Heuristic Optimization: A hybrid AI/OR approach

David P. Clements”* James M. Crawford* David E. Joslin®
George L. Nemhauser? Markus E. Puttlitz
Martin W. P. Savelsbergh?

*Computational Intelligence Research Laboratory
University of Oregon
Eugene, OR 97403-1269
{clements, joslin}@cirl.uoregon.edu

fi2 Technologies
909 E. Las Colinas Blvd.
Irving, TX 75038
jc@i2.com

!School of Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta, GA 30332-0205
{george.nemhauser, markus, martin.savelsbergh }@isye.gatech.edu

October 4, 1997

Abstract

We have developed a hybrid architecture, H-OPT, that combines Integer Pro-
gramming (IP) for global optimization, and heuristic search techniques. Our hybrid
approach captures the most desirable features of each. A heuristic local search algo-
rithm generates a large number of good feasible solutions quickly, and the IP solver
is then used to combine the elements from those solutions into a better solution
than the local search approach was able to find. Preliminary experimental results
are very encouraging.

In developing the heuristic component for H-OPT, we have generalized several
existing, highly effective scheduling algorithms. The generalization is based on two
principles that we have found to be key: (1) local search benefits from the ability
to make large, coherent moves in the search space, and (2) good solutions can be
“taken apart” to reveal structure in the (local) search space. Our solver has served
as a component of H-OPT, but is also a very good scheduling algorithm in its own
right.

The techniques we have developed are very general, and should be applicable to
a wide range of problems. Here we report very promising results on a scheduling
problem that arises in fiber-optic cable manufacturing. The heuristic approach can
generate good solutions very quickly by itself, but in combination with the global IP
optimization significant further improvement is possible. The hybrid approach also
produces better quality solutions than a TABU search [8] algorithm, and runs faster
as well.

1 Introduction

Both heuristic and exact optimization techniques have been applied to difficult combina-
torial optimization problems. Typically, heuristics have the advantage of speed and size
of instances that can be handled, while exact methods have the advantage of quality. We
present a hybrid approach that integrates heuristics and exact optimization techniques
with the goal of capturing the desirable features of both.

We call our hybrid approach heuristic optimization (H-OPT). One component of H-
OPT heuristically generates an initial set of good schedules, and the other uses an Integer
Programming algorithm to globally optimize those results, producing better schedules
by combining elements of the schedules in the initial set.

Our approach to heuristically generating good schedules, “squeaky wheel” optimiza-
tion (SWO), is a generalization of several existing, highly effective scheduling algorithms,
including Doubleback Optimization [3], and the patented algorithm used in Optiflex,
a commercial scheduler [13]. In swo, solutions are analyzed to provide feedback for a
local search algorithm. The algorithm is designed to make large “coherent” moves in
the search space, thus helping to avoid local optima without relying entirely on random
moves.

In the optimization component, a linear program (LP), which is a relaxation of an
IP, is solved. Each column in the LP represents a feasible solution to a subproblem; in
the problems used for the experiments for this paper, each column represents a feasible
schedule for a single production line in a multi-line facility. Since there are a huge number
of feasible schedules for each line, it is not practical to work with the whole LP. Instead,
we use a local search heuristic to generate high-quality schedules.

A branch-and-bound solver is then used to obtain “good” integer solutions to the
overall problem, i.e., finding the optimal combination of columns (line schedules) from
the heuristically-generated schedules. Given a set of columns, the LP solver finds optimal
primal and dual solutions to the LP relaxation. In future work, the optimal dual values
will be used to guide a local search algorithm that will produce new columns for the LP
throughout the search. In the scheduling problem, for example, this feedback indicates
which jobs are most “difficult” to schedule.

The local search heuristic generates good solutions very quickly by itself, but in
combination with the IP optimization considerable improvements are obtained. The
hybrid approach also produces better quality solutions than an existing TABU search
algorithm, and runs faster as well.

In the next section, we present the scheduling problem, and in Section 3 we present
the framework of H-OPT. In Section 4, we compare the results produced with H-OPT to
those obtained by the local search heuristic and a steepest ascent/TABU search heuristic.
Section 5 gives conclusions and describes work in progress.

