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FUNCTIONAL AGGREGATION FOR
NONPARAMETRIC REGRESSION

By Anatoli Juditsky and Arkadii Nemirovski

Domaine Universitaire and Technion, Israel Institute of Technology

We consider the problem of estimating an unknown function f from
N noisy observations on a random grid. In this paper we address the fol-
lowing aggregation problem: given M functions f1� � � � � fM find an “aggre-
gated” estimator which approximates f nearly as well as the best convex
combination f∗ of f1� � � � � fM. We propose algorithms which provide approx-
imations of f∗ with expected L2 accuracy O�N−1/4 ln1/4 M�. We show that
this approximation rate cannot be significantly improved.

We discuss two specific applications: nonparametric prediction for a
dynamic system with output nonlinearity and reconstruction in the Jones–
Barron class.

1. Introduction. Consider the following nonparametric estimation prob-
lem: we are interested in recovering the true regression function f�x� (which
is a bounded Borel real-valued function of d real variables), given N observa-
tions

�xt� yt = f�xt� + et�� t = 1�2� � � � �N�(1)

of f; here, xt are independent random vectors with common probability dis-
tribution µ, et, independent of each other and of xt, are real errors such that

E�et� = 0� E�e2t � ≤ σ2 < ∞�(2)

Throughout the paper, the quality of an estimator f̂�·� of f�·� is measured by
its squared L2-risk ∫

�f�x� − f̂�x��2µ�dx�

associated with the measure µ. Note that µ is not assumed to be known in
advance.

A general approach to this problem can be summarized as follows: one first
chooses an approximation method, that is, represent the unknown function
as a member of a parametric family; then the parameters of this approxi-
mation are estimated in order to obtain f̂. The approximation in question is
often obtained using the decomposition f in a functional basis; that is, f is
represented as a weighted combination of given functions �f1� � � ��.

When the functional basis is orthonormal (or “close to orthonormal”), the
processing of the estimator is reduced to efficient estimation of corresponding
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sequences of coefficients. This approach has been successfully implemented
for the trigonometric basis and for wavelet systems (for the actual “state of
the art” see [7] and [6], respectively).

Clearly, the quality of such an estimator depends on how well the basis
“fits” f. However, we normally do not know in applications which basis bet-
ter fits the function to be restored. An attractive way to resolve the arising
uncertainty is to use part of the observations to build a number of estimators
corresponding to several “natural” bases and to use the remaining observa-
tions to “aggregate” these estimators, that is, to find nearly the best of their
convex combinations.

On the other hand, we can consider the collection of all elements of possible
candidate bases as an “overcomplete” system of functions �f1� � � �� and then
search for the “best” weighted combination

∑
λifi�x� using the data from (1).

It can easily be seen that such a problem cannot be successfully solved if we do
not impose some restrictions on the set of coefficients λ. The following problem
arises if λ’s have bounded L1-norm.

Functional aggregation problem. Let � ∈ RM be a convex compact set
contained in the standard �·�1-ball,

max��λ�1 � λ ∈ �� ≤ 1�
let f1� � � � � fM be a system of functions, and let f� be the best estimator of f
among the estimators which are combinations of f1� � � � � fM with coefficients
from �,

f� =
M∑
i=1

λ∗
ifi�

with

λ∗ ∈ argmin
λ∈�

ψ�λ� and ψ�λ� ≡
∫ (

f�x� −
M∑
i=1

λifi�x�
)2
µ�dx��

Given �, f1� � � � � fM, a constant L < ∞ such that �f�, �fi� ≤ L, and N
observations (1), the problem is to find an estimator which is nearly as good
as f�.

From now on we refer to the collection �µ�f�f1� � � � � fM���L� as the data
of the aggregation problem.

The study of the functional aggregation problem was initiated by Jones
(cf. [13]). In that paper, the properties of the relaxed greedy algorithm approx-
imations have been studied in the case when f is a convex combination of
M functions bounded by L and observed at N sites x1� � � � � xN without noise.
As refined in [2], Jones’s result states that in that case the relaxed greedy
approximation fn attains the averaged squared error

1
N

N∑
t=1

(
fn�xt� − f�xt�

)2 ≤ L2

n
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in computational time O�nMN�, where the parameter n is a positive integer
(this is closely related to the problem of approximating functions from the
Jones–Barron class below).

Those results have been developed by Lee, Barlett and Williamson [14]
who studied the application of the relaxed greedy algorithm to the functional
aggregation problem in the noisy environment. In that paper an aggregation
estimator f̂N was constructed in the case when the response variables yt are
bounded. In particular, it has been shown that the risk of the aggregation
estimator satisfies∫

�f̂N�x� − f�x��2µ�dy�dx� − ψ�λ∗� = O

(√
lnM
N

)
(cf. Theorem 2 of [14]) and the computation time of the algorithm is
O
(
N3/2M/�lnM�1/2).
The main result of the paper is the following.

Theorem 1.2. Let M > 2. Assume that we are given in advance an upper
bound L on the uniform norm of f, and that all functions f1� � � � � fM take
their values in �−L�L�. Given N observations (1) it is possible to find λN ∈ �
such that

E�ψ�λN�� − ψ�λ∗� ≤ 8
√
2e lnML�2L+ σ�N−1/2�(3)

E being the expectation with respect to the distribution of observations (1).
If, in addition, � is the �·�1-ball,

� = {λ ∈ RM � �λ�1 ≤ 1
}
�(4)

or the simplex

� = {λ ∈ RM � �λ�1 ≤ 1� λ ≥ 0
}
�(5)

or the simplex

� = {λ ∈ RM � �λ�1 = 1� λ ≥ 0
}
�(6)

the above λN may be chosen to have no more than N+ 1 nonzero entries.

The main feature of this result is that the “expected nonoptimality”

ν�N� = E
{
ψ�λN�}− ψ�λ∗�

of our resulting estimator fλN (when compared to the best possible combi-
nation f� of f1� � � � � fM with coefficients from �) is basically independent of
the number M of functions we are aggregating. Indeed, the right-hand side
of (3) is proportional to

√
lnM. This property is crucial for applications indi-

cated in Examples 1 and 2 below, when we typically aggregate a huge number
of functions. From the viewpoint of applications, the bound (3) says that our
“aggregation abilities” are only limited by the computational effort to process
M functions f1� � � � � fM (notice that in Example 2 these functions are esti-
mators themselves). On the other hand, it also means that the amount of
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data necessary to obtain a reasonable aggregation performance is practically
independent of M.

When compared to the result of [14], we establish a direct relation of
the aggregation problem with classical optimization techniques (stochastic
counterpart and stochastic approximation methods). There is an improve-
ment in the generality of distributions permitted for the response variable
yt = f�xt�+et (an arbitrary error distribution with finite variance is allowed).
The most important achievement is that the stochastic approximation algo-
rithm reduces the computation time to O�NM�.

Now let us present two specific applications of functional aggregation which
deal with “dimensionality reduction” in nonparametric regression estimation.
The majority of the known estimators of multivariate regression functions (see
[11, 20] and references therein) are aimed to restore smooth signals (f belongs
to a Sobolev ball with known or unknown smoothness parameters). It is well
known that in this case the rates of convergence degrade rather fast when
the dimensionality d of f increases and become exceedingly slow when d
approaches lnN. For example, the rate is O�N−1/�2+d�� for Lipschitz continu-
ous functions f.

There are basically two ways to overcome the indicated difficulty (known
as the “curse of dimensionality”): either to accept that a huge amount of data
is necessary or to strengthen restrictions on the function class in order to
bound its “effective dimension.” There are different ways to achieve this latter
goal; what we are about to do is to demonstrate that some of these ways lead
naturally to the aggregation problem.

