x2 x3

x4 x5 x6

x7 x8 x9

x10 x11 x12

x13 x14 x15

 is ≤ 6

1−
∑6

i=1[xi − xi+1]si ≤ 0, 3
2
≤ s ≤ 6∑4

i=1 x2i cos(iφ)−
∑4

i=1 xi sin(iφ) ≤ 1, π
3
≤ φ ≤ π

2

• the blue part of the problem is in LP
• the blue-magenta part of the problem is in CQP and can

be approximated, in a polynomial time fashion, by LP
• the entire problem is in SDP

and the reductions to LP/CQP/SDP are “fully algorithmic.”



Conic Duality

♣ Conic Programming admits nice Duality Theory

completely similar to LP Duality.

Primal problem:

min
x

{
cTx : Ax− b ≥K 0

}
⇔ [passing to primal slack ξ = Ax− b]

min
ξ

{
eT ξ : ξ ∈ [L − b] ∩K

}
[L = ImA, AT e = c, KerA = {0}]

Dual problem:

max
y

{
bTy : y ∈ [L⊥+ e] ∩K∗

}
⇔ max

y

{
bTy : ATy = c, y ≥K∗ 0

}
[K∗: cone dual to K]

Thus,

• the dual problem is conic along with primal

• the duality is completely symmetric

Note: Cones from Magic Families are self-dual, so

that the dual of a Linear/Conic Quadratic/Semidefinite

program is of exactly the same type.



Derivation of the Dual Problem

♣ Primal problem:

Opt(P ) = minx

{
cTx :

Aix− bi ∈ Ki, i ≤ m
Rx = r

}
(P )

♠ Goal: find a systematic way to bound Opt(P )
from below.
♠ Simple observation: When yi ∈ Ki

∗, the scalar
inequality yTi Aix ≥ y

T
i bi is a consequence of the con-

straint Aix − bi ∈ Ki. If y is a vector of the same
dimension as r, the scalar inequality yTRx ≥ yT r is a
consequence of the constraint Rx = r.
⇒Whenever yi ∈ Ki

∗ for all i and y is a vector of the
same dimension as r, the scalar linear inequality

[
∑
iA

T
i yi +RTy]Tx ≥

∑
i b
T
i yi + rTy

is a consequence of the constraints in (P )
⇒Whenever yi ∈ Ki

∗ for all i and y is a vector of the
same dimension as r such that∑

iA
T
i yi +RTy = c,

the quantity
∑
i b
T
i yi + rTy is a lower bound on

Opt(P ).
• The Dual problem

Opt(D) = max
yi,y

∑i bTi yi + rTy :
yi ∈ Ki

∗, i ≤ m∑
i
ATi yi +RTy = c

 (D)

is just the problem of maximizing this lower bound
on Opt(P ).



♣ Definition: A conic problem

min
x

{
cTx :

Aix− bi ∈ Ki, i ≤ m
Ax ≤ b

}
(C)

is called strictly feasible, if there exists a feasible

solution x̄ where all the constraints are satisfied

strictly: Aix̄−bi ∈ intKi for all i, Ax̄ < b, and is called

essentially strictly feasible, if there exists a feasible

solution x̄ where all non-polyhedral constraints are

satisfied strictly: Ax̄ ≤ b and Aix̄ − bi ∈ intKi for all

i ≤ m.



♣ Conic Programming Duality Theorem. Con-

sider a conic problem

Opt(P ) = min
x

{
cTx :

Aix− bi ∈ Ki, i ≤ m
Rx = r

}
(P )

along with its dual

Opt(D) = max
yi,y

∑i b
T
i yi + rTy :

yi ∈ Ki
∗, i ≤ m∑

i
ATi yi +RTy = c

 (D)

Then:

♠ [Symmetry] Duality is symmetric: the dual prob-

lem is conic, and its dual is (equivalent to) the primal

problem;

♠ [Weak duality] One has Opt(D) ≤ Opt(P );

♠ [Strong duality] Let one of the problems be essen-

tially strictly feasible and bounded. Then the other

problem is solvable, and

Opt(D) = Opt(P ).

In particular, if both problems are essentially strictly

feasible, both are solvable with equal optimal values.



min
x

{
cTx : Ax− b ∈ K

}
(P )

⇔ min
ξ

{
eT ξ : ξ ∈ [L − b] ∩K

}
m

max
y

{
bTy : y ∈ [L⊥+ e] ∩K∗

}
⇔ max

y

{
bTy : ATy = c, y ≥K∗ 0

}
(D)[

L = ImA, AT e = c,

K∗ = {y : yT ξ ≥ 0 ∀ξ ∈ K}

]

Conic Programming Optimality Conditions:

Let both (P ) and (D) be essentially strictly feasi-

ble. Then a pair (x, y) of primal and dual feasible

solutions is comprised of optimal solutions to the re-

spective problems if and only if

• [Zero Duality Gap]
DualityGap(x, y) := cTx− bTy = 0 Indeed,

DualityGap(x, y) = [cTx−Opt(P )]︸ ︷︷ ︸
≥0

+ [Opt(D)− bTy]︸ ︷︷ ︸
≥0


and if and only if

• [Complementary Slackness]
[Ax− b]Ty = 0 Indeed,

[Ax− b]Ty = (ATy)Tx− bTy = cTx− bTy
= DualityGap(x, y)





min
x

{
cTx : Ax− b ∈ K

}
(P )

⇔ min
ξ

{
eT ξ : ξ ∈ [L − b] ∩K

}
m

max
y

{
bTy : y ∈ [L⊥+ e] ∩K∗

}
⇔ max

y

{
bTy : ATy = c, y ≥K∗ 0

}
(D)[

L = ImA, AT e = c,

K∗ = {y : yT ξ ≥ 0 ∀ξ ∈ K}

]

♣ Conic Duality, same as the LP one, is

• fully algorithmic: to write down the dual, given

the primal, is a purely mechanical process

• fully symmetric: the dual problem “remembers”

the primal one



♥ Cf. Lagrange Duality:

min
x
{f(x) : gi(x) ≤ 0, i = 1, ...,m} (P )

⇓
max
y≥0

L(y) (D)[
L(y) = min

x

{
f(x) +

∑
i
yigi(x)

}]

• Dual “exists in the nature”, but is given implic-

itly; its objective, typically, is not available in a

closed form

• Duality is asymmetric: given L(·), we, typically,

cannot recover f and gi...



♣ Conic Duality in the case of Magic cones:

• powerful tool to process problem, to some ex-

tent, “on paper”, which in many cases provides

extremely valuable insight and/or allows to end

up with a problem much better suited for numer-

ical processing

• is heavily exploited by efficient polynomial time

algorithms for Magic conic problems



Illustration: Semidefinite Relaxation

♣ Consider a quadratically constrained quadratic

program

Opt = minx∈Rn {f0(x) : fi(x) ≤ 0,1 ≤ i ≤ m}[
fi(x) = xTAix+ 2bTi x+ ci, 0 ≤ i ≤ m

]
(QP )

Note: (QP ) is “as difficult as a problem can be:”

e.g., the Boolean constraints on variables: xi ∈ {0,1}
can be modeled as quadratic equalities x2

i − xi = 0

and thus can be modeled as pairs of simple quadratic

inequalities.

♠ Question: How to lower-bound Opt?



Opt = min
x∈Rn

{f0(x) : fi(x) ≤ 0,1 ≤ i ≤ m}[
fi(x) = xTAix+ 2bTi x+ ci, 0 ≤ i ≤ m

] (QP )

How to lower-bound Opt?
♠ Answer, I: Semidefinite Relaxation. Associate
with x the symmetric matrix

X[x] = [x; 1][x; 1]T =

[
xxT x

xT 1

]
and rewrite (QP ) equivalently as

Opt = min
X

{
Tr(Q0X) :

Tr(QiX) ≤ 0,1 ≤ i ≤ m
X = X[x] for some x

}
[
Qi =

[
Ai bi
bTi ci

]] (QP ′)

(QP ′) has just linear in X objective and constraints.
The “domain restriction”

“X = X[x] for some x”
says that
• X ∈ R(n+1)×(n+1) is symmetric positive semidefi-
nite and Xn+1,n+1 = 1 (nice convex constraints)
• X is of rank 1 (highly nonconvex constraint)
Removing the “troublemaking” rank restriction, we
end up with semidefinite relaxation of (QP ) – the
problem

SDP = min
X

{
Tr(Q0X) :

Tr(QiX) ≤ 0,1 ≤ i ≤M
X � 0, Xn+1,n+1 = 1

}



Opt = min
x∈Rn

{f0(x) : fi(x) ≤ 0,1 ≤ i ≤ m}[
fi(x) = xTAix+ 2bTi x+ ci, 0 ≤ i ≤ m

] (QP )

m

Opt = min
X

Tr(Q0X) :
Tr(QiX) ≤ 0,1 ≤ i ≤ m

X =

[
xxT x
xT 1

]
for some x

[
Qi =

[
Ai bi
bTi ci

]] (QP ′)

⇓
SDP = min

X

{
Tr(Q0X) :

Tr(QiX) ≤ 0,1 ≤ i ≤M
X � 0, Xn+1,n+1 = 1

}
(SDP )

♠ Probabilistic Interpretation of (SDP ):

Assume that instead of solving (QP ) in determinis-

tic variables x, we are solving the problem in random

vectors ξ and want to minimize the expected value

of the objective under the restriction that the con-

straints are satisfied at average.

Since fi are quadratic, the expectations of the objec-

tive and the constraints are affine functions of the

moment matrix X = E

{[
ξξT ξ

ξT 1

]}
which can be

an arbitrary symmetric positive semidefinite matrix

X with Xn+1,n+1 = 1. It is immediately seen that

the “randomized” version of (QP ) is exactly (SDP ).



♣ With outlined interpretation, an optimal solution

to (SDP ) gives rise to (various) randomized solu-

tions to the problem of interest.

In good cases, we can extract from these randomized

solutions feasible solutions to the problem of interest

with reasonable approximation guarantees in terms

of optimality.

We can, e.g.,

— use X∗ to generate a sample ξ1, ..., ξN of, say,

N = 100 random solutions to (QP ),

— “correct” ξt to get feasible solutions xt to (QP ).
The approach works when the correction is easy, e.g.,
when at some known point x̄ the constraints of (QP ) are
satisfied strictly. Here we can take as xt the closest to ξt

feasible solution from the segment [x̄, ξt].

— select from the resulting N feasible solutions xt

to (QP ) the best in terms of the objective.

♥ When applicable, the outlined approach can be

combined with local improvement – N runs of any

traditional algorithm for nonlinear optimization as

applied to (QP ), x1, ..., xN being the starting points

of the runs.



♣ Example: Quadratic Maximization over the

box
Opt = maxx{xTLx : x2

i ≤ 1, 1 ≤ i ≤ n} (QP )
⇒ SDP = maxX{Tr(XL) : X � 0, Xii ≤ 1∀i} (SDP )
Note: When L � 0 or L has zero diagonal, Opt and

SDP remain intact when the inequality constraints

are replaced with their equality versions.

♠ MAXCUT: The combinatorial problem “given n-

node graph with arcs assigned nonnegative weights

aij = aij, 1 ≤ i, j ≤ n, split the nodes into two non-

overlapping subsets to maximize the total weight

of the arcs linking nodes from different subsets” is

equivalent to (QP ) with Lij =

{ ∑
k aik, j = i
−aij , j 6= i

♠ Theorem of Goemans and Williamson ’94:

Opt ≤ SDP ≤ 1.1383 ·Opt (!)

Note: To approximate Opt within 4% is NP-hard...

Sketch of the proof of (!): treat an optimal solu-

tion X∗ of (SDP ) as the covariance matrix of zero

mean Gaussian random vector ξ and look at

E{sign[ξ]TLsign[ξ]}.



Illustration: MAXCUT, 1024 nodes, 2614 arcs.

Suboptimal cut, weight ≥ 0.9196 · SDP ≥ 0.9196 ·Opt[
Slightly better than Goemans-Williamson guarantee:

weight ≥ 0.8785 · SDP ≥ 0.8785 ·Opt

]



Opt = maxx{xTLx : x2
i ≤ 1, 1 ≤ i ≤ n} (QP )

⇒ SDP = maxX{Tr(XL) : X � 0, Xii ≤ 1 ∀i} (SDP )

♠ Nesterov’s π/2 Theorem. Matrix L arising in

MAXCUT is � 0 (and possesses additional proper-

ties). What can be said about (SDP ) under the only

restriction L � 0?

Answer [Nesterov’98]: Opt ≤ SDP ≤ π
2 ·Opt.

Sketch of the proof: similar to Goemans-Williamson.

Illustration: L: randomly built positive semidefinite

1024×1024 matrix. Relaxation combined with local

improvement yields a feasible solution x̄ with

x̄TLx̄ ≥ 0.7867 · SDP ≥ 0.7867 ·Opt



Opt = maxx{xTLx : x2
i ≤ 1, 1 ≤ i ≤ n} (QP )

⇒ SDP = maxX{Tr(XL) : X � 0, Xii ≤ 1∀i} (SDP )

♠ The case of indefinite L: When L is an arbitrary

symmetric matrix, one has

Opt ≤ SDP ≤ O(1) ln(n)Opt.

This is a particular case of the following result

[Nem.,Roos,Terlaky ’98]: The SDP relaxation

SDP = max
X
{Tr(XL) : Tr(XQi) ≤ 1, i ≤ m}

of the problem

Opt = maxx
{
xTLx : xTQix ≤ 1, i ≤ m

}
[Qi � 0∀i,

∑
iQi � 0]

(P )

satisfies Opt ≤ SDP ≤ O(1) ln(m)Opt.

Illustration, A: Problem (QP ) with randomly se-

lected indefinite 1024 × 1024 matrix L. Relaxation

combined with local improvement yields a feasible

solution x̄ with

x̄TLx̄ ≥ 0.7649 · SDP ≥ 0.7649 ·Opt

Illustration, B: Problem (P ) with randomly selected

indefinite 1024×1024 matrix L and 64 randomly se-

lected positive semidefinite matrices Qi of rank 64.

Relaxation yields a feasible solution x̄ with

x̄TLx̄ ≥ 0.9969 · SDP ≥ 0.9969 ·Opt



Opt = min
x∈Rn

{f0(x) : fi(x) ≤ 0,1 ≤ i ≤ m}[
fi(x) = xTAix+ 2bTi x+ ci, 0 ≤ i ≤ m

] (QP )

⇓
SDP = min

X

{
Tr(Q0X) :

Tr(QiX) ≤ 0,1 ≤ i ≤M
X � 0, Xn+1,n+1 = 1

}
(SDP )[

Qi =

[
Ai bi
bTi ci

]]

♣ Dual of (SDP ): Denoting yi ≥ 0 the La-

grange multipliers for the scalar inequality con-

straints −Tr(QiX) ≥ 0, 1 ≤ i ≤ m, by Y � 0

the Lagrange multiplier for the constraint X � 0,

and by z the multiplier for the equality constraint

Xn+1,n+1 = 1, the aggregation of constraints yields

the inequality

Tr
([
Y −

∑m
i=1 yiQi +

[
z

]]
X

)
≥ z

To yield a lower bound on SDP, the left hand side

of this inequality should be Tr(Q0X) identically in

X, so that the dual problem is

maxyi,Y,z

z :
Y � 0, yi ≥ 0,1 ≤ i ≤ m
Y −

∑m
i=1 yiQi +

[
z

]
= Q0


or, equivalently

max
y1,...,ym,z

z :

[
A0 +

∑m
i=1 yiAi b0 +

∑m
i=1 yibi

bT0 +
∑m
i=1 yib

T
i c0 +

∑m
i=1 ciyi − z

]
� 0

yi ≥ 0,1 ≤ i ≤ m





SDP = min
X

{
Tr(Q0X) :

Tr(QiX) ≤ 0,1 ≤ i ≤M
X � 0, Xn+1,n+1 = 1

}
(P )

SDP = max
yi,z

z :

[
A0 +

∑m
i=1 yiAi b0 +

∑m
i=1 yibi

bT0 +
∑m

i=1 yib
T
i c0 +

∑m
i=1 ciyi − z

]
� 0

yi ≥ 0,1 ≤ i ≤ m

(D)

Note: Our primal problem (SDP ) has a “massive”

matrix variable X ((n+ 1)(n+ 2)/2 scalar variables)

and “large” semidefinite constraint X � 0. The dual

problem has equally large semidefinite constraint,

but just (m+ 1) variables.

⇒For some solution algorithms, the dual problem is

better suited than the primal one!