2 Problem description

This section describes our formulation of a fiber-optic production line scheduling prob-
lem, derived from real data provided by the manufacturer. Instances of this problem
are used in the experimental evaluation of our architecture. This is a rather generic
scheduling problem so the methodology developed should be applicable to a wide variety
of scheduling problems and many other logistics problems.

This multi-job, parallel machine scheduling problem with lateness and changeover
costs originated in a fiber-optic cable plant. A cable consists of up to 216 optical fibers.
The sheathing operation involves joining the fibers and wrapping a protective rubber
sheathing around them. This operation can be performed on one of 13 parallel sheathing
lines. Typically, the number of cables in the set of orders is much larger than the number
of sheathing lines. Every ordered cable has a release time and a due date. Production
cannot begin before the release time, and the objective function includes a penalty for
not completing a cable by the due date.

The production lines are heterogeneous in the types of cables they are able to produce,
and the speeds at which they operate. For each cable, only a subset of the production
lines will be compatible, and the time required to produce the cable will depend on which
of the compatible lines is selected. Job preemption is not allowed, i.e. once a cable has
started processing on a line, it finishes without interruption.

We need to make two types of decisions, namely how to assign cables, hereafter
called jobs, to lines and how to sequence the jobs assigned to each line. Objectives are
minimization of the number of late jobs and minimization of the sum of the setup times
between jobs. This is a strongly NP-hard combinatorial optimization problem.

Our overall approach is to formulate the problem as an IP and to solve it by a branch-
and-bound algorithm. Hence we need a “good” IP formulation, an efficient method for
solving the linear programming (LP) relaxation, and an algorithm to generate integral
solutions.

One concept of modeling discrete optimization problems with complicated constraints
that has been shown to work well in practice is known as set partitioning (SP). Suppose
we assign schedules to lines (rather than single jobs). Let a line schedule be a feasible
assignment of a group of jobs to a line, including a sequencing and the associated ob-
jective cost. Notice that the computation of the objective function value of one line is
independent of all other lines. To solve the problem, we need to find a min-cost subset
of the set of all line schedules that uses each line at most once and includes each job in
exactly one line schedule.

Let z;,;, be the 0/1 decision variable which is 1 if line schedule [is assigned to line
m. Associated with this variable will be a column a;,, representing;:

e A set of jobs assigned to line m, represented by 0/1 indicators a{m, which are equal

to 1 if job j is in line schedule [and 0 otherwise. Column a;,, = {a], } will then
be the characteristic vector of the jobs in line schedule [for line m.

e An ordering of that set resulting in a cost ¢, associated with that line schedule.
For a given set of jobs, we would ideally like to find a line schedule that minimizes
Cim, but solving this problem is NP-hard, and in practice we usually must apply
heuristic methods.

This leads to the SP problem

Minimize Z Z ClmZTIm

meM I€ELm,

subject to Z Z a{mxlm =1 Vied
meM IEL,

> am <1 VmeM
€Ly,

T € {0,1} Vie|JLp,meM

where L,, is the set of feasible line schedules for line m, J is the set of jobs, and M is
the set of available production lines.

The SP formulation comprises two types of constraints. The first forces the solution
to the scheduling problem to include each job exactly once. The second makes sure
that for each line at most one line schedule can be part of the solution. Note that the
constraints that determine whether or not a line schedule is feasible are not represented
in the SP formulation; since only feasible line schedules are generated by the heuristic
solver, the SP formulation does not need to take these constraints into account.

Although fairly large instances of SP problems can be solved efficiently, the algorith-
mic challenge is to devise methods for solving SPs with a huge number of columns. In
our scheduling problem, the SP has a column for every possible line schedule for every
line. The number of such columns is generally exponential in the number of jobs. Fortu-
nately, as explained below, it is possible to approximate the SP so that only a relatively
small number of line schedules are considered.

3 Description of H-OPT framework

3.1 Scheduling by local search

Some of the most effective approaches for solving systems of constraints in recent years
have been based on local search. GSAT [12] and WSAT [11] apply local search techniques
to SAT solvers, and WSAT has been used as the solver for the SATPLAN [9] planning
system. CIRL’s scheduling technology uses Doubleback Optimization, which performs
a kind of local search to improve a “seed” schedule over a number of iterations [3].
The commercially successful scheduler OPTIFLEX from i2 Technologies is based on a
patented approach that uses genetic algorithms [13]. Although these approaches differ
substantially in the details, there has been a clear movement toward the use of local
search in Al approaches to optimization problems.

