Metric Embedddings

Lecture notes by Konstantin Makarychev

1 Bourgain's Theorem

Consider a vector x in an m dimensional space \mathbb{R}^m . The ℓ_p norm of x is defined as follows

$$
||x||_p = \left(\sum_{i=1}^m |x_i|^p\right)^{1/p}
$$

for $p \geq 1$. Particularly, for $p = 1$, we have

$$
||x||_1 = \sum_{i=1}^m |x_i|.
$$

The ℓ_1 distance between two vectors x and y equals $||x - y||_1$:

$$
||x - y||_1 = \sum_{i=1}^{m} |x_i - y_i|.
$$

We say that a metric space (V, d) embeds into ℓ_1 with distortion D if there exists a map $\varphi : V \to \mathbb{R}^m$ (for some m) and positive numbers α and β such that $\beta/\alpha \leq D$ and for every $u, v \in V$:

$$
\alpha d(u, v) \le ||\varphi(u) - \varphi(v)||_1 \le \beta d(u, v).
$$

Note that by rescaling vectors $\varphi(u)$ we may always assume that either α or β equals 1.

Theorem 1.1 (Bourgain). *Every finite metric space embeds into* ℓ_1 *with distortion* $D = O(\log n)$ *, where* $n = |V|$.

1.1 Frechet Embeddings

To prove Bourgain's theorem we need the notion of Frechet embeddings.

Fix a metric space (V, d) and consider a $2^n - 1$ dimensional space indexed by non-empty subsets $Z \subset V$. In this space, the coordinates of any point x are numbers x_Z for all non-empty $Z \subset V$. We denote the space by X. Now, for any probabilistic distribution D of subsets $Z \subset V$, we define an embedding φ to X as follows:

$$
\varphi(u)_Z = \Pr_{\mathcal{D}}(Z) \cdot d(u, Z).
$$

Here, $d(u, Z)$ denotes the distance from u to the set Z, which equals (by definition)

$$
d(u, Z) = \min_{z \in Z} d(u, z).
$$

Lemma 1.2. Frechet embeddings do not increase distances: for every Frechet embedding φ and every u and v *in* V ,

$$
\|\varphi(u) - \varphi(v)\|_1 \le d(u, v).
$$

Let us first verify that the distance to a given set satisfies the triangle inequality.

Lemma 1.3. *For every* $u, v \in V$ *, and every set* $Z \subset V$ *,*

$$
|d(u, Z) - d(v, Z)| \le d(u, v).
$$

Proof. Assume without loss of generality that $d(u, Z) \ge d(v, Z)$. By the definition $d(v, Z) = d(v, z^*)$ for some $z^* \in Z$. Observe that

$$
d(u, Z) = \min_{z \in Z} d(u, z) \le d(u, z^*).
$$

Thus,

$$
|d(u, Z) - d(v, Z)| = d(u, Z) - d(v, Z) \le d(u, z^*) - d(v, z^*) \le d(u, v).
$$

Proof of Lemma 1.2. Pick arbitrary vertices u and v. The distance between $\varphi(u)$ and $\varphi(v)$ equals:

$$
\|\varphi(u) - \varphi(v)\|_1 = \sum_{Z \subset V: Z \neq \varnothing} \Pr_{\mathcal{D}}(Z) \, |d(u, Z) - d(v, Z)|.
$$

By Lemma 1.3, $|d(u, Z) - d(v, Z)| \le d(u, v)$. Hence,

$$
\|\varphi(u) - \varphi(v)\|_1 \le \sum_{Z \subset V: Z \ne \varnothing} \Pr_{\mathcal{D}}(Z) d(u, v) \le d(u, v),
$$

since $\sum_{Z\subset V} \Pr_{\mathcal{D}}(Z) = 1$.

