Metric Embedddings

Lecture notes by Konstantin Makarychev

1 Bourgain's Theorem

Consider a vector x in an m dimensional space \mathbb{R}^m . The ℓ_p norm of x is defined as follows

$$||x||_p = \left(\sum_{i=1}^m |x_i|^p\right)^{1/p}$$

for $p \ge 1$. Particularly, for p = 1, we have

$$\|x\|_1 = \sum_{i=1}^m |x_i|.$$

The ℓ_1 distance between two vectors x and y equals $||x - y||_1$:

$$||x - y||_1 = \sum_{i=1}^m |x_i - y_i|.$$

We say that a metric space (V, d) embeds into ℓ_1 with distortion D if there exists a map $\varphi : V \to \mathbb{R}^m$ (for some m) and positive numbers α and β such that $\beta/\alpha \leq D$ and for every $u, v \in V$:

$$\alpha \, d(u, v) \le \|\varphi(u) - \varphi(v)\|_1 \le \beta \, d(u, v).$$

Note that by rescaling vectors $\varphi(u)$ we may always assume that either α or β equals 1.

Theorem 1.1 (Bourgain). Every finite metric space embeds into ℓ_1 with distortion $D = O(\log n)$, where n = |V|.

1.1 Frechet Embeddings

To prove Bourgain's theorem we need the notion of Frechet embeddings.

Fix a metric space (V, d) and consider a $2^n - 1$ dimensional space indexed by non-empty subsets $Z \subset V$. In this space, the coordinates of any point x are numbers x_Z for all non-empty $Z \subset V$. We denote the space by X. Now, for any probabilistic distribution \mathcal{D} of subsets $Z \subset V$, we define an embedding φ to X as follows:

$$\varphi(u)_Z = \Pr_{\mathcal{D}}(Z) \cdot d(u, Z).$$

Here, d(u, Z) denotes the distance from u to the set Z, which equals (by definition)

$$d(u, Z) = \min_{z \in Z} d(u, z).$$

Lemma 1.2. Frechet embeddings do not increase distances: for every Frechet embedding φ and every u and v in V,

$$\|\varphi(u) - \varphi(v)\|_1 \le d(u, v).$$

Let us first verify that the distance to a given set satisfies the triangle inequality.

Lemma 1.3. For every $u, v \in V$, and every set $Z \subset V$,

$$|d(u,Z) - d(v,Z)| \le d(u,v).$$

Proof. Assume without loss of generality that $d(u, Z) \ge d(v, Z)$. By the definition $d(v, Z) = d(v, z^*)$ for some $z^* \in Z$. Observe that

$$d(u,Z) = \min_{z \in Z} d(u,z) \le d(u,z^*)$$

Thus,

$$|d(u,Z) - d(v,Z)| = d(u,Z) - d(v,Z) \le d(u,z^*) - d(v,z^*) \le d(u,v).$$

Proof of Lemma 1.2. Pick arbitrary vertices u and v. The distance between $\varphi(u)$ and $\varphi(v)$ equals:

$$\|\varphi(u) - \varphi(v)\|_1 = \sum_{Z \subset V: Z \neq \varnothing} \Pr_{\mathcal{D}}(Z) \ |d(u, Z) - d(v, Z)|.$$

By Lemma 1.3, $|d(u, Z) - d(v, Z)| \le d(u, v)$. Hence,

$$\|\varphi(u) - \varphi(v)\|_1 \le \sum_{Z \subset V: Z \neq \varnothing} \Pr_{\mathcal{D}}(Z) d(u, v) \le d(u, v),$$

since $\sum_{Z \subset V} \Pr_{\mathcal{D}}(Z) = 1$.

To prove Bourgain's theorem, we need to find a probabilistic distribution \mathcal{D} such that

$$\|\varphi(u) - \varphi(v)\|_1 = \sum_{Z \subset V: Z \neq \emptyset} \Pr_{\mathcal{D}}(Z) |d(u, Z) - d(v, Z)| \ge \frac{d(u, v)}{O(\log n)}.$$

Then, we will have

$$\frac{d(u,v)}{O(\log n)} \le \|\varphi(u) - \varphi(v)\|_1 \le d(u,v).$$

We define \mathcal{D} on $Z \subset V$ via the following randomized algorithm:

- 1. Pick a random number $t \in \{1, \ldots, \lceil \ln n \rceil\}$. Let $p = 1 \exp(-e^{-t})$.
- 2. Pick each element v in Z independently at random with probability p, and add it to the set Z.
- 3. Return the set Z.

Lemma 1.4. Consider two disjoint non-empty sets $A \subset V$ and $B \subset V$. Then,

$$\Pr_{\mathcal{D}}(Z \cap A = \varnothing; \ Z \cap B \neq \varnothing) + \Pr_{\mathcal{D}}(Z \cap A \neq \varnothing; \ Z \cap B = \varnothing) \ge \frac{1}{10 \lceil \ln n \rceil}.$$

		1
_	_	

Proof. Assume without loss of generality that $|A| \ge |B|$. We estimate the probability of the event

$$\{Z \cap A \neq \emptyset; \text{ and } Z \cap B = \emptyset\}.$$

Write,

$$\begin{aligned}
&\Pr_{\mathcal{D}}(Z \cap A \neq \emptyset; \ Z \cap B = \emptyset) &= \frac{1}{\lceil \ln n \rceil} \sum_{i=1}^{\lceil \ln n \rceil} \Pr_{\mathcal{D}}(Z \cap A \neq \emptyset; \ Z \cap B = \emptyset \mid t = i) \\
&= \frac{1}{\lceil \ln n \rceil} \sum_{i=1}^{\lceil \ln n \rceil} \Pr_{\mathcal{D}}(Z \cap A \neq \emptyset \mid t = i) \cdot \Pr_{\mathcal{D}}(Z \cap B = \emptyset \mid t = i).
\end{aligned}$$

Here we used that the sets A and B are disjoint, and hence the events $\{Z \cap A \neq \emptyset\}$ and $\{Z \cap B = \emptyset\}$ are independent for any fixed t. Now, fix $i \in \{1, \ldots, \lceil \ln n \rceil\}$.

$$\begin{split} \Pr_{\mathcal{D}}(Z \cap B = \varnothing \quad | \quad t = i) &= \prod_{v \in B} \Pr_{\mathcal{D}}(v \text{ is not chosen in } Z \quad | \quad t = i) \\ &= \prod_{v \in B} (1 - (1 - \exp(-e^{-i}))) \\ &= \prod_{v \in B} \exp(-e^{-i}) = \exp(-|B|e^{-i}) = \exp(-e^{\ln|B|-i}) \end{split}$$

Similarly,

$$\Pr_{\mathcal{D}}(Z \cap A \neq \varnothing \mid t = i) = 1 - \exp(-e^{\ln|A| - i}).$$

Therefore,

$$\begin{aligned} \Pr_{\mathcal{D}}(Z \cap A \neq \emptyset; \ Z \cap B = \emptyset) &= \frac{1}{\lceil \ln n \rceil} \sum_{i=1}^{\lceil \ln n \rceil} \Pr_{\mathcal{D}}(Z \cap A \neq \emptyset \mid t = i) \cdot \Pr_{\mathcal{D}}(Z \cap B = \emptyset \mid t = i) \\ &= \frac{1}{\lceil \ln n \rceil} \sum_{i=1}^{\lceil \ln n \rceil} (1 - \exp(-e^{\ln |A| - i})) \cdot \exp(-e^{\ln |B| - i}). \end{aligned}$$

Note that all terms in the sum are positive, and for $i = \lceil \ln |A| \rceil$,

$$(1 - \exp(-e^{\ln|A| - i})) \cdot \exp(-e^{\ln|B| - i}) \ge (1 - \exp(-e^{-1})) \exp(-e^{0}) \ge \frac{1}{10}.$$

The last inequality can be checked numerically. Therefore,

$$\Pr_{\mathcal{D}}(Z \cap A \neq \emptyset; \ Z \cap B = \emptyset) \ge \frac{1}{10 \lceil \ln n \rceil}.$$

This completes the proof.

