
Metric Embedddings

Lecture notes by Konstantin Makarychev

1 Bourgain’s Theorem

Consider a vector x in an m dimensional space Rm. The `p norm of x is defined as follows

‖x‖p =
( m∑
i=1

|xi|p
)1/p

for p ≥ 1. Particularly, for p = 1, we have

‖x‖1 =
m∑
i=1

|xi|.

The `1 distance between two vectors x and y equals ‖x− y‖1:

‖x− y‖1 =
m∑
i=1

|xi − yi|.

We say that a metric space (V, d) embeds into `1 with distortion D if there exists a map ϕ : V → Rm

(for some m) and positive numbers α and β such that β/α ≤ D and for every u, v ∈ V :

αd(u, v) ≤ ‖ϕ(u)− ϕ(v)‖1 ≤ β d(u, v).

Note that by rescaling vectors ϕ(u) we may always assume that either α or β equals 1.

Theorem 1.1 (Bourgain). Every finite metric space embeds into `1 with distortion D = O(log n), where
n = |V |.

1.1 Frechet Embeddings

To prove Bourgain’s theorem we need the notion of Frechet embeddings.
Fix a metric space (V, d) and consider a 2n − 1 dimensional space indexed by non-empty subsetsZ ⊂ V .

In this space, the coordinates of any point x are numbers xZ for all non-empty Z ⊂ V . We denote the space
by X . Now, for any probabilistic distribution D of subsets Z ⊂ V , we define an embedding ϕ to X as
follows:

ϕ(u)Z = Pr
D
(Z) · d(u, Z).

Here, d(u, Z) denotes the distance from u to the set Z, which equals (by definition)

d(u, Z) = min
z∈Z

d(u, z).
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Lemma 1.2. Frechet embeddings do not increase distances: for every Frechet embedding ϕ and every u and
v in V ,

‖ϕ(u)− ϕ(v)‖1 ≤ d(u, v).

Let us first verify that the distance to a given set satisfies the triangle inequality.

Lemma 1.3. For every u, v ∈ V , and every set Z ⊂ V ,

|d(u, Z)− d(v, Z)| ≤ d(u, v).

Proof. Assume without loss of generality that d(u, Z) ≥ d(v, Z). By the definition d(v, Z) = d(v, z∗) for
some z∗ ∈ Z. Observe that

d(u, Z) = min
z∈Z

d(u, z) ≤ d(u, z∗).

Thus,
|d(u, Z)− d(v, Z)| = d(u, Z)− d(v, Z) ≤ d(u, z∗)− d(v, z∗) ≤ d(u, v).

Proof of Lemma 1.2. Pick arbitrary vertices u and v. The distance between ϕ(u) and ϕ(v) equals:

‖ϕ(u)− ϕ(v)‖1 =
∑

Z⊂V :Z 6=∅

Pr
D
(Z) |d(u, Z)− d(v, Z)|.

By Lemma 1.3, |d(u, Z)− d(v, Z)| ≤ d(u, v). Hence,

‖ϕ(u)− ϕ(v)‖1 ≤
∑

Z⊂V :Z 6=∅

Pr
D
(Z)d(u, v) ≤ d(u, v),

since
∑

Z⊂V PrD(Z) = 1.

To prove Bourgain’s theorem, we need to find a probabilistic distribution D such that

‖ϕ(u)− ϕ(v)‖1 =
∑

Z⊂V :Z 6=∅

Pr
D
(Z)|d(u, Z)− d(v, Z)| ≥ d(u, v)

O(log n)
.

Then, we will have
d(u, v)

O(log n)
≤ ‖ϕ(u)− ϕ(v)‖1 ≤ d(u, v).

We define D on Z ⊂ V via the following randomized algorithm:

1. Pick a random number t ∈ {1, . . . , dlnne}. Let p = 1− exp(−e−t).

2. Pick each element v in Z independently at random with probability p, and add it to the set Z.

3. Return the set Z.

Lemma 1.4. Consider two disjoint non-empty sets A ⊂ V and B ⊂ V . Then,

Pr
D
(Z ∩A = ∅; Z ∩B 6= ∅) + Pr

D
(Z ∩A 6= ∅; Z ∩B = ∅) ≥ 1

10dlnne
.
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Proof. Assume without loss of generality that |A| ≥ |B|. We estimate the probability of the event

{Z ∩A 6= ∅; and Z ∩B = ∅}.