Example 1. Restoring functions from the Jones–Barron class. One way to
bound the function class in its “effective dimension” has been considered by
L. Jones [13] and A. Barron [2]. We can reformulate the main result of [13]
and [2] for our purposes as follows: let f be the Fourier transform

f�x� =
∫
Rd
f̂�ω� exp�iωTx�dω(7)

of a function from the L1-ball of radius L < ∞,∫
Rd

�f̂�ω��dω ≤ L < ∞�(8)

Then for any positive integer n and for any probability distribution µ on Rd

there exists an n-tuple �ω1� � � � � ωn� and coefficients λ1� � � � � λn,
∑n
k=1 �λk� ≤ L,

such that the combination

fn�x� =
n∑
k=1

λk exp�iωT
k x�� λk = ± 1

n
�

satisfies ∫
�f�x� − fn�x��2µ�dx� ≤ L2/n�(9)
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The problem of recovering a function f of the Jones–Barron class from noisy
observations (1) has been studied, for instance, in [3] and [4]. Consider the
estimator f̂N of f proposed in [4]. Its construction can be summarized as
follows: let � be a “fine” grid in the space of frequencies; then the estimator
f̂N is obtained via the exhaustive search over the frequency space � for an
m-tuple �ωk�, k = 1� � � � �m which minimizes

N∑
i=1

(
yi −

m∑
k=1

λkfk�xi�
)2
�

where fk�x� = L exp�iωT
k x�, λk = ±1/m and m = O�√N�. It is shown that

the quadratic risk of the estimator f̂N satisfies

∫
�f̂N�x� − f�x��2µ�dy�dx� = O

(√
lnN
N

)

(cf. Theorem 3 of [3]). Although the theorem states that the quality of the
estimator f̂N is fair, it can be easily verified that the total number of ele-
mentary operations required to compute the estimator is O�N

√
N�, which is

of prohibitive value even for relatively small N.
On the other hand, in order to use the indicated existence theorem we can

act as follows: consider the functional system fk�x� = L exp�iωT
k x�, ωk ∈ �,

and use observations (1) to solve the associated functional aggregation problem
with � being the �·�1-ball � = ��λω�ω∈� �∑ω∈� �λω� ≤ 1�. Surprisingly enough,
this approach, under minor additional assumptions on f, allows recovering f
with basically the same quality as that stated for Barron’s estimator f̂N.

Example 2. Recovering a “structured” regression function Another inter-
esting example where “dimensionality reduction” can be achieved is the case
when the function f to be recovered possesses some specific structure enabling
expressing f in terms of a reasonably smooth function g of smaller dimension
(i.e., depending on less than d variables),

f = F�g�π��(10)

where the mapping F is known in advance, and π is a finite-dimensional
vector of parameters. For instance, it often makes sense to assume that

f�x� = g�πTx��(11)

where π is a d × d′-matrix with d′ < d. This is the crux of the projection
pursuit algorithm developed in [8] (a very good review of these results can be
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found in [12]), which considers estimators of f in the form

f̂N�x� = ĝ�πTx��

where π is a unit vector and πTx may be thought of as a projection of x. The
term ĝ�·� is constant along πTx = c and so is often called a ridge function:
the estimator at a given point x, πTx = t, can be thought of as based on the
average over a certain (in general, adaptively chosen) strip �x� �πTx− t� ≤ δ�.
Other examples are recursive partitioning [15], [5], and related methods (see,
e.g., [9] and the discussion therein). These methods are derived from some
mixture of statistical and heuristic arguments and sometimes give impressive
results in simulations. Their drawback lies in the almost total absence of any
theoretical results on their convergence rates. We refer the reader to the above
references for additional information.

Now note that whenever we could expect f to be representable, in a simple
fashion like (11), via a function g of smaller dimension, it would be very
attractive to reduce the nonparametric estimation of f to the similar operation
for g. The difficulty in carrying out this approach is that reduction (10) of f to g
involves the unknown parameter π, and without this knowledge we are unable
to reduce estimation of f to that of g. The parameters in question typically
are “unrecoverable,” for example, in the case of reduction (11) the problem
of consistent estimation of π is ill-posed, because π is not uniquely defined
by f (cf. the case when f ≡ 0). Here the only way to utilize our structural
information concerning f seems to be the following: split all observations into
two groups; generate “a fine grid” # in the space of parameters and use the
first portion of observations to build estimators ĝp�·�, p ∈ #. Here f̄p is the
estimator of f which corresponds to the hypothesis that “the parameter vector
π in (10) is p.” Then we use remaining observations to find an estimator f̂
which is nearly as good as the best of the estimators ĝp, p ∈ #. Note that
this latter problem is covered by the aggregation (where we look for the best
convex combination of the estimators ĝp rather than for the best of these
estimators).

The rest of the paper is organized as follows. The main result of the paper,
Theorem 1.1 is established in Section 2. In Section 3 we demonstrate that the
“aggregation performance” stated in Theorem 1.1 is the best possible in the
worst-case setting.

The proof of Theorem 1.1 given in Section 2 is “constructive”; the result-
ing estimator fλN is given by an explicit algorithm, which we refer to as the
stochastic counterpart. Then in Section 4 we present another aggregation algo-
rithm of stochastic approximation type. This algorithm yields estimators of
the same quality as in Theorem 1.1, but is much more efficient computa-
tionally than the stochastic counterpart routine. Section 5 is devoted to a
particular application: restoring functions from the Jones-Barron class. The
concluding Section 6 presents numerical results for the stochastic approxima-
tion algorithm as applied to identification of nonlinear dynamic systems. In
what follows we use the notation �f�p = �∫ �f�x��p dx�1/p for the Lp-norm,
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with �f�∞ = maxx �f�x��. If λ is a vector in RM then �λ�p = �∑M
i=1 �λi�p�1/p,

�λ�∞ = maxi �λi�. We denote

�f�2� µ =
(∫

�f�x��2µ�dx�
)1/2

the L2-norm associated with the measure µ. For a real a we denote by �a�
the largest integer which is less than or equal to a and by �a� the smallest
integer which is greater than or equal to a.

In the proofs we use the generic notation κi for positive absolute constants
with unimportant values.

2. Functional aggregation: the stochastic counterpart approach.
Recall that we are in the following situation: we are given M functions
f1� � � � � fM and the constant L > 0 such that the true function f and all
fi take values from �−L�L�; our goal is to approximate, givenN observations
(1), the optimal solution to the optimization problem

min�ψ�λ� � λ ∈ ��� ψ�λ� =
∫ (

f�x� −
M∑
i=1

λifi�x�
)2
µ�dx�(12)

associated with a given convex compact set � ⊂ RM such that �λ�1 ≤ 1, λ ∈ �.
We are about to solve (12) via the stochastic counterpart approach [19]. To

apply this general approach, first note that the objective ψ�λ� in (12) is, up to
an additive constant, a convex quadratic form,

ψ�λ� = ψ0�λ� +
∫
f2�x�µ�dx��

where

ψ0�λ� = λTAλ− bTλ

with

Aij =
∫
fi�x�fj�x�µ�dx�� i� j = 1� � � � �M�

bi = 2
∫
f�x�fi�x�µ�dx�� i = 1� � � � �M�

Let

α = (�Aij�1 ≤ i ≤ j ≤ M�� �bi� i = 1� � � � �M�) ∈ RM+�

M+ = M+M�M+ 1�/2�
be the vector of coefficients of the form ψ0. It is immediately seen that an
observation �xt� yt� from sample (1) generates the estimator

