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Outline of This Talk

e Problem Formulation
e Structural Properties

e Main Algorithm



Min-cost subset k-connected subgraph problem
(Subset k-Conn)



Given a graph with edge-cost, a set
of terminals, and requirement k




We want to pay cheap cost to make a
graph k-connected on terminals.




E.g, (k=2) all terminals remain
connected after removing one vertex




Min-cost Subset k-Connected
Subgraph Problem (subset k-conn)

Input:

« Graph G=(V, E) with non-negative cost on edges
A set of terminals T.

« An integer k, a requirement

Goal:

 Find a min-cost subgraph H=(V, E").

« H has k-vertex disjoint paths connecting each pair s,t of terminals.

k=1: Steiner tree problem [ NP-Hard



Current Status in terms of |T| and k

UB: | T]? (trivial algorithm) UB: O(k? log k)-approx
LB: LabelCover = Q(k) LB: APX-Hard
AN AN
|
7] | >



Our Results

| T]? (trivial algorithm)  O(k log? k)-approx O(k log k)-approx




Closely related problem
rooted subset k-connectivity

root

terminals

Given: G=(V,E), edge-cost, root r, terminal set T
Goal: Find min-cost subgraph having k-disjoint r,t path for each terminal t
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Closely related problem
rooted subset k-connectivity

root

terminals

Current Status:
UB : O(k log k)-approx, LB : O(k)-hardness [Cheriyan, L. '"11]
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root

Hardness of rooted k-conn

e Reduce Directed Steiner
Forest to Rooted k-Conn on
Directed Graphs

e Apply Lando-Nutov's Thm to
reduce the problem to
undirected graphs (with
connectivity k'=k+ |V|)

« Hardness can be tighten to k®
by reducing it directly from
LabelCover.

12



Reducing subset k-connectivity to
rooted (subset) k-connectivity

root

terminals

All previous algorithms solve subset k-connectivity by applying rooted
k-connectivity algorithm to k terminals (pay a factor of k)
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Comparison of Approx Ratio

Subset: | T]° Subset: O(klog? k) Subset & Rooted:
Rooted: | 7] Rooted: O(k log k) O(k log k)
(trivial algorithm)

14



Subset k-conn is hardest when |T|=k

k=3

terminals
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Subset k-conn is hardest when |T|=k

F(k)-aprx algo for
subset k-conn for

M=k

G(k)-aprx algo for
rooted k-conn

terminals
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Subset k-conn is hardest when |T|=k

G(k)-aprx algo for
rooted k-conn

A

F(k)-aprx algo for
subset k-conn for

[Tl =kK

w
"

Choose kterminals

terminals
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Subset k-conn is hardest when |T|=k

G(k)-aprx algo for
rooted k-conn

Auxiliary root
|III|' A F(k)-aprx algo for

subset k-conn for

[Tl =kK

Choose kterminals

terminals
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Subset k-conn is hardest when |T|=k

G(k)-aprx algo for
rooted k-conn

All terminals k connected, Approx Ratio = G(k) + F(k)

Auxiliary root
|III|' A F(k)-aprx algo for

subset k-conn for

[Tl =kK

Choose kterminals

terminals
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Outline of our technique

e Use Connectivity Augmentation Framework

e Halo-set Method: Apply rooted k-connectivity
algorithm to covering deficient sets
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Connectivity Augmentation framework.
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Increase connectivity from L=1, 2,.., k
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Start from connectivity = 1

Edge in current graph
— == Edge that can be added
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Increase connectivity to 2

Edge in current graph
— == Edge that can be added
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Increase connectivity to 3

N 7
N 7
N 7
N 7
N
7 N
7 N
Edge in current graph

— == Edge that can be added
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Pay a factor of O(log k)

-, ~
/shared by both sols™ e LP for Conn. Aug.,

L O (L+1), asks for one
edge covering cut U

« Take integral OPT.
e Scale edges by 1/(k - L)
~ [] Sol feasible to LP

* Run k times pay O(log k)

> (k— L) edges
Scale by 1/(k-L)_,

~ -

-
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Assume a graph is subset L-connected on T,
and we want to increase connectivity to L+1
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Also, our goal is to attack the case |T| = 2k
So, we assume |T| = 2L
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Structure of subset L-connected graph
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Deficient Set

 Set of veritces U with L neighbors, removing neighbors
separates some pair of terminals.