Opt = min
x∈Rn

{f0(x) : fi(x) ≤ 0,1 ≤ i ≤ m}[
fi(x) = xTAix+ 2bTi x+ ci, 0 ≤ i ≤ m

] (QP )

⇓

SDP = max
yi,z

z :

[
A0 +

∑m
i=1 yiAi b0 +

∑m
i=1 yibi

bT0 +
∑m

i=1 yib
T
i c0 +

∑m
i=1 ciyi − z

]
� 0

yi ≥ 0,1 ≤ i ≤ m

(D)

♠ (D) can be derived independently by Lagrange re-

laxation of (QP ). Specifically, the Lagrange function

L(x, y) = f0(x) +
∑m
i=1 yifi(x)

of (QP ). where the Lagrange multipliers yi are re-

stricted to be nonnegative, underestimates f0(x) on

the feasible set of (QP ), whence

y ≥ 0⇒ Opt ≥ L(y) := inf
x
{f0(x) +

∑m
i=1 yifi(x)}

It is immediately seen that (D) is the problem

SDP = max
y1,...,ym≥0

L(y).



Illustration: Lyapunov Stability Analysis

♣ Consider an uncertain time varying linear dynam-
ical system

d

dt
x(t) = A(t)x(t) (ULS)

• x(t) ∈ Rn: state at time t,
• A(t) ∈ Rn×n: known to take all values in a given
uncertainty set U ⊂ Rn×n.
♠ (ULS) is called stable, if all trajectories of the sys-
tem converge to 0 as t→∞:
A(t) ∈ U ∀t ≥ 0, d

dtx(t) = A(t)x(t)⇒ lim
t→∞

x(t) = 0.

♣ Question: How to certify stability?
♠ Standard sufficient stability condition is the exis-
tence of Lyapunov Stability Certificate – a matrix
X � 0 such that the function L(x) = xTXx for some
α > 0 satisfies

d
dtL(x(t)) ≤ −αL(x(t)) for all trajectories

and thus goes to 0 exponentially fast along the tra-
jectories:

d
dtL(x(t)) ≤ −αL(x(t))⇒ d

dt [exp{αt}L(x(t))] ≤ 0
⇒ exp{αt}L(x(t)) ≤ L(x(0)), t ≥ 0
⇒ L(x(t)) ≤ exp{−αt}L(x(0))

⇒ ‖x(t)‖22 ≤
λmax(X)
λmin(X) exp{−αt}‖x(0)‖22

• For a time-invariant system, this condition is nec-
essary and sufficient for stability.



♠ Question: When α > 0 is such that
d
dtL(x(t)) ≤ −αL(x(t)) for all trajectories x(t) satisfying
d
dtx(t) = A(t)x(t) with A(t) ∈ U for all t ?

♥ Answer: We should have
d
dt

(
xT (t)Xx(t)

)
= ( ddtx(t))TXx(t) + xT (t)X d

dtx(t)

= xT (t)AT (t)Xx(t) + xT (t)XAx(t)

= xT (t)
[
AT (t)X +XA(t)

]
x(t)

≤ −αxT (t)Xx(t)
Thus,

d
dt
L(x(t)) ≤ −αL(x(t)) for all trajectories

⇔ xT(t)
[
AT(t)X +XA(t)

]
x(t) ≤ −αxT(t)Xx(t) for all trajectories

⇔ xT(t)[AT(t)X +XA(t) + αX]x(t) ≤ 0 for all trajectories
⇔ ATX +XA � −αX ∀A ∈ U
⇒X � 0 is LSC for a given α > 0 iff X solves semi-

infinite LMI

ATX +XA � −αX ∀A ∈ U
⇒Uncertain linear dynamical system

d
dtx(t) = A(t)x(t), A(t) ∈ U

admits an LSC iff the semi-infinite system of LMI’s

X � I, ATX +XA � −I ∀A ∈ U
in matrix variable X is solvable.

♠ But: SDP is about finite, and not semi-infinite,

systems of LMI’s. Semi-infinite systems of LMI’s

typically are heavily computationally intractable...



X � I, ATX +XA � −I ∀A ∈ U (!)

♠ Solvable case I: Scenario (a.k.a. polytopic) un-
certainty U = Conv{A1, ..., AN}. Here (!) is equiva-
lent to the finite system of LMI’s

X � I, ATkX +XAk � −I, 1 ≤ k ≤ N
♠ Solvable case II: Unstructured Norm-Bounded
uncertainty

U = {A = Ā+B∆C : ‖∆‖2,2 ≤ ρ},
• ‖ · ‖2,2: spectral norm of a matrix.

♥ Example: We close open loop time invariant sys-
tem

d
dtx(t) = Px(t) +Bu(t) [state equations]

y(t) = Cx(t) [observed output]

with linear feedback
u(t) = Ky(t),

thus arriving at the closed loop system
d
dtx(t) = [P +BKC]x(t)

and want to certify stability of the closed loop sys-
tem when the feedback matrix K is subject to time-
varying norm-bounded perturbations:

K = K(t) ∈ V = {K̄ + ∆ : ‖∆‖2,2 ≤ ρ}.
This is exactly the same as to certify stability of the
system
d
dtx(t) = A(t)x(t), A(t) ∈ U = {P +BK̄C︸ ︷︷ ︸

Ā

+B∆C}

with unstructured norm-bounded uncertainty.



• Observation: The semi-infinite system of LMI’s

X � I & ATX +XAT � −I ∀(A = Ā+B∆C : ‖∆‖2,2 ≤ ρ)

is of the generic form
(A) : finite system of LMI’s in variables x

semi-infinite LMI
(!) : A(x) + LT(x)∆R+RT∆TL(x) � 0 ∀(∆ : ‖∆‖2,2 ≤ ρ)

A(x), L(x): affine in x

♠ Fact: [S.Boyd et al, early 90’s] Assuming w.l.o.g.

that R 6= 0, the semi-infinite LMI (!) can be equiv-

alently represented by the usual LMI[
A(x)− λRTR ρLT (x)

ρL(x) λI

]
� 0 (!!)

in variables x, λ, meaning that x satisfies (!) if and

only x can be augmented by properly selected λ to

satisfy (!!).



♣ Key argument when proving Fact:

S-Lemma: A homogeneous quadratic inequality

xTBx ≥ 0 (B)

is a consequence of strictly feasible homogeneous

quadratic inequality

xTAx ≥ 0 (A)

if and only if (B) can be obtained by taking weighted

sum, with nonnegative weights, of (A) and identi-

cally true homogeneous quadratic inequality:

∃(λ ≥ 0 & C : xTCx ≥ 0 ∀x︸ ︷︷ ︸
⇔C�0

) : xTBx ≡ λxTAx+ xTCx

or, which is the same, if and only if

∃λ ≥ 0 : B � λA.
Immediate corollary: A quadratic inequality

xTBx+ 2bTx+ β ≥ 0

is a consequence of strictly feasible quadratic in-

equality xTAx+ 2aTx+ α ≥ 0 if and only if

∃λ ≥ 0 :

[
B − λA bT − λaT
b− λa β − λα

]
� 0

⇒We can efficiently optimize a quadratic func-

tion over the set given by a single strictly feasible

quadratic constraint.



♣ S-Lemma: A homogeneous quadratic inequality
xTBx ≥ 0 (B)

is a consequence of strictly feasible homogeneous
quadratic inequality

xTAx ≥ 0 (A)
if and only if (B) can be obtained by taking weighted
sum, with nonnegative weights, of (A) and identi-
cally true homogeneous quadratic inequality:
∃(λ ≥ 0 & C : xTCx ≥ 0 ∀x︸ ︷︷ ︸

⇔C�0

) : xTBx ≡ λxTAx+ xTCx

or, which is the same, if and only if
∃λ ≥ 0 : B � λA.

♠ Note: The “if” part of the claim is evident and
remains true when we replace (A) with a finite sys-
tem of quadratic inequalities:
Let a system of homogeneous quadratic inequalities

xTAix ≥ 0, 1 ≤ i ≤ m,
and a “target” inequality xTBx ≥ 0 be given. If the
target inequality can be obtained by taking weighted
sum, with nonnegative coefficients, of the inequali-
ties of the system and an identically true homoge-
neous quadratic inequality, or, equivalently, If there
exist λi ≥ 0 such that

B �
∑
i λiAi,

then the target inequality is a consequence of the
system.



∃λi ≥ 0 : B �
∑m
i=1 λiAi (!)

⇒xTBx ≥ 0 is a consequence of xTAix ≥ 0,1 ≤ i ≤ m

• If instead of homogeneous quadratic inequalities

we were speaking about homogeneous linear ones,

similar sufficient condition for the target inequality

to be a consequence of the system would be also

necessary (Homogeneous Farkash Lemma).

• The power of S-Lemma is in the claim that when

m = 1, the sufficient condition (!) for the target

inequality xTBx ≥ 0 to be a consequence of the sys-

tem xTAix ≥ 0, 1 ≤ i ≤ m, is also necessary, provided

the “system” xTA1x ≥ 0 is strictly feasible.

The “necessity” part of S-Lemma fails to be true

when m > 1.



Proof of the “only if” part of S-Lemma

• Situation: We are given two symmetric matrices

A, B such that

(I): ∃x̄ : x̄TAx̄ > 0

and

(II): xTAx ≥ 0 implies xTBx ≥ 0

or, equivalently,

(I-II):
Opt := minx{xTBx : xTAx ≥ 0} ≥ 0
and the constraint xTAx ≥ 0 is strictly feasible

• Goal: To prove that

(III): ∃λ ≥ 0 : B � λA
or, equivalently, that

(III′): SDP := minX {Tr(BX) : Tr(AX) ≥ 0, X � 0} ≥ 0.

Equivalence of (III) and (III′): By (I), semidefi-

nite program in (III′) is strictly feasible. Since the

program is homogeneous, its optimal value is either

0, or −∞. By Conic Duality, the optimal value is

finite (i.e., 0) if and only if the dual problem

maxλ,Y {0 : B = λA+ Y, λ ≥ 0, Y � 0}
is solvable, which is exactly (III).



• Given that xTAx ≥ 0 implies xTBx ≥ 0 we should

prove that

Tr(BX) ≥ 0 whenever Tr(AX) ≥ 0 and X � 0

• Let X � 0 be such that Tr(AX) ≥ 0, and let us

prove that Tr(BX) ≥ 0.

There exists orthogonal U such that UTX1/2AX1/2U

is diagonal

⇒For every vector ξ with ±1 entries:
[X1/2Uξ]TA[X1/2Uξ] = ξT [UTX1/2AX1/2U ]︸ ︷︷ ︸

diagonal

ξ

= Tr(UTX1/2AX1/2U)
= Tr(AX) ≥ 0

⇒For every vector ξ with ±1 entries:

0 ≤ [X1/2Uξ]TB[X1/2Uξ] = ξT [UTX1/2BX1/2U ]ξ

⇒ [Taking average over ±1 vectors ξ]

0 ≤ Tr(UTX1/2BX1/2U) = Tr(BX)

Thus, Tr(BX) ≥ 0, as claimed.



Lecture II.

Interior Point Methods for LP and SDP
• Primal-dual pair of SDP programs
• Logarithmic Barrier for the Semidefinite cone

and primal-dual central path
• Tracing the primal-dual central path
• Commutative scalings
• How to start path tracing



♣ Interior Point Methods (IPM’s) are state-of-

the-art theoretically and practically efficient polyno-

mial time algorithms for solving well-structured con-

vex optimization programs, primarily Linear, Conic

Quadratic and Semidefinite ones.

♠ Modern IPMs were first developed for LP, and

the words “Interior Point” are aimed at stressing

the fact that instead of traveling along the vertices

of the feasible set, as in the Simplex algorithm, the

methods work in the interior of the feasible domain.



♠ Note: “intrinsic nature” of IPM’s for LP, CQP
and SDP is the same – these methods are given

by applying general self-concordance-based theory of

polynomial time IPM’s for Convex Programming to

the case of conic problems on self-dual homogeneous

cones, i.e., self-dual cones such that the group of

one-to-one affine mappings preserving the cone acts

transitively on its interior.

♥ The LP and SDP cases are more than “intrin-

sically similar” – they admit fully unified treatment

(including the notational aspects).

⇒ In the sequel, we focus on the SDP case.



Primal-Dual Pair of SDP Programs

♣ Consider an SDP program in the form

Opt(P ) = min
x

cTx : Ax :=
n∑

j=1

xjAj � B

 (P )

where Aj, B are m×m block diagonal symmetric ma-

trices of a given block-diagonal structure ν (i.e., with

a given number and given sizes of diagonal blocks).

♠ (P ) can be thought of as a conic problem on the

self-dual and regular positive semidefinite cone Sν+
in the space Sν of symmetric block diagonal m ×m
matrices with block-diagonal structure ν.

• Sν is equipped with the Frobenius inner product:

〈A,B〉 = Tr(ABT ) = Tr(AB) =
∑m
i,j=1AijBij.

♠ Note: In the diagonal case (where all diagonal

blocks are of size 1), (P ) becomes an LP program

with m linear inequality constraints and n variables.



Opt(P ) = min
x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P )

♠ Standing Assumption A: The mapping x 7→
Ax has trivial kernel, or, equivalently, the matrices

A1, ..., An are linearly independent.

♠ The problem dual to (P ) is

Opt(D) = max
S∈Sν
{Tr(BS) : S � 0, Tr(AjS) = cj ∀j} (D)

♠ Standing Assumption B: Both (P ) and (D) are

strictly feasible (⇒both problems are solvable with

equal optimal values).



Opt(P ) = min
x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P )

Opt(D) = max
S∈Sν

{
Tr(BS) : S � 0, Tr(AjS) = cj ∀j

}
(D)

♠ Let C ∈ Sν satisfy the equality constraint in (D),
so that

Tr(C[Ax−B]) =
∑
j xjTr(CAj)−Tr(CB)

= cTx−Tr(CB)
.

Passing in (P ) from x to the primal slack X = Ax−B,
we can rewrite (P ) equivalently as the problem

Opt(P) = min
X∈Sν

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

LP = Im(A) = Lin{A1, ..., An}
[Opt(P) = Opt(P )−Tr(CB)] ,

while (D) is the problem
Opt(D) = max

S∈Sν

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)

LD = L⊥P = {S : Tr(AjS) = 0, 1 ≤ j ≤ n}
♠ At a primal-dual feasible pair (x, S), the Duality
Gap cTx−Tr(BS), expressed in terms of S and X =
Ax−B, is

[Tr(C[Ax−B]) + Tr(CB)]−Tr(BS) = Tr(CX) + Tr(CB)−Tr(BS)
= [Tr(CX) + Tr(CB)−Opt(P )] + [Opt(D)−Tr(BS)]
= [Tr(CX)−Opt(P)] + [Opt(D)−Tr(BS)]

On the other hand, whenever X, S are feasible for
(P), (D), we have X +B ∈ LP , S − C ∈ LD = L⊥
⇒0 = Tr([X +B][S − C]) = Tr(XS)− [Tr(XC) + Tr(BC)−Tr(BS)]

= Tr(XS)− [Tr(CX) + Tr(CB)−Tr(BS)] .
⇒Whenever X = Ax−B is feasible for (P) and S is
feasible for D, we have

DualityGap(X,S) :=

=cTx−Tr(BS)︷ ︸︸ ︷
[Tr(CX)−Opt(P)] + [Opt(D)−Tr(BS)]

= Tr(XS).



Opt(P ) = min
x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P )

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)[

LP = ImA, LD = L⊥P
]

Since (P ) and (D) are strictly feasible, both prob-

lems are solvable with equal optimal values, and a

pair of feasible solutions X to (P) and S to (D)

is comprised of optimal solutions to the respective

problems iff

DualityGap(X,S) = Tr(XS) = 0.

Claim: For positive semidefinite matrices X, S,

Tr(XS) = 0 if and only if XS = SX = 0.

Proof:

• Standard Fact of Linear Algebra: For every ma-

trix A � 0 there exists exactly one matrix B � 0 such

that A = B2; B is denoted A1/2.

• Standard Fact of Linear Algebra: Whenever

A,B are matrices such that the product AB makes

sense and is a square matrix, Tr(AB) = Tr(BA).

• Standard Fact of Linear Algebra: Whenever

A � 0 and QAQT makes sense, we have QAQT � 0.



• Standard Facts of LA ⇒Claim:

0 = Tr(XS) = Tr(X1/2X1/2S) = Tr(X1/2SX1/2)

⇒All diagonal entries in the positive semidefinite

matrix X1/2SX1/2 are zeros

⇒X1/2SX1/2 = 0

⇒ (S1/2X1/2)T (S1/2X1/2) = 0

⇒S1/2X1/2 = 0

⇒SX = S1/2[S1/2X1/2]X1/2 = 0

⇒XS = (SX)T = 0. �



Opt(P ) = min
x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P )

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)[

LP = ImA, LD = L⊥P
]

Theorem: Assuming (P ), (D) strictly feasible, fea-

sible solutions X for (P) and S for (D) are optimal

for the respective problems if and only if

XS = SX = 0

(“SDP Complementary Slackness”).



