
The maximum edge-disjoint paths
problem in bounded treewidth graphs

Chandra Chekuri, Guyslain Naves, Bruce Shepherd

Bellairs workshop, April 2011

1



Maximum Edge-Disjoint Paths problem

(MEDP for short)

Input: a graph G ,
capacities c : E (G )→ N,
pairs (si , ti) of commodities, with weights wi .

Output: P , family of (si , ti)-paths in G ,
at most c(e) paths of P contain e
(e ∈ E (G )).

Goal: Maximize
∑

i∈IP wi ,

where IP = {i : there is an (si , ti)-path in P}.

2



General results

MEDP. . .

is APX-hard, even in trees (Garg, Vazirani, Yannakakis,
1997),

is hard to approximate within Ω(m
1
2
−ε) in directed graphs

(Guruswami, Khanna, Rajaraman, Shepherd, Yannakakis,
1999),

is hard to approximate within Ω(log1/2−ε n) in undirected
graphs (Andrews, Chuzhoy, Khanna, Zhang, 2005),

has Ω(
√

n) integrality gap, for the natural LP
(Guruswami,. . . ), O(

√
n) in undirected graphs (Chekuri,

Khanna, Shepherd, 2005)

has approximation ratio O(
√

m) (Kleinberg, 1996).

3



2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

1 1

2 3 2 1

2 2 2 2 2 1 1 1

Idea: route the deepest possible demand.
4



2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

1 1

2 3 2 1

2 2 2 2 2 1 1 1

Idea: route the deepest possible demand.
5



2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

1 1

2 3 2 1

1 1 2 2 2 1 1 1

Idea: route the deepest possible demand.
6



2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

1 1

2 3 2 1

1 1 1 1 2 1 1 1

Idea: route the deepest possible demand.
7



2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

1 1

2 3 2 1

1 1 1 1 1 1 1

Idea: route the deepest possible demand.
8



2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

1 1

2 3 2 1

1 1 1 1 1

Idea: route the deepest possible demand.
9



2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

1 1

1 2 2 1

1 1 1

Idea: route the deepest possible demand.
10



2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

1 31 1 1

1

Idea: route the deepest possible demand.
11



2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

1 1

2 3 2 1

2 2 2 2 2 1 1 1

Idea: route the deepest possible demand.
12



2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

1 1

2 3 2 1

2 2 2 2 2 1 1 1

Idea: route the deepest possible demand.
13



2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

1 1

2 3 2 1

2 2 2 2 2 1 1 1

Idea: route the deepest possible demand.
14



2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

1 1

2 3 2 1

2 2 2 2 2 1 1 1

Idea: route the deepest possible demand.
15



2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

1 1

2 3 2 1

2 2 2 2 2 1 1 1

Idea: route the deepest possible demand.
16



2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

1 1

2 3 2 1

2 2 2 2 2 1 1 1

Idea: route the deepest possible demand.
17



2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

1 1

2 3 2 1

2 2 2 2 2 1 1 1

Idea: route the deepest possible demand.
18



2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

1 1

21 3 2 1

2 2 2 2 2 1 1 1

Idea: route the deepest possible demand.
19



2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

1 1

21 3 2 1

2 2 2 2 2 1 1 1

Idea: route the deepest possible demand.
20



2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

1 1

21 3 2 1

2 2 2 2 2 1 1 1

Idea: route the deepest possible demand.
21



2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

1 1

21 3 2 1

2 2 2 2 2 1 1 1

Idea: route the deepest possible demand.
22



2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

1 1

21 3 2 1

2 2 2 2 2 1 1 1

Idea: route the deepest possible demand.
23



2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

1 1

21 3 2 1

2 2 2 2 2 1 1 1

Idea: route the deepest possible demand.
24



2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

1 1

21 3 2 1

2 2 2 2 2 1 1 1

Idea: route the deepest possible demand.
25



MEDP on trees: results

APX-hard and

2-approximation, no weight, (Garg, Vazirani, Yannakakis,
1997)

4-approximation with weight (Chekuri, Mydlarz,
Shepherd, 2003).

Both algorithms have a bottom-up approach.