Write,

Pr
D
(Z ∩A 6= ∅; Z ∩B = ∅) =

1

dlnne

dlnne∑
i=1

Pr
D
(Z ∩A 6= ∅; Z ∩B = ∅ | t = i)

=
1

dlnne

dlnne∑
i=1

Pr
D
(Z ∩A 6= ∅ | t = i) · Pr

D
(Z ∩B = ∅ | t = i).

Here we used that the sets A and B are disjoint, and hence the events {Z ∩ A 6= ∅} and {Z ∩ B = ∅} are
independent for any fixed t. Now, fix i ∈ {1, . . . , dlnne}.

Pr
D
(Z ∩B = ∅ | t = i) =

∏
v∈B

Pr
D
(v is not chosen in Z | t = i)

=
∏
v∈B

(1− (1− exp(−e−i)))

=
∏
v∈B

exp(−e−i) = exp(−|B|e−i) = exp(−eln |B|−i).

Similarly,
Pr
D
(Z ∩A 6= ∅ | t = i) = 1− exp(−eln |A|−i).

Therefore,

Pr
D
(Z ∩A 6= ∅; Z ∩B = ∅) =

1

dlnne

dlnne∑
i=1

Pr
D
(Z ∩A 6= ∅ | t = i) · Pr

D
(Z ∩B = ∅ | t = i)

=
1

dlnne

dlnne∑
i=1

(1− exp(−eln |A|−i)) · exp(−eln |B|−i).

Note that all terms in the sum are positive, and for i = dln |A|e,

(1− exp(−eln |A|−i)) · exp(−eln |B|−i) ≥ (1− exp(−e−1)) exp(−e0) ≥ 1

10
.

The last inequality can be checked numerically. Therefore,

Pr
D
(Z ∩A 6= ∅; Z ∩B = ∅) ≥ 1

10dlnne
.

This completes the proof.

We are now ready to finish the proof of Bourgain’s theorem. Recall, that it remains to show that ‖ϕ(u)−
ϕ(v)‖1 ≥ d(u, v)/O(log n) for every u, v ∈ V . Write,

‖ϕ(u)− ϕ(v)‖1 =
∑

Z⊂V :Z 6=∅

Pr
D
(Z)|d(u, Z)− d(v, Z)|.
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Observe that for every nonnegative numbers a and b,

|a− b| =
∫ ∞
0

I(a ≤ r ≤ b) + I(b ≤ r ≤ a)dr,

where I(a ≤ r ≤ b) and I(b ≤ r ≤ a) are the indicator functions of the events {a ≤ r ≤ b} and
{b ≤ r ≤ a} respectively. Using this observation for a = d(u, Z) and b = d(v, Z), we get

|d(u, Z)− d(v, Z)| =
∫ ∞
0

I(d(u, Z) ≤ r ≤ d(v, Z)) + I(d(v, Z) ≤ r ≤ d(u, Z))dr.

Consequently,

‖ϕ(u)− ϕ(v)‖1 =
∑

Z⊂V :Z 6=∅

Pr
D
(Z)|d(u, Z)− d(v, Z)| (1)

=
∑

Z⊂V :Z 6=∅

Pr
D
(Z)

∫ ∞
0

I(d(u, Z) ≤ r ≤ d(v, Z)) + I(d(v, Z) ≤ r ≤ d(u, Z))dr∫ ∞
0

∑
Z⊂V :Z 6=∅

Pr
D
(Z)
(
I(d(u, Z) ≤ r ≤ d(v, Z)) + I(d(v, Z) ≤ r ≤ d(u, Z))

)
dr

=

∫ ∞
0

Pr
Z∼D

(d(u, Z) ≤ r ≤ d(v, Z)) + Pr
Z∼D

(d(v, Z) ≤ r ≤ d(u, Z))
)
dr.