Logarithmic Barrier for the Semidefinite Cone Sν+
Opt(P ) = min

x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P )

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)[

LP = ImA, LD = L⊥P
]

♣ A crucial role in building IPMs for (P ), (D) is

played by the logarithmic barrier for the positive

semidefinite cone:

K(X) = − ln Det(X) : int(Sν+)→ R
♠ Facts: K(X) is a smooth function on its domain

Sν++ = {X ∈ Sν : X � 0}. The first- and the second

order directional derivatives of this function taken

at a point X ∈ domK along a direction H ∈ Sν are

given by

d
dt

∣∣∣
t=0

K(X + tH) = −Tr(X−1H)[
⇔ ∇K(X) = −X−1

]
d2

dt2

∣∣∣
t=0

K(X + tH) = Tr(H[X−1HX−1])

= Tr([X−1/2HX−1/2]2)

In particular, K is strongly convex:

X ∈ DomK,0 6= H ∈ Sν ⇒ d2

dt2

∣∣∣
t=0

K(X + tH) > 0



Proof:

d
dt

∣∣∣
t=0

[− ln Det(X + tH)]

= d
dt

∣∣∣
t=0

[− ln Det(X[I + tX−1H])]

= d
dt

∣∣∣
t=0

[− ln Det(X)− ln Det(I + tX−1H)]

= d
dt

∣∣∣
t=0

[− ln Det(I + tX−1H)]

= − d
dt

∣∣∣
t=0

[Det(I + tX−1H)] [chain rule]

= −Tr(X−1H)

d
dt

∣∣∣
t=0

[
−Tr([X + tG]−1H)

]
= d

dt

∣∣∣
t=0

[
−Tr([X[I + tX−1G]]−1H)

]
= −Tr

([
d
dt

∣∣∣
t=0

[I + tX−1G]−1
]
X−1H

)
= Tr(X−1GX−1H)

In particular, when X � 0 and H ∈ Sν, H 6= 0, we

have

d2

dt2

∣∣∣
t=0

K(X + tH) = Tr(X−1HX−1H)

= Tr(X−1/2[X−1/2HX−1/2]X−1/2H)
= Tr([X−1/2HX−1/2]X−1/2HX−1/2)
= 〈X−1/2HX−1/2, X−1/2HX−1/2〉 > 0.



Additional properties of K(·):

• ∇K(tX) =−[tX]−1 = −t−1X−1 =t−1∇K(X)

• The mapping X 7→ −∇K(X) = X−1 maps the

domain Sν++ of K onto itself and is self-inverse:

S = −∇K(X)⇔ X = −∇K(S)⇔ XS = SX = I

• The function K(X) is an interior penalty for the

positive semidefinite cone Sν+: whenever points Xi ∈
DomK = Sν++ converge to a boundary point of Sν+,

one has K(Xi)→∞ as i→∞.



Primal-Dual Central Path
Opt(P ) = min

x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P )

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)

K(X) = − ln Det(X)

Let
X = {X ∈ LP −B : X � 0}
S = {S ∈ LD + C : S � 0}.

be the (nonempty!) sets of strictly feasible solutions
to (P) and (D), respectively. Given path parameter
µ > 0, consider the functions

Pµ(X) = Tr(CX) + µK(X) : X → R
Dµ(S) = −Tr(BS) + µK(S) : S → R .

Fact: For every µ > 0, the function Pµ(X) achieves
its minimum at X at a unique point X∗(µ), and
the function Dµ(S) achieves its minimum on S at
a unique point S∗(µ). These points are related:

X∗(µ) = µS−1
∗ (µ)⇔ S∗(µ) = µX−1

∗ (µ)
⇔ X∗(µ)S∗(µ) = S∗(µ)X∗(µ) = µI

Thus, we can associate with (P), (D) the primal-
dual central path – the curve

{X∗(µ), S∗(µ)}µ>0,
where for every µ > 0 X∗(µ) is a strictly feasible so-
lution to (P), and S∗(µ) is a strictly feasible solution
to (D), and X∗(µ)S∗(µ) = µI.



Duality Gap on the Central Path
Opt(P ) = min

x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P )

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)

⇒
{
X∗(µ) ∈ [LP −B] ∩ Sν++
S∗(µ) ∈ [LD + C] ∩ Sν++

}
: X∗(µ)S∗(µ) = µI

Observation: On the primal-dual central path, the

duality gap is

Tr(X∗(µ)S∗(µ)) = Tr(µI) = µm.

Therefore the sum of non-optimalities of the strictly

feasible solution X∗(µ) to (P) and the strictly feasi-

ble solution S∗(µ) to (D) in terms of the respective

objectives is equal to µm and goes to 0 as µ→ +0.

⇒Our ideal goal would be to move along the primal-

dual central path, pushing the path parameter µ to

0 and thus approaching primal-dual optimality, while

maintaining primal-dual feasibility.



♠ Our ideal goal is not achievable – how could we

move along a curve? A realistic goal could be to

move in a neighborhood of the primal-dual central

path, staying close to it. A good notion of “close-

ness to the path” is given by the proximity mea-

sure of a triple µ > 0, X ∈ X , S ∈ S to the point

(X∗(µ), S∗(µ)) on the path:
dist(X,S, µ) =

√
Tr(X[X−1 − µ−1S]X[X−1 − µ−1S])

=
√

Tr(X1/2[X1/2[X−1 − µ−1S]X1/2]
[
X1/2[X−1 − µ−1S]

]
)

=
√

Tr([X1/2[X−1 − µ−1S]X1/2]
[
X1/2[X−1 − µ−1S]X1/2

]
)

=
√

Tr([X1/2[X−1 − µ−1S]X1/2]2)

=
√

Tr([I − µ−1X1/2SX1/2]2).

Note: We see that dist(X,S, µ) is well defined and

dist(X,S, µ) = 0 iff X1/2SX1/2 = µI, or, which is

the same,

SX = X−1/2[X1/2SX1/2]X1/2 = µX−1/2X1/2 = µI,

i.e., iff X = X∗(µ) and S = S∗(µ).

Note: We have
dist(X,S, µ) =

√
Tr(X[X−1 − µ−1S]X[X−1 − µ−1S])

=
√

Tr([I − µ−1XS][I − µ−1XS])

=
√

Tr(
[
[I − µ−1XS][I − µ−1XS]

]T
)

=
√

Tr([I − µ−1SX][I − µ−1SX])

=
√

Tr(S[S−1 − µ−1X]S[S−1 − µ−1X]),
⇒The proximity is defined in a symmetric w.r.t. X,

S fashion.



Fact: Whenever X ∈ X , S ∈ S and µ > 0, one has

Tr(XS) ≤ µ[m+
√
mdist(X,S, µ)]

Indeed, we have seen that

d := dist(X,S, µ) =
√

Tr([I − µ−1X1/2SX1/2]2).

Denoting by λi the eigenvalues of X1/2SX1/2, we

have
d2 = Tr([I − µ−1X1/2SX1/2]2) =

∑
i[1− µ−1λi]

2

⇒
∑
i |1− µ−1λi| ≤

√
m
√∑

i[1− µ−1λi]
2 =
√
md

⇒
∑
i λi ≤ µ[m+

√
md]

⇒ Tr(XS) = Tr(X1/2SX1/2) =
∑
i λi≤ µ[m+

√
md]

Corollary. Let us say that a triple (X,S, µ) is

close to the path, if X ∈ X , S ∈ S, µ > 0 and

dist(X,S, µ) ≤ 0.1. Whenever (X,S, µ) is close to

the path, one has

Tr(XS) ≤ 2µm,

that is, if (X,S, µ) is close to the path, then X is

at most 2µm-nonoptimal strictly feasible solution to

(P), and S is at most 2µm-nonoptimal strictly fea-

sible solution to (D).



Tracing the Central Path

♣ The goal: To follow the central path, staying

close to it and pushing µ to 0 as fast as possible.

♣ Question. Assume we are given a triple (X̄, S̄, µ̄)

close to the path. How to update it into a triple

(X+, S+, µ+), also close to the path, with µ+ < µ?

♠ Conceptual answer: Let us choose µ+, 0 < µ+ <

µ̄, and try to update X̄, S̄ into

X+ = X̄ + ∆X, S+ = S̄ + ∆S

in order to make the triple (X+, S+, µ+) close to the

path. Our goal is to ensure that
X+ = X̄ + ∆X ∈ LP −B & X+ � 0 (a)
S+ = S̄ + ∆S ∈ LD + C & S+ � 0 (b)

Gµ+(X+, S+) ≈ 0 (c)
where Gµ(X,S) = 0 expresses equivalently the aug-

mented slackness condition XS = µI. For example,

we can take
Gµ(X,S) = S − µ−1X−1, or

Gµ(X,S) = X − µ−1S−1, or

Gµ(X,S) = XS + SX = 2µI, or...



X+ = X̄ + ∆X ∈ LP −B & X+ � 0 (a)
S+ = S̄ + ∆S ∈ LD + C & S+ � 0 (b)

Gµ+(X+, S+) ≈ 0 (c)

♠ Since X̄ ∈ LP − B and X̄ � 0, (a) amounts to

∆X ∈ LP , which is a system of linear equations on

∆X, and to X̄ + ∆X � 0. Similarly, (b) amounts

to the system ∆S ∈ LD of linear equations on ∆S,

and to S̄ + ∆S � 0. To handle the troublemaking

nonlinear in ∆X,∆S condition (c), we linearize Gµ+

in ∆X and ∆S:
Gµ+(X+, S+) ≈ Gµ+(X̄, S̄)

+
∂Gµ+(X,S)

∂X

∣∣∣∣∣
(X,S)=(X̄,S̄)

∆X +
∂Gµ+(X,S)

∂S

∣∣∣∣∣
(X,S)=(X̄,S̄)

∆S

and enforce the linearization, as evaluated at ∆X,

∆S, to be zero. We arrive at the Newton system
∆X ∈ LP
∆S ∈ LD
∂Gµ+
∂X ∆X +

∂Gµ+
∂S ∆S = −Gµ+

(N)

(the value and the partial derivatives of Gµ+(X,S)

are taken at the point (X̄, S̄)).



♠We arrive at conceptual primal-dual path-following

method where one iterates the updatings

(Xi, Si, µi) 7→ (Xi+1 = Xi + ∆Xi, Si+1 = Si + ∆Si, µi+1)

with µi+1 ∈ (0, µi) and ∆Xi,∆Si solving the Newton

system
∆Xi ∈ LP
∆Si ∈ LD
∂G

(i)
µi+1
∂X ∆Xi +

∂G
(i)
µi+1
∂S ∆Si = −G(i)

µi+1,

(Ni)

G
(i)
µ (X,S) = 0 represents equivalently the aug-

mented complementary slackness condition XS = µI

and the value and the partial derivatives of G(i)
µi+1 are

evaluated at (Xi, Si).

♠ Being initialized at a close to the path triple

(X0, S0, µ0), this conceptual algorithm should

• be well-defined: (Ni) should remain solvable, Xi
should remain strictly feasible for (P), Si should re-

main strictly feasible for (D), and

• maintain closeness to the path: for every i,

(Xi, Si, µi) should remain close to the path.

♥ Under these limitations, we want to push µi to 0

as fast as possible.



Example: Primal Path-Following Method
Opt(P ) = min

x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P )

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)[

LP = ImA, LD = L⊥P
]

♣ Let us choose

Gµ(X,S) = S + µ∇K(X) = S − µX−1

Then the Newton system becomes
∆Xi ∈ LP ⇔ ∆Xi = A∆xi
∆Si ∈ LD ⇔ A∗∆Si = 0

A∗U = [Tr(A1U); ...; Tr(AnU)]
(!) ∆Si + µi+1∇2K(Xi)∆Xi = −[Si + µi+1∇K(Xi)]

(Ni)

♠ Substituting ∆Xi = A∆xi and applying A∗ to both

sides in (!), we get
(∗) µi+1 [A∗∇2K(Xi)A]︸ ︷︷ ︸

H

∆xi = −
[
A∗Si︸ ︷︷ ︸

=c

+A∗∇K(Xi)
]

∆Xi = A∆xi
Si+1 = µi+1

[
∇K(Xi)−∇2K(Xi)A∆xi

]
The mappings h 7→ Ah, H 7→ ∇2K(Xi)H have trivial

kernels

⇒H is nonsingular

⇒ (Ni) has a unique solution given by
∆xi = −H−1

[
µ−1
i+1c+A∗∇K(Xi)

]
∆Xi = A∆xi
Si+1 = Si + ∆Si = µi+1

[
∇K(Xi)−∇2K(Xi)A∆xi

]



Opt(P ) = min
x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P )

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)[

LP = ImA, LD = L⊥P
]

⇒


∆xi = −H−1

[
µ−1
i+1c+A∗∇K(Xi)

][
H = A∗∇2K(Xi)A

]
∆Xi = A∆xi
Si+1 = Si + ∆Si = µi+1

[
∇K(Xi)−∇2K(Xi)A∆xi

]
♠ Xi = Axi−B for a (uniquely defined by Xi) strictly

feasible solution xi to (P ). Setting

F (x) = K(Ax−B),

we have A∗∇K(Xi) = ∇F (xi), H = ∇2F (xi)

⇒The above recurrence can be written solely in

terms of xi and F :

(#)

{
µi 7→ µi+1 < µi
xi+1 = xi − [∇2F (xi)]−1

[
µ−1
i+1c+∇F (xi)

]
Xi+1 = Axi+1 −B
Si+1 = µi+1

[
∇K(Xi)−∇2K(Xi)A[xi+1 − xi]

]
Recurrence (#) is called the primal path-following

method.



Opt(P ) = min
x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P )

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)[

LP = ImA, LD = L⊥P
]

♠ The primal path-following method can be ex-

plained as follows:

• The barrier K(X) = − ln DetX induces the barrier

F (x) = K(Ax−B) for the interior P o of the feasible

domain of (P ).

• The primal central path

X∗(µ) = argminX=Ax−B�0 [Tr(CX) + µK(X)]

induces the path

x∗(µ) ∈ P o: X∗(µ) = Ax∗(µ) + µF (x).

Observing that

Tr(C[Ax−B]) + µK(Ax−B) = cTx+ µF (x) + const,

we have

x∗(µ) = argminx∈P o Fµ(x), Fµ(x) = cTx+ µF (x).

• The method works as follows: given xi ∈ P o, µi > 0,

we

— replace µi with µi+1 < µi
— convert xi into xi+1 by applying to the function

Fµi+1(·) a single step of the Newton minimization

method

xi 7→ xi+1 − [∇2Fµi+1(xi)]−1∇Fµi+1(xi)



Opt(P ) = min
x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P )

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)[

LP = ImA, LD = L⊥P
]

Theorem. Let (X0 = Ax0 − B,S0, µ0) be close to

the primal-dual central path, and let (P ) be solved

by the Primal path-following method where the path

parameter µ is updated according to

µi+1 =
(

1− 0.1√
m

)
µi. (∗)

Then the method is well defined and all triples (Xi =

Axi −B,Si, µi) are close to the path.

♠ With rule (∗) it takes O(
√
m) steps to reduce the

path parameter µ by an absolute constant factor.

Since the method stays close to the path, the duality

gap Tr(XiSi) of i-th iterate does not exceed 2mµi.

⇒The number of steps to make the duality gap ≤ ε
does not exceed O(1)

√
m ln

(
1 + 2mµ0

ε

)
.



2D feasible set of a toy SDP (K = S3
+).

“Continuous curve” is the primal central path
Dots are iterates xi of the Primal Path-Following method.

Itr# Objective Gap Itr# Objective Gap
1 -0.100000 2.96 7 -1.359870 8.4e-4
2 -0.906963 0.51 8 -1.360259 2.1e-4
3 -1.212689 0.19 9 -1.360374 5.3e-5
4 -1.301082 6.9e-2 10 -1.360397 1.4e-5
5 -1.349584 2.1e-2 11 -1.360404 3.8e-6
6 -1.356463 4.7e-3 12 -1.360406 9.5e-7

Duality gap along the iterations



♣ The Primal path-following method is yielded by

Conceptual Path-Following Scheme when the Aug-

mented Complementary Slackness condition is rep-

resented as

Gµ(X,S) := S + µ∇K(X) = 0.