26



Planar graphs

A bad example (
√

n integrality gap):

s0

t0

s1

t1

s2

t2

s3

t3

s4

t4

s5

t5

s6

t6

s7

t7

s8

t8

s9

t9

s0

t0

s1

t1

s2

t2

s3

t3

s4

t4

s5

t5

s6

t6

s7

t7

s8

t8

s9

t9

27



Planar graphs

A bad example (
√

n integrality gap):

s0

t0

s1

t1

s2

t2

s3

t3

s4

t4

s5

t5

s6

t6

s7

t7

s8

t8

s9

t9

s0

t0

s1

t1

s2

t2

s3

t3

s4

t4

s5

t5

s6

t6

s7

t7

s8

t8

s9

t9

28



Planar graphs

A bad example (
√

n integrality gap):

s0

t0

s1

t1

s2

t2

s3

t3

s4

t4

s5

t5

s6

t6

s7

t7

s8

t8

s9

t9

s0

t0

s1

t1

s2

t2

s3

t3

s4

t4

s5

t5

s6

t6

s7

t7

s8

t8

s9

t9

29



Congestion

In the previous example, multiplying the capacities by 2 leads
to an integral solution matching the fractional optimum.

Definition
Congestion: maximum ratio allowed between the number of
paths taking an edge and its capacity.

30



MEDP on planar graphs

Theorem (Chekuri, Khanna, Shepherd, 2006)

O(1)-approximation with congestion 4 in planar graphs.

Find a disc D with properties:

capacity of δ(D) � flow routed inside D,
1
10 of the flows routed inside D can be routed to the
boundary of D.

Charge the flow crossing δ(D) to D.

Remove D and recurse.

On D, use the routing to the boundary, plus
Okamura-Seymour theorem.

31



Bounded treewidth graphs

Trees = graphs of treewidth 1,

Graphs of treewidth 2 ⊂ planar graphs,

O(k log k log n)-approximation for graphs of treewidth k
(Chekuri, Khanna, Shepherd 2006).

Getting rid of the log n factor?

Extending planar result to minor-closed classes of graphs?

Theorem
For graphs of treewidth k, αk-approximation with congestion
βk .

32



Bounded treewidth graphs

Trees = graphs of treewidth 1,

Graphs of treewidth 2 ⊂ planar graphs,

O(k log k log n)-approximation for graphs of treewidth k
(Chekuri, Khanna, Shepherd 2006).

Getting rid of the log n factor?

Extending planar result to minor-closed classes of graphs?

Theorem
For graphs of treewidth k, αk-approximation with congestion
βk .

33



A graph with treewidth 2

34



Bags. . .

Every bag contains at most k + 1 vertices.

35



. . . and vertices

The bags containing a given vertex form a subtree.
Two adjacent vertices have non-disjoint subtrees.

36



Intersection of adjacent bags

Intersection of adjacent bags =⇒ cutset of size k

37



Intersection of adjacent bags

Intersection of adjacent bags =⇒ cutset of size k

38



Intersection of adjacent bags

Intersection of adjacent bags =⇒ cutset of size k

39



Intersection of adjacent bags

Intersection of adjacent bags =⇒ cutset of size k

40



Proof of O(1)-approx, O(1)-congestion

Let x be a fractional optimum solution.

Definition
Marginal flow at v : value of the flow paths in x having
extremity v .

Main ideas:

Bottom-up approach,

Cutting along a sparse cut and charging to the inside,

Clustering.

41



The clustering tool

r

0.6 0.7

0.6 0.7

0.5

0.2 0.3 0.4

0.5

0.2 0.3 0.4

0.9 0.6

0.9 0.6

0.1 0.4

0.3 0.8

0.1 0.4

0.3 0.8

A:1.3 B:1.4

C:1.5

D:1.6

A B

C

D

Suppose there is a flow to r
with these marginal values.

42



The clustering tool

r

0.6 0.7

0.6 0.7

0.5

0.2 0.3 0.4

0.5

0.2 0.3 0.4

0.9 0.6

0.9 0.6

0.1 0.4

0.3 0.8

0.1 0.4

0.3 0.8

A:1.3 B:1.4

C:1.5

D:1.6

A B

C

D

Take an arbitrary spanning tree.