In designing our local search algorithm, we began by looking at the Doubleback algo-
rithm, because it had been extremely successful in solving a standard type of scheduling
problem. (On one benchmark related to aircraft manufacture [6], CIRL’s scheduler pro-
duces the best-known solutions by a substantial margin, and finds them faster than the
closest competitors.) However, the Doubleback algorithm is only useful when the objec-
tive is to minimize makespan. The problem domain we wanted to use to test the hybrid
architecture required a different objective function, using a weighted sum of several fac-
tors. The problems also used constraints that are more complex than could be handled
by the current Doubleback algorithm. Because of this, we began thinking about the
principles behind Doubleback, looking for an effective generalization of that approach.

The architecture that emerged has three components:

Prioritizer Generates a sequence of jobs, with higher “priority” jobs being earlier in
the sequence. Uses feedback from the Analyzer to modify previously generated
sequences.

Constructor Given a sequence of jobs, constructs a schedule. Uses “greedy” scheduling
for each job, in the order they occur in the sequence, without backtracking.

Analyzer Given a schedule, analyzes that schedule to find the “trouble spots.” This
feedback is provided to the Prioritizer.

We call this architecture “Squeaky Wheel” Optimization (SWO), from the aphorism
“The squeaky wheel gets the grease.” The picture is that on each iteration, the Analyzer
determines which jobs are causing the most trouble in the current schedule, and the
Prioritizer ensures that the Constructor gives more attention to those jobs on the next
iteration.

In the current implementation, the Analyzer “assigns blame” to each of the jobs in
the current schedule. For each job we calculate the minimum possible cost that each
job could contribute to any schedule. For example, if a job has a release time that is
later than its due date, then it will be late in every schedule, and the minimum possible
cost already includes that penalty. The minimum possible setup costs are also included.
Then, for a given a schedule, the penalty assigned to each job is its “excess cost,” the
difference between its actual cost and its minimum possible cost. The setup time penalty
for each pair of adjacent jobs is shared between the two jobs, and the penalty for lateness
is charged only to the late job itself.

Once these penalties have been assigned, the Prioritizer modifies the previous se-
quence of jobs by moving jobs with high penalties forward in the sequence. We currently
move jobs forward in the sequence a distance that increases with the magnitude of the
penalty, such that to move from the back of the sequence to the front, a job must have a
high penalty over several iterations. (Sorting the jobs by their assigned penalty is sim-
pler, and turns out to be almost as effective.) As a job moves forward in the sequence,
its penalty will tend to decrease, and if it decreases sufficiently the job may then tend
to drift back down the sequence as other jobs are moved ahead of it. If it sinks too far
down the sequence, of course, its penalty may tend to increase, resulting in a forward
move.

The Constructor builds a schedule by adding jobs one at a time, in the order they
occur in the sequence. A job is added by selecting a line, and a position relative to the
jobs already in that line. A job may be inserted between any two jobs already in the
line, or at the beginning or end of that schedule, but changes to the relative positions of
the jobs already in the line are not considered. Each job in the line is then assigned to
its earliest possible start time, subject to the ordering, i.e., a job starts at the minimum
of either its release time, or immediately after the previous job on that line, with the
appropriate setup time between them.

For each of the possible insertion points in the schedule, relative to the jobs already
in each line, the Constructor calculates the effect on the objective function, and the job
is placed at the best-scoring location. Ties are broken randomly. After all of the jobs
in the sequence have been placed, the Constructor tries to improve on the completed
schedule with a small amount of local search. Currently, we only consider reordering
jobs within a line.

