Metric Embedddings

Lecture notes by Konstantin Makarychev

1 Bourgain’s Theorem

Consider a vector x in an m dimensional space R™. The £, norm of x is defined as follows

m

Izl = (Y Jzal?) "

=1

for p > 1. Particularly, for p = 1, we have

m
Izl = lail-
i=1

The ¢; distance between two vectors x and y equals ||z — y||1:

m
lz —ylle = lzi — wil.
i=1

We say that a metric space (V, d) embeds into ¢; with distortion D if there exists a map ¢ : V' — R™
(for some m) and positive numbers « and 3 such that 5/a < D and for every u,v € V:

ad(u,v) < [lo(u) = @)l < Bd(u,v).
Note that by rescaling vectors ¢(u) we may always assume that either « or 5 equals 1.

Theorem 1.1 (Bourgain). Every finite metric space embeds into {1 with distortion D = O(logn), where
n=1V|.

1.1 Frechet Embeddings

To prove Bourgain’s theorem we need the notion of Frechet embeddings.
Fix a metric space (V, d) and consider a 2" — 1 dimensional space indexed by non-empty subsets Z C V.
In this space, the coordinates of any point = are numbers =z for all non-empty Z C V. We denote the space
by X. Now, for any probabilistic distribution D of subsets Z C V, we define an embedding ¢ to X as
follows:
o(u)z = I;r(Z) ~d(u, Z).

Here, d(u, Z) denotes the distance from u to the set Z, which equals (by definition)

d(u, Z) = mind(u, z).

z€Z



Lemma 1.2. Frechet embeddings do not increase distances: for every Frechet embedding ¢ and every v and
vinV,
le(u) = @(v)l1 < d(u, v).

Let us first verify that the distance to a given set satisfies the triangle inequality.

Lemma 1.3. For every u,v € V, and every set Z C V,
‘d(ua Z) - d(vv Z)‘ < d(ua 1)).

Proof. Assume without loss of generality that d(u, Z) > d(v, Z). By the definition d(v, Z) = d(v, 2*) for
some z* € Z. Observe that
d(u, Z) = mind(u, z) < d(u, z¥).

2€Z
Thus,
|d(ua Z) - d(”) Z)| = d(ua Z) - d(’U, Z) < d(uv Z*) - d(”? Z*) < d(uv U)‘
O
Proof of Lemma 1.2. Pick arbitrary vertices u and v. The distance between ¢(u) and ¢(v) equals:
lp(w) — @)= Y Pr(Z) |d(u, Z) - d(v, Z)|.

ZCV:74

By Lemma 1.3, |d(u, Z) — d(v, Z)| < d(u,v). Hence,
lp(w) — )i < Y Pr(Z)d(u, v) < d(u,v),
ZCV:Z#2

since ),y Prp(Z) = 1. O

To prove Bourgain’s theorem, we need to find a probabilistic distribution D such that

d(u,v)

le(w) —e@)li=" > Pr2)ld(u, 2) - d(v,Z)| > Ollogn)

ZCV:Z42

Then, we will have
d(u,v)
O(logn)

We define D on Z C V via the following randomized algorithm:

< flp(u) = ¢(v)lh < d(u, v).

1. Pick a random number ¢ € {1,...,[Inn]}. Letp = 1 — exp(—e 7).
2. Pick each element v in Z independently at random with probability p, and add it to the set Z.
3. Return the set Z.

Lemma 1.4. Consider two disjoint non-empty sets A C'V and B C V. Then,

1

ZnAd=0; Z0B#2)+ D(ZNA#2; Z0B=0)2> {5 s



Proof. Assume without loss of generality that |A| > | B|. We estimate the probability of the event

{ZNA#@;and ZN B = o}.

Write,
L Monl
%r(ZﬁA;é@;ZﬂB:@) = ] 2 %r(ZﬁA;é@;ZﬂB:@ | t=1)
L Monl
= T - Pr(ZnA#@ | t=i)-Pr(ZNB=o | t=1)

Here we used that the sets A and B are disjoint, and hence the events {Z N A # @} and {Z N B = &} are
independent for any fixed ¢. Now, fix ¢ € {1,..., [lnn]}.

Pr(ZNnB=o | t=i)= Pr(v is not ch inZ | t=i
Dr( | i) H D1r(v is not chosen in Z | i)

vEB
= H (1—(1—exp(—e)))
vEB
= [ exp(—e™) = exp(—|Ble™") = exp(—e™PI7).
vEB
Similarly, |
l%r(Z NA#£@ | t=1i)=1—exp(—e™A7),
Therefore,
1 [Inn]
%r(ZﬂA#@; ZNB=g) = o] 2 %r(ZﬂA;ég | t:z)-%r(ZﬂB:@ | t=1)
1 [Inn] A .
= Mnn] 4 (1- exp(—eln‘A‘_’)) . exp(—eln|B|_Z).