« |[UNnT|<|U*n T| O call small deficient set.

Small deficient set U

Vertex-Complement U*
30




Cover Deficient Set

* Add an edge between U and U*




Key Idea (Halo-Set method)

* Group deficient sets by notion of halo-families

* Goal: Pay cheap cost to dec #halo-fami by % 1/2
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Core

e An inclusionwise minimal small deficient set

Core contains no other
small deficient sets
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Halo-family of a core C

 Halo(C) = {U : U is a small deficient set, U
contains C and contains no core D # C}
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Some small deficient sets are not in
any halo-family

 Small deficient sets contain = 2 cores are not in
any halo-family.
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Halo-set Method: Framework

e For L=0,1, ..., k
[connectivity augmentation]

e While # of cores > 0

— Compute “cores” and “halo-families”
- Find edges covering all halo-families
 End While

[end connectivity augmentation]
* End For
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Halo-set Method

e In each round, we cover all the halo-families.

olelole

Round 1



Halo-set Method

* Recompute and cover (new) halo-families.

Round 2
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Halo-set Method

* Repeat it again until no cores/halo-families left.

[] terminates in O(log q) round, g = # of cores




Some difficulties

Cores/Halo-families can intersect on terminals
# of Halo-families can be O(|T|?)
# of Halo-families can increase (after adding edges)

No known algo for covering all halo-families
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Solve the difficulties (for |T|= 2L)

Each terminal is in < O(1) Halo-families
Preprocessing [1 decreases # of Halo-families to O(L)

Use max #of terminals-disjoint cores as notion of progress

Main Algo: Cover Halo-families by rooted (L+1)-conn algo.
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Main Algorithm: Observation

e Running rooted (L+1)-conn algorithm with a
root r covers all deficient set containing r.
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Main Algorithm: Observation

e If chosen root ris (1) in a core C or (2) in vertex-
complement of Halo(C), then rooted algo covers Halo(C).




Main Algorithm: Observation

e Halo(C) is NOT covered if chosen root ris (1) in
Halo(C) but not in C or (2) is a neighbor Halo(C).




Main Algorithm: Key Lemma

For |T| = 2L, there is a terminal r such that
1) There are O(1) halo-families of Case 1.
2) There are O(q/2) halo-families of Case 2, where ¢ is # of halo-families.
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REMARK: Bound for (1) is O(L/ (|T] - L) ), Bound for (2)is (q/ (|T]/ L))



Main Algorithm: Description

Covering Procedure:

 Repeat
 Find a terminal r satisfying Key Lemma
» Apply rooted (L+1)-conn from r

 For each Halo(C) of Case 1, choose any terminal t in C and
apply rooted (L+1)-conn from t

o Until all halo-families are covered

« REMARK: We consider only the # of halo-families computed at
the beginning of the round (of Halo-set Method). So, we have to
repeat everything again.
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Sketch of Analysis

Covering Procedure:

e Repeat
« Find a terminal r satisfying Key Lemma
« Apply rooted (L+1)-conn from r

« For each Halo(C) of Case 1, choose any terminal t in C and apply rooted
(L+1)-conn from t

o Until all halo-families are covered

« Key Lemma
0 Cover O(1) halo-fam (Case 1) O Remaining are < q/2 halo-fam (Case 2)

0 # of halo-families decrease geometrically O Need O(log q) rounds
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Combine Everything

e Covering-Procedure solves O(log k) rooted k-conn
« Halo-set method terminates in O(log k) rounds

[J Solves O(log? k) rooted k-conn for conn aug
« Pay O(log k) factor for increase subset conn to k.

[0 O(F(k)log®k) for subset k-conn, where F(k) is approx ratio for
rooted conn augmentation.

(There is O(k)-aprx algo for rooted conn aug by Nutov [FOCS'09].)

More Analysis
[0 approx ratio = O(k log 2k) for |T| = 2k
= O(k log k) for |T| = k?
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Conclusion

* We presented a LabelCover hardness for rooted
subset k-connectivity problem.

» We showed that, for |T| = 2k, F(k)-approx for
rooted connectivity augmentation implies
F(k)log’ k for subset k-connectivity.
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Questions?
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Thank you.
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