αt = (�fi�xt�fj�xt��1 ≤ i ≤ j ≤ M�� �2�f�xt� + et�fi�xt�� i = 1� � � � �M�)
of the vector α. It is evident that αt is an unbiased estimator of α,

E�αt� = α�(13)
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Then we can act as follows: in order to solve (12), we use the observations (1)
to build the estimator

ᾱN = 1
N

N∑
t=1

αt

of the vector α. Note that ᾱN is the vector of coefficients of the convex
quadratic form

ψN0 �λ� = 1
N

N∑
t=1

ψt�λ��

where

ψt�λ� =
(

�f�xt� + et� −
M∑
i=1

λifi�xt�
)2

− �f�xt� + et�2�

The problem of minimizing the form ψN0 over � is, using the terminology
of [19], the stochastic counterpart of the problem (12), we are interested in.
When solving the stochastic counterpart by an appropriate convex program-
ming algorithm, we find a minimizer λ̄N of the quadratic form ψN0 on � and
take this minimizer as an estimator of the solution to (12).

The convergence properties of the outlined stochastic counterpart method
are stated in the following.

Theorem 2.1. Let M> 2. For the stochastic counterpart method, one has

E�ψ�λ̄N�� − ψ∗ ≤ 8
√
2e lnML�2L+ σ�N−1/2�(14)

where ψ∗ is the optimal value in (12).

Proof. We first remark that

ψ�λ̄N� − ψ∗ ≤ sup
λ∈�

�ψ0�λ� − ψN0 �λ���(15)

On the other hand, since �λ�1 ≤ 1 whenever λ ∈ �, for a quadratic form,
φ�λ� ≡ λTBλ− dTλ�

one has

sup
λ∈�

�φ�λ�� ≤ 2�α�φ��∞�

where α�φ� is the vector of coefficients of the form φ. Consequently, (15)
implies that

E�ψ�λ̄N� − ψ∗� ≤ 2E��α− ᾱN�∞� ≡ 2N−1E

{∥∥∥∥∥ N∑
t=1

ζt

∥∥∥∥∥
∞

}
�(16)

where ζt = α− αt. Note next that∣∣Aij − fi�xt�fj�xt�
∣∣ ≤ 2L2
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and ∣∣bi − 2�f�xt� + et�fi�xt�
∣∣ ≤ 4L2 + 2L�et��

Consequently,

�α− αt�2∞ ≤ 4�2L2 +L�et��2�

which implies

E��αt − α�2∞� ≤ 4�2L2 + σL�2�(17)

Now let us use the following technical result (for the proof, see [16]):

Lemma 2.1. Let M> 2, and let q = 2 lnM. Then the function

W�z� = 1
2�z�2q� RM → R

satisfies for every z, d ∈ RM, the relation

W�z+ d� ≤ W�z� + dT∇W�z� + c∗�M��d�2∞� c∗�M� = 4e lnM�(18)

We have, by virtue of Lemma 2.1,

W

(k+1∑
t=1

ζt

)
≤ W

( k∑
t=1

ζt

)
+ �ζk+1�T∇W

( k∑
t=1

ζt

)
+ c∗�M��ζk+1�2∞�

whence, taking expectation and using (13), (17),

E

{
W

(k+1∑
t=1

ζt

)}
≤ E

{
W

( k∑
t=1

ζt

)}
+ 4c∗�M��2L2 + σL�2�

It follows that

E

{
W

( N∑
t=1

ζt

)}
≤ 4Nc∗�M��2L2 + σL�2�

and since W�z� ≥ 1
2�z�2∞, we end up with

E

{∥∥∥∥ N∑
t=1

ζt

∥∥∥∥
∞

}
≤
√
8Nc∗�M��2L2 + σL� = 4

√
2eN lnM�2L2 + σL��

This estimate combined with (16) completes the proof. ✷
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2.1. Concentration. A drawback of the aggregated estimator

fN�x� =
M∑
i=1

λiNfi�x�

as given by the stochastic counterpart method is that the estimator, generally
speaking, includes with nonzero weights all M basic functions. When M is
large, which is the case we are mainly interested in, it might be computation-
ally too expensive to use the estimator. This motivates the following natural
question: whether it is possible to replace fN with another estimator

f̃N =
M∑
i=1

λ̃iNfi�x�� λ̃N ∈ �

of basically the same quality, but with moderate number of nonvanishing coef-
ficients λ̃iN.

We are about to show that if � is a “simple” set, then we can shrink the
aggregated estimator; namely, to make it a combination of order of N or even
of N1/2 of the basic functions.

“N-concentrated” aggregation. Let ω be anM-dimensional vector with
the entries ωi = �±1�; let

RM
ω = �λ ∈ RM � ωiλi ≥ 0� i = 1� � � � �M�

be the corresponding orthant and let �ω = � ∩RM
ω . Assume that � possesses

the following property (where k is an integer parameter):

��k� For every ω, the set �ω is cut of the orthant RM
ω with at most k linear

inequalities and equations.

For example, the sets (4)–(6) satisfy ��1�.

Proposition 2.1. Assume that � satisfies �k. Then the result λ̄N of the SC
method with N steps always can be chosen “k+N”-concentrated, that is, with
no more than k+N nonzero entries.

Proof. Let EN be the orthogonal complement to the set of N M-
dimensional vectors

�f1�xt�� � � � � fM�xt��T�
t = 1� � � � �N. EN clearly is the recessive space of ψN0 �λ�, a translation of the
argument of this quadratic form along EN does not vary the value of the form.
Now, let λ̂N be an arbitrary minimizer of ψN0 over �, and let ω be such that
λ̂N ∈ �ω. We can take as λ̄N any point of the set Q = �ω ∩ �λ̂N +EN�. Since
Q is a polyhedral set which is cut off RM

ω by not more than k + N linear
inequalities and equations, all its extreme points have at most k+N nonzero
entries, and we can choose as λ̄N any one of these extreme points. ✷
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Note that Theorem 2.1 combined with Proposition 2.1 implies the result of
Theorem 1.1.

“
√
N-concentrated” aggregation. The construction presented here goes

back to [18]. We assume that � is the � · �1-ball (4); however, the following
argument can be modified in a straightforward way to handle the cases of
simplices (5) and (6).

Consider the following procedure. In order to aggregate the functions f1� � � � �
fM, we first use the SC method; let λN be the resulting vector of weights.
We set

ν =
M∑
i=1

�λiN�

and associate with λN the probability distribution π on the 2M + 1-element
set I = �0�±1� � � � �±M� according to the following rule: the probability πi of
the element i "= 0 is 0 if λiN and i have different signs; otherwise it is �λiN�;
the probability of the element i = 0 is π0 = 1− ν. When setting

gi�x� = fi�x�� i = 1� � � � �M�

g0�x� ≡ 0�

gi�x� = −g−i�x�� i = −1�−2� � � � �−M�

we can represent the aggregated estimator fN =∑M
i=1 λ

i
Nfi as

fN =∑
i∈I
πigi�(19)

Now let us draw independently of each otherK indices i1� � � � � iK ∈ I accord-
ing to the probability distribution �πi�i∈I and take as a new aggregated esti-
mator f̃N of f the function

f̃N = 1
K

K∑
l=1

gil �

Note that f̃N clearly is of the form
∑M
i=1 λ̃

i
Nfi with K-concentrated (i.e., with

no more than K nonzero entries) weight vector λ̃ ∈ �.
The quality of the estimator f̃N is given by the following simple proposition.

