
Chapter 4. Transportation 
Models 

This is an introduction chapter quotation.  It is offset three 

inches to the right. 

4.1. Vehicle Routing Systems Classification 
Single Origin-Destination Routing 

Multiple Origin-Destination Routing 

Single Vehicle Roundtrip Routing 

Vehicle Routing and Scheduling 

4.2. Single Origin and Destination Vehicle 
Routing 

Shortest Path Applications 

Driving Instructions 

You can request driving instructions between any two addresses in the continental United States from a 

variety of web sites.  To respond to your query, the software must find the shortest path between two 

points on the underlying street network in the United States.  The street network is based on the TIGER 

files, which are published by the U.S. Census Bureau and are completely revised every ten years on a 

rotating basis for different areas of the country. 
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Figure 4.1. Route Planning Software Illustration 

Time Mile Instruction For
Summary:  13.9 miles (23 minutes)

5:00 PM 0 Depart 765 Ferst Dr NW, Atlanta, GA 30318 on Ferst Dr NW (North) 0.3 mi
5:01 PM 0.3 Turn LEFT (North) onto Dalney St NW 0.2 mi
5:02 PM 0.5 Turn RIGHT (East) onto 10th St NW 0.5 mi
5:03 PM 0.9 Turn RIGHT (South) onto Ramp 0.1 mi
5:03 PM 1.1 Merge onto I-75 [I-85] (South) 6.8 mi
5:12 PM 7.8 Continue (South) on I-85 3.6 mi
5:16 PM 11.5 At I-85 Exit 72, turn off onto Ramp 0.4 mi
5:17 PM 11.9 Continue (West) on Airport Blvd [S Terminal Pkwy] 1.0 mi
5:20 PM 12.9 Continue (South-West) on Airport Circle 0.2 mi
5:21 PM 13.1 Bear RIGHT (East) onto N Terminal Pkwy 0.6 mi
5:22 PM 13.7 Turn RIGHT (East) onto Local road(s) 0.2 mi
5:23 PM 13.9 Arrive Hartsfield-Atlanta International Airport  

Figure 4.2. Route Planning Driving Instructions 
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Figure 4.3. Excite Web Site with Shortest Path Driving Instructions 

Equipment Replacement 

A typical decision to be made in equipment replacement is when to replace a particular machine by a 

newer model.  This decision is usually based on the tradeoff between leasing cost and maintenance cost, 

where it is assumed that the newer equipment will have a higher leasing cost but a lower maintenance 

cost and the used equipment will have the opposite cost characteristics.  It is also assumed that a 

machine must be available during the entire planning horizon. 

Each machine replacement decision can be represented as an arc from the starting period to the end 

period of the use of that machine.  The least cost equipment replacement schedule can then be found as 

the shortest path from the start to the end of the planning horizon. 

Shortest Path Problem (SPP) 

• Network nodes = points to be visited 
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• Network links = connecting the nodes 

Dijkstra’s Optimal Algorithm (1959) 

100,000 Nodes 

Shortest Path Problem (SPP) Variants 

One Source to One Sink (s to t) 

One Source to All Sinks (s to all) 

All Pairs 

k Shortest Paths (Sensitivity) 

All Non-Negative Costs (Label Setting) 

General Costs (Label Correcting) 

Longest Path in Acyclic Graphs (PERT and CPM) 

Dijkstra's Shortest Path Algorithm 

Labeling Algorithms 

Temporary Labels = Upper Bound 

Permanent Label = Exact Path Length 

Reduce Labels by Iterative Procedure 

Label Setting 

• One temporary label becomes permanent per iteration 

Label Correcting 

• All temporary labels become permanent at the last iteration 
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Shortest Path Algorithm Illustration 
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Figure 4.4.  Shortest Path Problem 
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Figure 4.5.  Shortest Path Solution 

Algorithm Description 

1. Set all node labels l(x) = ∞, set l(s) = 0, set all nodes to temporary 

2. Find temporary node with min. label l(p)=min{l(x)} 

3. For all temporary x ε Γ(p) update labels l(x) = min { l(x), l(p) + c(px)} 

4. Mark node p as permanent 

5. If all destinations are permanent stop, else go to step 2 

Algorithm 4.1.  Dijkstra's Shortest Path Algorithm for Dense Graphs 
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Algorithm Characteristics 

Forward Dynamic Programming 

Nonnegative Arc “Lengths” or “Costs” 

O(n2) + O(m) or  O(n2) for Fully Dense Graphs  

Directed Out-Tree Rooted at s 

Node Selection Computationally Most Expensive 

100,000 Nodes 

Algorithm Example 

Table 4.1.  Shortest Path Example Distance Matrix 

1 2 3 4 5 6 7 8
1 10 3 6
2 10 18 2 1
3 18 25 20
4 25 5 16 4
5 5 10
6 20 10 14 15
7 2 4 14 24
8 6 23 15
9 12 13 9 24 5
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Figure 4.6. Dijkstra's Shortest Path Example Network 

The solid edges indicate bi-directional connectors with symmetric distances, the dashed edges indicate 

asymmetric, one-directional connectors. 
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Figure 4.7. Dijkstra's Shortest Path Example Solution 

Dijkstra's Algorithm for Sparse Graphs 

Heap Implementations (Binary, Fibonacci, Radix,.. ) 

Running Times 

O(m+n log n) for Fibonacci Heap 

O(m log n) for Binary Heap 

Intricate Implementation 

Network Flow Mathematical Formulation 

. .

