
Heuristic Optimization� A hybrid AI�OR approach

David P� Clements� James M� Crawfordy�� David E� Joslin�

George L� Nemhauserz Markus E� Puttlitzz

Martin W� P� Savelsberghz

�Computational Intelligence Research Laboratory

University of Oregon

Eugene� OR �������	
�

fclements� josling�cirl�uoregon�edu

yi	 Technologies

��� E� Las Colinas Blvd�

Irving� TX �
���

jc�i	�com

zSchool of Industrial and Systems Engineering

Georgia Institute of Technology

Atlanta� GA ����	��	�


fgeorge�nemhauser� markus� martin�savelsberghg�isye�gatech�edu

October �� ����

Abstract

We have developed a hybrid architecture� h�opt� that combines Integer Pro�
gramming �IP� for global optimization� and heuristic search techniques� Our hybrid
approach captures the most desirable features of each� A heuristic local search algo�
rithm generates a large number of good feasible solutions quickly� and the IP solver
is then used to combine the elements from those solutions into a better solution
than the local search approach was able to �nd� Preliminary experimental results
are very encouraging�

In developing the heuristic component for h�opt� we have generalized several
existing� highly e�ective scheduling algorithms� The generalization is based on two
principles that we have found to be key� �	� local search bene�ts from the ability
to make large� coherent moves in the search space� and �
� good solutions can be
�taken apart� to reveal structure in the �local� search space� Our solver has served
as a component of h�opt� but is also a very good scheduling algorithm in its own
right�

The techniques we have developed are very general� and should be applicable to
a wide range of problems� Here we report very promising results on a scheduling
problem that arises in �ber�optic cable manufacturing� The heuristic approach can
generate good solutions very quickly by itself� but in combination with the global IP
optimization signi�cant further improvement is possible� The hybrid approach also
produces better quality solutions than a tabu search 
�� algorithm� and runs faster
as well�

�



� Introduction

Both heuristic and exact optimization techniques have been applied to di�cult combina�
torial optimization problems� Typically� heuristics have the advantage of speed and size
of instances that can be handled� while exact methods have the advantage of quality� We
present a hybrid approach that integrates heuristics and exact optimization techniques
with the goal of capturing the desirable features of both�

We call our hybrid approach heuristic optimization �h�opt�� One component of h�
opt heuristically generates an initial set of good schedules� and the other uses an Integer
Programming algorithm to globally optimize those results� producing better schedules
by combining elements of the schedules in the initial set�

Our approach to heuristically generating good schedules� �squeaky wheel� optimiza�

tion �swo�� is a generalization of several existing� highly e�ective scheduling algorithms�
including Doubleback Optimization 	
�� and the patented algorithm used in Opti�ex�
a commercial scheduler 	�
�� In swo� solutions are analyzed to provide feedback for a
local search algorithm� The algorithm is designed to make large 
coherent� moves in
the search space� thus helping to avoid local optima without relying entirely on random
moves�

In the optimization component� a linear program �LP�� which is a relaxation of an
IP� is solved� Each column in the LP represents a feasible solution to a subproblem� in
the problems used for the experiments for this paper� each column represents a feasible
schedule for a single production line in a multi�line facility� Since there are a huge number
of feasible schedules for each line� it is not practical to work with the whole LP� Instead�
we use a local search heuristic to generate high�quality schedules�

A branch�and�bound solver is then used to obtain 
good� integer solutions to the
overall problem� i�e�� �nding the optimal combination of columns �line schedules� from
the heuristically�generated schedules� Given a set of columns� the LP solver �nds optimal
primal and dual solutions to the LP relaxation� In future work� the optimal dual values
will be used to guide a local search algorithm that will produce new columns for the LP
throughout the search� In the scheduling problem� for example� this feedback indicates
which jobs are most 
di�cult� to schedule�

The local search heuristic generates good solutions very quickly by itself� but in
combination with the IP optimization considerable improvements are obtained� The
hybrid approach also produces better quality solutions than an existing tabu search
algorithm� and runs faster as well�

In the next section� we present the scheduling problem� and in Section 
 we present
the framework of h�opt� In Section �� we compare the results produced with h�opt to
those obtained by the local search heuristic and a steepest ascent�tabu search heuristic�
Section � gives conclusions and describes work in progress�

� Problem description

This section describes our formulation of a �ber�optic production line scheduling prob�
lem� derived from real data provided by the manufacturer� Instances of this problem
are used in the experimental evaluation of our architecture� This is a rather generic
scheduling problem so the methodology developed should be applicable to a wide variety
of scheduling problems and many other logistics problems�

�



This multi�job� parallel machine scheduling problem with lateness and changeover
costs originated in a �ber�optic cable plant� A cable consists of up to ��� optical �bers�
The sheathing operation involves joining the �bers and wrapping a protective rubber
sheathing around them� This operation can be performed on one of �
 parallel sheathing
lines� Typically� the number of cables in the set of orders is much larger than the number
of sheathing lines� Every ordered cable has a release time and a due date� Production
cannot begin before the release time� and the objective function includes a penalty for
not completing a cable by the due date�

The production lines are heterogeneous in the types of cables they are able to produce�
and the speeds at which they operate� For each cable� only a subset of the production
lines will be compatible� and the time required to produce the cable will depend on which
of the compatible lines is selected� Job preemption is not allowed� i�e� once a cable has
started processing on a line� it �nishes without interruption�

We need to make two types of decisions� namely how to assign cables� hereafter
called jobs� to lines and how to sequence the jobs assigned to each line� Objectives are
minimization of the number of late jobs and minimization of the sum of the setup times
between jobs� This is a strongly NP�hard combinatorial optimization problem�

Our overall approach is to formulate the problem as an IP and to solve it by a branch�
and�bound algorithm� Hence we need a 
good� IP formulation� an e�cient method for
solving the linear programming �LP� relaxation� and an algorithm to generate integral
solutions�

One concept of modeling discrete optimization problems with complicated constraints
that has been shown to work well in practice is known as set partitioning �SP�� Suppose
we assign schedules to lines �rather than single jobs�� Let a line schedule be a feasible
assignment of a group of jobs to a line� including a sequencing and the associated ob�
jective cost� Notice that the computation of the objective function value of one line is
independent of all other lines� To solve the problem� we need to �nd a min�cost subset
of the set of all line schedules that uses each line at most once and includes each job in
exactly one line schedule�

Let xlm be the ��� decision variable which is � if line schedule l is assigned to line
m� Associated with this variable will be a column alm representing�

� A set of jobs assigned to line m� represented by ��� indicators ajlm� which are equal

to � if job j is in line schedule l and � otherwise� Column alm � fajlmg will then
be the characteristic vector of the jobs in line schedule l for line m�

� An ordering of that set resulting in a cost clm associated with that line schedule�
For a given set of jobs� we would ideally like to �nd a line schedule that minimizes
clm� but solving this problem is NP�hard� and in practice we usually must apply
heuristic methods�

This leads to the SP problem

Minimize
X

m�M

X

l�Lm

clmxlm

subject to
X

m�M

X

l�Lm

a
j
lmxlm � � � j � J






X

l�Lm

xlm � � �m �M

xlm � f�� �g � l �
�

Lm�m �M

where Lm is the set of feasible line schedules for line m� J is the set of jobs� and M is
the set of available production lines�

The SP formulation comprises two types of constraints� The �rst forces the solution
to the scheduling problem to include each job exactly once� The second makes sure
that for each line at most one line schedule can be part of the solution� Note that the
constraints that determine whether or not a line schedule is feasible are not represented
in the SP formulation� since only feasible line schedules are generated by the heuristic
solver� the SP formulation does not need to take these constraints into account�

Although fairly large instances of SP problems can be solved e�ciently� the algorith�
mic challenge is to devise methods for solving SPs with a huge number of columns� In
our scheduling problem� the SP has a column for every possible line schedule for every
line� The number of such columns is generally exponential in the number of jobs� Fortu�
nately� as explained below� it is possible to approximate the SP so that only a relatively
small number of line schedules are considered�

� Description of h�opt framework

��� Scheduling by local search

Some of the most e�ective approaches for solving systems of constraints in recent years
have been based on local search� gsat 	��� and wsat 	��� apply local search techniques
to SAT solvers� and wsat has been used as the solver for the satplan 	�� planning
system� CIRL�s scheduling technology uses Doubleback Optimization� which performs
a kind of local search to improve a 
seed� schedule over a number of iterations 	
��
The commercially successful scheduler optiflex from i� Technologies is based on a
patented approach that uses genetic algorithms 	�
�� Although these approaches di�er
substantially in the details� there has been a clear movement toward the use of local
search in AI approaches to optimization problems�

In designing our local search algorithm� we began by looking at the Doubleback algo�
rithm� because it had been extremely successful in solving a standard type of scheduling
problem� �On one benchmark related to aircraft manufacture 	��� CIRL�s scheduler pro�
duces the best�known solutions by a substantial margin� and �nds them faster than the
closest competitors�� However� the Doubleback algorithm is only useful when the objec�
tive is to minimize makespan� The problem domain we wanted to use to test the hybrid
architecture required a di�erent objective function� using a weighted sum of several fac�
tors� The problems also used constraints that are more complex than could be handled
by the current Doubleback algorithm� Because of this� we began thinking about the
principles behind Doubleback� looking for an e�ective generalization of that approach�

The architecture that emerged has three components�

Prioritizer Generates a sequence of jobs� with higher 
priority� jobs being earlier in
the sequence� Uses feedback from the Analyzer to modify previously generated
sequences�

�



Constructor Given a sequence of jobs� constructs a schedule� Uses 
greedy� scheduling
for each job� in the order they occur in the sequence� without backtracking�

Analyzer Given a schedule� analyzes that schedule to �nd the 
trouble spots�� This
feedback is provided to the Prioritizer�

We call this architecture 
Squeaky Wheel� Optimization �swo�� from the aphorism

The squeaky wheel gets the grease�� The picture is that on each iteration� the Analyzer
determines which jobs are causing the most trouble in the current schedule� and the
Prioritizer ensures that the Constructor gives more attention to those jobs on the next
iteration�

In the current implementation� the Analyzer 
assigns blame� to each of the jobs in
the current schedule� For each job we calculate the minimum possible cost that each
job could contribute to any schedule� For example� if a job has a release time that is
later than its due date� then it will be late in every schedule� and the minimum possible
cost already includes that penalty� The minimum possible setup costs are also included�
Then� for a given a schedule� the penalty assigned to each job is its 
excess cost�� the
di�erence between its actual cost and its minimum possible cost� The setup time penalty
for each pair of adjacent jobs is shared between the two jobs� and the penalty for lateness
is charged only to the late job itself�

Once these penalties have been assigned� the Prioritizer modi�es the previous se�
quence of jobs by moving jobs with high penalties forward in the sequence� We currently
move jobs forward in the sequence a distance that increases with the magnitude of the
penalty� such that to move from the back of the sequence to the front� a job must have a
high penalty over several iterations� �Sorting the jobs by their assigned penalty is sim�
pler� and turns out to be almost as e�ective�� As a job moves forward in the sequence�
its penalty will tend to decrease� and if it decreases su�ciently the job may then tend
to drift back down the sequence as other jobs are moved ahead of it� If it sinks too far
down the sequence� of course� its penalty may tend to increase� resulting in a forward
move�

The Constructor builds a schedule by adding jobs one at a time� in the order they
occur in the sequence� A job is added by selecting a line� and a position relative to the
jobs already in that line� A job may be inserted between any two jobs already in the
line� or at the beginning or end of that schedule� but changes to the relative positions of
the jobs already in the line are not considered� Each job in the line is then assigned to
its earliest possible start time� subject to the ordering� i�e�� a job starts at the minimum
of either its release time� or immediately after the previous job on that line� with the
appropriate setup time between them�

For each of the possible insertion points in the schedule� relative to the jobs already
in each line� the Constructor calculates the e�ect on the objective function� and the job
is placed at the best�scoring location� Ties are broken randomly� After all of the jobs
in the sequence have been placed� the Constructor tries to improve on the completed
schedule with a small amount of local search� Currently� we only consider reordering
jobs within a line�

The design of the local search architecture was in�uenced by two key insights�

� Good solutions can reveal problem structure� By analyzing a good solution� we can
often identify elements of that solution that work well� and elements that work

�



poorly� A resource that is used at full capacity� for example� may represent a
bottleneck� This information about problem structure is local� in the sense that it
may only apply to some part of the search space currently under examination� but
may be extremely useful in helping �gure out what direction the search should go
next�

� Local search can bene�t from the ability to make large	 coherent moves� It is well
known that local search techniques tend to become trapped in local optima� from
which it may take a large number of moves to escape� Random moves are a partial
remedy� and in addition� most local search algorithms periodically just start over
with a new random assignment� While random moves� small or large� are helpful�
we believe our architecture works� in part� because of its ability to also make large
coherent moves� A small change in the sequence of tasks generated by the Prior�
itizer may correspond to a large change in the corresponding schedule generated
by the Constructor� Exchanging the positions of two tasks in the sequence given
to the Constructor may change the positions of those two tasks in the schedule�
and� in addition� allow some of the lower priority tasks� later in the sequence� to
be shu�ed around to accommodate those changes� This is a large move that is

coherent� in the sense that it is similar to what we might expect from moving the
higher priority task� then propagating the e�ects of that change by moving lower
priority tasks as well� This single move may correspond to a large number of moves
in a search algorithm that only looks at local changes to the schedule� and may
thus be di�cult for such an algorithm to �nd�

This architecture can be thought of as searching two coupled spaces� the space of
solutions� and the space of job sequences� Note that in the space of job sequences� the
only 
local optima� are those in which all jobs are assigned the same penalty� which
in practice does not occur� Because of this� the architecture tends to avoid getting
trapped in local optima in the solutions generated by the Constructor� since analysis and
prioritization will always �in practice� suggest changes in the sequence� thus changing
the solution generated on the next iteration� The randomization used in tie breaking
will also tend to help avoid local optima�

Note that this architecture is a general framework� and not itself a speci�c algorithm�
Doubleback can be viewed as an instance of this architecture� for example 	
�� The
optiflex scheduler 	�
� can also be viewed as an instance� with a genetic algorithm
replacing the analysis phase� �In e�ect� the 
analysis� instead emerges from the relative
�tness of the members of the population�� These schedulers may appear to have little in
common� but we believe that we have uncovered some principles that underlie both of
these approaches� In the case of the optiflex scheduler� for example� we hypothesize
that it is not genetic algorithms per se that make the scheduler so e�ective� but rather
the manner in which prioritization and greedy construction are combined�

The importance of prioritization in greedy algorithms is not a new idea� The 
First
Fit� algorithm for bin packing� for example� relies on placing items into bins in decreasing
order of size 	��� Another example would be grasp �Greedy Randomized Adaptive
Search Procedure� 	��� grasp di�ers from our approach in several ways� First� the
prioritization and construction aspects are more closely coupled in grasp� After each
element �here� a task� is added to the solution being constructed �here� a schedule��
the remaining elements are re�evaluated by some heuristic� Thus the order in which

�



elements are added to the solution may depend on previous decisions� Second� the order
in which elements are selected in each trial is determined only by the heuristic �and
randomization�� so the trials are independent� grasp has no mechanism analogous to
the dynamic prioritization used in swo� and consequently lacks the ability to search the
space of sequences of elements� which we believe to be a key aspect of our architecture
because it allows the local search to make large� coherent moves�

Our architecture has been applied to both the single�line subproblem of generating
new columns for an IP solver� and to the solution of the full scheduling problem� We
currently focus on the use of this approach for solving the full problem� these solutions
are also used to generate the initial set of columns for an LP�IP solver�

Our current implementation has considerable room for improvement� The analysis
and feedback currently being used are very simple� and the construction of schedules
could take various heuristics into account� such as preferring to place a job in a line that
has more 
slack�� all other things being equal�

��� Solving the set partitioning problem

The heuristic local search algorithm generates as many good schedules as it can within a
speci�ed time limit� Each of these schedules contains one line schedule for each produc�
tion line� Each individual line schedule becomes a column in the LP�IP formulation of
a set partitioning problem� as previously discussed� A branch�and�bound solver is then
used to �nd the optimal combination of columns� The solver used in our implementa�
tion is minto 	���� a general purpose mixed integer optimizer that can be customized to
exploit special problem structure through application functions� Master LPs are solved
using cplex 	��� a general purpose LP solver� The heuristic problem solver provides an
initial set of columns to the LP relaxation at the root node so that a feasible solution to
the LP relaxation is assured�

��� Column generation

Although we currently use minto only for the re�combination of columns generated by
swo� the h�opt architecture also allows for introduction of new columns in response to
the solutions produced by minto�

To solve the LP relaxation of SP� called the master problem� we use Dantzig�Wolfe
column generation 	��� which means that the LP is solved with all of its rows� but not all
of its columns present� The LP relaxation of SP including only a subset of the columns
is called the restricted master problem� There are two ways in which columns can be
introduced into the LP� Currently we only use one � providing an initial set of columns
to the LP� This resulting LP is then solved to optimality� In future work we will also
use the second method� incrementally adding new columns to the LP based on feedback
from the LP solver� The same heuristic techniques that are currently used to generate
the initial seed columns will be applied to the problem of generating additional columns�
The problem of generating new columns from a current optimal LP solution is called the
subproblem or pricing problem� Note that the column generation subproblem inherits
only some of the di�culty of the full problem� making it easier to solve than the master
problem�

Given an optimal solution to the current LP restricted master problem� the dual price
for each job j determines how expensive it is for the current solution to cover job j� The

�



idea of column generation is to use these dual prices to determine which jobs should be
included in 
good� new columns for the master problem� For each line� we need to solve
a di�erent subproblem� The subproblems di�er because the lines are compatible with
di�erent subsets of the jobs� and because the time to complete a job depends on which
line it runs on�

When solving subproblems� we must evaluate or 
price� candidate columns� Only
candidate columns corresponding to feasible line schedules need to be evaluated� i�e� we
require that all jobs included can run on that line� If we �nd a column whose cost clm
is smaller than the sum of the dual prices of the jobs covered by that column� it is a
candidate to enter the master problem� We say that such a column has a negative reduced
cost� If no such column exists for any of the lines� the current solution to the master
problem is optimal�

If we could solve the subproblems to optimality quickly� we would then have a fast LP
solver which could then be embedded into a branch�and�bound algorithm for solving the
entire scheduling problem� Unfortunately� the subproblems� while being easier than the
original problem� are still NP�hard and a very large number of them need to be solved�
Therefore we will solve the subproblems heuristically and stop generating columns when
our heuristic terminates� This implies that the best solution to the LP master problem
may not give a true lower bound� Thus� by using this approximate lower bound in the
branch�and�bound phase of the algorithm we cannot guarantee that an optimal solution
will be found to the entire scheduling problem�

� Experimental results

We have several sets of test data� ranging in size from �� to ��� tasks� In each problem
there are �
 production lines� We compare the following solution methods�

tabu Uses tabu search� a local search algorithm in which moves that increase the cost
are permitted to avoid getting trapped at a local optimum� To avoid cycling� when
an 
uphill� move is made� it is not allowed to be immediately undone�

swo Applies the swo architecture to the entire problem� running for a �xed number of
iterations and returning the best schedule it �nds�

h�opt Uses the best schedules generated by swo as the set of initial columns in the IP
formulation described previously� Note that in these preliminary experiments no
additional columns were generated during the solution process�

On the ����task problem� our implementation of tabu was much less e�ective than
either swo or h�opt� failing to �nd a feasible schedule after running for over �� hours�
On the smaller problems� tabu was able to �nd solutions� but both swo and h�opt

outperformed tabu by a substantial margin�
Table � presents results for swo and h�opt on test sets with the number of jobs

ranging from �� to ���� In each case� ten trials were run and the results averaged�
The second column of the table shows the best objective function value we have ever
observed on each problem� The next two columns show the average objective function
value� and the average time required for swo� For h�opt� the last three columns in the
table show the average objective function value� the average time required by minto to

�



swo h�opt

Data Best Avg Avg Avg Extra �
Set Obj Obj Time Obj Time Impr�

�� ���� ������ ��� ������ 
 �����
�� 
��� 
����� ��� 
����� 
 �����
�� ���� ������ ��� ������ � ����

�� ���
 ������ ��� ���
�� � �����
��� ���� ������ ��� ������ 
� �����
��� ����� ������� ���� ������� ��� �����

Table �� Experimental results

Time allowed for swo �seconds�
�� 
�� ��� ��� ���� ����

swo ������� ������� ������� ������� ������� �������
h�opt ������� ������� ����
�� ������� ������� ����
��
� impr� ����� ����� ����� ���
� ����� ��
��
Avg� minto time �� �� ��� ��� ��� ���

Table �� Experimental results ���� task problem�

optimize over the set of columns in the schedules generated by swo� and the percentage
improvement in the objective function� All times are in user processor seconds� These
experiments were run on a Sparcstation �� Model ���

For the swo�h�opt experiments� we allowed the heuristic solver �swo� to generate
solutions up to a time limit proportional to the number of jobs� with approximately ��
minutes ����� seconds� allowed for the largest problem ���� tasks�� The line schedules
from these solutions then formed the initial set of columns of h�opt� h�opt searches for
a better combination of those columns� In other words� if it �nds an improvement� it is
the result of using columns from di�erent schedules generated by swo�

On the smallest problems in our test set� swo by itself �nds solutions that are as
good as the best solutions we have found by any method� �In fact� it �nds them� on
average� in under �� seconds�� As the problem size increases� h�opt is able to show
greater improvements by re�combining columns from the schedules found by swo� with
an improvement of ���� over the performance of swo alone on the ����job problem�

To further characterize the performance of h�opt� we ran the largest data set ����
jobs� with varying amounts of time allowed for swo to generate the 
seed� schedules�
Each column in the table represents ten runs with a �xed amount of time allowed for seed
generation� As shown in Table �� minto required only a relatively small amount of time
to improve upon the schedules produced by swo� The degree of improvement ranged
from ��
� to ����� corresponding to causing an additional � to 
 jobs to be completed by
their due dates� �The actual improvement� of course� may be a combination of reducing
lateness and reducing the total setup time��

�



17400

17600

17800

18000

18200

18400

0 200 400 600 800 1000 1200 1400 1600 1800 2000

O
bj

ec
tiv

e 
va

lu
e

Time (seconds)

Seed generation
Recombination

Best known

Figure �� Time vs� objective function ���� task problem�

Figure � gives another view of the same data� For each of the six experiments shown
in Table �� the solid line shows the best schedule produced by swo� on average� versus
time� The dashed line segments show the results of taking the set of schedules generated
by swo up to some point �� minute� � minutes� etc�� up to 
� minutes� and allowing
minto to optimize over that set of schedules� The horizontal line shows the best objective
value we have ever observed� for reference�

As more time is allowed for swo to search� better schedules are found� but with
diminishing returns� On the other hand� until swo has been allowed to run long enough
to have produced a su�cient number of 
good� schedules� minto does not have enough
to work with� This suggests that h�opt should take a dynamic approach to the boundary
between swo and minto� For example� swo might be allowed to generate schedules�
keeping a set of the best N schedules found� until Z consecutive iterations go by without
any change to that set� for empirically determined N and Z� On the ��� task problem�
h�opt could have made the transition from swo to minto as early as 
�� seconds� with
only a relatively small penalty�

Although the improvements achieved by minto are relatively small� on the order of
����� minto achieves this improvement quickly� and swo is unable to achieve the same
degree of optimization even when given substantially more time� In cases where it is
important to optimize as much as possible� and to do so quickly� the h�opt combination
of local search and global IP optimization can be highly e�ective� Although this is only
a small experiment� we believe that these results clearly indicate that the approach is
promising and should be explored further by both enhancing the techniques and the

��



scope of applications�

� Conclusions and future work

Although our results so far are limited in scope� they are very encouraging� As might
be expected based on other successful applications� our local search approach is capable
of generating high�quality schedules very quickly� Allowing additional time does not
improve those initial results dramatically� However� a combined exact and heuristic
optimization approach allows a large number of good �and not so good� schedules to be

taken apart and recombined� in a way that quickly results in a higher quality schedule�

This hybrid approach takes advantage of the relative strengths of each part� local
search is able to �nd good schedules� but tends to get stuck in local optima� and IP
techniques provide a kind of global optimization that has no counterpart in local search�
In a given solution� the local search approach may get some things right� and some
things wrong� but the parts that are handled badly in one solution may be handled well
in another� In a sense� global optimization allows the best parts of the di�erent solutions
to be combined�

The swo architecture is itself innovative� and there is still a great deal of room for
improvement� We are looking at more sophisticated methods of analysis and construc�
tion� and also looking at other domains that would require us to further generalize the
approach taken here�

The use of randomness in integer programming algorithms has received little atten�
tion� and we believe the randomness introduced by swo �in random tie�breaking during
the construction of solutions� is partially responsible for the success of h�opt� In future
experiments� we hope to explore further the incorporation of randomization techniques�
Within swo� we can allow randomization to occur in any of the three main modules� and
experiments are currently underway to try to understand the impact of randomization
on the various parts of this architecture� In future work we will also experiment with a
branch�and�price algorithm 	�� in which randomized heuristics are used to generate new
columns throughout the search tree�

Applying local search techniques for column generation may improve performance
still further� The intuition behind this is that the dual values provided by the LP solver
may provide valuable feedback to the local search engine about which tasks are 
most
critical�� This can provide a bias toward di�erent �and hopefully useful� areas of the
search space� We have tried to use the dual values provided by minto to assist in the
prioritization of jobs for swo� but our results so far have been mixed� We hope in the
future to better understand this mode of interaction between the two parts of h�opt�
and to show that the feedback that minto can provide can be very useful to swo�

Acknowledgements� The authors wish to thank Robert Stubbs of Lucent Technolo�
gies for providing us with data to use for our experiments�

This e�ort was sponsored by the Air Force O�ce of Scienti�c Research� Air Force
Materiel Command� USAF� under grant number F������������

� �CIRL and Georgia
Tech�� by the Defense Advanced Research Projects Agency �DARPA� and Rome Lab�
oratory� Air Force Materiel Command� USAF� under agreements F
�������������
 and
F
�������������� �CIRL�� and by the National Science Foundation under grant numbers

��



CDA�������� �CIRL� and DMI�������� �Georgia Tech��
The U�S� Government is authorized to reproduce and distribute reprints for Gov�

ernmental purposes notwithstanding any copyright annotation thereon� The views and
conclusions contained herein are those of the authors and should not be interpreted as
necessarily representing the o�cial policies or endorsements� either expressed or implied�
of the Defense Advanced Research Projects Agency� Rome Laboratory� the Air Force
O�ce of Scienti�c Research� the National Science Foundation� or the U�S� Government�

References

	�� C� Barnhart� E� Johnson� G� Nemhauser� M� Savelsbergh� and P� Vance� Branch�
and�price� Column generation for solving huge integer programs� Operations Re�

search� �����

	�� CPLEX Optimization� Inc� Using the CPLEX callable library and CPLEX mixed
integer library� version ���� �����

	
� J� M� Crawford� An approach to resource constrained project scheduling� In Arti�
�cial Intelligence and Manufacturing Research Planning Workshop� �����

	�� G� Dantzig and P� Wolfe� Decomposition principle for linear programs� Operations
Research� ���������� �����

	�� T� A� Feo and M� G� Resende� Greedy randomized adaptive search procedures�
Journal of Global Optimization� �������

� �����

	�� B� R� Fox and M� Ringer� Planning and scheduling benchmarks� �����
http���www�NeoSoft�com� benchmrx��

	�� M� R� Garey and D� S� Johnson� Computers and intractability
 a guide to the theory

of NP�completeness� W� H� Freeman� �����

	�� F� Glover and M� Laguna� Tabu Search� Kluwer� �����

	�� H� Kautz and B� Selman� Pushing the envelope� Planning� propositional logic� and
stochastic search� In Proceedings of the National Conference on Arti�cial Intelli�

gence� Portland� OR� �����

	��� G� Nemhauser� M� Savelsbergh� and G� Sigismondi� Minto� a mixed integer opti�
mizer� Operations Research Letters� ��������� �����

	��� B� Selman� H� A� Kautz� and B� Cohen� Local search strategies for satis�ability test�
ing� In Second DIMACS challenge workshop on cliques	 coloring	 and satis�ability�
Rutgers University� October ���
�

	��� B� Selman� H� Levesque� and D� Mitchell� A new method for solving hard satis�abil�
ity problems� In Proceedings of the National Conference on Arti�cial Intelligence�
pages �������� �����

	�
� G� P� Syswerda� Generation of schedules using a genetic procedure� ����� U�S�
Patent number ��
�������

��


