Approximation Algorithm for
Subset k-Connectivity

Bundit Laekhanukit
School of Computer Science, McGill University



Outline of This Talk

e Problem Formulation
e Structural Properties

e Main Algorithm



Min-cost subset k-connected subgraph problem
(Subset k-Conn)



Given a graph with edge-cost, a set
of terminals, and requirement k




We want to pay cheap cost to make a
graph k-connected on terminals.




E.g, (k=2) all terminals remain
connected after removing one vertex




Min-cost Subset k-Connected
Subgraph Problem (subset k-conn)

Input:

« Graph G=(V, E) with non-negative cost on edges
A set of terminals T.

« An integer k, a requirement

Goal:

 Find a min-cost subgraph H=(V, E").

« H has k-vertex disjoint paths connecting each pair s,t of terminals.

k=1: Steiner tree problem [ NP-Hard



Current Status in terms of |T| and k

UB: | T]? (trivial algorithm) UB: O(k? log k)-approx
LB: LabelCover = Q(k) LB: APX-Hard
AN AN
|
7] | >



Our Results

| T]? (trivial algorithm)  O(k log? k)-approx O(k log k)-approx




Closely related problem
rooted subset k-connectivity

root

terminals

Given: G=(V,E), edge-cost, root r, terminal set T
Goal: Find min-cost subgraph having k-disjoint r,t path for each terminal t

10



Closely related problem
rooted subset k-connectivity

root

terminals

Current Status:
UB : O(k log k)-approx, LB : O(k)-hardness [Cheriyan, L. '"11]

11



root

Hardness of rooted k-conn

e Reduce Directed Steiner
Forest to Rooted k-Conn on
Directed Graphs

e Apply Lando-Nutov's Thm to
reduce the problem to
undirected graphs (with
connectivity k'=k+ |V|)

« Hardness can be tighten to k®
by reducing it directly from
LabelCover.

12



Reducing subset k-connectivity to
rooted (subset) k-connectivity

root

terminals

All previous algorithms solve subset k-connectivity by applying rooted
k-connectivity algorithm to k terminals (pay a factor of k)

13



Comparison of Approx Ratio

Subset: | T]° Subset: O(klog? k) Subset & Rooted:
Rooted: | 7] Rooted: O(k log k) O(k log k)
(trivial algorithm)

14



Subset k-conn is hardest when |T|=k

k=3

terminals

15



Subset k-conn is hardest when |T|=k

F(k)-aprx algo for
subset k-conn for

M=k

G(k)-aprx algo for
rooted k-conn

terminals

16



Subset k-conn is hardest when |T|=k

G(k)-aprx algo for
rooted k-conn

A

F(k)-aprx algo for
subset k-conn for

[Tl =kK

w
"

Choose kterminals

terminals

17



Subset k-conn is hardest when |T|=k

G(k)-aprx algo for
rooted k-conn

Auxiliary root
|III|' A F(k)-aprx algo for

subset k-conn for

[Tl =kK

Choose kterminals

terminals

18



Subset k-conn is hardest when |T|=k

G(k)-aprx algo for
rooted k-conn

All terminals k connected, Approx Ratio = G(k) + F(k)

Auxiliary root
|III|' A F(k)-aprx algo for

subset k-conn for

[Tl =kK

Choose kterminals

terminals

19



Outline of our technique

e Use Connectivity Augmentation Framework

e Halo-set Method: Apply rooted k-connectivity
algorithm to covering deficient sets

20



Connectivity Augmentation framework.

21



Increase connectivity from L=1, 2,.., k

22



Start from connectivity = 1

Edge in current graph
— == Edge that can be added

23



Increase connectivity to 2

Edge in current graph
— == Edge that can be added

24



Increase connectivity to 3

N 7
N 7
N 7
N 7
N
7 N
7 N
Edge in current graph

— == Edge that can be added
25



Pay a factor of O(log k)

-, ~
/shared by both sols™ e LP for Conn. Aug.,

L O (L+1), asks for one
edge covering cut U

« Take integral OPT.
e Scale edges by 1/(k - L)
~ [] Sol feasible to LP

* Run k times pay O(log k)

> (k— L) edges
Scale by 1/(k-L)_,

~ -

-

26



Assume a graph is subset L-connected on T,
and we want to increase connectivity to L+1

27



Also, our goal is to attack the case |T| = 2k
So, we assume |T| = 2L

28



Structure of subset L-connected graph

29



Deficient Set

 Set of veritces U with L neighbors, removing neighbors
separates some pair of terminals.