The design of the local search architecture was influenced by two key insights:

e Glood solutions can reveal problem structure. By analyzing a good solution, we can
often identify elements of that solution that work well, and elements that work

poorly. A resource that is used at full capacity, for example, may represent a
bottleneck. This information about problem structure is local, in the sense that it
may only apply to some part of the search space currently under examination, but
may be extremely useful in helping figure out what direction the search should go
next.

e Local search can benefit from the ability to make large, coherent moves. It is well
known that local search techniques tend to become trapped in local optima, from
which it may take a large number of moves to escape. Random moves are a partial
remedy, and in addition, most local search algorithms periodically just start over
with a new random assignment. While random moves, small or large, are helpful,
we believe our architecture works, in part, because of its ability to also make large
coherent moves. A small change in the sequence of tasks generated by the Prior-
itizer may correspond to a large change in the corresponding schedule generated
by the Constructor. Exchanging the positions of two tasks in the sequence given
to the Constructor may change the positions of those two tasks in the schedule,
and, in addition, allow some of the lower priority tasks, later in the sequence, to
be shuffled around to accommodate those changes. This is a large move that is
“coherent” in the sense that it is similar to what we might expect from moving the
higher priority task, then propagating the effects of that change by moving lower
priority tasks as well. This single move may correspond to a large number of moves
in a search algorithm that only looks at local changes to the schedule, and may
thus be difficult for such an algorithm to find.

This architecture can be thought of as searching two coupled spaces: the space of
solutions, and the space of job sequences. Note that in the space of job sequences, the
only “local optima” are those in which all jobs are assigned the same penalty, which
in practice does not occur. Because of this, the architecture tends to avoid getting
trapped in local optima in the solutions generated by the Constructor, since analysis and
prioritization will always (in practice) suggest changes in the sequence, thus changing
the solution generated on the next iteration. The randomization used in tie breaking
will also tend to help avoid local optima.

Note that this architecture is a general framework, and not itself a specific algorithm.
Doubleback can be viewed as an instance of this architecture, for example [3]. The
OPTIFLEX scheduler [13] can also be viewed as an instance, with a genetic algorithm
replacing the analysis phase. (In effect, the “analysis” instead emerges from the relative
fitness of the members of the population.) These schedulers may appear to have little in
common, but we believe that we have uncovered some principles that underlie both of
these approaches. In the case of the OPTIFLEX scheduler, for example, we hypothesize
that it is not genetic algorithms per se that make the scheduler so effective, but rather
the manner in which prioritization and greedy construction are combined.

The importance of prioritization in greedy algorithms is not a new idea. The “First
Fit” algorithm for bin packing, for example, relies on placing items into bins in decreasing
order of size [7]. Another example would be GRASP (Greedy Randomized Adaptive
Search Procedure) [5]. GRASP differs from our approach in several ways. First, the
prioritization and construction aspects are more closely coupled in GRASP. After each
element (here, a task) is added to the solution being constructed (here, a schedule),
the remaining elements are re-evaluated by some heuristic. Thus the order in which

elements are added to the solution may depend on previous decisions. Second, the order
in which elements are selected in each trial is determined only by the heuristic (and
randomization), so the trials are independent. GRASP has no mechanism analogous to
the dynamic prioritization used in SWO0, and consequently lacks the ability to search the
space of sequences of elements, which we believe to be a key aspect of our architecture
because it allows the local search to make large, coherent moves.

Our architecture has been applied to both the single-line subproblem of generating
new columns for an IP solver, and to the solution of the full scheduling problem. We
currently focus on the use of this approach for solving the full problem; these solutions
are also used to generate the initial set of columns for an LP/IP solver.

Our current implementation has considerable room for improvement. The analysis
and feedback currently being used are very simple, and the construction of schedules
could take various heuristics into account, such as preferring to place a job in a line that
has more “slack,” all other things being equal.

3.2 Solving the set partitioning problem

The heuristic local search algorithm generates as many good schedules as it can within a
specified time limit. Each of these schedules contains one line schedule for each produc-
tion line. Each individual line schedule becomes a column in the LP/IP formulation of
a set partitioning problem, as previously discussed. A branch-and-bound solver is then
used to find the optimal combination of columns. The solver used in our implementa-
tion is MINTO [10], a general purpose mixed integer optimizer that can be customized to
exploit special problem structure through application functions. Master LPs are solved
using CPLEX [2], a general purpose LP solver. The heuristic problem solver provides an
initial set of columns to the LP relaxation at the root node so that a feasible solution to
the LP relaxation is assured.

3.3 Column generation

Although we currently use MINTO only for the re-combination of columns generated by
swo, the H-OPT architecture also allows for introduction of new columns in response to
the solutions produced by MINTO.