Passing to the representation

Gµ(X,S) := X + µ∇K(S) = 0,

we arrive at the Dual path-following method with the

same theoretical properties as those of the primal

method. The Primal and the Dual path-following

methods imply the best known so far complexity

bounds for LP and SDP.

♠ In spite of being “theoretically perfect”, Primal

and Dual path-following methods in practice are in-

ferior as compared to the methods based on less

straightforward and more symmetric forms of the

Augmented Complementary Slackness condition.



Commutative Scalings

♠ The Augmented Complementary Slackness condi-

tion is

XS = SX = µI (∗)
Fact: For X,S ∈ Sν++, (∗) is equivalent to

XS + SX = 2µI

Indeed, if XS = SX = µI, then clearly XS + SX =

2µI. On the other hand,
X,S � 0, XS + SX = 2µI
⇒ S +X−1SX = 2µX−1

⇒ X−1SX = 2µX−1 − S
⇒ X−1SX = [X−1SX]T = XSX−1

⇒ X2S = SX2

We see that X2S = SX2. Since X � 0, X is a poly-

nomial of X2, whence X and S commute, whence

XS = SX = µI. �

Fact: Let Q ∈ Sν be nonsingular, and let X,S � 0.

Then XS = µI if and only if

QXSQ−1 +Q−1SXQ = 2µI

Indeed, it suffices to apply the previous fact to the

matrices X̂ = QXQ � 0, S̃ = Q−1SQ−1 � 0. �



♠ In practical path-following methods, at step i the

Augmented Complementary Slackness condition is

written down as

Gµi+1(X,S) := QiXSQ
−1
i +Q−1

i SXQi − 2µi+1I = 0

with properly chosen varying from step to step non-

singular matrices Qi ∈ Sν.

Explanation: Let Q ∈ Sν be nonsingular. The Q-

scaling X 7→ QXQ is a one-to-one linear mapping

of Sν onto itself, the inverse being the mapping

X 7→ Q−1XQ−1. Q-scaling is a symmetry of the

positive semidefinite cone – it maps the cone onto

itself.

⇒Given a primal-dual pair of semidefinite programs
Opt(P) = min

X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)

and a nonsingular matrix Q ∈ Sν, one can pass in (P)

from variable X to variables X̂ = QXQ, while pass-

ing in (D) from variable S to variable S̃ = Q−1SQ−1.

The resulting problems are
Opt(P) = min

X̂

{
Tr(C̃X̂) : X̂ ∈ [L̂P − B̂] ∩ Sν+

}
(P̂)

Opt(D) = max
S̃

{
Tr(B̂S̃) : S̃ ∈ [L̃D + C̃] ∩ Sν+

}
(D̃)[

B̂ = QBQ, L̂P = {QXQ : X ∈ LP},
C̃ = Q−1CQ−1, L̃D = {Q−1SQ−1 : S ∈ LD}

]



Opt(P) = min
X̂

{
Tr(C̃X̂) : X̂ ∈ [L̂P − B̂] ∩ Sν+

}
(P̂)

Opt(D) = max
S̃

{
Tr(B̂S̃) : S̃ ∈ [L̃D + C̃] ∩ Sν+

}
(D̃)[

B̂ = QBQ, L̂P = {QXQ : X ∈ LP},
C̃ = Q−1CQ−1, L̃D = {Q−1SQ−1 : S ∈ LD}

]

P̂ and D̃ are dual to each other, the primal-dual cen-

tral path of this pair is the image of the primal-dual

path of (P), (D) under the primal-dual Q-scaling

(X,S) 7→ (X̂ = QXQ, S̃ = Q−1SQ−1)

Q preserves closeness to the path, etc.

♥ Writing down the Augmented Complementary

Slackness condition as

QXSQ−1 +Q−1SXQ = 2µI (!)

we in fact

• pass from (P), (D) to the equivalent primal-dual

pair of problems (P̂), (D̃)

• write down the Augmented Complementary Slack-

ness condition for the latter pair in the simplest

primal-dual symmetric form

X̂S̃ + S̃X̂ = 2µI,

• “scale back” to the original primal-dual variables

X,S, thus arriving at (!).

Note: In the LP case Sν is comprised of diagonal

matrices, so that (!) is exactly the same as the

“unscaled” condition XS = µI.



Gµi+1(X,S) := QiXSQ
−1
i +Q−1

i SXQi − 2µi+1I = 0 (!)

With (!), the Newton system becomes
∆X ∈ LP , ∆S ∈ LD
Qi∆XSiQ

−1
i +Q−1

i Si∆XQi +QiXi∆SQ−1
i +Q−1

i ∆SXiQi

= 2µi+1I −QiXiSiQ
−1
i −Q

−1
i SiXiQi

♣ Theoretical analysis of path-following methods

simplifies a lot when the scaling (!) is commuta-

tive, meaning that the matrices X̂i = QiXiQi and

Ŝi = Q−1
i SiQ

−1
i commute.

Popular choices of commuting scalings are:

• Qi = S
1/2
i (“XS-method,” S̃ = I)

• Qi = X
−1/2
i (“SX-method, X̂ = I)

• Qi =
(
X−1/2(X1/2SX1/2)−1/2X1/2S

)1/2
(famous

Nesterov-Todd method, X̂ = S̃).



Opt(P ) = min
x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P )

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)[

LP = ImA, LD = L⊥P
]

Theorem Let a strictly feasible primal-dual pair (P ),

(D) of semidefinite programs be solved by a primal-

dual path-following method based on commutative

scalings. Assume that the method is initialized by a

close to the path triple (X0, S0, µ0 = Tr(X0S0)/m)

and let the policy for updating µ be

µi+1 =
(

1− 0.1√
m

)
µi.

The the trajectory is well defined and stays close to

the path, and Tr(XiSi) = µim for all i.

As a result, every O(
√
m) steps of the method reduce

the duality gap by an absolute constant factor, and it

takes O(1)
√
m ln

(
1 + mµ0

ε

)
steps to make the duality

gap ≤ ε.



♠ To improve the practical performance of primal-

dual path-following methods, in actual computations

• the path parameter is updated in an on line ad-

justable fashion more “aggressive” than

µ 7→
(

1− 0.1√
m

)
µ;

• the method is allowed to travel in a wider neigh-

borhood of the primal-dual central path than the

neighborhood given by our “close to the path” re-

striction dist(X,S, µ) ≤ 0.1;

• instead of updating Xi+1 = Xi + ∆Xi, Si+1 =

Si + ∆Si, one uses the more flexible updating

Xi+1 = Xi + αi∆Xi, Si+1 = Si + αi∆Si
with αi given by appropriate line search.

♣ The constructions and the complexity results we

have presented are incomplete — they do not take

into account the necessity to come close to the cen-

tral path before starting path-tracing and do not

take care of the case when the pair (P), (D) is

not strictly feasible. All these “gaps” can be easily

closed via the same path-following technique as ap-

plied to appropriate augmented versions of the prob-

lem of interest.



How to Start Path Tracing:
Infeasible Start Primal-Dual

Path-Following Method

♣ Standard implementations of primal-dual path-

following methods for LP/CQP/SDP are infeasible

start methods based on self-dual embedding. In the

SDP case, these methods are as follows:

♠ We start with the strictly feasible primal-dual pair

of problems
Opt(P ) = min

x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P )

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [L −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [L⊥ + C] ∩ Sν+

}
(D)

[L = ImA]

Note: When shifting B along L and C along L⊥,

(P), (D) remain “essentially intact:” the feasible

sets remain the same, and the objectives are shifted

by constants.

⇒We lose nothing when assuming B ∈ L⊥, C ∈ L, in

which case the duality gap at a primal-dual feasible

pair (X,S) of solutions becomes

DualityGap(X,S) := Tr(XS) = Tr(CX)−Tr(BS).



Opt(P) = min
X

{
Tr(CX) : X ∈ [L −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [L⊥ + C] ∩ Sν+

}
(D)

[L = ImA]

♠ Consider the system of conic constraints in vari-

ables X,S ∈ Sν and scalar variables τ, σ:
X + τB ∈ L+ P

S − τC ∈ L⊥+D
Tr(CX)−Tr(BS) + σ = d

X ∈ Sν+, S ∈ Sν+, τ ≥ 0, σ ≥ 0

(C)

where the data P,D, d are such that

(i) we can easily find a strictly feasible solution

Ŷ = (X̂, Ŝ, σ̂, τ̂ = 1) to (C)

(ii) The feasible set Y of (C) is unbounded, and

whenever a sequence {Yi = (Xi, Si, τi, σi) ∈ Y}∞i=1 goes

to ∞, one has

τi →∞, i→∞
♠ Assume we have a mechanism for building a se-

quence {Yi = (Xi, Si, τi, σi) ∈ Y}∞i=1 which goes to∞.

Setting

X̄i = τ−1
i Xi, S̄i = τ−1

i Si
and taking into account that τi →∞ by (ii), we con-

clude that as i → ∞, the primal-dual infeasibility of

(X̄i, S̄i) and the duality gap Tr(CX̄i)−Tr(BS̄i) go to

zero at the rate O(1/τi).



X + τB ∈ L+ P

S − τC ∈ L⊥+D
〈C,X〉 − 〈B,S〉+ σ = d
X ∈ Sν+, S ∈ Sν+, τ ≥ 0, σ ≥ 0

(C)

♠ The outlined idea can be implemented as follows.

A. We select P ∈ Sν+, D ∈ Sν+ in such a way that

P � B and D � −C, select somehow σ̂ > 0 and set
d = Tr(C[P −B])−Tr(B[D + C]) + σ̂,

Ŷ = (X̂ = P −B, Ŝ = C +D, σ̂, τ̂ = 1)
With some moderate effort (heavily exploiting strict

primal-dual feasibility of the primal-dual problem in

question), it can be verified that this choice ensures

(i) and (ii).



X + τB ∈ L+ P

S − τC ∈ L⊥+D
Tr(CX)−Tr(BS) + σ = d

X ∈ Sν+, S ∈ Sν+, τ ≥ 0, σ ≥ 0

(C)

B. (C) is of the form

Y := Diag{X,S, σ, τ} ∈ M∩ Sν̂+
where ν̂ is some block-diagonal structure, and M is

an affine plane in Sν̂. Denoting by K̂(·) the log Det

barrier for Sν̂ and setting Ĉ = −∇K̂(Ȳ ), the primal

central path of the auxiliary conic problem

minY
{

Tr(ĈY ) : Y ∈M∩ Sν̂+

}
(M)

passes through Ŷ as µ = 1. We can trace this path,

starting with µ = 1 and Ŷ and staying close to it,

pushing µ to ∞ rather than to 0.

• Since the feasible set of (M) is unbounded by

(ii), it can be seen that in this fashion we “run to

∞ along the feasible Y of (C),” thus enforcing the

approximate primal-dual solutions (τ−1
i Xi, τ

−1
i Si) to

the problems of interest to approach primal-dual fea-

sibility and primal-dual optimality at the rate which,

on a closest inspection, is
exp{−O(1)i/

√
m}

[m: size of matrices from Sν]
.



Lecture III.

Mirror Descent for Large-Scale
Deterministic and Stochastic Convex

Optimization

• Proximal Setup
• Basic Mirror Descent
• Favorable Geometry Case
• Stochastic Case
• Utilizing Problem’s Structure: Mirror Prox
• Application: O(1/t) Nonsmooth Convex

Minimization
• Acceleration by Randomization



♣ Problem of Primary Interest: Convex Minimiza-

tion
Opt = minx∈X f(x) (P )

• X: convex compact subset of Euclidean space E
• f : X → R: convex Lipschitz continuous

♠ f is represented by a First Order Oracle:

• given on input x ∈ X, FOO returns the value

f(x) and a subgradient f ′(x) of f at x

• the vector field x 7→ f ′(x) is assumed to be

bounded on X

♣ Mirror Descent for (P ), milestones:

• Subgradient Descent (“Euclidean prototype”): N.

Shor, 1967:
X 3 xτ 7→ xτ+1 = ProjX(xτ − γτf ′(xτ))

• γτ > 0: stepsizes • ProjX(y) = argminz∈X ‖y − z‖2

• General Mirror Descent scheme: Nem., 1979

• Modern Proximal Point form: A. Beck & M.

Teboulle, 2003



Proximal Setup

Opt = minx∈X f(x) (P )

• X: compact subset of Euclidean space E

♣ Setup for MD (“proximal setup”) is given by
• a norm ‖ · ‖ on E

• a Distance Generating Function (DGF)
ω(x) : X → R

which should be
• convex and continuous on X

• admitting a continuous on
Xo = {x ∈ X : ∂ω(x) 6= ∅}

selection ω′(x) of subgradients
• compatible with ‖ · ‖, that is, strongly convex,

modulus 1, w.r.t. ‖ · ‖:

〈ω′(x)− ω′(x′), x− x′〉 ≥ ‖x− x′‖2 ∀x, x′ ∈ Xo

♠ Example: Euclidean setup:

E = Rn, ‖x‖ = ‖x‖2, ω(x) = 1
2x

Tx

♣ Standing Assumption: From now on, if oth-
erwise is not explicitly stated, X is assumed to be
bounded.



♣ Proximal setup ‖ · ‖, ω(·) for X ⊂ E induces:

• ω-center of X xω = argminx∈X ω(x)

• Bregman distance

Vx(y) = ω(y)− ω(x)− 〈ω′(x), y − x〉,
x ∈ Xo, y ∈ X. By strong convexity of ω(·),

Vx(y) ≥ 1
2‖y − x‖

2

• ω-radius of X

Ω = Ω[X,ω(·)] =
√

2[max
x∈X

ω(x)−min
x∈X

ω(x)]

For x ∈ X one has
1
2‖x− xω‖

2 ≤ Vxω(x) ≤ ω(x)− ω(xω) ≤ 1
2Ω2

⇒ ‖x− xω‖ ≤ Ω ∀x ∈ X
• prox-mapping

[x ∈ Xo, ξ ∈ E] 7→ Proxx(ξ):= argmin
z∈X

[〈ξ, z〉+ Vx(z)]∈ Xo

♠ With Euclidean setup,

Vx(y) = 1
2‖x− y‖

2
2, Proxx(ξ) = ProjX(x− ξ)

⇒Subgradient Descent is the recurrence

xτ+1 = Proxxτ(γτf
′(xτ))



Basic Mirror Descent
• X: convex compact subset of Euclidean space E
• ‖ · ‖, ω(·): proximal setup for (E,X)

♣ MD works with a sequence of vector fields

{gτ(·) : X → E}τ

represented by an oracle.

At call τ = 1,2, ..., the query point being xτ , the

oracle returns the vector gτ(xτ) ∈ E.

• In most of applications, the sequence {gτ(·)}τ is

just stationary: gτ(·) ≡ g(·).

♠ MD is the recurrence

x1 = xω := argminX ω(·); xτ+1 = Proxxτ(γτgτ(xτ))
• xτ ∈ Xo: search points • γτ > 0: stepsizes



x1 = xω := argminX ω;xτ+1 = Proxxτ(γτgτ(xτ))

♣ Main Property of MD: Under Boundedness As-
sumption

supx∈X,τ ‖gτ(x)‖∗ ≤ L <∞
• ‖ξ‖∗ = max{〈ξ, x〉 : ‖x‖ ≤ 1} is the conjugate of ‖ · ‖

the residual

εt := max
z∈X

∑
τ≤t

λtτ〈gτ(xτ), xτ − z〉, λtτ =
γτ∑
s≤t γs

obeys the bound

εt ≤
Ω2 +

∑
τ≤t γ

2
τ ‖gτ(xτ)‖2∗

2
∑
τ≤t γτ

, t = 1,2, ...

• In particular,
Ω
L
√
t
≤ γτ ≤ Ω

‖gτ(xτ)‖∗
√
t
, 1 ≤ τ ≤ t

(e.g., γτ = Ω
L
√
t
, or γτ = Ω

‖gτ(xτ)‖∗
√
t
, 1 ≤ τ ≤ t) im-

plies
εt ≤ ΩL/

√
t.

♠ Fact: When gτ(·) come from problem “with con-
vex structure,” the residual εt upper-bounds inaccu-
racy of the approximate solution

xt :=
∑
τ≤t

λtτxτ

to the problem.



Example 1: Convex Minimization Opt = minX f.