To prove Bourgain's theorem, we need to find a probabilistic distribution D such that

$$
\|\varphi(u) - \varphi(v)\|_1 = \sum_{Z \subset V : Z \neq \varnothing} \Pr_{\mathcal{D}}(Z) |d(u, Z) - d(v, Z)| \ge \frac{d(u, v)}{O(\log n)}.
$$

Then, we will have

$$
\frac{d(u,v)}{O(\log n)} \le ||\varphi(u) - \varphi(v)||_1 \le d(u,v).
$$

We define D on $Z \subset V$ via the following randomized algorithm:

- 1. Pick a random number $t \in \{1, \ldots, \lceil \ln n \rceil\}$. Let $p = 1 \exp(-e^{-t})$.
- 2. Pick each element v in Z independently at random with probability p, and add it to the set Z.
- 3. Return the set Z.

Lemma 1.4. *Consider two disjoint non-empty sets* $A \subset V$ *and* $B \subset V$ *. Then,*

$$
\Pr_{\mathcal{D}}(Z \cap A = \varnothing; \ Z \cap B \neq \varnothing) + \Pr_{\mathcal{D}}(Z \cap A \neq \varnothing; \ Z \cap B = \varnothing) \ge \frac{1}{10 \lceil \ln n \rceil}.
$$

 \Box

Proof. Assume without loss of generality that $|A| \geq |B|$. We estimate the probability of the event

$$
\{Z \cap A \neq \emptyset; \text{ and } Z \cap B = \emptyset\}.
$$

Write,

$$
\Pr_{\mathcal{D}}(Z \cap A \neq \emptyset; Z \cap B = \emptyset) = \frac{1}{\lceil \ln n \rceil} \sum_{i=1}^{\lceil \ln n \rceil} \Pr_{\mathcal{D}}(Z \cap A \neq \emptyset; Z \cap B = \emptyset | t = i)
$$

$$
= \frac{1}{\lceil \ln n \rceil} \sum_{i=1}^{\lceil \ln n \rceil} \Pr_{\mathcal{D}}(Z \cap A \neq \emptyset | t = i) \cdot \Pr_{\mathcal{D}}(Z \cap B = \emptyset | t = i).
$$

Here we used that the sets A and B are disjoint, and hence the events $\{Z \cap A \neq \emptyset\}$ and $\{Z \cap B = \emptyset\}$ are independent for any fixed t. Now, fix $i \in \{1, \ldots, \lceil \ln n \rceil\}.$

$$
\Pr_{\mathcal{D}}(Z \cap B = \varnothing \quad | \quad t = i) = \prod_{v \in B} \Pr_{\mathcal{D}}(v \text{ is not chosen in } Z \quad | \quad t = i)
$$
\n
$$
= \prod_{v \in B} (1 - (1 - \exp(-e^{-i})))
$$
\n
$$
= \prod_{v \in B} \exp(-e^{-i}) = \exp(-|B|e^{-i}) = \exp(-e^{\ln|B|-i}).
$$

Similarly,

$$
\Pr_{\mathcal{D}}(Z \cap A \neq \varnothing \mid t = i) = 1 - \exp(-e^{\ln|A|-i}).
$$

Therefore,

$$
\Pr_{\mathcal{D}}(Z \cap A \neq \emptyset; Z \cap B = \emptyset) = \frac{1}{\lceil \ln n \rceil} \sum_{i=1}^{\lceil \ln n \rceil} \Pr_{\mathcal{D}}(Z \cap A \neq \emptyset \mid t = i) \cdot \Pr_{\mathcal{D}}(Z \cap B = \emptyset \mid t = i)
$$

$$
= \frac{1}{\lceil \ln n \rceil} \sum_{i=1}^{\lceil \ln n \rceil} (1 - \exp(-e^{\ln|A| - i})) \cdot \exp(-e^{\ln|B| - i}).
$$

Note that all terms in the sum are positive, and for $i = \lfloor \ln |A| \rfloor$,

$$
(1 - \exp(-e^{\ln|A|-i})) \cdot \exp(-e^{\ln|B|-i}) \ge (1 - \exp(-e^{-1})) \exp(-e^0) \ge \frac{1}{10}.
$$

The last inequality can be checked numerically. Therefore,

$$
\Pr_{\mathcal{D}}(Z \cap A \neq \varnothing; \ Z \cap B = \varnothing) \ge \frac{1}{10 \lceil \ln n \rceil}.
$$

This completes the proof.