Proposition 2.2. One has

E�ψ�λ̃N�� − ψ∗ ≤ E�ψ�λN�� − ψ∗ +K−1L2

≤ 8
√
e lnML�2L+ σ�N−1/2 +K−1L2�

(20)

Here E stands for the expectation with respect to the probability π and the
distribution of observations.
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Proof. Let ξ be a random variable taking values in the Hilbert space of
µ-square summable functions with the distribution ν as follows: with proba-
bility πi the value of ξ is gi, i ∈ I. By construction, f̃N�x� = �1/K�∑K

l=1 ξl�x�,
where ξK = �ξ1� � � � � ξK� is a sequence of independent random variables with
the distribution ν. By construction, ξi is independent of the observation zN =
�xi� yi�Ni=1 used to compute λN. Meanwhile, (19) implies that fN is the condi-
tional (zN being fixed) expectation of ξ� fN = Eνξ. Keeping this in mind and
using evident notations for expectations, we obtain

E�ψ�λ̃N�� = EzNEν

∥∥∥∥f− 1
K

K∑
l=1

ξl

∥∥∥∥2
2� µ

= EνEzNEµ

∣∣∣∣f− 1
K

K∑
l=1

ξl

∣∣∣∣2

= EνEzNEµ

∣∣∣∣f−Eνξ +Eνξ − 1
K

K∑
l=1

ξl

∣∣∣∣2

= EνEzNEµ�f−Eνξ�2 +EνEzNEµ

∣∣∣∣ 1K K∑
l=1

ξl −Eνξ

∣∣∣∣2
≤ E�f− fN�22� µ + 1

K
EzNEνEµ�ξ�2 ≤ E�ψ�λN�� +K−1L2

(the latter inequality is due to the fact that the uniform norm of all fi is
bounded by L, so that the uniform norm of all realizations of ξ is ≤ L), and
(20) follows. ✷

We see that in order to transform fN into a “well-concentrated” estimator
of basically the same quality it suffices to choose K in the above scheme in a
way which ensures that, say

K−1L2 ≤ 8
√
2e lnML�2L+ σ�N−1/2�

for example, as

K =
⌋ √

N

16
√
2e lnM

⌊
�

The corresponding randomized estimator f̃N is O�√N�-concentrated and
possesses the same quality (in fact, worse by a factor of 2) as our original
estimator fN.

3. Lower bound. We have shown that when aggregatingM functions on
the basis of N observations (1), expected inaccuracy of aggregation

E�ψ�λN�� − ψ∗� ψ�λ� =
∫ (

f�x� −
N∑
i=1

λifi�x�
)2
µ�dx�� ψ∗ = min

λ∈�
ψ�λ�

can be made as small as O�√lnMN−1/2�, with the constant factor in O�·�
depending on the parameters L (a priori upper bound on the uniform norms
of f and fi) and σ [intensity of noise et in observations (1)]. A natural ques-
tion is whether an aggregation with essentially better expected performance
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is possible. We are about to show that the answer to the latter question is
negative in the minimax setting.

Theorem 3.1. For an appropriately chosen positive absolute constant κ, for
every positive L, σ , integer M > 2 and every positive integer N satisfying the
inequality

σ2 lnM
L2

≤ N ≤ κ
σ2M lnM

L2
(21)

and for every method � solving the aggregation problem on the basis of N
observations (1) one can point out:

(i) M functions f1� � � � � fM in L2�0�1� of the uniform norm not exceeding L;
(ii) a function f ∈ L2�0�1� which is a convex combination of the functions

f1� � � � � fM, with the following property. Let

f�
N =

M∑
i=1

�λ�� fN �ifi

be the result obtained by � as applied to the aggregation problem given by
the data

�µ�f�f1� � � � � fM���L��
where µ is the Lebesgue measure on �0�1� and � is the standard simplex (6),
and by observations (1) with et ∼ � �0� σ2�. Then

E�ψf�λN�� − ψ∗
f ≥ κLσ

√
lnM
N

�(22)

where

ψf�λ� =
∫ (

f�x� −
M∑
i=1

λifi�x�
)2
µ�dx�

and

ψ∗
f = min

λ∈�
ψf�λ�

(note that in fact ψ∗
f = 0).

Comment. In the case of L = O�1�σ the lower bound (22) differs from the
upper bound (14) by an absolute constant factor only.

Proof of Theorem 3.1. Let fk, k = 1� � � � �M, be the firstM cosines from
the standard trigonometric basis in L2�0�1� multiplied by L,

fk�x� = L cos�2πkx��
Given a positive integer p, let us denote by �p the set of all convex combina-
tions of the functions f1� � � � � fM with the coefficients as follows: 2p of the M
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coefficients are equal to �2p�−1, and other coefficients vanish. It is easily seen
that if p ≤ √

M, then �p contains a subset � ∗
p with the following properties:

(i) Every two distinct functions f, g from � ∗
p have at most p common

nonzero Fourier coefficients, so that

L2

4p
≤ �f− g�22 ≤ L2

2p
�(23)

�·�2 being the standard norm in L2�0�1�.
(ii) The cardinality K of � ∗

p satisfies the relation

K ≥ Mκ1p�(24)

Now let

ε�p� = max
f∈� ∗

p

{
E�ψf�λ�� fN �� − ψ∗

f

} = max
f∈� ∗

p

E�ψf�λ�� fN ���

We claim that for any p ≤ √
M one has

ε�p� < L2

64p
⇒ N ≥ κ2L

−2σ2p2 lnM�(25)

Consider the set of K hypotheses, where the kth hypothesis state that N
observations in (1) are generated with the kth element of the set � ∗

p . Let
us associate with � the method �′ of distinguishing between K hypotheses
which is as follows: given observations, we use � to solve the aggregation
problem; when the corresponding aggregated estimator f� is obtained we
find the closest (in �·�2) to f� element (any one of them in the non-uniqueness
case) in � ∗

p and claim that this is the function underlying our observations.
It is immediately seen if any one of ourK hypotheses is true, the probability

that �′ fails to recognize it properly is at most 1/4. Indeed, assume that the
true hypothesis is associated with f ∈ � ∗

p . If �
′ fails to say that this is the

case, then the estimator f� is at least at the same �·�2-distance from f as
from some g ∈ � ∗

p distinct from f. Taking into account the left inequality in

(23), we conclude that then ψf�λ�� fN � ≥ L2/16p; from the definition of ε�p�
and the Chebyshev inequality it follows that under the premise of (25) the
probability of the event in question is at most 1/4, as claimed.

Now note that the Kullback distance between the distributions of N-
observation samples (1) coming from two distinct elements of � ∗

p , in view of
the right inequality in (23), is at mostNσ−2L2�2p�−1. Then the Fano inequal-
ity implies that the above K hypotheses can be distinguished only if

Nσ−2L2�2p�−1 ≥ κ3 lnK = κ4p lnM

[we have used (24)], as required in the conclusion of (25). Let us now choose

p = κ5L

σ

√
N

lnM
�
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then by (21) we have p <
√
M. Furthermore, this value of p gives the desired

bound (22) due to the left inequality of (23). Now the conclusion of Theorem 3.1
is an immediate consequence of (25). ✷

4. Functional aggregation: the stochastic approximation approach.

Motivation. In the case when � is a “computationally tractable” convex
compact set, for example, the �·�1-ball (4), or one of the simplices (5), (6), the
stochastic counterpart scheme combined with any computationally efficient
routine � for constrained convex optimization yields an implementable algo-
rithm for aggregating functions f1� � � � � fM. However, in the case of large M
(which is the case we actually are interested in) the resulting algorithm is
rather costly computationally. Indeed, consider, for the sake of definiteness,
the simplest case when � is the standard simplex (6). In our presentation of
the stochastic counterpart method we spoke about exact identification of the
optimal solution to the problem

min�ψN0 �λ� � λ ∈ ���(26)

which is the stochastic counterpart of (12). In fact, of course, it suffices to find
an approximate solution λN to the latter problem with inaccuracy, in terms of
the objective ψN0 �λ� −min�ψN0 , of order of

ε =
√
N−1 lnML�L+ σ��

When replacing the exact solution to the stochastic counterpart with an
approximate solution of the latter problem, we vary only the absolute con-
stant factor in the right-hand side of (14).