0

N N

ij ij
i j

N N

ij hi i
j h

ij ij

Min c x

s t x x b i

x u i

− =

≤ ≤ ∀

∑∑

∑ ∑
j

∀  (4.1) 

One variable for Each Arc and Commodity (Flow) 

One conservation of Flow Constraint for Each Node and Commodity 

Flows from the Outside (Sign Convention) 

Individual and Joint Upper (and Lower) Bounds 

The mathematical formulation for the shorted path network shown in Figure 4.4 is given below. 
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Excel Shortest Path Spreadsheet and Solver 

 
Figure 4.8. Excel Shortest Path Spreadsheet Arc Capacities 

 
Figure 4.9. Excel Shortest Path Spreadsheet Arc Costs 
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Figure 4.10. Excel Shortest Path Spreadsheet Initial Flow Balance 

 
Figure 4.11. Excel Shortest Path Spreadsheet Initial Objective Function 

 
Figure 4.12. Excel Shortest Path Spreadsheet Solver Parameters 
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Figure 4.13. Excel Shortest Path Spreadsheet Solver Options 

 
Figure 4.14. Excel Shortest Path Spreadsheet Solution Flows 

 
Figure 4.15. Excel Shortest Path Spreadsheet Solution Objective Function 

Nissen (1999) created a JAVA applet implementing Dijstra's Shortest Path algorithm that nicely 

illustrates the dynamic programming progression.  This applet is located on the personal home page of 

this student in computer science, so the applet may not be available in the future. 
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Directed Graph Representations 
1. Adjacency Matrix 

2. Successor List 

3. Successor Linked List 
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Figure 4.16. Directed Graph Example 

Adjacency Matrix 

A[i, j] Present If Edge From Node i to Node j 

Characteristics 

n2 Storage Memory 

Constant O(1) Lookup, Addition, Deletion 

Linear O(n) Successor and Predecessor Loops 
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Figure 4.17. Directed Graph Adjacency Matrix Example 

Successor Array 

Head or First Arc Array. 

This array contains the index of the row in the arc array for the first outgoing arc for each node, 

respectively. 

To-Node Array with Every Arc 

This array is stored in a single monolithic area of the computer memory. 
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Characteristics 

n + 2m Memory Storage 

Linear O(n) Lookup, Linear O(n) Insertion and Deletion 

The linear effort O(n) for the insertion and deletion of an arc is generated by the work required to find 

the arc for deletion or the place for the new arc for insertion.  The actual insertion and deletion then 

requires the extension or contraction of the arc array and the movement of all the rows below the 

insertion or deletion row.  The elements in the head array, which are the row indices into the arc array, 

for the current origin node and below also have to be adjusted.  Since this effort is constant with respect 

to the number of nodes in the network or O(1) it is ignored in the computational complexity 

characterization.  But the actual work involved is usually much larger than finding the proper place in 

the arc array.  This is an example where for all practical networks it is more important to include the 

lower power terms and their coefficients in the computational complexity polynomial.   

The amount of work involved in inserting or deleting an arc in the middle of the arc array is one of the 

major disadvantages of this particular data structure for the representation of directed graphs. 

Linear O(n) Successor Loop, Linear O(m) Predecessor Loop 
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Figure 4.18. Directed Graph Successor Array Example 

Successor Double Linked List 

Head or First Arc Array 

This array contains the memory address of the row in the arc array for the first outgoing arc for each 

node, respectively. 

To-Node Double Linked List With Every Arc 
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The predecessor (prev) and successor (next) elements are memory addresses of the preceding or 

succeeding arc in the network.  The memory for each arc is allocated and released on an individual arc 

basis. 

Characteristics 

n + 4m Memory Storage 

Linear O(n) Lookup, Constant O(1) Insertion, Linear O(n) Deletion 

The constant effort O(1) for the insertion and the linear effort O(n) for the deletion of an arc are 

generated by the work required to find the arc for deletion or the place for the new arc for insertion.  The 

actual insertion and deletion then requires the allocation or release of the memory for a single arc.  For 

insertion the memory address for the origin node has to be modified in the head array and it may have to 

be modified for arc deletion if the deleted arc was the first outgoing arc from this node.  But no other 

addresses in the head array have to be modified.  Since this effort is constant with respect to the number 

of nodes in the network or O(1) it is ignored in the computational complexity characterization.   

Linear O(n) Successor Loop, Linear O(m) Predecessor Loop 
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Figure 4.19. Directed Graph Successor List Example 

Element Deletion 

k to be Deleted Element 

• If Pred(k) then Succ(Pred(k)) = Succ(k) 

• If Succ(k) then Pred(Succ(k)) = Pred(k) 

21- 321 -32

31- -31  
Figure 4.20.  Double Linked List Deletion 
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Element Insertion 

k to be Inserted Element after p 

• Succ(k) = Succ(p), Pred(k)=p, Succ(p)=k 

• If Succ(k) then Pred(Succ(k))=k 

k to be inserted Element before s 

• Pred(k)=Pred(s), Succ(k)=s, Pred(s)=k 

• if Pred(k) then Succ(Pred(k))=k 

21- -21

31- 231 -23  
Figure 4.21. Double Linked List Insertion 

1

2

3

5

4

6

1

4

6

2

5 3

7

 
Figure 4.22.  Directed Graph Example 
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Figure 4.23.  Directed Graph Example Adjacency Matrix 
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Figure 4.24.  Directed Graph Example Successor Array 
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Figure 4.25.  Directed Graph Example Successor Linked List 

For further reference see Horowitz and Shani (1984), Sedgewick (1983), and Aho et al. (1983). 
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4.3. Multiple Origin and Destination Vehicle 
Routing 

Introduction 
DemandsInflows

Channels  
Figure 4.26. Multiple Origin and Destination Network Illustration 

Max Flow Network Flow Problem 

• Capacity models, public sector 

Min Cost Network Flow Problem 

• Economic models, private industry 

Network Simplex Algorithm 

100,000 Channels 

Network Variants 

Transportation 

Transshipment 

Min Cut - Max Flow Network 

Min Cost Network 

Multicommodity Network 

Generalized Networks 
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Network Properties 

Unimodularity Property 

The unimodularity property, also called the integrality property, states that if the all the external flows 

and the arc capacities of a network problem are integer numbers, then the optimal solution to this 

network flow problem will consist of all integer flows.  It should be noted, that the unimodularity or 

integrality property does not hold for generalized networks. 

Applications 

Tactical Production-Distribution Planning 

Parameters and Variables 

Products p 

Customers j, demand demjp 

Plants i, capacity capi 

Marginal production cost aip and resource consumption reqip 

Transportation cost cijp and quantity xijp 

The standard network formulation does not allow having capacities or costs on the flow through nodes, 

only capacities or costs for flows through arcs.  A standard modeling technique to avoid this limitation is 

to split the original node up into two nodes connected by a single arc.  On this arc a flow capacity and 

flow cost can then be specified.  This technique is illustrated in the following figure for the tactical 

production-distribution planning problem.   

