Approximation Algorithm for Subset k-Connectivity

Bundit Laekhanukit
School of Computer Science, McGill University
Outline of This Talk

• Problem Formulation
• Structural Properties
• Main Algorithm
Min-cost subset k-connected subgraph problem (Subset k-Conn)
Given a graph with edge-cost, a set of terminals, and requirement k
We want to pay cheap cost to make a graph k-connected on terminals.
E.g, \((k=2)\) all terminals remain connected after removing one vertex.
Min-cost Subset k-Connected Subgraph Problem (subset k-conn)

Input:
- Graph $G = (V, E)$ with non-negative cost on edges
- A set of terminals T.
- An integer k, a requirement

Goal:
- Find a min-cost subgraph $H = (V, E')$.
- H has k-vertex disjoint paths connecting each pair s, t of terminals.

$k = 1$: Steiner tree problem \Rightarrow NP-Hard
Current Status in terms of $|T|$ and k

UB: $|T|^2$ (trivial algorithm)
LB: LabelCover $\approx \Omega(k^\epsilon)$

UB: $O(k^2 \log k)$-approx
LB: APX-Hard
Our Results

$|T|^2$ (trivial algorithm) $O(k \log^2 k)$-approx $O(k \log k)$-approx
Given: $G = (V,E)$, edge-cost, root r, terminal set T
Goal: Find min-cost subgraph having k-disjoint r,t path for each terminal t
Closely related problem rooted subset k-connectivity

Current Status:
UB : $O(k \log k)$-approx, LB : $O(k^\epsilon)$-hardness [Cheriyan, L. '11]
Hardness of rooted \(k \)-conn

- Reduce Directed Steiner Forest to Rooted \(k \)-Conn on Directed Graphs
- Apply Lando-Nutov's Thm to reduce the problem to undirected graphs (with connectivity \(k'=k+|V| \))
- Hardness can be tighten to \(k^\epsilon \) by reducing it directly from LabelCover.
Reducing subset k-connectivity to rooted (subset) k-connectivity

All previous algorithms solve subset k-connectivity by applying rooted k-connectivity algorithm to k terminals (pay a factor of k)
Comparison of Approx Ratio

Subset: $|T|^2$
Rooted: $|T|$
(trivial algorithm)

Subset: $O(k \log^2 k)$
Rooted: $O(k \log k)$

Subset & Rooted: $O(k \log k)$
Subset k-conn is hardest when $|T| = k$
Subset k-conn is hardest when $|T| = k$

$G(k)$-aprx algo for **rooted** k-conn

$F(k)$-aprx algo for **subset** k-conn for $|T| = k$
Subset k-conn is hardest when $|T| = k$

G(k)-aprx algo for \textbf{rooted} k-conn

Choose k terminals

F(k)-aprx algo for \textbf{subset} k-conn for $|T| = k$
Subset k-conn is hardest when $|T| = k$

G(k)-aprx algo for **rooted** k-conn

Choose k terminals

F(k)-aprx algo for **subset** k-conn for $|T| = k$
Subset k-conn is hardest when $|T| = k$

All terminals k connected, Approx Ratio = $G(k) + F(k)$
Outline of our technique

- Use Connectivity Augmentation Framework
- Halo-set Method: Apply rooted k-connectivity algorithm to covering deficient sets
Connectivity Augmentation framework.
Increase connectivity from $L = 1, 2, \ldots, k$
Start from connectivity = 1
Increase connectivity to 2
Increase connectivity to 3
Pay a factor of $O(\log k)$

- LP for Conn. Aug., $L \Rightarrow (L+1)$, asks for one edge covering cut U
- Take integral OPT.
- Scale edges by $1/(k - L)$
 \Rightarrow Sol feasible to LP
- Run k times pay $O(\log k)$
Assume a graph is subset L-connected on T, and we want to increase connectivity to $L+1$
Also, our goal is to attack the case $|T| \geq 2k$
So, we assume $|T| \geq 2L$
Structure of subset L-connected graph
Deficient Set

- Set of vertices U with L neighbors, removing neighbors separates some pair of terminals.