We are now ready to finish the proof of Bourgain's theorem. Recall, that it remains to show that $\|\varphi(u) - \varphi(v)\|_1 \ge d(u, v) / O(\log n)$ for every $u, v \in V$. Write,

$$\|\varphi(u) - \varphi(v)\|_1 = \sum_{Z \subset V: Z \neq \varnothing} \Pr_{\mathcal{D}}(Z) |d(u, Z) - d(v, Z)|.$$

Observe that for every nonnegative numbers a and b,

$$|a-b| = \int_0^\infty I(a \le r \le b) + I(b \le r \le a)dr,$$

where $I(a \leq r \leq b)$ and $I(b \leq r \leq a)$ are the indicator functions of the events $\{a \leq r \leq b\}$ and $\{b \leq r \leq a\}$ respectively. Using this observation for a = d(u, Z) and b = d(v, Z), we get

$$|d(u,Z) - d(v,Z)| = \int_0^\infty I(d(u,Z) \le r \le d(v,Z)) + I(d(v,Z) \le r \le d(u,Z))dr$$

Consequently,

$$\begin{aligned} \|\varphi(u) - \varphi(v)\|_{1} &= \sum_{Z \subset V: Z \neq \varnothing} \Pr(Z) |d(u, Z) - d(v, Z)| \\ &= \sum_{Z \subset V: Z \neq \varnothing} \Pr(Z) \int_{0}^{\infty} I(d(u, Z) \leq r \leq d(v, Z)) + I(d(v, Z) \leq r \leq d(u, Z)) dr \\ &\int_{0}^{\infty} \sum_{Z \subset V: Z \neq \varnothing} \Pr(Z) \left(I(d(u, Z) \leq r \leq d(v, Z)) + I(d(v, Z) \leq r \leq d(u, Z)) \right) dr \\ &= \int_{0}^{\infty} \Pr_{Z \sim \mathcal{D}} (d(u, Z) \leq r \leq d(v, Z)) + \Pr_{Z \sim \mathcal{D}} (d(v, Z) \leq r \leq d(u, Z)) \right) dr. \end{aligned}$$
(1)

Let Ball(u, r) be the ball of radius r around u in the metric space V i.e.,

$$Ball(u, r) = \{ w \in V : d(u, w) \le r \}.$$

Then,

$$\begin{split} &\Pr_{Z\sim\mathcal{D}}(d(u,Z)\leq r\leq d(v,Z))=\Pr_{Z\sim\mathcal{D}}(\mathrm{Ball}(u,r)\cap Z\neq\varnothing;\;\mathrm{Ball}(v,r)\cap Z=\varnothing);\\ &\Pr_{Z\sim\mathcal{D}}(d(v,Z)\leq r\leq d(u,Z))=\Pr_{Z\sim\mathcal{D}}(\mathrm{Ball}(v,r)\cap Z\neq\varnothing;\;\mathrm{Ball}(u,r)\cap Z=\varnothing); \end{split}$$

Note that the balls Ball(u, r) and Ball(v, r) are disjoint if r < d(u, v)/2 and are non-empty for every $r \ge 0$ (simply because $u \in Ball(u, r)$ and $v \in Ball(v, r)$). Thus, by Lemma 1.4, for $r \le d(u, v)/2$,

$$\Pr_{Z \sim \mathcal{D}}(d(u, Z) \le r \le d(v, Z)) + \Pr_{Z \sim \mathcal{D}}(d(v, Z) \le r \le d(u, Z)) \ge \frac{1}{10 \lceil \ln n \rceil}.$$

Plugging this bound in (1), we get

$$\|\varphi(u) - \varphi(v)\|_1 \ge \frac{d(u, v)}{10 \lceil \ln n \rceil}.$$

This concludes the proof of Bourgain's theorem.