To solve the LP relaxation of SP, called the master problem, we use Dantzig-Wolfe
column generation [4], which means that the LP is solved with all of its rows, but not all
of its columns present. The LP relaxation of SP including only a subset of the columns
is called the restricted master problem. There are two ways in which columns can be
introduced into the LP. Currently we only use one — providing an initial set of columns
to the LP. This resulting LP is then solved to optimality. In future work we will also
use the second method, incrementally adding new columns to the LP based on feedback
from the LP solver. The same heuristic techniques that are currently used to generate
the initial seed columns will be applied to the problem of generating additional columns.
The problem of generating new columns from a current optimal LP solution is called the
subproblem or pricing problem. Note that the column generation subproblem inherits
only some of the difficulty of the full problem, making it easier to solve than the master
problem.

Given an optimal solution to the current LP restricted master problem, the dual price
for each job 7 determines how expensive it is for the current solution to cover job 7. The

idea of column generation is to use these dual prices to determine which jobs should be
included in “good” new columns for the master problem. For each line, we need to solve
a different subproblem. The subproblems differ because the lines are compatible with
different subsets of the jobs, and because the time to complete a job depends on which
line it runs on.

When solving subproblems, we must evaluate or “price” candidate columns. Only
candidate columns corresponding to feasible line schedules need to be evaluated, i.e. we
require that all jobs included can run on that line. If we find a column whose cost ¢,
is smaller than the sum of the dual prices of the jobs covered by that column, it is a
candidate to enter the master problem. We say that such a column has a negative reduced
cost. If no such column exists for any of the lines, the current solution to the master
problem is optimal.

If we could solve the subproblems to optimality quickly, we would then have a fast LP
solver which could then be embedded into a branch-and-bound algorithm for solving the
entire scheduling problem. Unfortunately, the subproblems, while being easier than the
original problem, are still NP-hard and a very large number of them need to be solved.
Therefore we will solve the subproblems heuristically and stop generating columns when
our heuristic terminates. This implies that the best solution to the LP master problem
may not give a true lower bound. Thus, by using this approximate lower bound in the
branch-and-bound phase of the algorithm we cannot guarantee that an optimal solution
will be found to the entire scheduling problem.

4 Experimental results

We have several sets of test data, ranging in size from 40 to 297 tasks. In each problem
there are 13 production lines. We compare the following solution methods:

TABU Uses TABU search, a local search algorithm in which moves that increase the cost
are permitted to avoid getting trapped at a local optimum. To avoid cycling, when
an “uphill” move is made, it is not allowed to be immediately undone.

swoO Applies the sSwWo architecture to the entire problem, running for a fixed number of
iterations and returning the best schedule it finds.

H-OPT Uses the best schedules generated by Swo as the set of initial columns in the IP
formulation described previously. Note that in these preliminary experiments no
additional columns were generated during the solution process.

On the 297-task problem, our implementation of TABU was much less effective than
either SWO or H-OPT, failing to find a feasible schedule after running for over 24 hours.
On the smaller problems, TABU was able to find solutions, but both swo and H-OPT
outperformed TABU by a substantial margin.

Table 1 presents results for SWO and H-OPT on test sets with the number of jobs
ranging from 40 to 297. In each case, ten trials were run and the results averaged.
The second column of the table shows the best objective function value we have ever
observed on each problem. The next two columns show the average objective function
value, and the average time required for Swo. For H-OPT, the last three columns in the
table show the average objective function value, the average time required by MINTO to

Data || Best Avg Avg Avg | Extra| %
Set Obj Obj Time Obj Time | Impr.

40 1890 1890.0 162 1890.0 3 | 0.000
50 3101 3128.8 201 3127.2 3 | 0.051
60 2580 2580.6 242 2580.0 91 0.023
70 2713 2714.2 282 2713.0 5 | 0.044

148 8869 8951.7 604 || 8874.7 31 | 0.858
297 17511 || 17806.8 | 1209 || 17556.1 111 | 1.406

Table 1: Experimental results

Time allowed for SWO (seconds)
60 300 600 900 1200 1800
SWO 17979.4 | 17881.9 | 17818.1 | 17858.0 | 17806.8 | 17777.0
H-OPT 17715.0 | 17581.5 | 17553.8 | 17547.4 | 17556.1 | 17543.1
% impr. 1.460 1.678 1.482 1.738 1.406 1.315
Avg. MINTO time 11 49 125 121 111 110

Table 2: Experimental results (297 task problem)

optimize over the set of columns in the schedules generated by swo, and the percentage
improvement in the objective function. All times are in user processor seconds. These
experiments were run on a Sparcstation 10 Model 50.

