
Approximation Algorithms CS599 Homework 1 Solutions
Date: October 9 , 2014 Due: October 24, 2014

1. Extended Formulations.

(a) The following linear program is equivalent to the simplex embedding linear program.

min
∑

e∈E cexe
s.t.∑k

i=1 y
i
v = 1 ∀v ∈ V

yiti = 1 ∀v ∈ V
xuv ≥ 1

2

∑k
i=1 d

i
uv ∀u, v ∈ V

diuv ≥ yiu − yiv ∀u, v ∈ V, 1 ≤ i ≤ k
diuv ≥ yiv − yiu ∀u, v ∈ V, 1 ≤ i ≤ k
0 ≤ xuv ≤ 1 ∀u, v ∈ V
0 ≤ yiv ≤ 1 ∀1 ≤ i ≤ k, v ∈ V

Figure 1: Simplex Linear Program for Multiway Cut

(b) We introduce variables di(v) to denote the distance of v from terminal ti and write
appropriate constraints.

min
∑

e∈E cexe
s.t.
di(ti) = 0 ∀1 ≤ i ≤ k
di(tj) ≥ 1 ∀1 ≤ i, j ≤ k, i 6= j
di(u) ≤ di(v) + xuv ∀(u, v) ∈ E ∀1 ≤ i ≤ k
0 ≤ xe ≤ 1 ∀e ∈ E
0 ≤ di(v) ∀i, v

Figure 2: Path Based Linear Program for Multiway Cut

2. Randomized Rounding for Satisfiability.

(a) Consider the random assignment which sets each variable to true with probability 1
2

independently. In Max-k-SAT, the probability any fixed clause is not satisfied is exactly
1
2k

. Thus the expected number of satisfied clauses is m(1 − 1/2k) where m is the total
number of clauses. Since OPT ≤ m, we have the desired approximation. The same
argument works for Max-SAT.

(b) Let Cj = ∨i∈Pjxi
∨
∨i∈Nj x̄i be a clause. The probability Cj is satisfied by the random

assignment where xi set to true with probability yi
2 + 1

4 independently, is given by
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1−

∏
i∈Pj

(
1− yi

2
− 1

4

) ∏
i∈Nj

(
yi
2

+
1

4

)
We now claim that this probability is at least 3

4zj which will give the desired approx-
imation by linearity of expectation. In particular, we will show that it is at least
3
4 min

{
1,
(∑

i∈Pj
yi +

∑
i∈Nj

(1− yi)
)}
≥ 3

4zj . Since OPT ≤ OPT (LP ) =
∑

j zj we

get a 3
4 -approximation.

To prove the inequality, by a change of variables yi to 1−yi for each i ∈ Nj , it is enough
to show

1−

 ∏
i∈Pj∪Nj

(
1− yi

2
− 1

4

) ≥ 3

4
min

1,
∑

i∈Pj∪Nj

yi

 (1)

Let R = Pj ∪Nj . If
∑

i∈R yi > 1, then reducing any of the positive y′is slightly decreases
the LHS but doesn’t change the RHS. Thus we can assume, wlog,

∑
i∈R yi ≤ 1. Thus

we need to show that

1−
∏
i∈R

(
1− yi

2
− 1

4

)
≥ 3

4

∑
i∈R

yi (2)

s.t.
∑
i∈R

yi ≤ 1 (3)

Now taking derivatives wrt yi for some i, we see that derivative of LHS is at most 3/4
and derivative of RHS is 3/4. Thus we can assume wlog that

∑
i∈R yi = 1. Applying

AM-GM inequality we obtain

∏
i∈R

(
1− yi

2
− 1

4

)
≤
(

3

4
−
∑

i∈R yi

2|R|

)|R|
=

(
3

4
− 1

2|R|

)|R|
(4)

Now, use basic calculus to verify that

1−
(

3

4
− 1

2|R|

)|R|
≥ 3

4
(5)

for each integer value of |R|.

3. Iterative Rounding.
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(a) If a variable xij = 0, we remove that variable and if xij = 1, we assign the job j to
machine i, remove job j, update Ti ← Ti − pj .

(b) Suppose not. Then consider the bipartite graph with jobs on one side and machines on
the other and edge between a job j and machine i, if 0 < xij < 1. Then each job vertex
j must have degree at least two since

∑
i xij = 1. By assumption, each machine vertex

has degree at least two as well (not counting the zero degree vertices). Thus the total
number of edges (or variables) we have is |M |+ |J |. But the total number of constraints
is also |M | + |J | but not all of them are linearly independent (Why?). Thus we obtain
a contradiction.

(c) Remove the capacity constraint for the machine found in Step (b) and iterate. To be
precise, the argument in (b) has to be generalized to account for machines which are
present in the bipartite graph constructed with a single edge at them but no constraint.

4. Low Dimension Embeddings. Consider a high-dimensional space RN equipped with the
`1 norm. Let V be an n-point subset of RN . The goal of this exercise is to show that V can

be isometrically embedded into
(
n
2

)
dimensional `1 space i.e., there exists a map ϕ : V → R(n2)

such that for every x, y ∈ V ,

‖x− y‖1 = ‖ϕ(x)− ϕ(y)‖1,

where ‖x− y‖1 =
∑N

i=1 |xi − yi| and ‖ϕ(x)− ϕ(y)‖1 =
∑(n2)

i=1 |ϕi(x)− ϕi(y)|.
(a) First, we show that V can be isometrically embedded into R2n . As we’ve seen in the class,
every `1 metric can be represented as a sum of cut metrics with non-negative coefficients
(see Lecture Notes for details). That is, there exists a sequence of non-negative numbers λS
indexed by subsets S ⊂ V such that for all x, y ∈ V :

‖x− y‖1 =
∑
S⊂V

λSδS(x, y),

where δS(x, y) is the cut metric for set S. We define the embedding ϕ as follows: The image
of ϕ(x) is a 2n dimensional vector indexed by subsets S ⊂ V ; ϕS(x) = λS , if x ∈ S; and
ϕS(x) = 0, otherwise. Observe, that |ϕS(x)− ϕS(y)| = λSδS(x, y). Hence,

‖ϕ(x)− ϕ(y)‖1 =
∑
S⊂V
|ϕS(x)− ϕS(y)| =

∑
S⊂V

λSδS(x, y) = ‖x− y‖1.

(b) We write an LP on the coefficients λS :∑
S⊂V

λSδS(x, y) = ‖x− y‖1 ∀x, y ∈ V : x 6= y.

Note that the LP does not have an objective function – we just want to find an extreme point
feasible solution. The LP has 2n variables and

(
n
2

)
constraints. It is feasible, because the

vector λS from part (a) satisfies all LP constraints.
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(c) Since the LP has
(
n
2

)
linear constraints, the number of non-zero variables λS in any

extreme point solution is upper bounded by
(
n
2

)
. See e.g. Rank Lemma in “Iterative Methods

in Combinatorial Optimization” by L. C. Lau, R. Ravi, M. Singh.

(d) Let λ∗ be one of the extreme point solutions. We construct an embedding ϕ as in part (a).
Then, we drop all coordinates S with λ∗S = 0. This does not change the `1 distances between
points in ϕ(V ), since ϕS(x) = 0 for all x ∈ V , and, hence, |ϕS(x)−ϕS(y)| = 0 for all x, y ∈ V .
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