Applying MD to {gτ(·) ≡ f ′(·)}τ and assuming

w.l.o.g. the Lipschitz constant L‖·‖(f) of f taken

w.r.t. ‖ · ‖ to upper-bound ‖f ′(·)‖∗, one has

f(xt)−Opt ≤ εt :

εt = max
z∈X

∑
τ≤t λ

t
τ〈f ′(xτ), xτ − z〉

≥ max
z∈X

∑
τ≤t λ

t
τ [f(xτ)− f(z)]

≥ max
z∈X

[f(
∑
τ≤t λ

t
τxτ)− f(z)]

= f(xt)−Opt
⇒For every t, t-step MD with appropriate stepsizes

ensures

f(xt)−Opt ≤ ΩL‖·‖(f)/
√
t

Example 1.A: Convex Online Minimization. When

gτ(x) = f ′τ(x), with convex functions fτ(·) : X → R
satisfying ‖f ′τ(x)‖∗ ≤ L < ∞ for all x ∈ X, τ , t-step

MD with stepsizes γτ = Ω
L
√
t
, 1 ≤ τ ≤ t, ensures that

1

t

∑
τ≤t

fτ(xτ) ≤
ΩL√
t

+ min
x∈X

1

t

∑
τ≤t

fτ(x)



Example 2: Convex-Concave Saddle Point prob-

lem

SadVal = min
u∈U

max
v∈V

f(u, v).

♣ Situation:

• X = U × V ⊂ Eu×Ev =: E with compact convex

U ,V

• f(u, v) : X → R: convex in x ∈ U , concave in

v ∈ V , Lipschitz continuous

♠ f, U, V give rise to two convex optimization prob-

lems:
Opt(P ) = minu∈U

[
f(u) := maxv∈V f(u, v)

]
(P )

Opt(D) = maxv∈V
[
f(v) := minu∈Uf(u, v)

]
(D)

with equal optimal values:

Opt(P ) = Opt(D),

and to vector field

g([u; v]︸ ︷︷ ︸
x

) =

[
gu(u, v) ∈ ∂uf(u, v)

gv(u, v) ∈ ∂v(−f(u, v))

]
: U × V︸ ︷︷ ︸

X

→ E

♠ Optimal solutions u∗, v∗ to (P ), (D) are exactly

the saddle points of f on U × V :

f(u, v∗) ≥ f(u∗, v∗) ≥ f(u∗, v) ∀(u ∈ U, v ∈ V ) :



Mirror Descent for Saddle Point Problems

Opt(P ) = minu∈U
[
f(u) := maxv∈V f(u, v)

]
(P )

Opt(D) = maxv∈V
[
f(v) := minu∈Uf(u, v)

]
(D)

⇒ g(u; v) = [f ′u(u, v);−f ′v(u, v)] : U × V → E

♣ Fact: Applying MD to gτ(·) ≡ g(·), the residual

εt = max
z∈X

∑
τ≤t

λtτ〈g(xτ), xτ − z〉, λtτ = γτ/
∑
s≤t

γs

upper-bounds the saddle point inaccuracy (“duality

gap”) of the approximate solution

xt = [ut; vt] :=
∑

τ≤tλ
t
τxτ

to (P,D):

[f(ut)−Opt(P )]+[Opt(D)− f(vt)] = f(ut)−f(vt) ≤ εt

∀[u; v] ∈ U × V : εt ≥
∑

τ≤t λ
t
τ〈g(xτ), xτ − [u; v]〉

=
∑

τ≤t λ
t
τ [〈f ′u(uτ , vτ), uτ − u〉+ 〈−f ′v(uτ , vτ), vτ − v〉]

≥
∑

τ≤t λ
t
τ [f(uτ , vτ)− f(u, vτ)− f(uτ , vτ) + f(uτ , v)]

=
∑

τ≤t λ
t
τ [f(uτ , v)− f(u, vτ)] ≥ f(ut, v)− f(u, vt)

⇒ εt ≥ maxu∈U,v∈V [f(ut, v)− f(u, vt)] = f(ut)− f(vt).



Opt(P ) = minu∈U
[
f(u) := maxv∈V f(u, v)

]
(P )

Opt(D) = maxv∈V
[
f(v) := minu∈Uf(u, v)

]
(D)

⇒ g(u; v) = [f ′u(u, v);−f ′v(u, v)] : U × V → E

♠ Assuming that ‖ · ‖ respects representation E =

Eu × Ev: ‖[u; v]‖ ≡ ‖[u;−v]‖, we can ensure that

‖g(·)‖∗ ≤ L‖·‖(f).

⇒ t-step MD with properly chosen stepsizes ensures

[f(ut)−Opt(P )] + [Opt(D)− f(vt)] ≤ ΩL‖·‖(f)/
√
t.

♠ Similar results hold true for other “problems with

convex structure:”

• variational inequalities with monotone operators

• convex Nash equilibrium problems



Reason for Main Property

♣ Fact: With Vx(z) = ω(z)−ω(x)−〈ω′(x), z−x〉 one

has
x+ = Proxx(ξ) := argminz∈X [〈ξ, z〉+ Vx(z)] (1)

⇒ ∀(z ∈ X) : 〈ξ, x+ − z〉 ≤ Vx(z)− Vx+(z)− Vx(x+) (2)
Proof: rearrange terms in the optimality conditions

for (1):

〈ξ + ω′(x+)− ω′(x), z − x+〉 ≥ 0 ∀z ∈ X
♣ Fact: (2) implies that

∀(z ∈ X) : 〈ξ, x− z〉 ≤ Vx(z)− Vx+(z) + 1
2‖ξ‖

2
∗ (3)

Proof: by (2),

〈ξ, x− z〉 ≤ Vx(z)− Vx+(z) + [〈ξ, x− x+〉 − Vx(x+)],

and

〈ξ, x− x+〉 − Vx(x+) ≤ ‖ξ‖∗‖x− x+‖ − 1
2
‖x− x+‖2 ≤ 1

2
‖ξ‖2

∗.

♠ By (3), x1 = argminX ω;xτ+1 = Proxxτ(γτgτ) yields

γτ〈gτ , xτ − x〉 ≤ Vxτ(z)− Vxτ+1(z) + 1
2γ

2
τ ‖gτ‖2∗ ∀(z ∈ X, τ)

⇒
∑
τ≤t

γτ〈gτ , xτ − z〉 ≤
1

2
Ω2 +

1

2

∑
τ≤t

γ2
τ ‖gτ‖2∗ ∀z ∈ X

♠ Dividing by
∑
τ≤t

γτ and maximizing in z ∈ X, we

get

εt := maxz∈X
[∑

τ≤t λ
t
τ〈gτ , xτ − z〉

]
≤

Ω2+
∑
τ≤t γ

2
τ ‖gτ‖2∗

2
∑
τ≤t γτ



Role of Symmetry

εt ≤ Ω[supx∈X,τ ‖gτ(x)‖∗]/
√
t (∗)

♣ When X is “nearly symmetric,” the MD efficiency

estimate can be improved. Assume that

• X contains ‖ · ‖-ball of radius θΩ

• The vector fields {gτ(·)}τ are uniformly semi-

bounded:

M := sup
x,x′∈X,τ

〈gτ(x), x′ − x〉 <∞

Then for every t ≥ 4/θ2, the t-step MD with the

stepsizes

γτ = Ω
‖gτ(xτ)‖∗

√
t
, 1 ≤ τ ≤ t

ensures that

εt ≤ 2θ−1M/
√
t (!)

♠ Note: When θ = O(1),

• (!) can only be better than (∗)
• When gτ(·) ≡ g(·) comes from

min
u∈U

max
v∈V

f(u, v),

we have

M ≤ max
U×V

f − min
U×V

f

⇒ (!) becomes

εt ≤ O(1)
[
maxU×V f −minU×V f

]
/
√
t



O(1/
√
t) – good or bad?

♣ The MD convergence rate O(1/
√
t) is slow. How-

ever, this is the best possible rate one can expect

when solving nonsmooth large-scale convex prob-

lems represented by FO oracles, or any other oracles

providing local information.

♠ Bad news: Consider Convex Minimization prob-

lem

Opt(f) = min
x
{f(x) : ‖x‖ ≤ R} (Pf)

where ‖ · ‖ is either the norm ‖ · ‖p on E = Rn

(p = 1,2), or the nuclear norm on Rn×n. Let

F‖·‖(L) = {f : E → R : f is convex, L‖·‖(f) ≤ L},
and assume that when solving (Pf), f ∈ F‖·‖(L) is

learned via calls, one per step, to a FO (or any local)

oracle. Then for every t ≤ n and any t-step algorithm

B one has
sup

f∈F‖·‖(L)
[f(xB(f))−Opt(f)] ≥ 0.01LR/

√
t

• xB(f): solution generated in t steps by B as applied to (Pf)



Opt(f) = min
x∈X

f(x), X ⊂ XR := {x ∈ E : ‖x‖ ≤ R} (Pf)

‖ · ‖: ‖ · ‖p norm on E = Rn (p = 1,2), or nuclear norm on Rn×n.

♠ Relatively good news: With appropriate proxi-

mal setup, t-step MD as applied to (Pf) ensures

f(xt)−Opt(f) ≤ O
(
L‖·‖(f)R/

√
t
)

• hidden factor: O(1) for ‖ · ‖ = ‖ · ‖2, otherwise O(1)
√

ln(n+ 1)

Note:

• Rate of convergence is (nearly) dimension-inde-

pendent

• When X is simple, computational effort per MD

step in the large scale case is by order of magnitudes

smaller than in all known polynomial time Convex

Optimization techniques, like Interior Point meth-

ods

⇒When solving problems with convex structure to

low or medium accuracy, MD could be the method

of choice...



Favorable Geometry Case

εt ≤ Ω[X,ω] sup
x∈X,τ

‖gτ(x)‖∗/
√
t

♣ Question: How to choose a good proximal

setup?

• In general, the answer depends on the geometry

of X and on a priori information on {gτ(·)}τ
• There is, however, a favorable geometry case when

the answer is clear:

• Assuming w.l.o.g. that X linearly spans E,

X+ = 1
2[X −X] is the unit ball of norm ‖ · ‖X given

solely by X.

• A Favorable Geometry case is the one where X

admits a d.-g.f. ωX(·) such that ‖·‖X , ωX(·) is a valid

proximal setup with “moderate” ΩX := Ω[X,ωX]

(O(1), or O(1) lnO(1)(dimX)).



εt ≤ Ω[X,ω] sup
x∈X,τ

‖gτ(x)‖∗/
√
t

♠ Observation: Let ωX(·) complement ‖ · ‖X to a

proximal setup. Then for every proximal setup ‖ · ‖,
ω(·) for X and every {gτ(·)}τ one has

sup
x∈X,τ

‖gτ(x)‖X,∗ ≤ Ω[X,ω] sup
x∈X,τ

‖gτ(x)‖∗ (!)

whence

ΩX sup
x∈X,τ

‖gτ(x)‖X,∗ ≤ ΩXΩ[X,ω] sup
x∈X,τ

‖gτ(x)‖∗

⇒Passing from ‖ · ‖, ω(·) to ‖ · ‖X , ωX(·) spoils MD

efficiency at worst by factor ΩX = Ω[X,ωX]. Thus,

with moderate ΩX, the proximal setup ‖ · ‖X , ωX(·)
is nearly optimal.

♠ Reason for (!): For every g ∈ E and every x with

‖x‖X ≤ 1, so that x = [u − v]/2 with u, v ∈ X we

have:

〈g, x〉 = 1
2 [〈g, u− xω〉+ 〈g, xω − v〉]

≤ 1
2‖g‖∗[‖u− xω‖+ ‖v − xω‖]

≤ Ω[X,ω]‖g‖∗
⇒ ‖g‖X,∗ ≤ Ω[X,ω]‖g‖∗



Favorable Geometry: Examples

♠ Examples of Favorable Geometry domains X:
X = B1 × ...×BK

with moderate K and favorable geometry atoms Bk:
• `1/`2 balls B = {y = [y1; ...; yn] :

∑n
j=1 ‖y

j‖2 ≤ 1}:

‖y‖B =
∑n
j=1 ‖y

j‖2
ωB(y) = O(1)

√
ln(n+ 1)

∑n
j=1 ‖y

j‖ϑn2 ,

ϑn = min[2,1 + 1/ ln(2n)]

⇒ ΩB ≤ O(1)
√

ln(n+ 1)

Note: n = 1 implies Euclidean setup for ‖·‖2-ball.
• Nuclear norm balls B = {y ∈ Rp×q :

∑n
j=1 σj(y) ≤ 1}

[σj(y): j’th singular value of y, n = min[p, q]]

‖y‖B =
∑n
j=1 σj(y),

ωB(y) = O(1)
√

ln(n+ 1)
∑n
j=1 σ

ϑn
j (y) [nuclear norm],

⇒ ΩB ≤ O(1)
√

ln(n+ 1)

♠ Induced proximal setup for X is, e.g.,

‖(x1, ..., xK)‖ = maxk ‖xk‖Bk,
ω(x1..., xk) =

∑
k ωBk(xk)

⇒ ΩX =
√∑

k Ω2
Bk
≤ O(1)

√
K ln(dimX)

• K = O(1) ⇒Favorable Geometry case (remains
true when X⊂B1× ...×BK and ‖ · ‖X is within O(1)
factor of ‖ · ‖).



♠ We have presented DGF’s for (subsets of) unit

balls of the `1/`2 and the nuclear norm compatible

with the respective norms.

In some applications, there is a need in DGF for the

entire space compatible with a given norm on the

space. The most important examples are:

• The Euclidean DGF ω(y) = 1
2y
Ty compatible with

the standard Euclidean norm ‖ · ‖2 on E = Rn,

• The block `1 DGF

ω(y = [y1; ...; yn]) = O(1) ln(n+ 1)
(∑n

j=1 ‖y
j‖ϑn2

)2/ϑn

= O(1) ln(n+ 1)‖[‖y1‖2; ...; ‖yn‖2]‖2ϑn
compatible with the `1/`2 norm

‖[y1; ...; yn]‖ =
∑n
j=1 ‖y

j‖2
on E = Rk1 × ...× Rkn,

Note: When kj = 1 for all j, the `1/`2 norm on E

becomes the norm ‖ · ‖1 on Rn

⇒We get at our disposal a DGF on Rn compatible

with ‖ · ‖1
• The nuclear norm DGF

ω(y) = O(1) ln(n+ 1)
(∑n

j=1 σ
ϑn
j (y)

)2/ϑn

= O(1) ln(n+ 1)‖σ(y)‖2ϑn
compatible with the nuclear norm on the space of

matrices E = Rp×q, n = min[p, q].



Favorable Geometry: Counter-Examples

♠ A domain with intrinsically bad geometry is the

usual box

X = {x ∈ Rn : ‖x‖∞ ≤ 1} .

Here Ω[X,ω] ≥
√
n for all proximal setups with

‖ · ‖ = ‖ · ‖X = ‖ · ‖∞.

♠ In fact, large-scale ‖·‖p-balls with p > 2 “are bad:”

Let p ≥ 2. Consider Convex Minimization problem
Opt(f) = minx{f(x) : x ∈ Rn, ‖x‖p ≤ R}, (Pf)
f ∈ Fn,p(L) = {f : Rn → R : f is convex, L‖·‖p(f) ≤ L}

Assume that when solving (Pf), f ∈ Fn,p(L) is

learned via calls, one per step, to a FO (or any

local) oracle. Then for every t ≤ n and any t-step

algorithm B one has
supf∈Fn,p(L) [f(xB(f))−Opt(f)]≥ 0.01LR/t1/p

• xB(f): solution generated in t steps by B as applied to (Pf)

⇒As p > 2 grows, our abilities to minimize oracle-

represented nonsmooth convex functions over ‖ · ‖p-
balls at a dimension independent rate deteriorate and

disappear at p =∞.



Favorable Geometry: Illustration

♣ The most attractive feature of MD is ability to

adjust itself, to some extent, to problem’s geom-

etry and to ensure, under favorable circumstances,

(nearly) dimension independent rate of convergence.

For example:

• When minimizing convex f over `2-ball

{x ∈ Rn : ‖x‖2 ≤ 1},
MD with Euclidean setup ensures

f(xt)−minx∈X f(x) ≤ O(1)maxX f−minX f√
t

• When minimizing convex f over `1-ball

{x ∈ Rn : ‖x‖1 ≤ 1} ,

MD with appropriate Non-Euclidean setup ensures

f(xt)−minx∈X f(x) ≤ O(1)
√

ln(n+ 1)maxX f−minX f√
t

,

and similarly for minimizing over nuclear norm ball

in Rn×n.

• “Wrong setup” (Euclidean when minimizing

over `1/nuclear norm ball, or `1/nuclear norm when

minimizing over `2-ball) can spoil the efficiency by

factor as large as O(
√
n/ ln(n)).



Computational Aspects

♣ When processing a vector field g on a domain X,

a step of MD reduces to

(a) computing the value of g at a point,

(b) computing the value Proxz(h) of the prox-

mapping — solving the auxiliary convex program

minx∈X [〈η, x〉+ ω(x)] (P )

♠ In the Favourable Geometry case, X is a direct

product of Favourable geometry atoms, and ω is

separable w.r.t. the atoms

⇒ (P ) reduces to similar problems for individual

atoms.