43



The clustering tool

r

0.6 0.7

0.6 0.7

0.5

0.2 0.3 0.4

0.5

0.2 0.3 0.4

0.9 0.6

0.9 0.6

0.1 0.4

0.3 0.8

0.1 0.4

0.3 0.8

A:1.3

B:1.4

C:1.5

D:1.6

A B

C

D

Find a lowest level node with marginal value ≥ 1.
Take just enough sons to get a value ≥ 1

44



The clustering tool

r

0.6 0.7

0.6 0.7

0.5

0.2 0.3 0.4

0.5

0.2 0.3 0.4

0.9 0.6

0.9 0.6

0.1 0.4

0.3 0.8

0.1 0.4

0.3 0.8

A:1.3 B:1.4

C:1.5

D:1.6

A B

C

D

Find a lowest level node with marginal value ≥ 1.
Take just enough sons to get a value ≥ 1 , repeat.

45



The clustering tool

r

0.6 0.7

0.6 0.7

0.5

0.2 0.3 0.4

0.5

0.2 0.3 0.4

0.9 0.6

0.9 0.6

0.1 0.4

0.3 0.8

0.1 0.4

0.3 0.8

A:1.3 B:1.4

C:1.5

D:1.6

A B

C

D

Again. . .

46



The clustering tool

r

0.6 0.7

0.6 0.7

0.5

0.2 0.3 0.4

0.5

0.2 0.3 0.4

0.9 0.6

0.9 0.6

0.1 0.4

0.3 0.8

0.1 0.4

0.3 0.8

A:1.3 B:1.4

C:1.5

D:1.6

A B

C

D

Again. . . until the remaining marginal value is < 3.

47



The clustering tool

r

0.6 0.7

0.6 0.7

0.5

0.2 0.3 0.4

0.5

0.2 0.3 0.4

0.9 0.6

0.9 0.6

0.1 0.4

0.3 0.8

0.1 0.4

0.3 0.8

A:1.3 B:1.4

C:1.5

D:1.6

A B

C

D

Clusters send a flow ≥ 1 to the root. . .

48



The clustering tool

r

0.6 0.7

0.6 0.7

0.5

0.2 0.3 0.4

0.5

0.2 0.3 0.4

0.9 0.6

0.9 0.6

0.1 0.4

0.3 0.8

0.1 0.4

0.3 0.8

A:1.3 B:1.4

C:1.5

D:1.6

A B

C

D

Clusters send a flow ≥ 1 to the root. . .
. . . so we can find edge-disjoint paths.

49



Contracting the clusters

r

A B C D

1 1 1 1

Replace each cluster by a leaf.

Also contract the demands.

Then find an integral routing. . .

. . . and uncontract the edge-disjoint paths.

We get a 3-approximation with congestion 2.

50



Uncontracting a path

r

0.6 0.7

0.5

0.2 0.3 0.4

0.9 0.6

0.1 0.4

0.3 0.8

A B

C

D

For a path satisfying a demand to the 0.2 blue node.

51



Uncontracting a path

r

0.6 0.7

0.5

0.2 0.3 0.4

0.9 0.6

0.1 0.4

0.3 0.8

A B

C

D

For a path satisfying a demand to the 0.2 blue node.

52



Uncontracting a path

r

0.6 0.7

0.5

0.2 0.3 0.4

0.9 0.6

0.1 0.4

0.3 0.8

A B

C

D

For a path satisfying a demand to the 0.2 blue node.

53



Clustering: what we get

If we can route a fraction of the marginal flow to U ⊂ V ,

Then, move the demands to U ,

Up to constant approximation, constant congestion:

flow x in G flow x ′ in G ′
clustering

integral flow P ′ in G ′integral flow P in G
clustering

54



Clustering: what we get

If we can route a fraction of the marginal flow to U ⊂ V ,

Then, move the demands to U ,

Up to constant approximation, constant congestion:

flow x in G flow x ′ in G ′
clustering

integral flow P ′ in G ′integral flow P in G
clustering

55



The algorithm

Route the marginal values to the root of the decomposition
tree.

if success, then use clustering to conclude.

if fail, cut along a sparse cut.