Now, in the case of largeM seemingly the best, from the viewpoint of overall
computational complexity (i.e., total number of arithmetic operations) proce-
dure for solving the stochastic counterpart within accuracy ε is the �·�1-version
of the mirror descent method for large-scale convex minimization; see [17].
The method finds ε-solution to (26) in O�N� iterations; the computational
effort at a single iteration is dominated by the necessity to compute the value
and the gradient of the objective ψN0 at the current iterate. In order to imple-
ment the method efficiently, we should first computeNM-dimensional vectors
�f1�xt�� � � � � fM�xt��, t = 1� � � � �N, let the arithmetic cost of this computation
be �est. IfM<N, it makes sense not to store theseN vectors explicitly, but to
assemble them into the vector of coefficients of the quadratic form ψN0 and to
use these coefficients to compute ψN0 �λ� and ∇ψN0 �λ�; with this scheme, both
the memory requirements and the arithmetic cost of computing ψN0 at a point
will be O�M2�. In the case of M > N it is better not to assemble the coeffi-
cient of ψN0 explicitly, but to store the above N M-dimensional vectors and to
compute ψN0 and its gradient via the representation

ψN0 �λ� = 1
N

N∑
t=1

(
f�xt� −

M∑
i=1

λifi�xt�
)2

�
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here both the memory requirements and the arithmetic cost of computing
ψN0 at a point are O�MN�. Thus, the memory requirements for the stochas-
tic counterpart method, the same as the arithmetic cost of an iteration, are
O�M min�N�M��. Recalling that we should perform O�N� iterations of the
method, we end up with the following complexity characteristics of the stochas-
tic counterpart approach:

Stochastic counter approach
Memory O�M min�N�M��
Total number of operations Cest +O�MN min�N�M��

We are about to develop another algorithm, based on non-Euclidean stochastic
approximation, which yields the aggregation of basically the same quality
as the one given by the stochastic counterpart approach, but with significantly
less computational effort: the memory required by the SA algorithm is O�M�,
and the overall arithmetic complexity is Cest +O�MN�:

Stochastic approximation approach
Memory O�M�
Total number operations Cest +O�MN�

Recall that the indicated complexity bounds relate to the case of “simple” �,
for example, (4), (5), or (6).

4.1. The idea. Let �xt� yt = f�xt� + et� be an observation from the sample
(1). If for some λ ∈ RM we denote

fλ�x� =
M∑
i=1

λifi�x�

and

ψ�λ� =
∫

�f�x� − fλ�x��2µ�dx��

then we observe immediately that the vector ξt�λ� ∈ RM with the entries

ξit�λ� = −2�yt − fλ�xt��fi�xt�� i = 1� � � � �M�(27)

is an unbiased estimate of ∇ψ�λ�, that is,

E�ξit�λ�� = −2
∫

�f�x� − fλ�x��fi�x�µ�dx� = ∂

∂λi
ψ�λ��(28)

Recall that our objective is to solve the problem (12), and the relation (28)
implies that we can compute unbiased estimates of ∇ψ�·� from the obser-
vations (1). The latter fact suggests that we can achieve our objective via
stochastic approximation (SA).
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Which SA to use? It can be immediately seen that the standard SA,

λt+1 = π��λt − γtξt�λt��� π��λ� = argmin
λ′∈�

�λ− λ′�2�(29)

does not fit the situation. First, our quadratic objective may be extremely ill-
conditioned, and this may dramatically slow down the classical (with the step
sizes γt = O�t−1�) SA; since we have no way to control the condition number of
∇2ψ, the classical SA is completely inappropriate for us. There are, however,
“robust” versions of the process (29), those with the step sizes γt = O�t−1/2�
and the Cesaro averaging

λ̄t =
( t∑
τ=1

γτ

)−1 t∑
τ=1

γτλ
τ�

These algorithms attain the efficiency

E
{
ψ�λ̄t� −min

�
ψ�λ�

}
≤ O�t−1/2��(30)

which is independent of the condition number of ψ. At the first glance, this
revised SA fits the situation better. However, we are still confronted by the
following problem: the constant factor in the right-hand side of (30) is pro-
portional to the “�·�2-level of noise” E��ξt�·� − ∇ψ�·��22� in the observations of
∇ψ. In our case this level, as is easily seen, is proportional to the number M
of functions we intend to combine. In typical applications (see Section 1) M
is very large, it is the cardinality of some multidimensional grid; as a result,
the “constant” factor O�M� in the right-hand side of (30) makes the robust
versions of the standard SA useless for our purposes.

What seems to meet our needs is the non-Euclidean robust SA associated
with the L1-norm [17]. As we shall see in a while, this version of SA yields
the efficiency estimate (30) with the constant factor in the right-hand side
O�·� proportional to √

ln M, which fits our goals incomparably better than the
versions of SA discussed above.

4.2. The algorithm. The robust SA algorithm, associated with �·�1-norm,
for solving (12) is as follows. Let (cf. Lemma 2.1)

W�z� = 1
2�z�2q � RM → R� q = 2 ln M�

θ ∈ �0�1� and R be such that

R ≥ max
λ∈�

�λ�1(31)

(one can take R = 1).
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Consider the following.

Algorithm 4.1 (�·�1-SA).
Initialization. Set z0 = 0.

Step t for t ≥ 1. Given zt−1� �zt−1�q ≤ R, acts as follows:

1. Compute

λt = ∇W�zt−1�
and find the �·�1-projection νt of the vector λt onto �,

νt ∈ argmin
λ∈�

�λt − λ�1�

2. Define vector =t ∈ RM as follows:

(a) If νt = λt� we set =t = 0.
(b) In the case of νt "= λt, by construction of νt, the interior of the �·�1-ball,

Vt = �λ� �λ− λt�1 ≤ ρt ≡ �λt − νt�1��
does not intersect the set �, and therefore intVt and � can be separated
by a linear form: there exists a "= 0 such that

min
λ∈Vt

aTλ ≥ max
λ∈�

aTλ�(32)

We find such an a and set =t = �a�−1
∞ a.

3. Using the observation �xt� yt� from the sample (1), compute the vector
ξt�νt� ∈ RM with components

ξii�νt� = −2�yt − fνt�xt��fi�xt�
[cf. (27)], where fνt�xt� =∑M

i=1 ν
i
tfi�xt�. Set

ξ̄t = ξt�νt� + �ξt�νt��∞=t�(33)

4. Put

γt = θ1/4

4
√
2e�1− θ� ln M

R

σL
t−1/2�(34)

wt = zt−1 − γtξ̄t(35)

and

zt =
{
wt� �wt�q ≤ R,

Rwt�wt�−1
q � �wt�q > R.
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5. If t < N, go to step t+ 1, otherwise define the result of the algorithm as

λ̄N =
( N∑
t=K�N�

γt

)−1 N∑
t=k

γtνt� K�N� = �θN��(36)

The rate of convergence of Algorithm 4.1 is described in the following
theorem.