♠ When an atom B is `1/`2 ball, (P ) is the problem

miny1,...,yn

{∑
j[〈ζj, yj〉+ ‖yj‖θ2] :

∑
j ‖yj‖2 ≤ 1

}
At the optimum, yj clearly are negative multiples of

ζj, and the problem reduces to

mins1,...,sn

{∑
j[s

θ
j − βjsj] : s ≥ 0,

∑
j sj ≤ 1

}
,

that is, to minimizing a separable function under a

single separable constraint. Invoking Lagrange dual-

ity, the problem reduces to a univariate convex pro-

gram and can be easily solved within machine accu-

racy in O(n) a.o.

⇒For an `1/`2 ball B, computing prox-mapping is

easy – it takes just O(dimB) a.o.



♠ When atom B is the unit nuclear norm ball in

Rm×n (w.l.o.g., m ≥ n), (P ) is the problem

min
y∈Rm×n

{
Tr(yT ζ) +

∑n
j=1 σ

θ
j(y) :

∑n
j=1 σj(y) ≤ 1

}
(∗)

Let ζ = uDiag{h}v be the svd of ζ. It is easily

seen that (∗) admits an optimal solution of the form

y = −uDiag{s}v with s ≥ 0. Computing this solution

reduces to solving

min
s∈Rn

{∑
j[s

θ
j − βjsj] : s ≥ 0,

∑
j sj ≤ 1

}
which takes just O(n) a.o.

⇒For a nuclear norm ball B ⊂ Rm×n, computing

prox-mapping reduces to computing the svd of a

matrix from Rm×n and can be quite time consuming

in the large scale case.



Stochastic Case

♣ Situation: Given X ⊂ E and proximal setup

‖ · ‖, ω(·), we want to process vector fields

gτ(x) : X → E

represented by Stochastic Oracle. At τ-th call to

SO, the query point being xτ ∈ X, the oracle returns

an estimate hτ(xτ ; ξτ) ∈ E of gτ(xτ). Here hτ(·; ·) are

deterministic functions, and ξ1, ξ2, ... are i.i.d. distur-

bances.

♠ Example: Problem

minx∈X
[
f(x) = Eξ∼PF (x, ξ)

]
with convex in x ∈ X integrant F . The associated

vector field g(x) = f ′(x) is usually difficult to com-

pute. However, assuming one can sample from P

and F is easy to compute, we can set

hτ(x; ξτ) = F ′x(x, ξτ) with ξ1, ξ2, ... drawn from P

♠ Standing Assumption: When processing {gτ(·)}τ ,

for some L, σ, µ and all x ∈ X, τ it holds:
‖gτ(x)‖∗ ≤ L,

‖Eξ{∆τ(x; ξ)}‖∗ ≤ µ,

Eξ{‖∆τ(x; ξ)‖2∗} ≤ σ2

• ∆τ(x; ξ) := hτ(x; ξ)− gτ(x): oracle’s error



Stochastic Mirror Descent
• X: convex compact subset of Euclidean space E
• ‖ · ‖, ω(·): proximal setup for (E,X)

⇒Ω =
√

2[maxX ω −minx ω]
• {gτ(x) : X → E}τ : vector fields of interest,

‖gτ(x)‖∗ ≤ L <∞
• {hτ(x; ξ) = gτ(x) + ∆τ(x; ξ) : X ×Ξ→ E}τ : SO[

‖Eξ∼P∆τ(x; ξ)‖∗ ≤ µ,

Eξ∼P{‖∆τ(x; ξ)‖2∗} ≤ σ2

]

♣ Stochastic Mirror Descent is the recurrence

x1 = xω := argminX ω;
xτ+1 = Proxxτ(γτhτ(xτ ; ξτ))

xt =
∑
τ≤t λ

t
τxτ ,

λtτ = γτ∑
s≤t γs

• ξτ ∼ P : independent • γτ > 0: deterministic stepsizes



x1 = xω := argminX ω;
xτ+1 = Proxxτ(γτ [gτ(xτ) + ∆τ(xτ ; ξτ)])

xt =
∑
τ≤t λ

t
τxτ , λ

t
τ = γτ∑

s≤t γs
‖gτ(x)‖∗ ≤ L,
‖Eξ∼P∆τ(x; ξ)‖∗ ≤ µ
Eξ∼P{‖∆τ(x; ξ)‖2∗} ≤ σ2

♣ Main Property of SMD: One has

E
{
εt := max

z∈X
∑
τ≤t λ

t
τ〈g(xτ), xτ − z〉

}
≤

Ω2 + [L2 + 2σ2]
∑
τ≤t γ

2
τ∑

τ≤t γτ
+ 2µΩ

• In particular, γτ = Ω/
√

[L2 + 2σ2]t, 1 ≤ τ ≤ t,

yields

E{εt} ≤ Θ/
√
t+ 2µΩ, Θ = 2Ω

√
L2 + 2σ2.

• Strengthening the bound on the second moment

of ‖∆τ‖∗ to

E{exp{‖∆τ‖2∗/σ2}} ≤ exp{1} ,

large deviation probabilities obey an exponential

bound:
∀θ > 0 : Prob

{
εt > [Θ + θΣ]/

√
t+ 2µΩ

}
≤ O(1)e−θ[

Σ = 4Ωσ
]



♣ When gτ(·) ≡ g(·) is associated with a problem

with convex structure, e.g.,

A. minx∈X f(x) ⇒ g(x) = f ′(x), or

B. minu∈U maxv∈V f(u, v)

⇒ g(u, v) = [f ′u(u, v);−f ′v(u, v)],

the residual εt upper-bounds inaccuracy of the ap-

proximate solution xt to the problem of interest.

⇒ t-step SMD allows to solve stochastic convex

problems with expected inaccuracy O(1/
√
t). For

example,

• in the case of A, we get

E{f(xt)−minX f} ≤ 2Ω
√
L2 + 2σ2/

√
t+ 2µΩ

• in the case of B, we get
E{[f(ut)−min

U
f ] + [max

V
f − f(vt)]}

≤ 2Ω
√
L2 + 2σ2/

√
t+ 2µΩ.

♠ Note: In typical stochastic problems, in every di-

mension, not only a large one, O(1/
√
t) is the best

rate allowed by Statistics.



Stochastic Mirror Descent: Illustration

♣ Consider Binary Classification problem where we
draw from a distribution P examples

ξτ = (ητ , yτ) ∈ RN × {±1}
and want to build a linear classifier

y ∼ sign(〈x, η〉) .
♠ The problem can be modeled as

Opt(ρ) = min‖x‖≤1 [pρ(x) = p(ρx)]
p(x) := E{max[1− y〈x, η〉,0]}[
p(x) : convex upper bound on the

probability for x to mis-classify

]
• Let ‖ · ‖ be (a) ‖ · ‖2, or (b) ‖ · ‖1, or (c) nuclear
norm on RN = Rm×n
♠ Assuming E{‖η‖2∗} ≤ R2 <∞ and setting

h(x; η, y) ≡ −ρy ·
{

1, 1− y〈ρx, η〉 > 0

0, otherwise

}
· η,

g(x) := Eη,y{h(x; η, y)} ∈ p′ρ(x)
we satisfy Standing Assumption with

X = {‖x‖ ≤ 1}, L = ρR, σ = 2ρR, µ = 0.
⇒For every t ≥ 1, drawing a t-element sample from
P and applying t-step SMD with appropriate prox-
imal setup, we get a linear classifier ρxt, ‖xt‖ ≤ 1,
such that
E{p(ρxt)} ≤ Opt(ρ)

+ρRt−1/2 ×
{
O(1), case (a)

O(1)
√

ln(N), cases (b), (c)



Utilizing Problem’s Structure: Mirror Prox

Opt = minx∈X f(x) (P )

♣ Unimprovable or not, convergence rate O(1/
√
t)

is slow. When we can do better?

• One can use bundle versions of MD re-utilizing

past information. In practice, this improves the con-

vergence pattern at the price of controlled increase

in the computational cost of a step. Theoretical

complexity bounds, however, remain intact.

• When f is smooth: ‖f ′(x)−f ′(x′)‖∗ ≤M‖x−x′‖,
the MD efficiency improves to

f(xt)−minX f ≤ Ω2M/t .

This is of no actual interest: with Nesterov’s opti-

mal method for smooth convex minimization one

achieves unimprovable in the large-scale case effi-

ciency O(1)Ω2M/t2.

• When f is strongly convex, properly modified

MD converges at the rate O(1/t).

• For a wide spectrum of “well-structured” f , rate

O(1/t) can be achieved by smooth saddle point re-

formulation of (P ).



Extra-Gradient MD – Mirror Prox

♣ Situation: X is a convex compact subset of

Euclidean space E, ‖ · ‖, ω(·) is a proximal setup,

g(·) : X → E is a vector field represented by an ora-

cle.

• At τ-th call, xτ ∈ X being the query point, the

oracle returns an estimate

h(xτ ; ξτ) = g(xτ) + ∆(xτ ; ξτ)

of g(xτ), ξτ are i.i.d.,

‖Eξ{∆(x; ξ)}‖∗ ≤ µ, Eξ{‖∆(x; ξ)‖2∗} ≤ σ2, ∀x ∈ X
• g(·) satisfies

‖g(x)− g(x′)‖∗ ≤M‖x− x′‖+ L ∀(x, x′ ∈ X)

• Note: L = σ = µ = 0 ⇔ g(·) is Lipschitz & pre-

cisely observed.

♣ Mirror Prox is the recurrence
x1 = xω;
xτ 7→ wτ = Proxxτ(γτh(xτ ; ξ2τ−1))
7→ xτ+1 = Proxxτ(γτh(wτ ; ξ2τ))

xt =
∑
τ≤t λ

t
τwτ , λ

t
τ = γτ∑

s≤t γs
with deterministic stepsizes γτ > 0.



• (X ⊂ E, ‖ · ‖, ω) ⇒Ω
• g(·) : X → E: ‖g(x)− g(x′)‖∗ ≤M‖x− x′‖+ L
• oracle x 7→ h(x; ξ) = g(x) + ∆(x; ξ):

‖Eξ{∆(x; ξ)}‖∗ ≤ µ, Eξ{‖∆(x; ξ)‖2∗} ≤ σ2

• Mirror Prox:

xτ 7→ wτ = Proxxτ(γτh(xτ ; ξ2τ−1))
7→ xτ+1 = Proxxτ(γτh(wτ ; ξ2τ))

xt =
∑
τ≤t λ

t
τwτ , λ

t
τ = γτ/

∑
s≤t γs

♣ Main Property of MP: Let 0 < γτ ≤ 1
2M. Then

E
{
εt := max

z∈X
∑
τ≤t λ

t
τ〈g(xτ), xτ − z〉

}
≤

Ω2 + [3L2 + 7σ2]
∑
τ≤t γ

2
τ∑

τ≤t γτ
+ 2µΩ

• In particular,

γτ = min
[

1
2M, Ω√

[3L2+7σ2]t

]
, τ ≤ t,

yields

E{εt} ≤ 2Ω2M
t + Θ√

t
+ 2µΩ,

Θ = 2Ω
√

3L2 + 7σ2
.

♠ Note: In the smooth deterministic case

L = σ = µ = 0,

we get O(1/t) convergence!



• X ⊂ E, ‖ · ‖, ω ⇒Ω
• g(·) : X → E: ‖g(x)− g(x′)‖∗ ≤M‖x− x′‖+ L
• oracle x 7→ h(x; ξ) = g(x) + ∆(x; ξ):

‖Eξ{∆(x; ξ)}‖∗ ≤ µ, Eξ{‖∆(x; ξ)‖2∗} ≤ σ2

• Mirror Prox:

xτ 7→ wτ = Proxxτ(γτh(xτ ; ξ2τ−1))
7→ xτ+1 = Proxxτ(γτh(wτ ; ξ2τ))

xt =
∑
τ≤t λ

t
τwτ , λ

t
τ = γτ/

∑
s≤t γs

♠ Stepsizes

γτ = min
[

1
2M, Ω√

[3L2+7σ2]t

]
, τ ≤ t,

yield

E{εt} ≤ 2Ω2M
t + Θ√

t
+ 2µΩ,

Θ = 2Ω
√

3L2 + 7σ2
.

• Strengthening the bound on the second moment of

‖∆‖∗ to E{exp{‖∆‖2∗/σ2}} ≤ exp{1}, large deviation

probabilities obey an exponential bound:

∀θ > 0 : Prob
{
εt > 2Ω2M

t + Θ+θΣ√
t

+ 2µΩ
}

≤ O(1)e−θ[
Σ = 9Ωσ

]



Application: O(1/t) Nonsmooth Convex

Minimization

Opt(P ) = minu∈U f(u) (P )

♣ Corollary: Let (P ) be a convex program with

compact U ⊂ EU and with f such that
f(u) = maxv∈V φ(u, v)

• V : compact convex subset of Euclidean space Ev
• φ(u, v): convex-concave with Lipschitz continuous gradient

so that (P ) is the primal form of the saddle point

problem

minu∈U maxv∈V φ(u, v) (SP )

The vector field g(u, v) = [φ′u(u, v);−φ′v(u, v)] associ-

ated with (SP ) is Lipschitz continuous. Equipping

• E := EU × EV , X := U × V — with a proximal

setup ‖ · ‖, ω,

• g(·) — with a precise deterministic oracle,

t-step MP yields (ut, vt) ∈ U × V such that
f(ut)−Opt(P ) ≤ O(1)ΩM/t

M = min{M : ‖g(x)− g(x′)‖∗ ≤M‖x− x′‖ ∀(x, x′ ∈ X)}



minu∈U [f(u) = maxv∈V φ(u, v)]

♣ Fact: If φ(u, v) is

• convex-concave with Lipschitz continuous gra-

dient,

• affine in u,

• strongly concave in v,

then properly modified MP ensures O(1/t2) conver-

gence rate.

♠ Note: The premise does not imply smoothness

of f .



Smooth and Bilinear Saddle Point Representations

♣ Fact: Representations f(u) = maxv∈V φ(u, v)
with smooth convex-concave, and even with bilinear
φ are available for wide spectrum of convex functions
f . Whenever it is the case, f can be minimized via
MP at the rate O(1/t).
Examples:
A. f(u) = max

k≤K
fk(u) with smooth convex fk

⇒ f(u) = max
v≥0,

∑
kvk=1

∑
k
vkfk(u)

B. f(u) = ‖Au− b‖
⇒ f(u) = max

‖v‖∗≤1
〈v,Ay − b〉

C. f(u) = ‖y‖+ 1
2‖Au− b‖

2
2

⇒ f(u) = max
‖v‖∗≤1,w

[
〈u, v〉+ 〈w,Au− b〉 − 1

2w
Tw

]

D. f(u): sum of k largest eigenvalues of

A(u)︷ ︸︸ ︷
Au− b ∈ Sn

⇒ f(u) = max
v

[Tr(vA(u)) : 0 � v � In,Tr(v) = k]

E. f(u) = inf
b∈R

[
1
N

N∑
i=1

max[1− yi(〈u, ηi〉+ b),0]

]

⇒ f(u) = max
v∈V

N∑
i=1

vi[1− yi〈u, ηi〉]

V = {v : 0 ≤ vi ≤ 1
N ∀i,

∑
i
yivi = 0} ⊂ {v ∈ RN : ‖v‖1 ≤ 1}



O(1/t) Nonsmooth Convex Minimization:

Comments

Opt(P ) = min
u∈U

f(u) (P )

• Convex programs always have a lot of structure

(otherwise, how could we know that the problem is

convex?)

Accelerating algorithms by utilizing problem’s struc-

ture is an old and still challenging goal.

• A common way to utilize structure is via “structure-

revealing” conic formulations (LP/CQP/SDP) and

Interior Point Methods. However, in the large scale

case IPM iteration can become prohibitively costly.

• Utilizing structure within the realm of oracle-

oriented methods with computationally cheap itera-

tions is due to Nesterov (2003).

Nesterov’s Smoothing (2003) uses saddle point rep-

resentation of a nonsmooth f to approximate f by a

smooth function which is further minimized by Nes-

terov’s algorithm for smooth convex minimization.

The resulting convergence rate is O(1/t).

• MP offers another way to utilize saddle point rep-

resentation to achieve the same O(1/t) rate.

“Practical scopes” of these two approaches are

nearly identical.