Illustration 

i i'
j(a, cap, x) (c,∞,x) dem

i i'
j

 
Figure 27.  Tactical Production-Distribution Planning Network 
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Model 

Min a c x

s t x dem jp

req x cap i

x

ip ijp
p
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If all req  are equal and can thus be set equal to one, the above formulation is called a network.  If not 

all req  are equal, the formulation is called a generalized network.  The solution times for solving a 

generalized network are significantly larger than for solving a network of equivalent size.  In addition, 

the integrality property does not longer hold for generalized networks and the optimal solution flows 

may be fractional. 

ip

ip

Operator Scheduling 

Parameters and Variables 

Time periods with coverage requirements b  i

Operator shifts with costs c  that cover consecutive time periods i

Number of operators for each shift x  i

Model 
Min cx
s t Ax b

x
. . ≥

≥ 0
 (4.3) 

0 1 0 1 1
1 1 0 0 1
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Transformation 
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Consecutive Ones in Each Column 

Add Negative Identity Matrix (Row Surplus Variable) 

Add “Zero” Row (Node N+1 Flow Balance Constraint) 

Linear Row Operation 

For r = N Down To 1 

 Row[r+1] = Row[r+1] - Row[r] 

0 1 0 1 1 1 0 0 0 0
1 0 0 1 0 1 1 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 1 0 0 1 1 0
0 0 1 0 0 0 0 0 1 1
1 1 1 0 0 0 0 0 0 1
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−
− −
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Illustration 
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Figure 4.28. Operator Scheduling Network 

Successive Shortest Path Algorithm 

Algorithm Description 

1. Start all flows x = 0, all node potentials π = 0 

2. Construct incremental/residual graph 

Same nodes as original graph 

If x  then add artificial arc ji ij > 0

If x  then eliminate arc ij or duij ij= ij = ∞  

If x  then d cuij ij< ij ij i j= − +π π  

If x  then d cij > 0 dji ij j i ij= − − + = −π π  

Add super source and super sink nodes, add arcs from the super source to the sources and from the sinks to the super 
sink with cost equal to zero and capacity equal to the remaining supply and demand, respectively. 
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3. Find shortest path from source to sink 

Find shortest path to any sink node k with Dijkstra’s algorithm 

If no such path, stop, network flow problem is infeasible 
4. Compute maximum flow change on the shortest path 

on backflow arcs, δ ij jix=  

on regular arcs, δ ij ij iju x= −  

δ δ= min ijn s  
5. Augment flow on the shortest path 

on backflow arcs, x xji ji= − δ  

on regular arcs, x xij ij= + δ  

update remaining supply and demand 
6. If all remaining demands are zero, stop, network is optimal 

7. Update node potentials 

k = shortest path sink node and SPL  is the shortest path length to node i i

if node i is permanent, π πi i SPL= − i  

if node i is temporary, π πi i kSPL= −  
8. Go to step 2 
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Algorithm Illustration 
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Figure 4.29. Successive Shortest Path Algorithm Illustration 

Algorithm Example 
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Figure 4.30. Successive Shortest Path Example Data 
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Figure 4.31. Successive Shortest Path Example First Shortest Path 
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Figure 4.32. Successive Shortest Path Example Second Shortest Path 
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Figure 4.33. Successive Shortest Path Example Third Shortest Path 
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Figure 4.34. Successive Shortest Path Example Fourth Shortest Path 
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Figure 4.35. Successive Shortest Path Example Fifth Shortest Path 
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Figure 4.36. Successive Shortest Path Example Sixth Shortest Path 

 
Figure 4.37. Excel Spreadsheet for Minimum Cost Network Example Arc Capacities 

 
Figure 4.38. Excel Spreadsheet for Minimum Cost Network Example Arc Costs 
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Figure 4.39. Excel Spreadsheet for Minimum Cost Network Example Initial Zero Flows 

 
Figure 4.40. Excel Spreadsheet for Minimum Cost Network Example Initial Zero Objective 

 
Figure 4.41. Excel Spreadsheet for Minimum Cost Network Example Solver 

The flow balance is modeled as an equality constraint.  If there is more supply available then there is 

demand, the flow balance equality constraint is replaced with a less-than-or-equal constraint.  This 

assumes that external inflows (supplies) have a positive sign and external outflows (demands) have a 

negative sign.  An alternative method is to introduce an artificial sink node with as demand the 

difference between the total supply and the total demand in the network.  All source nodes are then 

connected to this artificial sink node with flow arcs with zero cost and infinite capacity.  Since the 

network is then again balanced, the flow balance is modeled as an equality constraint. 
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Figure 4.42. Excel Spreadsheet for Minimum Cost Network Example Solution Flows 

 
Figure 4.43. Excel Spreadsheet for Minimum Cost Network Example Solution Objective 

Minimum Cost Network Flow Formulation 

Primal formulation 

Parameters and Variables 
xij  flow from node i (origin) to node j (destination) 

cij  cost of transporting one unit of flow from node i (origin) to node j (destination) 

bi  external flow for node i, with the sign convention that external inflows (supply) are positive and external outflows 
(demand) are negative. 

uij  arc capacity or upper bound on the flow from node i (origin) to node j (destination) 
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Model 
Formulation 4.1. Minimum Cost Network Flow Formulation 

Min c x
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Residual Network Construction 
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Optimality Conditions 

Reduced costs based on shortest path labels. 

d d c i j
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Reduced costs based on node potentials. 

c c i jij ij i j
π π π= − + ≥ ∀0  (4.6) 

Dual formulation 

Standardized Primal Formulation 

Min c x

s t x x b i

x u ij

ij ij
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hi
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j
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i
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Dual formulation 

max

. . ( , ) [ ]

b u
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 (4.8) 

Condensed dual formulation 

max

. . ( , ) [ ]

b u

s t c i j x
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i i ij ij
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ij ij ij
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Complementary slackness conditions. 
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( )

* *

* *

u x
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ij ij ij
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α

α π

0

0
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Optimality conditions. 

if c then c then x

if x u then then c

if c then then x u

ij ij ij ij

ij ij ij ij

ij ij ij ij

π π

π
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α

α
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> + >
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( )* *

* *

* *

= 0

0  (4.11) 