We are now ready to finish the proof of Bourgain's theorem. Recall, that it remains to show that $\psi(u)$ – $\varphi(v)$ ₁ $\geq d(u, v)/O(\log n)$ for every $u, v \in V$. Write,

$$
\|\varphi(u) - \varphi(v)\|_1 = \sum_{Z \subset V: Z \neq \varnothing} \Pr(Z) |d(u, Z) - d(v, Z)|.
$$

 \Box

Observe that for every nonnegative numbers a and b ,

$$
|a - b| = \int_0^\infty I(a \le r \le b) + I(b \le r \le a) dr,
$$

where $I(a \le r \le b)$ and $I(b \le r \le a)$ are the indicator functions of the events $\{a \le r \le b\}$ and ${b \le r \le a}$ respectively. Using this observation for $a = d(u, Z)$ and $b = d(v, Z)$, we get

$$
|d(u, Z) - d(v, Z)| = \int_0^\infty I(d(u, Z) \le r \le d(v, Z)) + I(d(v, Z) \le r \le d(u, Z))dr.
$$

Consequently,

$$
\|\varphi(u) - \varphi(v)\|_1 = \sum_{Z \subset V : Z \neq \varnothing} \Pr(Z) |d(u, Z) - d(v, Z)|
$$
\n
$$
= \sum_{Z \subset V : Z \neq \varnothing} \Pr(Z) \int_0^\infty I(d(u, Z) \le r \le d(v, Z)) + I(d(v, Z) \le r \le d(u, Z)) dr
$$
\n
$$
\int_0^\infty \sum_{Z \subset V : Z \neq \varnothing} \Pr(Z) \big(I(d(u, Z) \le r \le d(v, Z)) + I(d(v, Z) \le r \le d(u, Z)) \big) dr
$$
\n
$$
= \int_0^\infty \Pr_{Z \sim \mathcal{D}}(d(u, Z) \le r \le d(v, Z)) + \Pr_{Z \sim \mathcal{D}}(d(v, Z) \le r \le d(u, Z)) \big) dr.
$$
\n(1)

Let Ball (u, r) be the ball of radius r around u in the metric space V i.e.,

$$
\text{Ball}(u, r) = \{ w \in V : d(u, w) \le r \}.
$$

Then,

$$
\Pr_{Z \sim \mathcal{D}}(d(u, Z) \le r \le d(v, Z)) = \Pr_{Z \sim \mathcal{D}}(\text{Ball}(u, r) \cap Z \ne \varnothing; \text{ Ball}(v, r) \cap Z = \varnothing);
$$
\n
$$
\Pr_{Z \sim \mathcal{D}}(d(v, Z) \le r \le d(u, Z)) = \Pr_{Z \sim \mathcal{D}}(\text{Ball}(v, r) \cap Z \ne \varnothing; \text{Ball}(u, r) \cap Z = \varnothing);
$$

Note that the balls $Ball(u, r)$ and $Ball(v, r)$ are disjoint if $r < d(u, v)/2$ and are non-empty for every $r \ge 0$ (simply because $u \in \text{Ball}(u, r)$ and $v \in \text{Ball}(v, r)$). Thus, by Lemma 1.4, for $r \leq d(u, v)/2$,

$$
\Pr_{Z \sim \mathcal{D}}(d(u, Z) \le r \le d(v, Z)) + \Pr_{Z \sim \mathcal{D}}(d(v, Z) \le r \le d(u, Z)) \ge \frac{1}{10 \lceil \ln n \rceil}.
$$

Plugging this bound in (1), we get

$$
\|\varphi(u) - \varphi(v)\|_1 \ge \frac{d(u, v)}{10 \lceil \ln n \rceil}.
$$

This concludes the proof of Bourgain's theorem.

