THE MAXIMUM EDGE-DISJOINT PATHS PROBLEM IN BOUNDED TREEWIDTH GRAPHS

Chandra Chekuri, Guyslain Naves, Bruce Shepherd

Bellairs workshop, April 2011

Maximum Edge-Disjoint Paths problem

(MEDP for short)

- Input: \bullet a graph G,
 - capacities $c: E(G) \to \mathbb{N}$,
 - pairs (s_i, t_i) of commodities, with weights w_i .
- Output: \mathcal{P} , family of (s_i, t_i) -paths in G,
 - at most c(e) paths of \mathcal{P} contain e $(e \in E(G)).$
 - Goal: Maximize $\sum_{i \in I_{\mathcal{D}}} w_i$,
 - where $I_{\mathcal{P}} = \{i : \text{ there is an } (s_i, t_i) \text{-path in } \mathcal{P}\}.$

General results

MEDP...

- is APX-hard, even in trees (Garg, Vazirani, Yannakakis, 1997),
- is hard to approximate within $\Omega(m^{\frac{1}{2}-\varepsilon})$ in directed graphs (Guruswami, Khanna, Rajaraman, Shepherd, Yannakakis, 1999),
- is hard to approximate within $\Omega(\log^{1/2-\varepsilon} n)$ in undirected graphs (Andrews, Chuzhoy, Khanna, Zhang, 2005),
- has $\Omega(\sqrt{n})$ integrality gap, for the natural LP (Guruswami,...), $O(\sqrt{n})$ in undirected graphs (Chekuri, Khanna, Shepherd, 2005)
- has approximation ratio $O(\sqrt{m})$ (Kleinberg, 1996).

(Garg, Vazirani, Yannakakis, 1997)

(Garg, Vazirani, Yannakakis, 1997)

Idea: route the deepest possible demand.

(Garg, Vazirani, Yannakakis, 1997)

(Garg, Vazirani, Yannakakis, 1997)

McGill McGill

(Garg, Vazirani, Yannakakis, 1997)

(Garg, Vazirani, Yannakakis, 1997)

Idea: route the deepest possible demand.

(Garg, Vazirani, Yannakakis, 1997)

(Garg, Vazirani, Yannakakis, 1997)

(Garg, Vazirani, Yannakakis, 1997)

Idea: route the deepest possible demand.

(Garg, Vazirani, Yannakakis, 1997)

(Garg, Vazirani, Yannakakis, 1997)

(Garg, Vazirani, Yannakakis, 1997)

(Garg, Vazirani, Yannakakis, 1997)

(Garg, Vazirani, Yannakakis, 1997)

MEDP on trees: results

- APX-hard and
- 2-approximation, no weight, (Garg, Vazirani, Yannakakis, 1997)
- 4-approximation with weight (Chekuri, Mydlarz, Shepherd, 2003).

Both algorithms have a bottom-up approach.

Planar graphs

A bad example $(\sqrt{n} \text{ integrality gap})$:

Planar graphs

A bad example $(\sqrt{n} \text{ integrality gap})$:

Planar graphs

A bad example $(\sqrt{n} \text{ integrality gap})$:

Congestion

In the previous example, multiplying the capacities by 2 leads to an integral solution matching the fractional optimum.

Definition

Congestion: maximum ratio allowed between the number of paths taking an edge and its capacity.

MEDP on planar graphs

Theorem (Chekuri, Khanna, Shepherd, 2006)

O(1)-approximation with congestion 4 in planar graphs.

- ullet Find a disc ${\mathcal D}$ with properties:
 - capacity of $\delta(\mathcal{D}) \ll$ flow routed inside \mathcal{D} ,
 - $\frac{1}{10}$ of the flows routed inside \mathcal{D} can be routed to the boundary of \mathcal{D} .
- Charge the flow crossing $\delta(\mathcal{D})$ to \mathcal{D} .
- ullet Remove ${\mathcal D}$ and recurse.
- On \mathcal{D} , use the routing to the boundary, plus Okamura-Seymour theorem.

Bounded treewidth graphs

- Trees = graphs of treewidth 1,
- Graphs of treewidth 2 ⊂ planar graphs,
- $O(k \log k \log n)$ -approximation for graphs of treewidth k (Chekuri, Khanna, Shepherd 2006).
- Getting rid of the log *n* factor?
- Extending planar result to minor-closed classes of graphs?

Bounded treewidth graphs

- Trees = graphs of treewidth 1,
- Graphs of treewidth 2 ⊂ planar graphs,
- $O(k \log k \log n)$ -approximation for graphs of treewidth k (Chekuri, Khanna, Shepherd 2006).
- Getting rid of the log *n* factor?
- Extending planar result to minor-closed classes of graphs?