4.4. Single Roundtrip Vehicle Routing 

Introduction 
Traveling Salesman Problem 

Specialized Branch and Bound Algorithms 

2000 Nodes 

Many Heuristic Algorithms 

27 ● Chapter 4. Transportation Models Logistics Systems Design 



Traveling Salesman Problem Applications 

Traveling Salesman 

Shortest Hamiltonian Cycle 

Knight’s Tour 

Person-Aboard Order Picking 

Running Domestic Errands 

Sequencing Jobs in a Paint Booth 

Traveling Salesman Problem Definition 

Asymmetric Traveling Salesman Problem Formulation 
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k

h

n

m

l
 

Figure 4.44.  Asymmetric Traveling Salesman Problem Illustration 

Formulation 4.2. Asymmetric Traveling Salesman Problem 

Min c x

s t x j

x

x S S

x

ij ij
j

M

i

N

ij
i

N

ij
j

N
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N

∀  (4.12) 

The Asymmetric Traveling Salesman (ATSP) is basically an Assignment Formulation (AP) with 

additional constraints that eliminate subtours. 
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Subtour Elimination Constraints 

x S S Nij
j Si S

≤ − ∀ ⊂
∈∈
∑∑ | | 1  (4.13) 
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Figure 4.45.  Subtour Elimination Illustration 

Symmetric Traveling Salesman Formulation 
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Figure 4.46.  Symmetric Traveling Salesman Problem Illustration 

Formulation 4.3. Symmetric Traveling Salesman Problem 

Min c x

s t x x j

x S S N

x

ij ij
j i
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ij jk
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 (4.14) 

The Symmetric Traveling Salesman Problem formulation (STSP) is basically a two-matching 

formulation with side constraints that eliminate subtours. 
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Simple TSP Heuristics 

Heuristic Types 

Create an initial tour 

• convex hull, sweep, nearest neighbor 

Insert remaining free points 

• nearest, cheapest, farthest insertion 

Improve existing tour 

• two, three, or Or exchanges 

Construction Heuristics 

Nearest Neighbor 

The Nearest Neighbor algorithm starts the tour one initial point and then appends the nearest unvisited 

or free point to the tour.  This algorithm was originally described by Rosenkrantz et al. (1977).  The 

initial starting point is an algorithm parameter that you can specify.  Since the Nearest Neighbor 

algorithm executes very fast, a possible alternative would be to start a tour at each point and then to 

retain the shortest tour among them. 

Improvement Heuristics 
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Figure 4.47.  Two Exchange Improvement Illustration 
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Figure 4.48.  Three Exchange Improvement Illustration 
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Figure 49.  Or (2 Chain) Exchange Improvement Illustration 

Improvement Heuristic Classification 

Exchange improvement heuristics can be divided into four classes depending on which exchange they 

test for possible improvement and which exchange they select to execute.  For a minimization problem 

such as the TSP where we want to a tour with the lowest possible length, the categories are 

1. First Descent 

2. Steepest Descent 

3. Simulated Annealing 

4. Tabu Search 

First Descent 

All possible edge exchanges that can result in a new tour are examined in a structured way until an 

exchange is found that reduces the tour length.  This exchange is executed immediately and the process 

of examining all possible exchanges starts all over.  Hence, the first exchange in each iteration that 

yields a reduction is executed.  The process terminates when no further exchanges can be found that 

yield a cost reduction. 
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Steepest Descent 

All possible edge exchanges that can result in a new tour are examined in a structured way and the 

exchange that yielded the largest reduction in the tour length is retained.  If this exchange reduces the 

tour length then it is executed and the process of examining all possible exchanges starts all over.  

Hence, the exchange that yields the strongest reduction in each iteration is executed.  The process 

terminates when no further exchanges can be found that yield a cost reduction. 

Simulated Annealing 

Both previous improvement algorithms are deterministic, i.e. each algorithm will convert an initial tour 

into specific final tour.  Since they are heuristics, this final tour may not be of high quality.  To remedy 

this problem, a probabilistic exchange improvement algorithm was developed.  There exists an analogy 

between the optimization method of simulated annealing and the laws of thermodynamics, specifically 

with the way in which liquids freeze and crystallize or metals cool and anneal.   

The simulated annealing algorithm selects a set of edges for exchange evaluation at random.  If the 

exchange yields a cost reduction, then the exchange is executed immediately.  If the exchange yields a 

cost increase, then the exchange is executed with probability P, which is computed in function of the 

cost increase ∆ and the temperature T.  T is a search control parameter that is systematically reduced 

during the algorithm execution. 

if P Exch

if P Exch e T

∆

∆ ∆

< =

≥ = −

0 1

0

[ ]

[ ]
 (4.15) 

This allows early on exchanges with large cost increases.  As the temperature is reduced, the number of 

such exchanges and the size of the allowed cost increases are gradually reduced.  The objective of these 

non-improving exchanges is to avoid a first descent into a local minimum.  The process repeats itself 

until no further improvements can be made.  Since the exchanges were selected at random, the 

improvement algorithm may generate a different final tour if run from the same initial tour if different 

seeds are used to generate different pseudo-random number streams for sampling the probability 

function of P. 

For further information on two and three exchanges see Goetschalckx (1992).  For further information 

on simulated annealing see Kirkpatrick et al. (1983) and Vechi and Kirkpatrick (1983).   

Computational processing time increases sharply with the amount of improvement processing.   
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Tabu Search 

Insertion Heuristics 

Insertion heuristics must make two type of decisions and also decide which decision to make first.  The 

two decision are which point to insert next and where to insert this point.  Many variants exists 

depending on how and in what sequence those two questions are answered. 

i j

k
 

Figure 4.50.  Node Insertion 

Cheapest Insertion 

Cheapest insertion first determines for every remaining free or unvisited point where the optimal link is 

to insert this point.  This corresponds to the inner minimization in the equation (4.16).  The insertion 

penalty is sum of the distance to the free point minus the distance of the link that will be removed.  

