7686 - Adv. Combinatorial Optimization Homework 3 (due March 13)

Note: You can discuss the homework with other students. But you have to write your own solutions. Also write the name of everyone you discussed with.

- 1. Let G = (V, E) be an undirected graph with non-negative edge lengths $w : E \to \mathbb{R}_+$. Given nodes s, t we wish to find a shortest s-t path with an odd number of edges. Show that this problem can be solved via matching techniques by following the hint below. Suppose s, t have degree 1. Consider the reduction of the maximum weight matching problem to the maximum weight perfect matching problem. Adapt this reduction and show how a perfect matching can be used to obtain a shortest odd length path from s to t. How can you get rid of the assumption that s, t have degree 1? Extend the ideas for finding a shortest even length s-t path.
- 2. Petersens theorem states that every bridgeless (no cut-edge) cubic graph has a perfect matching. Show that this follows (easily) from Tutte-Berge formula. Moreover, show that every bridgeless cubic-graph has a T-join of size at most $\frac{|V|}{2}$ for any even $T \subseteq V$.
- 3. Let $\mathcal{M} = (S, \mathcal{I})$ be a matroid and $Y, Z \subseteq S$. Show the following.
 - (a) $(\mathcal{M}^*)^* = \mathcal{M}.$
 - (b) $\mathcal{M}/Z = (\mathcal{M}^* \setminus Z)^*$ where \mathcal{M}/Z is the contracted matroid.
 - (c) $(\mathcal{M} \setminus Y)/Z = (\mathcal{M}/Z) \setminus Y$, i.e., deletion and contraction commute.
- 4. Let G = (V, E) be a graph. Let \mathcal{I} be the collection of those subsets Y of E so that Y has at most one circuit. Show that (E, \mathcal{I}) is a matroid.
- 5. Let G = (V, E) be a connected graph. For each subset E_0 of E, let $\kappa(V, E_0)$ denote the number of components of the graph (V, E_0) . Let \mathcal{M} denote the graphic matroid for graph G. Show that for each $E_0 \subseteq E$:
 - (a) $r_{\mathcal{M}}(E_0) = |V| \kappa(V, E_0).$
 - (b) $r_{\mathcal{M}^*}(E_0) = |E'| \kappa(V, E \setminus E') + 1.$
- 6. Let G = (V, E) be a hypergraph, that is each $e \in E$ is a hyperedge, in other words $e \subseteq V$. We say that $X \subseteq E$ a forest-representable if one can choose for each $e \in X$ two nodes in e such that the chosen pairs when viewed as edges form a forest on V. Prove that (E, \mathcal{I}) is a matroid where $\mathcal{I} = \{X \subseteq E | X \text{ is forest-representable} \}$. This is called the hypergraphic matroid.