2 ℓ_1 as a positive combination of cut metrics

We now show that every ℓ_1 metric can be represented as a positive combination of cut metrics and, conversely, every positive combination of cut metrics can be isometrically embedded into ℓ_1 . Recall, that for every subset $S \subset V$ the cut metric is defined as follows:

$$
\delta_S(x, y) = \begin{cases} 1, & \text{if } u \in S, v \notin S \text{ or } u \notin S, v \in S; \\ 0, & \text{if } u \in S, v \in S \text{ or } u \notin S, v \notin S. \end{cases}
$$

Theorem 2.1. *If the distance function* d *of a metric space* (V, d) *can be represented as*

$$
d(u, v) = \sum_{S \subset V} \lambda_S \delta_S(u, v)
$$

for some nonnegative numbers λ_S *(here* δ_S *are cut metrics), then* (V, d) *can be isometrically embedded into* ℓ_1 *.*

Proof. We define an embedding φ from (V, d) into $2^{|V|}$ dimensional ℓ_1 space. We index the coordinates of the host space by subsets $S \subset V$. Let

$$
\varphi(u)_S = \begin{cases} \lambda_S, & \text{if } u \in S; \\ 0, & \text{if } u \notin S. \end{cases}
$$

Then,

$$
\|\varphi(u) - \varphi(v)\|_1 = \sum_{S \subset V} |\varphi(u)| - \varphi(v)|.
$$

Observe that $|\varphi(u)| = \varphi(v)| = \lambda_S \delta_S(u, v)$. To verify this equality just consider four cases $u \in S$; $v \in S$, $u \in S$; $v \notin S$, $u \notin S$; $v \in S$, $u \notin S$; $v \notin S$. Thus,

$$
\|\varphi(u) - \varphi(v)\|_1 = \sum_{S \subset V} \lambda_S \delta_S(u, v) = d(u, v).
$$

 \Box

Theorem 2.2. For every finite subset X of \mathbb{R}^m , there exists nonnegative numbers λ_S (where $S \subset X$) such *that for all* $x, y \in X$

$$
||x - y||_1 = \sum_{S \subset X} \delta_S(x, y).
$$

Proof. Let $M = \max_{1 \le i \le d} |x_i|$. We chose M in such a way that all coordinates x_i lied in the range $[-M, M]$. Consider the following random process: Pick a random $i \in \{1, \ldots, d\}$. Pick a random $t \in$ $[-M, M]$. Output the set $U = \{x \in X : x_i \le t\}$. This procedure defines a probabilistic distribution on the set of all subsets of X . We now let

$$
\lambda_S = \Pr(U = S)
$$

and $d(x, y) = \sum_{S \subset X} \lambda_S \delta_S(x, y)$. Then, we have

$$
d(x,y) = \sum_{S \subset X} \lambda_S \delta_S(x,y) = \sum_{S \subset X} \Pr(U = S) \delta_S(x,y)
$$

= $\mathbb{E}_U[\delta_U(x,y)]$
= $\Pr(x \in U; y \notin U) + \Pr(x \notin U; y \in U)$
= $\Pr(x_i \le t < y_i) + \Pr(y_i \le t < x_i)$
= $\frac{1}{m} \sum_{i=1}^m \frac{|x_i - y_i|}{M}$
= $\frac{||x - y||_1}{Mm}.$

We now rescale λ by Mm: we let $\lambda'_S = mM\lambda_S$. For $d'(x, y) = \sum_{S \subset X} \lambda'_S \delta_S(x, y)$, we have $d'(x, y) =$ $||x - y||_1$. This finishes the proof. \Box