56



Easy case: a flow to the root

Root

57



Easy case: solution

There is a flow f routing 1
10

of the marginal flow to the root.

Make clusters using this flow f fractional flow x ′.

The root has at most k + 1 vertices, that are the
terminals for x ′.

Select the pair (u, v) with maximum fractional flow x ′

between them.

Find a packing of dx ′(u, v)e disjoint (u, v)-paths,
uncontract them.

αk2-approximation with β congestion.

58



Easy case: solution

There is a flow f routing 1
10

of the marginal flow to the root.

Make clusters using this flow f fractional flow x ′.

The root has at most k + 1 vertices, that are the
terminals for x ′.

Select the pair (u, v) with maximum fractional flow x ′

between them.

Find a packing of dx ′(u, v)e disjoint (u, v)-paths,
uncontract them.

αk2-approximation with β congestion.

59



Hard case: there is a sparse cut

T1

T2

60



Hard case: there is a sparse cut

T1

T2

61



Hard case: there is a sparse cut

There is a sparse cut X separating terminals from the root.

Remove the flow through this cut.

Charge the lost flow to the demands inside X .

Recurse on G − X (smaller graph of treewidth k).

Apply clustering on the complete subtrees of X .

Contract the complete subtrees into cliques (congestion
k2).

Apply induction on the contracted graph (treewidth
k − 1).

62



Hard case: there is a sparse cut

There is a sparse cut X separating terminals from the root.

Remove the flow through this cut.

Charge the lost flow to the demands inside X .

Recurse on G − X (smaller graph of treewidth k).

Apply clustering on the complete subtrees of X .

Contract the complete subtrees into cliques (congestion
k2).

Apply induction on the contracted graph (treewidth
k − 1).

63



Hard case: there is a sparse cut

There is a sparse cut X separating terminals from the root.

Remove the flow through this cut.

Charge the lost flow to the demands inside X .

Recurse on G − X (smaller graph of treewidth k).

Apply clustering on the complete subtrees of X .

Contract the complete subtrees into cliques (congestion
k2).

Apply induction on the contracted graph (treewidth
k − 1).

64



Hard case: there is a sparse cut

T1

T2

65



Hard case: there is a sparse cut

T1

T2

66



Hard case: there is a sparse cut

T1

T2

67



Hard case: there is a sparse cut

There is a sparse cut X separating terminals from the root.

Remove the flow through this cut.

Charge the lost flow to the demands inside X .

Recurse on G − X (smaller graph of treewidth k).

Apply clustering on the complete subtrees of X .

Contract the complete subtrees into cliques (congestion
k2).

Apply induction on the contracted graph (treewidth
k − 1).

68



Hard case: there is a sparse cut

T1

T2

69



Hard case: there is a sparse cut

T1

T2

70



Hard case: there is a sparse cut

T1

T2

71



Hard case: there is a sparse cut

T1

T2

72



Hard case: there is a sparse cut

T1

T2

73



Hard case: there is a sparse cut

There is a sparse cut X separating terminals from the root.

Remove the flow through this cut.

Charge the lost flow to the demands inside X .

Recurse on G − X (smaller graph of treewidth k).

Apply clustering on the complete subtrees of X .

Contract the complete subtrees into cliques (congestion
k2).

Apply induction on the contracted graph (treewidth
k − 1).

74



Hard case: there is a sparse cut

T1

T2

75



Hard case in action

76



Hard case in action

77



Hard case in action

78



Hard case: there is a sparse cut

There is a sparse cut X separating terminals from the root.

Remove the flow through this cut.

Charge the lost flow to the demands inside X .

Recurse on G − X (smaller graph of treewidth k).

Apply clustering on the complete subtrees of X .

Contract the complete subtrees into cliques (congestion
k2).

Apply induction on the contracted graph (treewidth
k − 1).

79



What’s next?

weighted version,

better bounds for congestion and approximation
(exponential in the treewidth now),

extend it to minor-closed classes of graphs.

80



The end

Thank you!

81


	MEDP definition
	Previous works
	Congestion
	About treewidth
	The clustering tool
	The algorithm