O(1/t) Nonsmooth Convex Minimization:

Examples

♣ Problem of interest:

Opt(P ) = min
‖u‖≤1

‖Au− b‖p, A : M ×N (P )

where p = 2 or p =∞, and ‖ · ‖ is

(a) ‖ · ‖2 on RN , or

(b) ‖ · ‖1 on RN , or

(c) nuclear norm on RN = Rm×n, m ≤ n
♠ Bilinear saddle point reformulation is

SadVal = minu∈U maxv∈V 〈v,Au− b〉
U = {‖u‖ ≤ 1}, V = {‖v‖q ≤ 1}, q = p

p−1 ∈ {1,2}
and its domain is the product of two favorable ge-

ometry atoms.

♠ Applying t-step MP with appropriate setup, we get

ut with ‖ut‖ ≤ 1 and

f(ut)−Opt(P ) ≤ κ‖A‖‖·‖,p/t
‖A‖‖·‖,p = max{‖Au‖p : ‖u‖ ≤ 1}

κ = O(1) ln
1
2−

1
p(M + 1)×


1, case (a)√

ln(N + 1), case (b)√
ln(m+ 1), case (c)



Opt(P ) = min
‖u‖≤1

‖Au− b‖p, A : M ×N, p ∈ {2,∞} (P )

‖ · ‖: (a) ‖ · ‖2 on RN
∣∣∣ (b) ‖ · ‖1 on RN

∣∣∣ (c) nuclear

norm on RN = Rm×n

⇒ f(ut)−Opt(P ) ≤ O(1) ln(MN)‖A‖‖·‖,p/t
♠ MP step reduces to computing O(1) matrix-vector

products involving A and A∗, plus

— O(M +N) a.o. in cases (a), (b)

— computing svd’s of two m×n matrices in case (c).

⇒Except for case (c), MP is computationally cheap...

♠ Note: When solving a Least Squares problem

(LS) Opt(A, b) = min
‖u‖2≤1

‖Au− b‖2 [A : n× n]

with A represented by multiplication oracle

u, u′ 7→ Au,ATu′ ,

the rate O(1/t) is unimprovable in the large-scale

case: the worst-case, over (A, b) with ‖A‖2,2 ≤ 1

and Opt(A, b) = 0, inaccuracy in terms of the objec-

tive of (LS) is, for every t-step algorithm, at least

O(1)/t, provided t ≤ n/4.



Acceleration by Randomization

♣ Problem of interest:
Opt = min

‖u‖1≤1
‖Au− b‖p [A : m× n, p ∈ {2,∞}]

⇔ (`1) : min
‖u‖1≤1

max
‖v‖p/(p−1)≤1

〈v,Au− b〉

⇒ g(u, v) = [ATv; b−Au] : X := U × V → Rm+n

U = {u : ‖u‖1 ≤ 1}, V = {v : ‖v‖p/(p−1) ≤ 1}.
♠ Omitting from now on logarithmic in m,n factors,

MP solves (`1) within accuracy ε in

N(ε) = ‖A‖1,p/ε, ‖A‖1,p = maxj≤n ‖Colj[A]‖p
steps, with two multiplications of vectors from U and

from V by A, AT , plus O(m + n) a.o. “overhead,”

per step.

⇒The arithmetic cost of ε-solution for a general-

type A is

Cd(ε) = mn‖A‖1,p/ε a.o.

In fact, this is the best operation count achievable in

the large-scale case with known so far deterministic

algorithms.

• For large m,n, matrix-vector multiplications can

become too time consuming...



♠ Matrix-vector multiplications are easy to random-

ize:

In order to compute Bu, B ∈ RM×N , we draw an

index  at random according to

Prob{ = j} = sign(uj)/‖u‖1, 1 ≤ j ≤ N
and return the vector

h = ‖u‖1sign(u)Col[B]

Note:

• E{h} = Bu, ‖h‖q ≤ ‖u‖1‖B‖1,q
• Generating h costs O(1)(M + N) a.o. (assuming

cost O(1) of computing/extracting individual entry

of B).



Opt = min
‖u‖1≤1

‖Au− b‖p [A : m× n]

⇔ (`1) : min
‖u‖1≤1

max
‖v‖p/(p−1)≤1

〈v,Au− b〉

⇒ g(u, v) = [ATv; b−Au] : X := U × V → Rm+n

U = {u : ‖u‖1 ≤ 1}, V = {v : ‖v‖p/(p−1) ≤ 1}.

♠When solving (`1) with p =∞ by MP with the pre-

cise values of g(·) replaced with their cheap unbiased

random estimates, we (1− δ)-reliably get ε-solution

to (`1) in ln(1/δ)
[
‖A‖1,∞/ε

]2
steps, the total com-

putational effort being

Cr = (m+ n) ln(1/δ)
[
‖A‖1,∞/ε

]2
a.o.

♠ The “deterministic” operation count is

Cd = mn‖A‖1,∞/ε .

⇒With the relative accuracy ε/‖A‖1,∞ and δ fixed

and m,n large, randomized algorithm by far outper-

forms its deterministic competitors.

• In addition, Randomized MP exhibits sublinear

time behavior: when m,n are large, ε-solution is ob-

tained, in a (1 − δ)-reliable fashion, by inspecting

negligibly small fraction of the mn data entries.



♠ In the case of p = ∞, our construction basically
recovers the ad hoc sublinear time algorithm for ma-
trix games (Grigoriadis & Khachiyan, 1994).
♠ In the case of p = 2, randomization leads to iter-
ation count

ln(1/δ)[‖A‖1,2/ε]2Γ2[A],
Γ(A) =

√
m‖A‖1,∞/‖A‖1,2 ∈ [1,

√
m]

and operation count
Cr = (m+ n) ln(1/δ)[‖A‖1,2/ε]2Γ2[A] a.o.

vs. the “deterministic” operation count
Cd = mn[‖A‖1,2/ε] a.o.

• with Γ[A] like O(1) ln(mn), everything is as when
p =∞
• with Γ[A] as large as O(

√
m), randomization is

really bad.
♠ However: Preprocessing

[A, b]⇒ [Ā, b̄] = FDiag{χ}[A, b]
with m×m DFT matrix F and χ ∼ Uniform({−1; 1}m)
yields equivalent problem and ensures (1−δ)-reliably

Γ[Ā] ≤
√

ln(mn/δ) .
⇒With randomization and preprocessing, the oper-
ation count is

Cr = mn+ (m+ n) ln2(1/δ)[‖A‖1,2/ε]2

which for small and fixed ε/‖A‖1,2 and large m,n is
negligibly small as compared to

Cd = mn[‖A‖1,2/ε] a.o.



How it Works: Policeman vs. Burglar

♣ Problem: There are n houses in a city, i-th with

wealth wi. Every evening, Burglar chooses a house i

to be attacked, and Policeman chooses his post near

a house j. After burglary starts, Policeman becomes

aware where it happens, and his probability to catch

Burglar is
exp{−θdist(i, j)},

dist(i, j): distance between houses i and j

Burglar seeks to maximize his expected profit

wi(1− exp{−θdist(i, j)}),

the interest of Policeman is completely opposite.

• What are the optimal mixed strategies of Burglar

and Policeman?

♠ Equivalently: Solve the matrix game
min
u≥0,∑n
j=1 uj=1

max
v≥0,∑n
i=1 vi=1

φ(u, v) := vTAu

Aij = wi(1− exp{−θdist(i, j)})



Wealth on n× n square grid of houses
N = 1600 N = 6400 N = 14400 N = 40000

Steps 21 21 — —
IPM CPU, sec 120 6930 not tested out of memory

ε 6.0e-9 1.1e-8 — —
Steps 78 80 95 15†

MP CPU, sec 6 31 191 5533†

ε 1.0e-3 1.0e-3 1.0e-3 0.022†

Steps 10556 10408 9422 10216
Rand MP CPU, sec 264 796 1584 4931

ε 1.0e-3 1.0e-3 1.0e-3 1.0e-3

Policeman vs. Burglar, N houses
Target residual εt ≤ 1.e-3 IPM: mosekopt
†: termination when reaching the CPU limit of 5,400 sec

Platform: 2×2.67 GHz CPU with 8.0 GB RAM and 64-bit

operating system
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Lecture IV.

Smooth Large-Scale Convex
Minimization

• Nesterov’s Optimal algorithm for
Smooth and Composite Minimization

• Beyond the scope of proximal algorithms:
Conditional Gradients
• Linear Minimization Oracle
• CndG algorithm
• CndG algorithm for Norm-Regularized

Smooth Convex Minimization



Nesterov’s Fast Gradient method for Smooth

and Composite Minimization

♣ Problem of interest: Composite minimization

Opt = min
x∈X
{φ(x) = Ψ(x) + f(x)}

• X: closed convex nonempty subset in Euclidean space E
(X,E) is equipped with proximal setup (ω(·), ‖ · ‖)

• Ψ : X → R ∪ {+∞}: convex lower semicontinuous
function which is finite on the relative interior of X

• f : X → R: represented by FO oracle convex function
with Lipschitz continuous gradient:

∀x, y ∈ X : ‖∇f(x)−∇f(y)‖∗ ≤ Lf‖x− y‖

♠Main Assumption: We are able to compute com-

posite prox-mappings, i.e., solve auxiliary problems

min
x∈X
{ω(x) + 〈h, x〉+αΨ(x)} [α ≥ 0]



♥ Example: LASSO problem

minx∈X
{ Ψ(x)︷ ︸︸ ︷
λ‖x‖E +

f(x)︷ ︸︸ ︷
1

2
‖A(x)− b‖22

}

• ‖ · ‖E:


(a) block `1 norm

∑n
j=1 ‖xj‖2 on

E = Rk1 × ...× Rkn (`1 case)
(b) nuclear norm on the space E of block

diagonal matrices of a given block
diagonal structure (nuclear norm case)

• A(·) : E → Rm: linear mapping
• X: either the unit ‖ · ‖E-ball, or the entire E

♥ Main Assumption is satisfied, provided that the

proximal setup in use is

• Euclidean setup (cases (a) and (b)), or

• `1/`2 setup (case (a)), or

• nuclear norm setup (case (b)).

Here computing composite prox mapping

min
x∈X
{ω(x) + 〈h, x〉+αΨ(x)} [α ≥ 0]

takes O(dimE) a.o. in the case of (a) and reduces

to finding svd of a matrix from E in the case of (b).



Nesterov’s Fast Gradient algorithm for

Composite Minimization

♣ Problem:

Opt = min
x∈X⊂E

{φ(x) := Ψ(x) + f(x)}

• Ψ, f : convex and

∀x, y ∈ X : ‖∇f(x)−∇f(y)‖∗ ≤ Lf‖x− y‖
(CP )

♠ Assumptions: Lf is known and (CP) is solvable

with an optimal solution x∗.
♠ The algorithm is described in terms of proximal

setup (ω(·), ‖ · ‖) for X and auxiliary sequence

{Lt ∈ (0, Lf ]}∞t=0
which can be adjusted on-line.

Recall that DGF ω defines Bregman distance

Vx(y) = ω(y)− ω(x)− 〈ω′(x), y − x〉 [x ∈ Xo, y ∈ X]



Opt = min
x∈X⊂E

{φ(x) := Ψ(x) + f(x)}

♣ Algorithm:
♠ Initialization: Set

A0 = 0, y0 = xω = argminX ω, ψ0(x) = Vxω(x)
and select y+

0 ∈ X such that φ(y+
0 ) ≤ φ(y0).

♠ Step t = 0,1,2, ...: Given
ψt(·) = ω(·) + αΨ(·)+ <affine form> [α ≥ 0],

y+
t ∈ X and Lt, 0 < Lt ≤ Lf ,
• Compute zt = argmin

x∈X
ψt(x) (reduces to computing

composite prox-mapping)
• Find the positive root at+1 of the equation

Lta
2
t+1 = At + at+1

and set
At+1 = At + at+1, τt = at+1/At+1 ∈ (0,1]

• Set xt+1 = τtzt+ (1− τt)y+
t and compute f(xt+1),

∇f(xt+1)
• Compute

x̂t+1 = argmin
x∈X

{
〈∇f(xt+1), x〉+ Ψ(x) + 1

at+1
Vzt(x)

}
(reduces to computing composite prox-mapping)
• Set

yt+1 = τtx̂t+1 + (1− τt)y+
t

ψt+1(x) = ψt(x)

+at+1

[
f(xt+1) + 〈∇f(xt+1), x− xt+1〉+ Ψ(x)

]
Step t is completed; go to step t+ 1.



♣ Theorem [Yu. Nesterov ’83, ’07] Assume that

{Lt ∈ (0, Lf ]} is such that

Vzt(x̂t+1)
At+1

+ 〈∇f(xt+1), yt+1 − xt+1〉+ f(xt+1)

≥ f(yt+1)

(this for sure is the case when Lt ≡ Lf). Then

φ(y+
t ) ≤ A−1

t Vxω(x∗) ≤
4Lf
t2
Vxω(x∗), t = 1,2, ...

♠ Illustration: As applied to a solvable LASSO

problem

x∗ = argmin
x

{
φ(x) := λ‖x‖E +

1

2
‖A(x)− b‖22

}
with ‖·‖E either block `1 norm on E = Rk1× ...×Rkn,

or nuclear norm on E = Rp×q with n = min[p, q], the

Fast Gradient method in t = 1,2, ... steps ensures

φ(y+
t ) ≤ Opt +


O(1)

‖A‖2‖·‖2,2
t2

‖x∗‖22,
Euclidean
proximal setup

O(ln(n))
‖A‖2‖·‖E,2

t2
‖x∗‖2E,

`1/`2 or nuclear
norm proximal
setup

where ‖A‖‖·‖,2 = max{‖A(x)‖2 : ‖x‖ ≤ 1}



♣ Note: O(1/t2) rate of convergence is, seemingly,

the best one can expect from oracle-based methods

in the large scale case.

The precise statement is as follows:

♥ Let n be a positive integer. Consider Least

Squares problems

Opt = min
x
‖Ax− b‖22 (QP )

with n× n symmetric matrices A.

For every positive reals R,L and every number t ≤
n/4 of steps, for every t-step solution algorithm B
operating with the “multiplication oracle” u 7→ Au

one can find an instance of (QP ) such that

• the spectral norm of A does not exceed L,

• Opt = 0, and the ‖ · ‖2-norm of some optimal so-

lution does not exceed R,

• the approximate solution y generated by B, as ap-

plied to the instance, after t calls to the oracle, sat-

isfies

‖Ay − b‖22 ≥ O(1)L
2R2

t2



How it Works:

Fast Composite Minimization for LASSO

♣ Test problem:

Opt = minx
{
φ(x) := 0.01‖x‖1 + 1

2‖Ax− b‖
2
2

}
with 4096× 2048 randomly generated matrix A.

Method Setup Iterations CPU, sec Nonoptimality

IPM — 11 103.1 <1.e-12
FGr Euclidean 512 36.3 2.4e-6
FGr `1 512 36.5 1.2e-7
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Euclidean setup `1 setup

Progress in accuracy φ(y+
t )−Opt

φ(y+
0 )−Opt vs. t

Platform: 2×3.40 GHz CPU, 16.0 GB RAM, 64-bit Windows
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Beyond the Scope of Proximal Algorithms:

Conditional Gradients

Opt = minx∈X f(x)

♣ Fact: All considered so far “computationally

cheap” large scale alternatives to IPM’s were proxi-

mal type First Order methods

♠ But: In order to be computationally cheap, a

proximal type method should operate with problems

on Favorable Geometry domains X (in order to have

a reasonable iteration count in the large scale case)

admitting easy to compute prox-mappings (“Simple

Geometry” — otherwise an iteration becomes ex-

pensive).



♠ Both Favorable and Simple Geometry require-

ments can be violated. For example,

• when X is a box, Favorable Geometry is missing

• when X is a nuclear norm ball in Rn×n or a spe-

ctahedron in Sn, we do have Favorable Geometry,

but computing the associated prox-mapping requires

singular value decomposition of n×n matrix (or the

eigenvalue decomposition of a symmetric n× n ma-

trix), and both these computations require

O(n3) = O((dimX)3/2) a.o.

While much cheaper than the cost O((dimX)3) =

O(n6) a.o. of an IPM iteration, O(n3) a.o. prox-

mapping for large n becomes prohibitively time con-

suming.

Note: nuclear norm balls/spectahedrons arise natu-

rally in many important applications, including, but

not reducing to, low rank matrix recovery, multi-

class classification in Machine Learning and high

dimensional Statistics (and more generally – large

scale Semidefinite programming).



♠ Another important example of generic problem

with Complex Geometry is Total Variation based Im-

age Reconstruction

min
x∈Rm×n

{
λ ·TV(x) +

1

2
‖A(x)− b‖22

}
,

where x = [xij] ∈ Rm×n is an (m × n)-pixel image,

and TV(x) is the Total Variation:

TV(x) =
m−1∑
i=1

n∑
j=1

|xi+1,j − xi,j|+
m∑
i=1

n−1∑
j=1

|xi,j+1 − xi,j|

— the `1-norm of the discrete gradient of x = [xij].

Restricted to the space Mm,n
0 of m× n images with

zero mean, TV becomes a norm.

For the unit TV-ball, no DGF compatible with the

TV norm and leading to easy-to-compute prox map-

ping is known...



Linear Minimization Oracle

♣ Observation: When X ⊂ E admits a proxi-

mal setup with easy-to-compute prox-mapping, X

definitely admits a computationally cheap Linear

Minimization Oracle (LMO) — a procedure which,

given on input a linear form 〈η, ·〉, returns

x[η] ∈ Argminx∈X〈η, x〉
Indeed, the optimization program

min
x∈X
〈η, x〉

is the “limiting case,” as θ → +0, of the programs

min
x∈X
{θω(x) + 〈η, x〉}.

♠ Fact: Admitting a cheap LMO is a much weaker

requirement than admitting proximal setup with

cheap prox-mapping, and there are important do-

mains X with Complex Geometry admitting rela-

tively cheap Linear Minimization Oracle.



Examples:

A: Nuclear Norm ball X = {x ∈ Rm×n : ‖x‖nuc ≤
1}. Here computing x[η] reduces to finding the left

and the right leading singular vectors of η ∈ Rm×n,

i.e., to solving the problem

max
‖u‖2≤1,‖v‖2≤1

uTηv.

For large m,n, this is incomparably easier than the

full svd of η required when computing prox-mapping.

B: Spectahedron X = {x ∈ Sn : x ≥ 0,Tr(x) = 1}.
Here computing x[η] reduces to finding the leading

eigenvector of −η, i.e., to solving the problem

min
‖u‖2=1

uTηu.

For large n, this is incomparably easier than the full

eigenvalue decomposition of η required when com-

puting prox-mapping.

C: Unit TV-ball X = {x ∈Mm,n
0 : TV(x) ≤ 1}: For

η ∈Mm,n
0 , a point x[η] ∈ Argminx∈X Tr(ηxT ) is read-

ily given by the optimal Lagrange multipliers for the

capacitated network flow problem

max
t,f
{t : Γf = tη, ‖f‖∞ ≤ 1}

Γ: incidence matrix of the network with nodes (i, j),
1 ≤ i ≤ m, 1 ≤ j ≤ n, and arcs (i, j)→ (i+ 1, j),
(i, j)→ (i, j + 1)



♠ Illustration:
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A B C
A: CPU ratio “full svd”/”finding leading singular

vectors” for n× n matrix vs. n
n 1024 2048 4096 8192

CPU ratio 0.5 2.6 4.5 7.5
Full svd for n = 8192 takes 475.6 sec!

B: CPU ratio “full evd”/“finding leading
eigenvector” for n× n symmetric matrix vs. n

n 1024 2048 4096 8192
CPU ratio 2.0 4.1 7.9 13.0

Full evd for n = 8192 takes 142.1 sec!
C: CPU ratio “metric projection”/“LMO

computation” for TV ball in Mn,n
0 vs. n

n 129 256 512 1024
CPU ratio 10.8 8.8 11.3 20.6

Metric projection onto TV ball for n = 1024
takes 1062.1 sec!

Platform: 2×3.40 GHz CPU, 16.0 GB RAM, 64-bit Windows
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Conditional Gradient Algorithm

Opt = minx∈X f(x)
[• X ⊂ E: convex compact set • f : X → R: convex]

(CM)
W.l.o.g. we assume that X linearly spans the em-
bedding Euclidean space E.
♣ When X is given by Linear Minimization oracle
and f is smooth, (CM) can be solved by Conditional
Gradient (CndG), a.k.a. Frank-Wolfe, algorithm
given by the recurrence

x1 ∈ X

xt+1 ∈ X : f(xt+1) ≤ f
(
xt + 2

t+1(x+
t − xt)

)
,

x+
t = x[∇f(xt)] ∈ Argminy∈X〈∇f(x), y〉

f t∗ = maxτ≤t
[
f(xτ) + 〈∇f(xτ), x+

τ − xτ〉
]
≤ Opt

♠ Theorem: Let f : X → R be convex and (κ, L)-
smooth:

∀x, y ∈ X :
f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L

κ‖x− y‖
κ
X[

• L <∞, κ ∈ (1,2]: parameters
• ‖ · ‖X: norm with the unit ball 1

2
[X −X]

]
When solving (CP ) by CndG, one has for t = 2,3, ...

f(xt)−Opt ≤ f(xt)− f∗t ≤
22κ

κ(3− κ)
·

L

(t+ 1)κ−1



∀x, y ∈ X :
f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L

κ‖x− y‖
κ

[ • L <∞, κ ∈ (1,2]: parameters ]
(!)

Note: When X is convex, a sufficient condition for

(!) is Hölder continuity of ∇f(x):

‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖κ−1 ∀x, y ∈ X
For convex f and κ = 2, this condition is also nec-

essary for (!).



Example: Minimization over a Box

♣ Typically, the CndG rate of convergence O(1/Tκ−1)

is not the best we can hope for. For example, when

κ = 2 and X is either
• the unit ‖ · ‖p ball in Rn with p = 1 or p = 2

(in fact, with 1 ≤ p ≤ 2), or
• the unit nuclear norm ball in Rn×n,

Nesterov’s Fast Gradient method converges at the

rate O(1) ln(n+ 1)L2/t2, and CndG only at the rate

O(1)L/t. In fact,

♥ In Favorable Geometry case, the only, if any, dis-

advantage of proximal algorithms as compared to

CndG is the necessity to compute prox mappings,

which could be expensive for problems with Com-

plex Geometry.



♠ Beyond the case of Favorable Geometry, CndG

can be optimal.

Fact: Let X be n-dimensional box:

X = {x ∈ Rn : ‖x‖∞ ≤ 1}.
Then for every t ≤ n, L < ∞, κ ∈ (1,2], and every

utilizing local oracle t-step method B for minimizing

(κ, L)-smooth convex functions over X there exists

a function f in the family such that for the approxi-

mate minimizer xB of f generated by B it holds

f(xB)−min
X

f ≥
O(1)

ln(n)

L

tκ−1

⇒When minimizing smooth convex functions, repre-

sented by a local oracle, over an n-dimensional box,

t-step CndG cannot be accelerated by more than

O(ln(n)) factor, provided t ≤ n.

• The result remains true when replacing n-dimensional

box X with its matrix analogy

{x ∈ Rn×n : spectral norm of x is ≤ 1}
• When minimizing (κ, L)-smooth functions over n-

dimensional ‖ · ‖p-balls with 2 ≤ p ≤ ∞, the rate-of-

convergence advantages of proximal algorithms over

CndG rapidly deteriorate as p grows and disappears

(up to O(ln(n))-factor) when p becomes as large as

O(ln(n)).



Proof of Theorem

(a) f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L
κ‖y − x‖

κ
X

(b) f(xt+1) ≤ f(xt + γt(x
+
t − xt)),

γt = 2
t+1, x

+
t ∈ Argminy∈X〈∇f(xt), y〉

f t∗ := max
τ≤t

[
f(xτ) + 〈∇f(xτ), x+

τ − xτ〉
]

︸ ︷︷ ︸
≤minX f

?⇒? f(xt)− f t∗ ≤ 2κ+1L
κ(3−κ)γ

κ−1
t (!t), t ≥ 2

Let

εt = f(xt)− f t∗, et = 〈∇f(xt), xt − x+
t 〉

• f t∗ ≥ f(xt) + 〈∇f(xt), x
+
t − xt〉 ⇒ et ≥ εt

We have

(c) ‖xt − x+
t ‖X ≤ 2

⇒ f(xt+1) ≤ f(xt + γt(x
+
t − xt)) [by (b)]

≤ f(xt) + γt〈∇f(xt), x
+
t − xt〉+ L

κ [2γt]κ

[by (a), (c)]

= f(xt)− γtet + 2κL
κ γκt

≤ f(xt)− γtεt + 2κL
κ γκt [since et ≥ εt]

⇒ εt+1 = f(xt+1)− f t+1
∗ ≤ f(xt+1)− f t∗

[since f t+1
∗ ≥ f t∗]

≤ εt(1− γt) + 2κL
κ γκt



[0 ≤] εt+1 ≤ εt(1− γt) + 2κL
κ γκt (∗t)

?⇒? εt ≤ 2κ+1L
κ(3−κ)γ

κ−1
t , t ≥ 2 [γt = 2

t+1] (!t)

• By (∗2), we have ε2 ≤ 2κL
κ ⇒ ε2 ≤ 2κ+1L

κ(3−κ)(2/3)κ−1

due to 1 < κ ≤ 2 ⇒ (!2) holds true.

• Assuming (!t) true for some t ≥ 2, we have

εt+1 ≤ 2κ+1L
κ(3−κ)γ

κ−1
t (1− γt) + 2κL

κ γκt [by (∗t) and (!t)]

= 2κ+1L
κ(3−κ)

[
γκ−1
t − κ−1

2 γκt

]
= 2κ+1L

κ(3−κ)2κ−1
[
(t+ 1)1−κ + (1− κ)(t+ 1)−κ

]
≤ 2κ+1L

κ(3−κ)2κ−1(t+ 2)1−κ [by convexity of (t+ 1)1−κ]

= 2κ+1L
κ(3−κ)γ

κ−1
t+1 ⇒ (!t+1) holds true.

Thus, (!t) holds true for all t, Q.E.D.



Conditional Gradient Algorithm for

Norm-regularized Smooth Convex Minimization

♣ “As is”, CndG is applicable only to minimizing

smooth convex functions on bounded and closed

convex domains.

Question: How to apply CndG to Composite Mini-

mization problem

Opt = min
x∈K
{λ‖x‖+ f(x)}

• K: closed convex cone in Euclidean space E
• ‖ · ‖: norm on E
• λ > 0:penalty
• f : K→ R: convex function with Lipshitz continuous

gradient:
‖∇f(x)−∇f(y)‖∗ ≤ Lf‖x− y‖, x, y ∈ K


♠Main Assumption: We have at our disposal LMO

oracle for (‖·‖,K). Given on input a linear form 〈η, ·〉
on E, the oracle returns

x[η] ∈ Argminx{〈η, x〉 : x ∈ K, ‖x‖ ≤ 1}
Examples:

A. E = Rm×n, ‖ · ‖ = ‖ · ‖nuc, K = E

B. E = Sn, ‖ · ‖ = ‖ · ‖nuc, K = Sn+ = {x ∈ E : x � 0}
C. E = Mm,n

0 , ‖ · ‖ = TV(·), K = E.



♣ We can reformulate the problem of interest as

Opt = min
[x;r]∈K+

{φ(x, r) := λr + f(x)}

K+ = {[x; r] ∈ E+ := E × R : ‖x‖ ≤ r}
♠ Assumption: There exists D∗ <∞ such that

y := [x; r] ∈ K+ & r > D∗ ⇒ φ(y) > φ(0),

and we are given a finite upper bound D+ on D∗.
Note: The efficiency estimate for the forthcoming

method depends on D∗, and not on D+!

♠ Algorithm:

• Initialization: Set y1 = 0 ∈ K+

• Step t = 1,2, ... Given yt = [xt; rt] ∈ K+,
• compute ∇f(xt)
• compute

x+
t = x[∇f(xt)]
∈ Argminx {〈∇f(xt), x〉 : x ∈ K, ‖x‖ ≤ 1}

• set ∆t = Conv
{
yt,0, D+[x+

t ; 1]
}
⊂ K+ and find

yt+1 ∈ K+ : φ(yt+1) ≤ min
y∈∆t

φ(y)

Step t is completed; pass to step t+ 1.

Note: One can set yt+1 ∈ Argmin
y∈∆t

φ(y). With this

policy, a step requires minimizing φ over a 2D trian-

gle ∆t, which can be done within machine precision

in O(1) steps (e.g., by the Ellipsoid method).



Opt = min
[x;r]∈K+

{φ(x, r) := λr + f(x)}

K+ = {[x; r] ∈ E+ := E × R : ‖x‖ ≤ r}
♣ Theorem: For the outlined algorithm,

φ(yt)−Opt ≤
8LfD

2
∗

t+ 14
, t = 2,3, ...

♠ Bundle Implementation: We can set

yt+1 ∈ Argminy {φ(y) : y ∈ Conv{0 ∪ Yt}} (∗)
Yt ⊂ K+: finite set containing yt = [xt; rt] and D+[x+

t ; 1], with

x+
t ∈ Argminx {〈∇f(xt), x〉 : x ∈ K, ‖x‖ ≤ 1}

For example, we can comprise Yt of yt, D+[x+
t ; 1] and

several of the previous iterates y1, ..., tt−1.

♥ Bundle approach is especially attractive when

f(x) = Ψ(Ax+ b)

for easy to compute Ψ, like Ψ(u) = 1
2u

Tu. Here

computing f , ∇f at a convex (or linear) combina-

tion x =
∑
λixi of points xi with already computed

Axi becomes cheap: Ax =
∑
i λi(Axi).

⇒ the FO oracle for (∗) is computationally cheap



yt+1 ∈ Argminy {φ(y) : y ∈ Conv{0 ∪ Yt}} (∗)
Yt ⊂ K+: finite set containing yt = [xt; rt] and D+[x+

t ; 1], with

x+
t ∈ Argminx {〈∇f(xt), x〉 : x ∈ K, ‖x‖ ≤ 1}

• For example, with f(x) = 1
2‖Ax − b‖

2
2, solving (∗)

reduces to solving kt = Card(Yt)-dimensional convex

quadratic problem

min
λ∈Rkt

{
1
2λ

TQtλ+ 2qTt λ : λ ≥ 0,
∑
j λj ≤ 1

}
,

Qt = [xTi A
TAxj]i,j

(!)

where xj, 1 ≤ j ≤ kt, are the x-components of the

points from Yt.

⇒Assuming that Yt is a set of moderate cardinal-

ity (say, few tens) obtained from Yt−1 by discard-

ing several “old” points and adding the new points

yt = [xt; rt], D+[x+
t ; 1], updating

[Qt−1, qt−1] 7→ [Qt, qt]

basically reduces to computing matrix-vector prod-

ucts Axt and Ax+
t . After Qt, qt are computed, (!)

can be solved “in no time” by an IPM.

Note: Axt is computed anyway when computing

∇f(xt).



How It Works:

TV-based Image Reconstruction
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Bundle CndG, 256× 256 image (65,536 variables)
Recovery in 13 CndG iterations, CPU time 50.0 sec

Error removal: 98.5%, φ(y13)/φ(0) <4.6e-5
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Bundle CndG, 512× 512 image (262,144 variables)
Recovery in 18 CndG iterations, CPU time 370.3 sec

Error removal: 98.2%, φ(y18)/φ(0) <1.3e-4
Platform: 2× 3.40 GHz CPU with 16.0 GB RAM and
64-bit operating system

♠ Note: We used 15-element bundle, adding to it at step t

the points yt = [xt; rt], D+[x+
t ; 1] and [∇f(xt); TV(∇f(xt))] and

removing (up to) 3 old points according to “first in — first

out.” Adding [∇f(xt); TV(∇f(xt))] to the bundle dramatically

accelerated the algorithm.



How It Works:

Low Rank Matrix Completion

♠ Problem:
Opt = min

x∈Rn×n

{
0.1‖x‖+ ‖x− a‖2F

}
[
• ‖ · ‖: nuclear norm • ‖ · ‖F : Frobenius norm • a = x̄+ ξ

Rank(x̄) ≈
√
n, ‖x̄‖ ≈

√
2n/π, ‖ξ‖F ≈ 0.1‖x̄‖F with i.i.d. Gaussian ξij

]
• Required relative inaccuracy 0.01

n Method CPU, sec Iterations Relative inaccuracy

128 CndG 4.5 42 <1.3e-6
IPM 2675.0 31 <1.e-10

1024 CndG 44.2 31 <0.008
IPM not tested

4096 CndG 1997.7 87 <0.01
IPM not tested

8192† CndG 1364.5 36 <0.01
IPM not tested

† Rank(x̄) = 32
Platform: 2 × 3.40 GHz CPU with 16.0 GB RAM and 64-bit

operating system

Note: CPU time in 8192×8192 example is less than

needed to compute just 3 full svd’s of a 8192×8192

matrix ⇒The time taken by 36 steps of CndG is less

than needed to perform just 3 steps of the simplest

proximal algorithm, or just 2 steps of Nesterov’s Fast

Gradient method for Composite minimization!
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