2 ℓ_1 as a positive combination of cut metrics

We now show that every ℓ_1 metric can be represented as a positive combination of cut metrics and, conversely, every positive combination of cut metrics can be isometrically embedded into ℓ_1 . Recall, that for every subset $S \subset V$ the cut metric is defined as follows:

$$\delta_S(x,y) = \begin{cases} 1, & \text{if } u \in S, v \notin S \text{ or } u \notin S, v \in S; \\ 0, & \text{if } u \in S, v \in S \text{ or } u \notin S, v \notin S. \end{cases}$$

Theorem 2.1. If the distance function d of a metric space (V, d) can be represented as

$$d(u,v) = \sum_{S \subset V} \lambda_S \delta_S(u,v)$$

for some nonnegative numbers λ_S (here δ_S are cut metrics), then (V,d) can be isometrically embedded into ℓ_1 .

Proof. We define an embedding φ from (V, d) into $2^{|V|}$ dimensional ℓ_1 space. We index the coordinates of the host space by subsets $S \subset V$. Let

$$\varphi(u)_S = \begin{cases} \lambda_S, & \text{if } u \in S; \\ 0, & \text{if } u \notin S. \end{cases}$$

Then,

$$\|\varphi(u) - \varphi(v)\|_1 = \sum_{S \subset V} |\varphi(u)_S - \varphi(v)_S|.$$

Observe that $|\varphi(u)_S - \varphi(v)_S| = \lambda_S \delta_S(u, v)$. To verify this equality just consider four cases $u \in S$; $v \in S$, $u \in S$; $v \notin S$, $u \notin S$; $v \notin S$, $u \notin S$; $v \notin S$. Thus,

$$\|\varphi(u) - \varphi(v)\|_1 = \sum_{S \subset V} \lambda_S \delta_S(u, v) = d(u, v).$$

Theorem 2.2. For every finite subset X of \mathbb{R}^m , there exists nonnegative numbers λ_S (where $S \subset X$) such that for all $x, y \in X$

$$\|x - y\|_1 = \sum_{S \subset X} \delta_S(x, y).$$

Proof. Let $M = \max_{\substack{x \in X \\ 1 \leq i \leq d}} |x_i|$. We chose M in such a way that all coordinates x_i lied in the range [-M, M]. Consider the following random process: Pick a random $i \in \{1, \ldots, d\}$. Pick a random $t \in [-M, M]$. Output the set $U = \{x \in X : x_i \leq t\}$. This procedure defines a probabilistic distribution on the set of all subsets of X. We now let

$$\lambda_S = \Pr(U = S)$$

and $d(x,y) = \sum_{S \subset X} \lambda_S \delta_S(x,y)$. Then, we have

$$d(x,y) = \sum_{S \subset X} \lambda_S \delta_S(x,y) = \sum_{S \subset X} \Pr(U=S) \delta_S(x,y)$$

= $\mathbb{E}_U[\delta_U(x,y)]$
= $\Pr(x \in U; y \notin U) + \Pr(x \notin U; y \in U)$
= $\Pr(x_i \le t < y_i) + \Pr(y_i \le t < x_i)$
= $\frac{1}{m} \sum_{i=1}^m \frac{|x_i - y_i|}{M}$
= $\frac{||x - y||_1}{Mm}$.

We now rescale λ by Mm: we let $\lambda'_S = mM\lambda_S$. For $d'(x,y) = \sum_{S \subset X} \lambda'_S \delta_S(x,y)$, we have $d'(x,y) = ||x - y||_1$. This finishes the proof.