Cheapest insertion then selects the point to insert as the point with the minimum insertion penalty. 

min min
k ij kij ik kj ijc c cδ = + −RST

UVWn s

s

 (4.16) 

Priciest Insertion 
Priciest insertion first determines for every remaining free or unvisited point where the optimal link is to 

insert this point.  This corresponds to the inner minimization in the equation (4.17) and is identical to the 

minimization process of the cheapest insertion algorithm.  The insertion penalty is sum of the distance to 

the free point minus the distance of the link that will be removed.  Priciest insertion then selects the 

point to insert as the point with the maximum insertion penalty. 

max min
k ij kij ik kj ijc c cδ = + −RST

UVWn  (4.17) 

Nearest Insertion 

Nearest insertion determines first the free point to insert by finding the free point closest to a point on 

the tour.  The algorithm in essence performs a mini-min operation on the distance from a free point to a 

point on the tour. 
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{ } { },
min min minkj kjk T j T k T j T

c
∉ ∈ ∉ ∈

= c

s

 (4.18) 

Nearest insertion then determines the best link to insert this point.  This process is identical to the 

minimization process of the cheapest and farthest insertion algorithms. 

min
( , )i j T ijk ik kj ijc c c

∈
= + −δn  (4.19) 

Farthest Insertion 

Farthest insertion determines first for every free point the smallest distance to any point already on the 

tour.  Then it inserts the free point with the maximum smallest distance to a point on the tour.  The 

algorithm in essence performs a maxi-min operation on the distance from a free point to a point on the 

tour. 

{ }max min kjj Tk T
c

∈∉
 (4.20) 

Farthest insertion then determines the best link to insert this point.  This process is identical to the 

minimization process of the cheapest and farthest insertion algorithms. 

min
( , )i j T ijk ik kj ijc c c

∈
= + −δn s

s

 (4.21) 

Nearest Addition 

Nearest addition determines first the free point to insert by finding the free point closest to a point on the 

tour. 

min
,k T j T kjc

∉ ∈
n s  (4.22) 

Nearest addition then determines the best link to insert this point by examining the two links on the tour 

incident to the tour point the free point was closest to.  This is a more restricted search that the link 

determination step in the cheapest and farthest insertion algorithms. 

min ,δ δijk ik kj ij jkm jk km jmc c c c c c= + − = + −n  (4.23) 

Clarke and Wright Savings Heuristic 

Clarke and Wright (1964) developed a construction procedure that extends a partial route or route 

primitive on its two end points.  Conceptually the algorithm defines a base point and constructs an 

Eulerian tour that visits each of the other points and the returns to the base point.  The Eulerian tour is 
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then reduced in length by finding and executing the shortcut with the largest savings.  The savings are 

computed as the sum of the distances to the base point of the two points minus the distance between the 

two points.   

{ }0 0,
max ij i j iji j

s c c c= + −  (4.24) 

h
i

j

0
 

Figure 4.51. Clarke and Wright Tour Extension Illustration 

Once two points have been joined by a shortcut they are never again separated again by the Clarke and 

Wright algorithm.  The serial variant of the algorithm extends the single partial route at its end points, 

which are connected to the base point.  The next point is then selected by finding the point with the 

largest savings shortcut to the current end points of the partial tour.  The parallel variant of the algorithm 

creates a number of partial tours that are concatenated when two endpoint of two different tours are 

connected.  The serial variant is easier to program and requires fewer calculations to update the savings 

after two points have been connected by a shortcut. 

max max
,i j h ih i h ihs c c c= + −0 0l{ q}  (4.25) 

Algorithm 4.2 Clarke and Wright Savings Algorithm (TSP Serial Variant) 

1. Select base point {0} 

2. Construct a tour primitive by finding the two points with the largest savings shortcut 

3. While not all points have added to the partial tour 

4. Update computation of savings of combining tours 

5. Append point with largest savings shortcut to endpoints of the partial tour 
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Spacefilling Curve 

  
Figure 4.52 .  Spacefilling Curve Examples (Serpentine and Hilbert 19) 

Optimization Based Heuristics 

Minimum Spanning Tree and Matching Heuristic 

Lagrangean Relaxation and 1-Tree Heuristic 

Held and Karp (1970, 1971) developed a solution for the symmetrical traveling salesman problem based 

on the notion of a 1-tree relaxation.  A 1-tree is a minimum spanning tree of a set of points excluding a 

single base point plus the two shortest edges connecting the base point to the minimum spanning tree.  

The number of edges in the 1-tree is ( )( )1 1 2N N− − + = .  The length of the 1-tree is a lower bound on the 

length of the shortest Hamiltonian cycle through all the points.  Since a 1-tree is a (minimum) spanning 

tree plus two additional edges from a single point to the tree, a 1-tree contains a single cycle.  If the 1-

tree is a cycle, then it is the solution to the traveling salesman problem.  The 1-tree is a cycle if the node 

degree of all the nodes is equal to two.  The Lagrangean relaxation relaxes the constraint that the node 

degree of each node must be equal to two.  Since the constraint is an equality constraint, the 

corresponding Lagrangean multiplier is unrestricted in sign.  The master Lagrangean dual problem is 

solved with subgradient optimization.  The bound provided by the Lagrangean dual was used in a 

branch-and-bound scheme to solve the TSP.  The Lagrangean relaxation is written as 

{ }

11

1 1 1 1 1

2

. . 0,1 , 1

jN N N N

ij ij j ij jk
i j i j i k j

ij ij

Min c x x x

s t x x tree

λ
−−

= = + = = = +

 
+ ⋅ + −


∈ ∈ −

∑ ∑ ∑ ∑ ∑ 
  (4.26) 

After rearranging the terms in the objective function, the Lagrangean relaxation becomes 
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The subgradient or improvement direction at a particular solution for each Lagrangean multiplier jλ  is 

given by 

1

1 1

2 2
j N

ij jk j j
i k j

x x nd λ
−

= = +

 + − = −  ∑ ∑  (4.28) 

Held et al. (1974) proposed the following update procedure in their solution of the symmetrical traveling 

salesman problem. 
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−
=

=

=

 (4.29) 

Where  is the tour length of the best primal feasible solution found so far or incumbent.  The weight 

parameter w is cut in half after a fixed number of m iterations.  This implementation of subgradient 

optimization is known for its rapid initial convergence, but also for its zigzagging behavior and 

instability in the neighborhood of the optimal 

ẑ

*λ .   

Typically, the incumbent solution  is computed initially with a primal heuristic and may or may not be 

updated during the execution of the Lagrangean optimization.  Examples of primal heuristics for the 

TSP are nearest neighbor and sweep, followed by improvement algorithms such as two-exchange and 

three-exchange. 