Theorem 4.1. Let

N ≥ N∗ ≡ 512e lnM

�1− θ�√θ
R2L2

σ2
�(37)

Then Algorithm 4.1 with the step sizes (34) yields

E�ψ�λ̄N�� − ψ∗ ≤ 24

√
2e ln M

θ1/4
√
1− θ

RL�σ + σ−1ψ∗�√
N

�

Proof Let λ∗ and ψ∗ = ψ�λ∗� be an optimal solution and the optimal value
of (12), respectively. We start with the following simple observation.

Lemma 4.1. One has

�ξ̄t�∞ ≤ 2�ξt�νt��∞�(38)

E��ξt�νt��2∞� ≤ 4L2�σ2 +Eψ�νt���(39)

�λt − λ∗�Tξ̄t ≥ �νt − λ∗�Tξt�νt�(40)

and

�λ− λ∗�T∇ψ�λ� ≥ ψ�λ� − ψ∗� λ ∈ RM�(41)

Proof Equation (38) is an immediate consequence of the relation
�=t�∞ ≤ 1; see Algorithm 4.1.

For �fi�·�� ≤ L and λ ∈ RM, we can bound

�ξt�λ��∞ = 2max
i

�f�xt� + et − fλ�xt���fi�xt�� ≤ 2L�f�xt� + et − fλ�xt���

whence

E��ξt�νt��2∞� ≤ 4L2E
[
Ext� et

��f�xt� + et − fνt�xt��2�
]

= 4L2E�e2t � + 4L2Eψ�νt��
and (39) as follows.

Let us prove (40). The inequality certainly holds when νt = λt since here
ξ̄t = ξt�λt� [cf. steps (1) and (2) of Algorithm 4.1]. Now assume that νt "= λt. In
this case (32) is satisfied with a = =t and the left-hand side in this relation is
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�=t�Tλt − �λt − νt�1 due to �=t�∞ = 1. On the other hand, the same left-hand
side is equal to �=t�Tνt, since νt belongs both to Vt and �. We conclude that

max
λ∈�

�=t�Tλ = �=t�Tνt = �=t�Tλt − �λt − νt�1�

Hence

�=t�T�νt − λ� ≥ 0 ∀λ ∈ �(42)

and

�=t�T�λt − νt� = �λt − νt�1�(43)

Setting ξ = ξt�νt�� d = νt − λ∗� δ = λt − νt, we have

�λt − λ∗�Tξ̄t = �d+ δ�T�ξ + �ξ�∞=t� [see (33)]

= dTξ + δTξ + �ξ�∞�dT=t + δT=t�
≥ dTξ + δTξ + �ξ�∞�δ�1 [see (42), (43)]

≥ dTξ�

as required in (40).
(41) follows from the convexity of ψ. ✷

We return now to the proof of the theorem. We set

W∗�z� = W�z� − zTλ∗�

Let us track the evolution of the function W∗�·� along the trajectory �zt�.

Step 1. We note first that

W∗�zt� ≤ W∗�wt��(44)

Indeed, if wt "= zt then wt = szt with s > 1, and �zt�q ≥ R. If for a r ≥ 1
we denote

ζ ′�r� = r2W�zt� − r�zt�Tλ∗

then W∗�wt� = ζ�s�. However, we observe that for r ≤ 1,

ζ ′�r� = 2rW�zt� − �zt�Tλ∗

≥ r�zt�2q − �zt�q�λ∗�p �q−1 + p−1 = 1�
≥ R2 −R�λ∗�1
≥ 0 [see (31)]�

whence ζ�s� > ζ�1� = W∗�zt� and (44) follows.
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Step 2. W∗�zt� satisfies the following recursive inequality:

W∗�zt� ≤ W∗�zt−1� − γt�ξt�νt��T�νt − λ∗� + 4c∗�M�γ2t �ξt�νt��2∞�(45)

where c∗�M� = 4 e ln�M�.
Using Lemma 4.1 we obtain for the increment of W∗�zt�,

W∗�zt� ≤ W∗�wt� [see (44)]

= W∗�zt−1 − γtξ̄t� [(35)]

≤ W∗�zt−1� − γt�ξ̄t�T∇W∗�zt−1� + c∗�M�γ2t �ξ̄t�2∞ [see Lemma 2.1]

= W∗�zt−1� − γt�ξ̄t�T�λt − λ∗� + c∗�M�γ2t �ξ̄t�2∞ �structure of W∗�
≤ W∗�zt−1� − γt�ξt�νt��T�νt − λ∗� [(44), (40)]

+ 4c∗�M�γ2t �ξt�νt��2∞
where c∗�M� is defined as in (18).

Step 3. We denote ε�N� = E�ψ�λ̄N�� − ψ∗. Then we have the bound

ε�N� ≤
( N∑
t=K

γt

)−1(
2R2 + 16L2c∗�M�

N∑
t=K

γ2t �σ2 +E�ψ�νt���
)
�(46)

where K = K�N� = �θN�.
Let νt = EW∗�zt�. We now take the expectation on both sides of the inequal-

ity (45). We first take the conditional expectation over �xt� yt�, the previous
observations being fixed. Then we take the expectation over previous obser-
vations, and using the bound (39) we obtain

νt ≤ νt−1 − γtE��νt − λ∗�T∇ψ�νt�� + 16c∗�M�L2γ2t E�σ2 + ψ�νt���

Due to (41) the latter inequality implies

νt ≤ νt−1 − γtE�ψ�νt� − ψ∗� + 16c∗�M�L2γ2t �σ2 +Eψ�νt���(47)

Next we deduce from (47) the recursive inequality

γtE�ψ�νt�� − ψ∗ ≤ νt−1 − νt + 16L2c∗�M�γ2t �σ2 +E�ψ�νt����

When summing up over t = K ≡ K�N��K+ 1� � � � �N, we get

N∑
t=K

γtE�ψ�νt� − ψ∗� ≤ vK−1 − vN

(48)

+ 16L2c∗�M�
N∑
t=K

γ2t �σ2 +E�ψ�νt����
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Now note that �zt�q ≤ R for all t, thus

W∗�zK−1� −W∗�zN� = 1
2 ��zK−1�2q − �zN�2q� − �zK−1 − zN�tλ∗

≤ 1
2 ��zK−1�2q − �zN�2q� + �zK−1 − zN�q�λ∗�1

≤ 1
2 ��zK−1�2q − �zN�2q� +R�zK−1 − zN�q

≤ 2R2�

so that vK−1 − vN ≤ 2R2, and we get from (48),

N∑
t=K

γtE�ψ�νt� − ψ∗� ≤ 2R2 + 16L2c∗�M�
N∑
t=K

γ2t �σ2 +E�ψ�νt����(49)

By the Jensen inequality we conclude from (36) that

E�ψ�λ̄N� − ψ∗� ≤
( N∑
t=K

γt

)−1( N∑
t=K

γtE�ψ�νt� − ψ∗�
)

and, when substituting from (49),

E�ψ�λ̄N� − ψ∗� ≤
( N∑
t=K

γt

)−1(
2R2 + 16L2c∗�M�

N∑
t=K

γ2t �σ2 +E�ψ�νt���
)
�

Step 4. In order to extract from the bound (46) a reasonable stepsize policy,
let us see what happens when γt tends steadily to zero, that is,

γt → 0� γt+1 ≤ γt and
γK�n�
γN

≤ C < ∞�(50)

If we set � = 16L2c∗�M�� l�N� = N−K�N� + 1 and

α�N� =
∑N
t=K�N� γtE�ψ�νt� − ψ∗�∑N

t=K�N� γt

we obtain from (46) the inequality

ε�N� ≤ α�N� ≤
{

2R2

l�N�γN
+C��σ2 + ψ∗�γN

}
+C�γN

α�N��(51)

We conclude from this inequality that if the gain sequence satisfies (50) and
l�N�γN → ∞ as N → ∞, then both ε�N� and α�N� converge to 0 as N → ∞.
The rate of convergence, at least for largeN, is given by the bracketed term in
the right-hand side of (51). Since l�N� ≈ �1−θ�N, the best rate of convergence
of the bracketed term to 0 as N → ∞ is O�N−1/2�, and the corresponding
choice of γt is

γt = R

√
2θ1/2

�1− θ���σ2 + ψ∗�t
−1/2�(52)
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This choice of γt in (52) involves the unknown optimal value ψ∗ of problem
(12). If we set ψ∗ = 0 in (52) and substitute for � its expression via L andM,
we obtain the expression (34) for γt.

Step 5. To finish the proof it suffices to note that if the inequality in (37)
is satisfied, then the coefficient at α�N� in (51) is ≤ 1/2. Therefore, (51)
implies that

ε�N� ≤ α�N� ≤ 2
{

2R2

l�N�γN
+C��σ2 + ψ∗�γN

}
�

When taking into account that l�N� ≥ �1 − θ�N�C = θ−1/2, and substituting
expressions for � and γN we obtain the required bound for ε�N�. ✷

5. Application: restoring functions from the Jones–Barron class.
We now apply the result of Section 3 to estimation in the Jones–Barron model,
Example 1 of the Introduction.
Class � d

N �L�γ� ν�. Let L�γ� ν be positive reals such that γ ≤ 1 and d,
N be positive integers. We associate with the tuple �L�γ� ν� d�N� the class
� d
n �L�γ� ν� comprising all functions f� Rd → R which are Fourier transforms

of finite Borel complex-valued measures on Rd,

f�x� =
∫
exp�iwTx�F̂�dw��

such that ∫
�F̂�dw�� ≤ L√

2
�∫

�w�>ρ
�F̂�dw�� ≤ γ−1ρ−γNν ∀ρ > 0�

Note that the classes in question grow as N grows up.
Let also µ be a probability distribution on Rd such that∫

�x�2µ�dx� ≤ σ2
x < ∞�(53)

The problem is to recover a function f� Rd → R, given N observations
�xt� yt = f�xt� + et� of the function [cf. (1)]; here xt are independent random
vectors with the common distribution µ, and et are independent of each other
and of xt real errors satisfying (2). We assume that we know in advance the
parameters L�γ� ν of the class � d

N �L�γ� ν�, as well as the quantities σx from
(53) and σ from (2).

The idea of the algorithm below can be summarized as follows. We fix a large
enough ballWρ in the space of frequencies, so that f can be properly approx-
imated by the Fourier transform of a measure with the support contained in
Wρ. OnWρ we define a fine ε-net � = �wi� of cardinalityK = O�Nα�� α < ∞.
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We can now use the aggregation procedure described in Section 4 to find an
approximation λ̂ of the minimizer λ∗ of the functional

ψf�λ� =
∫ (

f�x� −
K∑
k=1

[
λ2k−1L cos�ωT

k x� + λ2kL sin�ωT
k x�])2µ�dx�

on the set � = �λ ∈ R2M� �λ�1 ≤ 1�. The result of Theorem 4.1 suggests that

ψ�λ̂� − ψ�λ∗� = O

(√
ln N
N

)
�

where ψ�λ∗� is the true minimum of ψ�λ� on �. Due to Jones–Barron’s approx-
imation result we know that the latter quantity is small.

The algorithm implementing the above idea is as follows:

Algorithm 5.1.

1. Given N�d�L� γ� ν� σ and σx, we set

∑
N

≡∑�N�d�L� γ� ν� σ� σx� = σxN
�4ν+γ+1�/4γ

d�γ+1�/4γγ1/γL�1−γ�/2γσ �γ+1�/2γ �(54)

η2 =
√
d ln

∑
N

N
Lσ� ρ�η� = Nν/γ

�γη�1/γ �(55)

ε = η

2Lσx
�(56)

2. We define an ε-net � = �wk�Kk=1 on the ball

Wρ�η� = {w ∈ Rd � �w� ≤ ρ�η�}
with ε given by (56). The cardinality K of the net is assumed to satisfy the
inequality

K ≤ �1+ 2ε−1ρ�η��d(57)

(such a net for sure exists).
3. Let M = 2K�� = �λ ∈ RM� �λ�1 ≤ 1� and

fλ�x� =
K∑
k=1

[
λ2k−1L cos �ωT

k x� + λ2kL sin �ωT
k x�]�

We use the stochastic approximation algorithm described in Section 4 to
find approximation λ̂ of the point

λ∗ = argmin
λ∈�

ψ�λ�� ψ�λ� =
∫

�f�x� − fλ�x��2µ�dx��

When applying Algorithm 4.1, we treat the M functions L cos�ωTx�;
L sin�ωTx�, ω ∈ �, as the functions to be aggregated and set

� = �λ ∈ RM� �λ�1 ≤ 1��
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Finally, the step sizes γt in Algorithm 4.1 are chosen according to (34) with
R = 1 and θ = 0�5.

The convergence rate of the resulting estimator

f̂N�x� =
M∑
k=1

�λ̂2k−1L cos�ωT
k x� + λ̂2kL sin�ωT

k x��

of f is given by the following.

Theorem 5.1. Let f ∈ � d
N �L�γ� ν�, and let (2), (53) be satisfied. Then for

all large enough N �i.e., N ≥ N0�L�γ� ν� d� σ� σx�� one has

E
{�f̂N�x� − f�x��22� µ

} ≤ κLσ

√
d ln

∑
n

N
�(58)

with EN given by (54) and an absolute constant κ.

Proof.

Step 1. According to (57) and (54)–(56) we have for all large enough N,

M ≤ �1+ 2ε−1ρ�η��d ≤ �κ1ε−1ρ�η��d ≤
(
κ2
∑
N

)d
(59)

Step 2. Let us verify that for every f ∈ � d
N �L�γ� ν� there exists a function

f̃�x� =
M∑
k=1

[
λ2k−1L cos�ωT

k x� + λ2kL sin�ωT
k x�]

with �λ�1 ≤ 1 and ωk ∈ � such that

�f̃− f�2� µ ≤ 3η�

Indeed, by (55) we have∫
�ω�>ρ�η�

�F̂�dw�� ≤ γ−1ρ−γ�η� = η�

This implies that if we define the measure Ĝ as Ĝ�A� = F̂�A ∩ Wρ�η�� and
define g as the Fourier transform of Ĝ, then

�f− g�2� µ ≤ �f− g�∞ ≤ η�(60)

On the other hand, it follows from Barron’s proof of (9) (see [2]) that one
can find a function of the form

h =
m∑
k=1

δk exp�iζTk x�
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with ζk ∈ Wρ�η��m =�R/η2� and �δ�1 ≤ 2−1/2L such that

�h− g�2� µ ≤ η�(61)

Next we note that for any ω�ω′ ∈ Rd,∫ ∣∣exp�ixTω� − exp�ixTω′�∣∣2µ�dx� ≤ 4�ω−ω′�2
∫

�x�2µ�dx�
(62)

= 4�ω−ω′�2σ2
x�

Let ωk be the element of � closest to ζk. Then for

r�x� =
m∑
k=1

δk exp�iωT
k x��

we obtain due to (62),

�h− r�2� µ ≤ Lmax
k

( ∫ ∣∣exp�ixTωk� − exp�ixTζk�
∣∣2µ�dx�

)1/2
≤ 2Lmax

k
�ωk − ζk�σx = η

[see (56)]. Along with (60) and (61) this estimate yields �f− r�2� µ ≤ 3η. Now
we can set f�x� = Re�r�x��.

