Warehousing Design Objective

The goal of warehouse design is to

- Minimize the discounted present value of the costs of
- Establishing and operating the warehouse over some horizon specified by the decision-maker
- Subject to a number of resource and performance constraints.
Warehousing Design: Current Characteristics

- **Overwhelming complexity and variety**
 - No monolithic model
 - Hierarchical, iterative models
 - Approximate analytical models
 - Dramatically limit number of alternatives
 - Final choice based on detailed simulation

Iterative Warehouse Design Algorithm

- **Solve capacitated warehouse flow model (CMF)**
 - MIP
 - Determines flows, technologies and areas

- **Solve conceptual block layout (WBL)**
 - Block layout heuristics or MIP
 - Determines location, transportation costs

- **Iterate**
Capacitated Warehouse Flow Model (CMF)

Global Decisions
Receiving Decisions
Bulk Store Decisions
Shipping Decisions

Total Cost Function
Global Constraints: Space, Budget, etc.

Receiving
Bulk Store
Shipping

Warehouse Type 1: Small Parts Storage and Order Picking

- **Availability of analytical models**
- **Wide range of technologies**
 - Bin shelving, modular drawers, gravity flow rack, carousels
- **Variety of policy decisions**
 - Storage, order picking, aisle configuration
Bin Shelving Illustrations

Modular Drawers Illustrations
Single Technology Optimization Model

- Minimize sum of area, equipment, labor cost
- Subject to
 - Picking throughput requirements
 - Inventory storage requirements
- Incorporates
 - Travel time, extract time, picking policy
 - Equipment counts
 - Aisles configuration, storage policy

Schematic of Warehouse Ladder Structure
Model Hierarchy by Increasing Level of Detail

- **Level 1**
 - Volume only, no individual dimensions, number of cabinets
 - Fast optimization and round-up

- **Level 2**
 - Explicit vertical dimension, cabinets and drawer types
 - Bin packing MIP

Selected Formulas

- Travel time in function of number of aisles visited (Chew, 1999)

\[
OTT = \frac{1}{WS} \left[NA \cdot AL \left(1 - \left(1 - \frac{1}{NA} \right)^{NL} \right) + 2 \cdot AW \left(NA - \sum_{j=1}^{NA-1} \left(\frac{j}{NA} \right)^{NL} \right) \right] \\
\sum_{m} NCU_m \cdot CD_{mw} \leq 2 \cdot NA \cdot AL \\
AREA = \left[2 \cdot CAW + AL \right] \left[NA \cdot \left(2 \cdot CD_{md} + AW \right) \right] \\
NE \geq NO \cdot (OTT + ET \cdot NL)
\]
Preliminary Numerical Experiments

Three scenarios

<table>
<thead>
<tr>
<th></th>
<th># SKUs</th>
<th># Orders</th>
<th># Lines/Order</th>
<th># Lines/Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td>1,000</td>
<td>75</td>
<td>200</td>
<td>3,750,000</td>
</tr>
<tr>
<td>MO</td>
<td>1,000</td>
<td>500</td>
<td>30</td>
<td>3,750,000</td>
</tr>
<tr>
<td>SO</td>
<td>1,000</td>
<td>3,000</td>
<td>5</td>
<td>3,750,000</td>
</tr>
</tbody>
</table>

Parameters

- 250 shifts/year (250 days, 1 shift/day)
- $12 / labor hour

Total Annual Cost Comparison Based on Level 1 Models
Volume versus Area Utilization Factor

- Fill Ratio of volume (Level 1) or area (level 2)
- Determined based on three data sets
- Validated based on three other data sets
- Consistent and stable ratios
- Physical validation still required

VUF and AUF Linear Relations Graph

![Graph showing linear relationships between VUF and AUF]
Comparison of Total Cost for Different Models & Technologies

Summary of Cost Impact of Aisle Configuration (BS-LO)
Summary of Technology and Category Cost Comparison

Cost Comparison Observations and Conclusions

- Overriding influence of labor costs (travel and extract times)
- Level 1 models are sufficiently accurate to reject many technologies and rank cost impacts
- Model validation necessary
 - Perturbation, face, model consistency
- Cost parameters are a localized input
Future Research

- Need for more level 1 models
 - Different technologies, storage policies, order picking policies
- Model validation of all levels
- All departments on functional flow path (receiving, shipping)
- Master model experiments

Thank You
Can I Answer Any Questions?