ẑ

1-Tree Relaxation Algorithm for a TSP Bound 

1. Initialize all node degree penalties λ to zero, set 2, 0w k= =  

2. Compute adjusted distances with ij ij i jc cλ λ λ= + +  

3. Construct minimum spanning tree on { } bP−N , where  is the base point, using the adjusted 

distances c

bP

ij
λ  
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4. Connect the base point with the two shortest edges to spanning tree using the adjusted distances 

ijcλ  

5. If all the node degrees are equal to two, stop. 

Else update node degree penalties with the subgradient method. 

2
2
2

j j

j j

j j

if nd remains unchanged
if nd is decreased
if nd is increased

λ

λ

λ

=

<

>

 
( )

( )

1

2

2

ˆ

2

k k k
j j j

k
k

j

t nd

z z
t w

nd

λ λ

λ

+

= + ⋅ −

−
=

−

 

6. , If (1k k= + )modulo 0 then 2k m w= = w  

7. Go to Step 2 

TSP Heuristics Example 
Table 4.2.  Point Locations for the TSP Example 

# x y

1 0 0

2 100 600

3 400 400

4 500 700

5 900 400

6 800 900  

Table 4.3.  Euclidean Distances for the TSP Example 

1 2 3 4 5 6

1 0 608 566 860 985 1204

2 608 0 361 412 825 762

3 566 361 0 316 500 640

4 860 412 316 0 500 361

5 985 825 500 500 0 510

6 1204 762 640 361 510 0  
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Figure 4.53.  Traveling Salesman Example 

Nearest Neighbor Construction 

Start Point 3 

Min {566, 361, 316, 500, 640}=316 (4) 

Min {860, 412, 500, 361} = 361 (6) 

Min {1204, 762, 510} = 510 (5) 

Min {985, 825} = 825 (2) 

Min {608} = 608 (1) 

Total Tour Length = 3186 
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Figure 4.54.  Nearest Neightbor TSP Tour 

Two Exchange Improvement 

Original Tour Length = 3186 

Crossing Edges (3-4) and (2-5) in Geometric TSP 

Exchange Edges (3-4) and (2-5) with (2-4) and (3-5) 

Savings = 316 + 825 - 412 - 500 = 229 

Improved Tour Length = 2957 
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Figure 4.55.  TSP Two Exchange 
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Quad Tour Skeleton Construction 

Tour length = 2699 
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Figure 4.56.  Quad Tour Skeleton 

Convex Hull Tour Skeleton Construction 

Tour length is 2865. 
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Figure 4.57.  TSP Convex Hull Tour Skeleton 

Cheapest Insertion 

Point 3 & 4 

Min {566+500-985=81 (1-5), 500+640-510=630 (5-6), 640+361-762=239 (6-2), 361+566-608=319 (2-

1)} = 81 (1-5) 
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Min {860+500-985=375 (1-5), 500+361-510=351 (5-6), 361+412-762=11 (2-6), 412+860-608=644 (2-

1)} = 11 (2-6)* 

Point 3 

Min {81 (1-5), 630 (5-6), 595 (6-4), 265 (4-2), 319 (2-1)} = 81 (1-5) 

Tour length = 2957 
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Figure 4.58.  TSP Cheapest Insertion 

Priciest Insertion 

Point 3 & 4 

Min {566+500-985=81 (1-5), 500+640-510=630 (5-6), 640+361-762=239 (6-2), 361+566-608=319 (2-

1)} = 81 (1-5) * 

Min {860+500-985=375 (1-5), 500+361-510=351 (5-6), 361+412-762=11 (6-2), 412+860-608=644 (2-

1)} = 11 (2-6) 

Max {81 (1-5), 11 (2-6)} = 81 (1-5) 

Point 4 

Min {610 (1-3), 316 (3-5), 351 (5-6), 11 (6-2), 319 (2-1)} = 11 (6-2) 

Clarke and Wright Savings 

Tour Primitive (1-6-1) = 2408 
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Max  {1204+608-762=1050 (2), 1204+566-640=1130 (3), 1204+860-361=1703 (4), 1204+985-

510=1679 (5)} = 1703 (6-4-1) 

Tour Primitive (1-6-4-1) 

Max {1050 (6-2-1), 1130 (6-3-1), 1679 (6-5-1), 860+608-412=1056 (4-2-1), 860+566-316=1110 (4-3-

1), 860+985-500=1345 (4-5-1)} = 1679 (1-5-6) 
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Figure 4.59.  TSP Clarke and Wright Savings Tour 

Spacefilling Curve Construction 

Tour length = 3195 
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Figure 4.60.  TSP Example Spacefilling Curve Tour 
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Minimum Spanning Tree and Matching Heuristic 
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Figure 4.61. TSP Example Minimum Spanning Tree 
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Figure 4.62. TSP Example Minimum Spanning Tree Plus Minimum Matching 
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Figure 4.63. TSP Example Minimum Spanning Tree and Maximum Savings Shortcut 
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Lagrangean Relaxation and 1-Tree Heuristic 
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Figure 4.64. TSP Example Minimum Spanning Tree Excluding Base Node 1 

Y-
Ax

is

X-Axis
1

2

3

4

6

5

 
Figure 4.65. TSP Example First 1-Tree Based on Base Node 1 
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Figure 4.66. TSP Example Second 1-Tree based on Base Node 1 
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Tours Software Illustration 

 
Figure 4.67. Tours TSP Example 

       
Figure 4.68. Tours Illustrations 
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4.5. Multiple Vehicle Roundtrip Vehicle 
Routing 

Vehicle Routing Problem 
Goal Is to Efficiently Use a Fleet of Vehicles 

Given a Number of Stops to Pick Up or Deliver Passenger or Goods 

Under a Variety of Constraints 

• Vehicle Capacity 

• Delivery Time Restrictions 

• Precedence Constraints 

Vehicle Routing Decisions 

Which Customers Served by What Vehicle 

Sequence of Stops for Each Vehicle 

Number of Vehicles (Fleet Planning) 

Vehicle Routing Variants 
Traveling Salesman Problem 

Pure Vehicle Routing 

Linehaul-Backhaul 

Vehicle Routing with Time Windows 

Vehicle Routing and Scheduling 

Mixed Pickup and Delivery 
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Vehicle Routing Algorithms Classification 