Let Ball(u, r) be the ball of radius r around u in the metric space V i.e.,

Ball(u, r) = {w ∈ V : d(u,w) ≤ r}.

Then,

Pr
Z∼D

(d(u, Z) ≤ r ≤ d(v, Z)) = Pr
Z∼D

(Ball(u, r) ∩ Z 6= ∅; Ball(v, r) ∩ Z = ∅);

Pr
Z∼D

(d(v, Z) ≤ r ≤ d(u, Z)) = Pr
Z∼D

(Ball(v, r) ∩ Z 6= ∅; Ball(u, r) ∩ Z = ∅);

Note that the balls Ball(u, r) and Ball(v, r) are disjoint if r < d(u, v)/2 and are non-empty for every r ≥ 0
(simply because u ∈ Ball(u, r) and v ∈ Ball(v, r)). Thus, by Lemma 1.4, for r ≤ d(u, v)/2,

Pr
Z∼D

(d(u, Z) ≤ r ≤ d(v, Z)) + Pr
Z∼D

(d(v, Z) ≤ r ≤ d(u, Z)) ≥ 1

10dlnne
.

Plugging this bound in (1), we get

‖ϕ(u)− ϕ(v)‖1 ≥
d(u, v)

10dlnne
.

This concludes the proof of Bourgain’s theorem.

2 `1 as a positive combination of cut metrics

We now show that every `1 metric can be represented as a positive combination of cut metrics and, con-
versely, every positive combination of cut metrics can be isometrically embedded into `1. Recall, that for
every subset S ⊂ V the cut metric is defined as follows:

δS(x, y) =

{
1, if u ∈ S, v /∈ S or u /∈ S, v ∈ S;
0, if u ∈ S, v ∈ S or u /∈ S, v /∈ S.
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Theorem 2.1. If the distance function d of a metric space (V, d) can be represented as

d(u, v) =
∑
S⊂V

λSδS(u, v)

for some nonnegative numbers λS (here δS are cut metrics), then (V, d) can be isometrically embedded
into `1.

Proof. We define an embedding ϕ from (V, d) into 2|V | dimensional `1 space. We index the coordinates of
the host space by subsets S ⊂ V . Let

ϕ(u)S =

{
λS , if u ∈ S;
0, if u /∈ S.

Then,
‖ϕ(u)− ϕ(v)‖1 =

∑
S⊂V
|ϕ(u)S − ϕ(v)S |.

Observe that |ϕ(u)S − ϕ(v)S | = λSδS(u, v). To verify this equality just consider four cases u ∈ S; v ∈ S,
u ∈ S; v /∈ S, u /∈ S; v ∈ S, u /∈ S; v /∈ S. Thus,

‖ϕ(u)− ϕ(v)‖1 =
∑
S⊂V

λSδS(u, v) = d(u, v).

Theorem 2.2. For every finite subset X of Rm, there exists nonnegative numbers λS (where S ⊂ X) such
that for all x, y ∈ X

‖x− y‖1 =
∑
S⊂X

δS(x, y).

Proof. Let M = max x∈X
1≤i≤d

|xi|. We chose M in such a way that all coordinates xi lied in the range

[−M,M ]. Consider the following random process: Pick a random i ∈ {1, . . . , d}. Pick a random t ∈
[−M,M ]. Output the set U = {x ∈ X : xi ≤ t}. This procedure defines a probabilistic distribution on the
set of all subsets of X . We now let

λS = Pr(U = S)

and d(x, y) =
∑

S⊂X λSδS(x, y). Then, we have

d(x, y) =
∑
S⊂X

λSδS(x, y) =
∑
S⊂X

Pr(U = S)δS(x, y)

= EU [δU (x, y)]

= Pr(x ∈ U ; y /∈ U) + Pr(x /∈ U ; y ∈ U)

= Pr(xi ≤ t < yi) + Pr(yi ≤ t < xi)

=
1

m

m∑
i=1

|xi − yi|
M

=
‖x− y‖1
Mm

.

We now rescale λ by Mm: we let λ′S = mMλS . For d′(x, y) =
∑

S⊂X λ′SδS(x, y), we have d′(x, y) =
‖x− y‖1. This finishes the proof.
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