For the SWO/H-OPT experiments, we allowed the heuristic solver (SWO) to generate
solutions up to a time limit proportional to the number of jobs, with approximately 20
minutes (1200 seconds) allowed for the largest problem (297 tasks). The line schedules
from these solutions then formed the initial set of columns of H-OPT. H-OPT searches for
a better combination of those columns. In other words, if it finds an improvement, it is
the result of using columns from different schedules generated by swo.

On the smallest problems in our test set, SWoO by itself finds solutions that are as
good as the best solutions we have found by any method. (In fact, it finds them, on
average, in under 10 seconds.) As the problem size increases, H-OPT is able to show
greater improvements by re-combining columns from the schedules found by swo, with
an improvement of 1.4% over the performance of SWo alone on the 297-job problem.

To further characterize the performance of H-OPT, we ran the largest data set (297
jobs) with varying amounts of time allowed for SWoO to generate the “seed” schedules.
Each column in the table represents ten runs with a fixed amount of time allowed for seed
generation. As shown in Table 2, MINTO required only a relatively small amount of time
to improve upon the schedules produced by swo. The degree of improvement ranged
from 1.3% to 1.7%, corresponding to causing an additional 2 to 3 jobs to be completed by
their due dates. (The actual improvement, of course, may be a combination of reducing
lateness and reducing the total setup time.)

18400 |
18200 r Seed generation i
Recombination =

> Best known

©

> I .

° 18000

= :

g |

ok i

= 3

O 17800 r . |
17600 . -
17400

0O 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (seconds)

Figure 1: Time vs. objective function (297 task problem)

Figure 1 gives another view of the same data. For each of the six experiments shown
in Table 2, the solid line shows the best schedule produced by SWO, on average, versus
time. The dashed line segments show the results of taking the set of schedules generated
by SWO up to some point (1 minute, 5 minutes, etc., up to 30 minutes) and allowing
MINTO to optimize over that set of schedules. The horizontal line shows the best objective
value we have ever observed, for reference.

As more time is allowed for SWO to search, better schedules are found, but with
diminishing returns. On the other hand, until SWO has been allowed to run long enough
to have produced a sufficient number of “good” schedules, MINTO does not have enough
to work with. This suggests that H-OPT should take a dynamic approach to the boundary
between SWO and MINTO. For example, SwWO might be allowed to generate schedules,
keeping a set of the best NV schedules found, until Z consecutive iterations go by without
any change to that set, for empirically determined N and Z. On the 297 task problem,
H-OPT could have made the transition from swo to MINTO as early as 300 seconds, with
only a relatively small penalty.

Although the improvements achieved by MINTO are relatively small, on the order of
1.5%, MINTO achieves this improvement quickly, and SWO is unable to achieve the same
degree of optimization even when given substantially more time. In cases where it is
important to optimize as much as possible, and to do so quickly, the H-OPT combination
of local search and global IP optimization can be highly effective. Although this is only
a small experiment, we believe that these results clearly indicate that the approach is
promising and should be explored further by both enhancing the techniques and the

10

scope of applications.

5 Conclusions and future work

Although our results so far are limited in scope, they are very encouraging. As might
be expected based on other successful applications, our local search approach is capable
of generating high-quality schedules very quickly. Allowing additional time does not
improve those initial results dramatically. However, a combined exact and heuristic
optimization approach allows a large number of good (and not so good) schedules to be
“taken apart and recombined” in a way that quickly results in a higher quality schedule.

This hybrid approach takes advantage of the relative strengths of each part: local
search is able to find good schedules, but tends to get stuck in local optima, and IP
techniques provide a kind of global optimization that has no counterpart in local search.
In a given solution, the local search approach may get some things right, and some
things wrong, but the parts that are handled badly in one solution may be handled well
in another. In a sense, global optimization allows the best parts of the different solutions
to be combined.