Step 3. Applying Theorem 4.1 (where one should set R = 1� θ = 0�5) to
the 2M functions {

L cos�ωTx��L sin�ωTx�}
ω∈�

and taking into account that, by Step 2 of the proof, in our situation ψ∗ ≡
minλ∈� ψ�λ� ≤ 9η2, we get

E
{�f̂N − f�22�µ

} ≤ κ3η
2 + κ3

(
lnM
N

)1/2
L�σ + 9σ−1η2��

and the latter quantity, as it is immediately seen from (59) and (54)–(56), for
all large enough values of N is bounded from above by κ

√
d lnEN/N with

properly chosen absolute constant κ. ✷

5.1. Lower bound. We are about to show that the rate of convergence given
by Theorem 5.1 cannot be improved significantly in the minimax sense.

Theorem 5.2. Let L > 0. Consider the problem of estimating a univariate
function f�x�:R → R from observations �xt� yt = f�xt� + et�� t = 1� � � � �N,
where xt� et are mutually independent, xt are uniformly distributed on �0�1�
and et ∼ � �0� σ2�. Let � ∗

N�L� be the class � 1
N�L�1�1�. Then for some absolute

constant and all large enough values ofN for every algorithm� approximating
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f ∈ � ∗
N�L� on the basis of the above observations one has

sup
f∈� ∗�R�

E��f̂� − f�22 ≥ κLσ

√
lnN
N

�(63)

where f̂� is the estimator yielded by �, the function underlying the observa-
tions being f.

Sketch of the proof. Let

p =
⌋
L

σ

√
N

lnN

⌊
�

and ��N� = �λ ∈ RN� be a set of vectors such that 2p entries of λk of λ are
equal to 2−1/2�2p�−1 and other entries vanish. Note that for all large enough
N the set is nonempty and λ ∈ ��N� implies

��λ�1 ≤ 2−1/2��
We denote φ�x� = �φ1�x�� � � � � φN�x�� the vector-valued function with the com-
ponents φk�x� = L cos�2πkx�. Then for any λ ∈ ��N� the 1-periodic function
fλ�x� = λTφ�x� clearly belongs to � ∗

N�L�. On the other hand, as in the proof
of Theorem 3.1, for all large enough N we can extract from � ∗

N�L� the set
� +
N of cardinality greater than or equal to Nκ1p� κ1 being the appropriately

chosen absolute constant, in such a way that for every two distinct functions
f�g ∈ � +

N one has

L2

8p
≤ �f− g�22� µ ≤ L2

4p
�

Now we can use exactly the same arguments as in the proof of Theorem 3.1
to get the desired lower bound (63). ✷

6. Numerical examples. In this section we present simulation results
for the SA aggregation algorithm as applied to the nonparametric filtering
problem.

Nonparametric filtering problem. Consider a dynamic system

yt = f�yt−1� � � � � yt−d� + et�(64)

e0� e1� � � � being independent noises. The problem is to predict, given observa-
tions y1� � � � � yN, the state yN+1. We suppose that the order d of the system
is known a priori.

Now assume that the dynamics of (64) has the following known-in-advance
structure:

f�x� = g�pTx��(65)

where g is a function on R and p is an unknown vector of parameters.
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Being a bit sloppy, we can deal with the model (64) as if the observations
�yt� were produced by the model (1) with xt = �yt−1� � � � � yt−d�T. We can now
build an estimator f̂N using observations y1� � � � � yN according to the scheme
presented in Example 2 of the Introduction. Then we can form the forecast

ŷN+1 = f̂�xN+1��
Though in this example xt are dependent, under reasonable stability assump-
tions there exists steady state distribution µ of xt and the situation is “not
too far” from the model (1) where xt are independent variables with common
distribution µ. Note that in this example the measure µ is determined by
the unknown regression function itself and can be rather sophisticated. For
example, for the simple dynamics

��d� �



yt = F�pTxt� + σnt� xt =


yt−1
yt−2
· · ·
yt−d

,
F�z� = cos�4πz� + cos�5πz��

nt ∼ � �0�1�� p = 1√
d


1
1
· · ·
1


(66)

with d = 2� σ = 0�1 the plot of the first 220 pairs xt = �yt� yt−1� looks as shown
in Figure 1.

The dynamics we deal with in simulations is ��d� with d = 2 and d = 3.
In order to build the estimator f̂N, we define a grid of M unit directions
pi� i = 1� � � � �M, in Rd. In the case of d = 2 it was the uniform grid,

pi =
(
cos
(
φ0 + i

M
π

)
� sin

(
φ0 + i

M
π

))
� k = 1� � � � �M�

φ0 being a randomly chosen “phase shift”; in the case of d = 3 we chose the
directions pi randomly.

We use the first

N = 1024

observations to build M nonparametric estimators fi�x� = φi�pTi x� of the
function f∗�x� = F�pTx�. When building φi, we act as if the observations were

yt = φ�pTi xt� + σnt

for some φ. Estimators φi are obtained by the spatial adaptive nonparametric
estimator applied to this model of observations. This estimator originates from
[10]; we have modified it in an evident way to handle arbitrary design of the
regressors, instead of the regular design studied in [10].

After building theM estimators fi on the basis of the firstN = 1024 obser-
vations, we use N remaining observations to approximate the best convex
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Fig. 1. Plot of 220 points xt given by dynamics ��2�, σ = 0�1.

combination of the estimators f1� � � � � fM, that is, the optimal solution to the
problem (12) associated with

� =
{
λ ∈ RM�λ ≥ 0�

M∑
i=1

λi = 1
}
�

To this end we use Algorithm 4.1 with the step sizes (34) associated with
the setup

R = 2� κ = 1/3�L = max
1≤t≤N

�yt��

The estimator

f̄�xt� =
M∑
i=1

�λ̄N�ifi�xt�

provided by the algorithm is then used to predict the “regular” component
y∗
t ≡ f�xt� of yt� t = 2N+1� � � � �4N. Below we refer to the indicated predictor

as to the structure-based one.
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Table 1
Empirical mean square error of prediction

Method � = 0�1 � = 0�33

Structure-based predictor, dynamics ��2� 0.093 0.275
Structure-based predictor, dynamics ��3� 0.107 0.288

We run two series of experiments: the first for the intensity σ of the noise
in ��d� equal to 0.1, and the second for σ = 0�33. In both experiments, the
number M of estimators to be combined was set to 400 in the case d = 2 and
to 3144 in the case d = 3. The quality of a predictor ȳt = f̄�xt� was measured
by the empirical mean square error

δ =
√√√√ 1
2N

4N∑
t=2N+1

�y∗
t − f̄�xt��2�

The numerical results are as shown in Table 1.
In Figures 2 and 3 we present the result of the structure-based recon-

struction of the true dynamics via 2N = 2048 observations for σ = 0�1 and
σ = 0�33, respectively.

Fig. 2. Structure-based reconstruction of dynamics ��2�, σ = 0�1.
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Fig. 3. Structure-based reconstruction of dynamics ��2�, σ = 0�33.
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