- $|U \cap T| \leq |U^* \cap T| \implies$ call small deficient set.
Cover Deficient Set

• Add an edge between U and U^*
Key Idea (Halo-Set method)

- Group deficient sets by notion of **halo-families**
- Goal: Pay **cheap** cost to dec #halo-fami by $\times 1/2$
Core

• An inclusionwise minimal small deficient set
Halo-family of a core C

- $Halo(C) = \{ U : U \text{ is a small deficient set, } U \text{ contains } C \text{ and contains no core } D \neq C \}$
Some small deficient sets are not in any halo-family

- Small deficient sets contain ≥ 2 cores are not in any halo-family.
Halo-set Method: Framework

- **For** \(L=0,1, \ldots, k \)

 connectivity augmentation

 - **While** # of cores > 0
 - Compute “cores” and “halo-families”
 - Find edges covering all halo-families

 - **End While**

 end connectivity augmentation

- **End For**
Halo-set Method

• In each round, we cover all the halo-families.

Round 1
Halo-set Method

- Recompute and cover (new) halo-families.
Halo-set Method

- Repeat it again until no cores/halo-families left.
 \[\Rightarrow \text{terminates in } O(\log q) \text{ round, } q = \# \text{ of cores} \]
Some difficulties

- Cores/Halo-families can intersect on terminals
- \# of Halo-families can be \(O(|T|^2) \)
- \# of Halo-families can increase (after adding edges)
- No known algo for covering all halo-families
Solve the difficulties (for $|T| \geq 2L$)

- Each terminal is in $\leq O(1)$ Halo-families
- Preprocessing \Rightarrow decreases # of Halo-families to $O(L)$
- Use max # of terminals-disjoint cores as notion of progress
- **Main Algo**: Cover Halo-families by rooted $(L+1)$-conn algo.
Main Algorithm: Observation

- Running rooted \((L + 1)\)-conn algorithm with a root \(r\) covers all deficient set containing \(r\).
Main Algorithm: Observation

- If chosen root r is (1) in a core C or (2) in vertex-complement of $Halo(C)$, then rooted algo covers $Halo(C)$.
Main Algorithm: Observation

- \(\text{Halo}(C)\) is **NOT covered** if chosen root \(r\) is (1) in \(\text{Halo}(C)\) but not in \(C\) or (2) is a neighbor \(\text{Halo}(C)\).
Main Algorithm: Key Lemma

For $|T| \geq 2L$, there is a terminal r such that

1) There are $O(1)$ halo-families of Case 1.

2) There are $O(q/2)$ halo-families of Case 2, where q is # of halo-families.

REMARK: Bound for (1) is $O(L / (|T| - L))$, Bound for (2) is $(q / (|T| / L))$
Main Algorithm: Description

Covering Procedure:

• Repeat
 • Find a terminal r satisfying Key Lemma
 • Apply rooted $(L+1)$-conn from r
 • For each $Halo(C)$ of Case 1, choose any terminal t in C and apply rooted $(L+1)$-conn from t

• Until all halo-families are covered

• REMARK: We consider only the # of halo-families computed at the beginning of the round (of Halo-set Method). So, we have to repeat everything again.
Sketch of Analysis

Covering Procedure:

- **Repeat**
 - Find a terminal r satisfying Key Lemma
 - Apply rooted $(L+1)$-conn from r
 - For each $Halo(C)$ of Case 1, choose any terminal t in C and apply rooted $(L+1)$-conn from t
- **Until** all halo-families are covered

- **Key Lemma**
 \[\Rightarrow \text{Cover O(1) halo-fam (Case 1)} \Rightarrow \text{Remaining are } \leq q/2 \text{ halo-fam (Case 2)} \Rightarrow \text{# of halo-families decrease geometrically} \Rightarrow \text{Need O(log } q \text{) rounds} \]
Combine Everything

- Covering-Procedure solves $O(\log k)$ rooted k-conn
- Halo-set method terminates in $O(\log k)$ rounds
 \Rightarrow Solves $O(\log^2 k)$ rooted k-conn for conn aug
- Pay $O(\log k)$ factor for increase subset conn to k.
 $\Rightarrow O(F(k)\log^3 k)$ for subset k-conn, where $F(k)$ is approx ratio for rooted conn augmentation.

(There is $O(k)$-aprx algo for rooted conn aug by Nutov [FOCS'09].)

More Analysis

\Rightarrow approx ratio = $O(k \log^2 k)$ for $|T| \geq 2k$

$\quad = O(k \log k)$ for $|T| \geq k^2$
Conclusion

- We presented a LabelCover hardness for rooted subset k-connectivity problem.
- We showed that, for $|T| \geq 2k$, $F(k)$-approx for rooted connectivity augmentation implies $F(k) \log^3 k$ for subset k-connectivity.
Questions?
Thank you.