Note that all terms in the sum are positive, and for i = [In |A]],

. , 1
(1= exp(—eHI7) - exp(—el P17 > (1 — exp(—e ™)) exp(~¢°) > .
The last inequality can be checked numerically. Therefore,
1
Pr(ZNA#92;, ZNB=2) > ——.
o 72 )2 107
This completes the proof. O

We are now ready to finish the proof of Bourgain’s theorem. Recall, that it remains to show that ||p(u) —
w(v)]1 > d(u,v)/O(logn) for every u,v € V. Write,

lo(uw) =)= Pr(Z)ld(u, Z) - d(v, Z)].

ZCV - Z#o



Observe that for every nonnegative numbers a and b,
oo
la — b :/ Ila<r<b)+I(b<r<a)dr,
0

where I(a < r < b) and I(b < r < a) are the indicator functions of the events {a < r < b} and
{b < r < a} respectively. Using this observation for a = d(u, Z) and b = d(v, Z), we get

|d(u, Z) —d(v, Z)| = /OOO Idu,Z) <r <dvw,2Z))+ I(d(v,Z) <r <d(u, Z))dr.

Consequently,
lp(u) — @)= ) Pr(2)|d(u, 2) — d(v, Z)] (D
ZCV:Z#2
= Z Pr(Z) /OO I(du,Z) <r <dw,2))+ I(dv,Z) <r <d(u,Z))dr
ZCV:Z40 0
/ TS P (I 2) < 7 < d(v, 2)) + 1(d(v, Z) < 7 < d(u, Z)))dr
0 zcvizo

= /Oo Pr (d(u, Z) <r <d(v,2)) + Pr (d(v,Z) <7 < d(u, Z)))dr.
0

~D ~
Let Ball(u, r) be the ball of radius r around « in the metric space V' i.e.,

Ball(u,r) = {w € V : d(u,w) <r}.

Then,
ZPrD(d(u, Z)<r<dvZ2))= ZPrD(Ball(u,r) NZ # @; Ball(v,r)NZ = @);
ZPrD(d(v,Z) <r<duZ2))= ZPrD(Ball(v,r) NZ # @; Ball(u,r) N Z = ©);

Note that the balls Ball(u, r) and Ball(v, r) are disjoint if » < d(u, v)/2 and are non-empty for every > 0

(simply because u € Ball(u,r) and v € Ball(v, r)). Thus, by Lemma 1.4, for r < d(u,v)/2,
1
<r< <r< > —.
ZP:rD(d(u, Z)<r<dvZ2))+ Zf:rp(d(v, Z)<r<du,Z2)) > 10T 7]

Plugging this bound in (1), we get

d(u,v)

_ >~
ot = e(w)lh > gt

This concludes the proof of Bourgain’s theorem.

2 /; as a positive combination of cut metrics

We now show that every ¢; metric can be represented as a positive combination of cut metrics and, con-
versely, every positive combination of cut metrics can be isometrically embedded into ¢;. Recall, that for
every subset .S C V the cut metric is defined as follows:

55z 1) 1, ifueS,v¢SorugsS, vesS;
xT, =
SV N0, itueS veSorud S, véS.



Theorem 2.1. If the distance function d of a metric space (V,d) can be represented as

d(u,v) = Z Ass(u,v)

Scv

or some nonnegative numbers Ag (here dg are cut metrics), then (V,d) can be isometrically embedded
8 y
into /1.

Proof. We define an embedding ¢ from (V, d) into 2/VI dimensional ¢; space. We index the coordinates of
the host space by subsets S C V. Let

() Ag, ifuesS;
u =
ST N0, ifu¢ s,

Then,
lo(u) — el =D lp(u)s — p(v)s].

Scv

Observe that |¢o(u)s — p(v)s| = Agds(u,v). To verify this equality just consider four cases u € S; v € S,
ueS;vgS,ugS;veS,ugS;v¢S. Thus,

lio(u) = ()l = Y Asds(u,v) = d(u,v).

scv

O]

Theorem 2.2. For every finite subset X of R™, there exists nonnegative numbers \g (where S C X)) such
that forall z,y € X

lz =yl = ds(z,y).

ScX

Proof. Let M = max ,cx |x;|. We chose M in such a way that all coordinates x; lied in the range
1<i<d

[—M, M]. Consider the following random process: Pick a random i € {1,...,d}. Pick a random ¢ €
[—M, M]. Output the set U = {x € X : z; < t}. This procedure defines a probabilistic distribution on the
set of all subsets of X. We now let

As =Pr(U =29)
and d(z,y) = > g x Asds(z,y). Then, we have

d(l‘,y) = Z )\355(%?/) = Z PI"(U = 5)55($7y)

ScX SCcX
= Eydv(z,y)]
=Pr(zeU;y¢U)+Pr(x ¢ U;yecU)
=Pr(x; <t <wy)+Pr(yi <t<uz)

_ if: |zi — vl
m 4 M
=1

2=yl

Mm
We now rescale A by Mm: we let Xg = mMAg. For d'(z,y) = > g x Ngds(z,y), we have d'(z,y) =
||z — yl|1. This finishes the proof. O