The swo architecture is itself innovative, and there is still a great deal of room for
improvement. We are looking at more sophisticated methods of analysis and construc-
tion, and also looking at other domains that would require us to further generalize the
approach taken here.

The use of randomness in integer programming algorithms has received little atten-
tion, and we believe the randomness introduced by swo (in random tie-breaking during
the construction of solutions) is partially responsible for the success of H-OPT. In future
experiments, we hope to explore further the incorporation of randomization techniques.
Within swo, we can allow randomization to occur in any of the three main modules, and
experiments are currently underway to try to understand the impact of randomization
on the various parts of this architecture. In future work we will also experiment with a
branch-and-price algorithm [1] in which randomized heuristics are used to generate new
columns throughout the search tree.

Applying local search techniques for column generation may improve performance
still further. The intuition behind this is that the dual values provided by the LP solver
may provide valuable feedback to the local search engine about which tasks are “most
critical.” This can provide a bias toward different (and hopefully useful) areas of the
search space. We have tried to use the dual values provided by MINTO to assist in the
prioritization of jobs for SwWo, but our results so far have been mixed. We hope in the
future to better understand this mode of interaction between the two parts of H-OPT,
and to show that the feedback that MINTO can provide can be very useful to SWo.

Acknowledgements. The authors wish to thank Robert Stubbs of Lucent Technolo-
gies for providing us with data to use for our experiments.

This effort was sponsored by the Air Force Office of Scientific Research, Air Force
Materiel Command, USAF, under grant number F49620-96-1-0335 (CIRL and Georgia
Tech); by the Defense Advanced Research Projects Agency (DARPA) and Rome Lab-
oratory, Air Force Materiel Command, USAF, under agreements F30602-95-1-0023 and
F30602-97-1-0294 (CIRL); and by the National Science Foundation under grant numbers

11

CDA-9625755 (CIRL) and DMI-9700285 (Georgia Tech).

The U.S. Government is authorized to reproduce and distribute reprints for Gov-

ernmental purposes notwithstanding any copyright annotation thereon. The views and
conclusions contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or implied,
of the Defense Advanced Research Projects Agency, Rome Laboratory, the Air Force
Office of Scientific Research, the National Science Foundation, or the U.S. Government.

References

1]

2]

3]

[4]

[5]

[10]

[11]

[12]

[13]

C. Barnhart, E. Johnson, G. Nemhauser, M. Savelsbergh, and P. Vance. Branch-
and-price: Column generation for solving huge integer programs. Operations Re-
search, 1996.

CPLEX Optimization, Inc. Using the CPLEX callable library and CPLEX mixed
integer library, version 4.0, 1996.

J. M. Crawford. An approach to resource constrained project scheduling. In Arti-
ficial Intelligence and Manufacturing Research Planning Workshop, 1996.

G. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations
Research, 8:101-111, 1960.

T. A. Feo and M. G. Resende. Greedy randomized adaptive search procedures.
Journal of Global Optimization, 6:109-133, 1995.

B. R. Fox and M. Ringer. Planning and scheduling benchmarks, 1995.
http://www.NeoSoft.com/ benchmrx/.

M. R. Garey and D. S. Johnson. Computers and intractability: o guide to the theory
of NP-completeness. W. H. Freeman, 1979.

F. Glover and M. Laguna. Tabu Search. Kluwer, 1997.

H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic, and
stochastic search. In Proceedings of the National Conference on Artificial Intelli-
gence, Portland, OR, 1996.

G. Nemhauser, M. Savelsbergh, and G. Sigismondi. Minto, a mixed integer opti-
mizer. Operations Research Letters, 15:47-58, 1994.

B. Selman, H. A. Kautz, and B. Cohen. Local search strategies for satisfiability test-
ing. In Second DIMACS challenge workshop on cliques, coloring, and satisfiability,
Rutgers University, October 1993.

B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satisfiabil-
ity problems. In Proceedings of the National Conference on Artificial Intelligence,
pages 440-446, 1992.

G. P. Syswerda. Generation of schedules using a genetic procedure, 1994. U.S.
Patent number 5,319,781.

12