Theorem

For graphs of treewidth k, α_k -approximation with congestion β_k .

A graph with treewidth 2

Bags...

Every bag contains at most k + 1 vertices.

...and vertices

The bags containing a given vertex form a subtree. Two adjacent vertices have non-disjoint subtrees.

Intersection of adjacent bags \implies cutset of size k

Proof of O(1)-approx, O(1)-congestion

Let x be a fractional optimum solution.

Definition

Marginal flow at v: value of the flow paths in x having extremity v.

Main ideas:

- Bottom-up approach,
- Cutting along a sparse cut and charging to the inside,
- Clustering.

Suppose there is a flow to r with these marginal values.

Take an arbitrary spanning tree.

Find a lowest level node with marginal value ≥ 1 . Take just enough sons to get a value ≥ 1

Find a lowest level node with marginal value ≥ 1 . Take just enough sons to get a value ≥ 1 , repeat.

Again...

Again... until the remaining marginal value is < 3.

Clusters send a flow > 1 to the root...

Clusters send a flow ≥ 1 to the root... so we can find edge-disjoint paths.

Contracting the clusters

- Replace each cluster by a leaf.
- Also contract the demands.
- Then find an integral routing. . .
- ... and uncontract the edge-disjoint paths.
- We get a 3-approximation with congestion 2.

Uncontracting a path

For a path satisfying a demand to the 0.2 blue node.

Uncontracting a path

For a path satisfying a demand to the 0.2 blue node.

Uncontracting a path

For a path satisfying a demand to the 0.2 blue node.

Clustering: what we get

- If we can route a fraction of the marginal flow to $U \subset V$,
- Then, move the demands to *U*,
- Up to constant approximation, constant congestion:

flow
$$x$$
 in G $\xrightarrow{\text{clustering}}$ flow x' in G'

integral flow
$$\mathcal{P}$$
 in G clustering integral flow \mathcal{P}' in G'

Clustering: what we get

- If we can route a fraction of the marginal flow to $U \subset V$,
- Then, move the demands to U,
- Up to constant approximation, constant congestion:

The algorithm

Route the marginal values to the root of the decomposition tree.

- if success, then use clustering to conclude.
- if fail, cut along a sparse cut.

Easy case: a flow to the root

Easy case: solution

There is a flow f routing $\frac{1}{10}$ of the marginal flow to the root.

- Make clusters using this flow $f \longrightarrow$ fractional flow x'.
- The root has at most k + 1 vertices, that are the terminals for x'.
- Select the pair (u, v) with maximum fractional flow x' between them.
- Find a packing of $\lceil x'(u,v) \rceil$ disjoint (u,v)-paths, uncontract them.

Easy case: solution

There is a flow f routing $\frac{1}{10}$ of the marginal flow to the root.

- Make clusters using this flow $f \longrightarrow$ fractional flow x'.
- The root has at most k + 1 vertices, that are the terminals for x'.
- Select the pair (u, v) with maximum fractional flow x' between them.
- Find a packing of $\lceil x'(u,v) \rceil$ disjoint (u,v)-paths, uncontract them.

 αk^2 -approximation with β congestion.

There is a sparse cut X separating terminals from the root.

• Remove the flow through this cut.

There is a sparse cut X separating terminals from the root.

- Remove the flow through this cut.
- Charge the lost flow to the demands inside X.

There is a sparse cut X separating terminals from the root.

- Remove the flow through this cut.
- Charge the lost flow to the demands inside X.
- Recurse on G X (smaller graph of treewidth k).

There is a sparse cut X separating terminals from the root.

- Remove the flow through this cut.
- Charge the lost flow to the demands inside X.
- Recurse on G X (smaller graph of treewidth k).
- Apply clustering on the complete subtrees of X.

There is a sparse cut X separating terminals from the root.

- Remove the flow through this cut.
- Charge the lost flow to the demands inside X.
- Recurse on G X (smaller graph of treewidth k).
- Apply clustering on the complete subtrees of *X*.
- Contract the complete subtrees into cliques (congestion k^2).

Hard case in action

Hard case in action

Hard case in action

There is a sparse cut X separating terminals from the root.

- Remove the flow through this cut.
- Charge the lost flow to the demands inside X.
- Recurse on G X (smaller graph of treewidth k).
- Apply clustering on the complete subtrees of X.
- Contract the complete subtrees into cliques (congestion k^2).
- Apply induction on the contracted graph (treewidth k-1).

What's next?

- weighted version,
- better bounds for congestion and approximation (exponential in the treewidth now),
- extend it to minor-closed classes of graphs.

The end

Thank you!