« |[UNnT|<|U*n T| O call small deficient set.

Small deficient set U

Vertex-Complement U*
30




Cover Deficient Set

* Add an edge between U and U*




Key Idea (Halo-Set method)

* Group deficient sets by notion of halo-families

* Goal: Pay cheap cost to dec #halo-fami by % 1/2

32




Core

e An inclusionwise minimal small deficient set

Core contains no other
small deficient sets

33



Halo-family of a core C

 Halo(C) = {U : U is a small deficient set, U
contains C and contains no core D # C}

34



Some small deficient sets are not in
any halo-family

 Small deficient sets contain = 2 cores are not in
any halo-family.

35



Halo-set Method: Framework

e For L=0,1, ..., k
[connectivity augmentation]

e While # of cores > 0

— Compute “cores” and “halo-families”
- Find edges covering all halo-families
 End While

[end connectivity augmentation]
* End For

36



Halo-set Method

e In each round, we cover all the halo-families.

olelole

Round 1



Halo-set Method

* Recompute and cover (new) halo-families.

Round 2

38



Halo-set Method

* Repeat it again until no cores/halo-families left.

[] terminates in O(log q) round, g = # of cores




Some difficulties

Cores/Halo-families can intersect on terminals
# of Halo-families can be O(|T|?)
# of Halo-families can increase (after adding edges)

No known algo for covering all halo-families

40



Solve the difficulties (for |T|= 2L)

Each terminal is in < O(1) Halo-families
Preprocessing [1 decreases # of Halo-families to O(L)

Use max #of terminals-disjoint cores as notion of progress

Main Algo: Cover Halo-families by rooted (L+1)-conn algo.

41



Main Algorithm: Observation

e Running rooted (L+1)-conn algorithm with a
root r covers all deficient set containing r.

42



Main Algorithm: Observation

e If chosen root ris (1) in a core C or (2) in vertex-
complement of Halo(C), then rooted algo covers Halo(C).




Main Algorithm: Observation

e Halo(C) is NOT covered if chosen root ris (1) in
Halo(C) but not in C or (2) is a neighbor Halo(C).




Main Algorithm: Key Lemma

For |T| = 2L, there is a terminal r such that
1) There are O(1) halo-families of Case 1.
2) There are O(q/2) halo-families of Case 2, where ¢ is # of halo-families.

45

REMARK: Bound for (1) is O(L/ (|T] - L) ), Bound for (2)is (q/ (|T]/ L))



Main Algorithm: Description

Covering Procedure:

 Repeat
 Find a terminal r satisfying Key Lemma
» Apply rooted (L+1)-conn from r

 For each Halo(C) of Case 1, choose any terminal t in C and
apply rooted (L+1)-conn from t

o Until all halo-families are covered

« REMARK: We consider only the # of halo-families computed at
the beginning of the round (of Halo-set Method). So, we have to
repeat everything again.

46



Sketch of Analysis

Covering Procedure:

e Repeat
« Find a terminal r satisfying Key Lemma
« Apply rooted (L+1)-conn from r

« For each Halo(C) of Case 1, choose any terminal t in C and apply rooted
(L+1)-conn from t

o Until all halo-families are covered

« Key Lemma
0 Cover O(1) halo-fam (Case 1) O Remaining are < q/2 halo-fam (Case 2)

0 # of halo-families decrease geometrically O Need O(log q) rounds

47



Combine Everything

e Covering-Procedure solves O(log k) rooted k-conn
« Halo-set method terminates in O(log k) rounds

[J Solves O(log? k) rooted k-conn for conn aug
« Pay O(log k) factor for increase subset conn to k.

[0 O(F(k)log®k) for subset k-conn, where F(k) is approx ratio for
rooted conn augmentation.

(There is O(k)-aprx algo for rooted conn aug by Nutov [FOCS'09].)

More Analysis
[0 approx ratio = O(k log 2k) for |T| = 2k
= O(k log k) for |T| = k?

48



Conclusion

* We presented a LabelCover hardness for rooted
subset k-connectivity problem.

» We showed that, for |T| = 2k, F(k)-approx for
rooted connectivity augmentation implies
F(k)log’ k for subset k-connectivity.

49



Questions?

50



Thank you.

51



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