Algorithm Classification by Required Input 

Route Generating 

• Large Variety 

• Generalized Assignment Algorithm 

• Tightly capacitated problems 

Route Selecting 

• Set Partitioning Algorithm 

• Complex costs and constraints 

Algorithm Classification by Basic Methodology 

Problem Specific Heuristics 

Optimization Based Heuristics 

Artificial Intelligence Based Heuristics 

Optimal Algorithms 

Pure Vehicle Routing (VRP) 

VRP Problem Definition 

Single depot 

N Customers (xi, yi, demi) 

• known location and demand 

K Vehicles (capk) 

• known and equal size 

Minimum travel cost objective 

Travel distance norm 
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Route Generation Algorithms 

Route Construction 

• Nearest Neighbor 

• Clarke and Wright Savings 

Route Improvement 

• Christofides and Eilon (K-TSP) 

• Two, Three, and Or-Exchange Improvement 

Two Phase Algorithms 

Cluster First, Route Second 

• Sweep A, Fisher and Jaikumar (GAP) 

Route First, Cluster Second 

• Sweep B, Great Tour 

Nearest Neighbor 

The nearest neighbor algorithm starts a new route at the depot and visits next the closest unvisited 

customer.  If adding that customer to the route would violate the truck capacity, the route is terminated 

and the truck returns to the depot to start a new route if the maximum number of routes has not been 

reached.  Otherwise the customer is added to the route and the vehicle travels next to the closest 

unvisited customer. 

Cluster First, Route Second Sweep 

The first variant of the Sweep algorithm rotates a ray with origin at the distribution center and the points 

are assigned to the current group or cluster when they are traversed by the ray.  The current cluster is 

closed if the next point would violate the truck capacity.  After all the clusters have been determined, 

TSP construction routes must be used to construct the actual route for each cluster. 
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Generalized Assignment Formulation (GAP) 

General Nonlinear Formulation 
min
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Routing Formulation 
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 (4.31) 

Linearized Clustering Cost 

Heuristic Approximation 

sk Seed Customer for Route k 

Many Variants for dik and Seed Selection 

f y d yik ik ik
i

b g = ∑  (4.32) 

d c c cik i is sk k
= + −0  (4.33) 

Sweep (Route First, Cluster Second Sweep) 

This variant of the sweep algorithm first sequences all the customers based on their location into a single 

route.  It ignores the customer demand requirements during the routing phase. The algorithm then 

creates routes that observe customer demand and satisfy truck capacity during the clustering phase. 

Logistics Systems Design Chapter 4. Transportation Models ● 50 



This variant of the sweep algorithm sequences all customers to be visited on a single route by rotating a 

line segment or ray around the distribution center.  Customers are added to the sequence when they are 

traversed by the rotating line.  The starting angle and the rotational direction of the line are algorithm 

parameters.  At the end of the first phase a single tour consisting of all customers has been created.  

After all customers have been sequenced, a customer is selected to start the first route.  The route visits 

each customer according to the sequence determined above until appending the next customer would 

violate the truck capacity.  That next customer starts a new route.  The starting customer and the 

direction in which the sequence is traversed are algorithm parameters.  After the routes have been 

determined, they can be improved by TSP improvement routines such as steepest descent exchanges. 

Great Tour 

The great tour algorithm creates the shortest length traveling salesman tour of all the customers, while 

ignoring their demand requirements, during the routing phase.  After all customers have been sequenced, 

a customer is selected to start the first route.  The route visits each customer according to the sequence 

until the next customer would violate the truck capacity.  That next customer starts a new route.  The 

starting customer and the direction in which the sequence is traversed are algorithm parameters. 

Clarke and Wright Savings 

Maximum number of routes = K 

Serial variant 

One route at-a-time 

Simpler implementation 

Parallel variant 

No more than K routes at-a-time 

More complex programming 

Improvement Algorithms 

Intra-route Improvements (TSP) 

•Always feasible 
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•2 exchange, Or exchange, 3 exchange 

Inter-route improvements 

•Test and make only feasible exchanges 

•Move (one point to another route) 

•Swap (exchange two points between two routes)Vehicle Routing (VRP) Example 

This example is based on the example data from Cullen et al. (1981).   
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Figure 4.69. Vehicle Routing Distance Data 

In addition, the truck capacity is assumed to be 15 and the customer demands are given in the following 

table. 

Table 4.4. Vehicle Routing Customer Demand Data 

Customer Demand
1 3
2 6
3 4
4 7
5 6  

The maximum number of routes is typically an input parameter specified by the user.  The first quantity 

to be determined is the minimum number of routes required to service all customer demands.  This 

minimum number must less than or equal to the maximum number for the problem to have a feasible 

solution.  The maximum number of routes in this example is equal to three. 

1 26min # 1.73 2
15
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q
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Nearest Neighbor 

The closest customer is customer 5, which has a distance of 1 unit.  The truckload after visiting customer 

5 is equal to 6.  The closest unvisited customer to customer 5 is customer 4 with a distance of 2.  The 

demand of customer 4 is 7 units so the total demand would be 13 and not violate the truck capacity of 

15.  Customer 4 is added to the route.  The closest unvisited customer to customer 4 is customer 1 with a 

distance of 2.  However, the demand of customer 1 is 3 units and the total demand would be 16, which 

would violate the truck capacity of 15.  Hence, customer 1 is not added to the route.  The vehicle returns 

to the depot after customer 4 and the length of this route equals 5.  Since there is currently only one 

route out of a maximum of three possible routes a new route is started. 

The closest unvisited customer to the depot is customer 3, which has a distance of 2 units.  The 

truckload after visiting customer 3 is equal to 4.  The closest unvisited customer to customer 3 is 

customer 2 with a distance of 3.  The demand of customer 3 is 6 units so the total demand would be 10 

and not violate the truck capacity of 15.  Customer 3 is added to the route.  The closest unvisited 

customer to customer 3 is customer 1 with a distance of 5.  The demand of customer 1 is 3 units so the 

total demand would be 13 and not violate the truck capacity of 15.  Customer 1 is added to the route.  No 

unvisited customers remain, so the vehicle returns to the depot and terminates the route.  The length of 

this route is 14 and the total route length equals 19. 

Cluster-First Sweep (Variant A) 
The starting direction of the ray is a user-specified algorithm parameter.  We will compare the results for 

starting with a ray point due east and north.  Note that the groupings are only clusters without any route 

information.  A Traveling Salesman algorithm then needs to be used to sequence the points in each 

cluster.  For this particular example, there are never more than three points in a cluster and the distances 

are symmetrical, so the problem of determining the optimal point sequence is trivial. 

The computations for a starting ray with due east direction are: 

1

2

3

5[6] 1[9] 8
4[7] 2[13] 11
3[4] 4

8 11 4 23r
r

D D
D D
D D L
L L

− − − =
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− − =

= = + + =∑

L
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The computations for a starting ray with due north direction are 
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1
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Route-First Sweep (Variant B) 

The computations for a starting ray with due east direction are 

1

2

3

5 1 4 2 3 ( )
5[6] 1[9] 8
4[7] 2[13] 11
3[4] 4

8 11 4 23r
r

D D
D D
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Serial Clarke and Wright 

The first step is to compute the savings for every feasible combination of two points.  The computations 

for two pairs are shown next. 

1 2

12 10 02 12

1 4

14 40 01 14

3 6 9 15
4 5 5 4

3 7 10 15
4 2 2 4

q q
s d d d
q q
s d d d

+ = + = ≤
= + − = + − =

+ = + = ≤
= + − = + − =

 

The savings can be summarized in a two-dimensional table.  In all the following calculations for the 

example, savings do not need to be recomputed but can be copied from this initial savings table. 

Table 4.5. Pair-wise Savings for the VRP Example 

1 2 3 4 5
1 4 2 4 2
2 4 4 3 0
3 2 4 2 0
4 4 3 2
5 2 0 0 1

1
 

The pair with the largest savings that forms a feasible partial tour is selected.  In this example, several 

pairs have savings equal to the maximum savings of four.  Selecting the pair with maximum savings by 

increasing indices arbitrarily breaks the ties.  The partial tour (1-2) of nodes one followed by two is 
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created.  The savings matrix is reduced by eliminating the row of the origin (point 1) and the column of 

the destination (point 2) of the newly formed pair. 

In the serial variant of the Clarke and Wright algorithm only one tour at the time is constructed, so only 

savings of combining other points with the current tour are relevant.  The savings matrix for the second 

iteration is shown in the next table.  Point four cannot be combined with partial tour (1-2) because it 

would violate the vehicle capacity; hence the corresponding savings are eliminated.  Vehicle load for 

either partial tour (4-1-2) or (1-2-4) would have been 3+6+7=16, which is larger than the truck capacity 

of 15.   The largest savings is generated by appending point three to the partial tour (1-2).Table 4.6. Pair-
wise Serial Savings for the VRP Example (Iteration Two) 

(1-2) 3 4 5
(1-2) 4 0

3 2
4
5 2  

The column corresponding to point 3 and the route corresponding to partial route (1-2) are eliminated. 

Table 4.7. Pair-wise Serial Savings for the VRP Example (Iteration Three) 

(1-2-3) 4 5
(1-2-3)

4
5  

There are no remaining points that can be combined with the partial tour without violating truck 

capacity, hence the current route is archived and a new route is started. 

Table 4.8. Pair-wise Serial Savings for the VRP Example (Iteration Three) 

4 5
4 1
5 1  

The largest savings correspond to combining points 4 and 5.  At that time all points have been included 

on a route and the algorithm terminates.  The combined length of the two routes is computed as follows. 

(1 2 3) (4 5) 14 5 19L L L− − −= + = + =  
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Parallel Clarke and Wright 
Table 4.9. Pair-wise Parallel Savings for the VRP Example (Iteration Two) 

(1-2) 3 4 5
(1-2) 4 0

3 2 2 0
4 2
5 2 0 1

1
 

Table 4.10. Pair-wise Parallel Savings for the VRP Example (Iteration Two) 

(1-2-3) 4 5
(1-2-3)

4 1
5 1  

Again, the largest savings correspond to combining points 4 and 5.  At that time all points have been 

included on a route and the algorithm terminates.  The combined length of the two routes is computed as 

follows. 

(1 2 3) (4 5) 14 5 19L L L− − −= + = + =  

Set Partitioning Formulation 
The Set Partitioning Problem (SPP) formulation belongs to the class of Alternative Selecting algorithms.  

This model is very powerful in the sense that many realistic route constraints and route cost functions 

can be incorporated during the route generation process.  The most obvious disadvantage of the model is 

extremely large number of routes that may be generated. 

Formulation 

The problem is formulated based on the cover matrix A.  The columns of the matrix correspond to 

feasible alternatives and actions.  There are N columns, which are indexed by j.  The terms columns, 

feasible alternatives, and covers are used interchangeably.  The rows of the matrix correspond to the 

service requests.  There are M rows, which indexed by i.  The terms rows and service requests will be 

used interchangeable.  The objective is to minimize the overall cost for servicing all the requests with a 

subset of the feasible alternatives.  The cost of executing a particular alternative is denoted by .  The 

elements  of the cover matrix A are equal to one if the alternative j covers or serves service request i, 

and are equal to zero otherwise.  The variables  correspond to the binary decision to execute a feasible 

c j

aij

x j
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alternative or not.  The decision variables can only assume the values zero or one.  Finally, the estimated 

cost of servicing request i with the best combination of alternatives found so far is denoted by .   pi

In the vehicle routing framework, the service requests correspond to the customers to be visited.  The 

alternative actions correspond to the various tours.  The cost of the alternatives can represent the tour 

length or the tour cost. 

The Set Partitioning formulation is given next. 

Formulation 4.4. Set Partitioning Problem 

min

. . ..

,

c x

s t a x i M

x

j j
j

N

ij j
j

N

j

=

=

∑

∑ =

∈

1

1
1

0 1l q

= 1  (4.34) 

The Set Partitioning Problem belongs to the class of binary integer programming problems and, as such, 

is difficult to solve to optimality for large problem instances. 

A feasible partition, denoted by J + , is a set of feasible alternatives that services all requests.  The 

variables  of all the alternatives in a feasible partition are equal to one. x j

Based on a feasible partition, the nonnegative row prices can be determined.  The prices must satisfy the 

condition that the cost of each of the alternatives in the feasible partition is exactly equal to the sum of 

the prices of the service requests it covers, i.e., 

1

M

j ij i
i

c a p j+

=

= ∀∑ +J∈  (4.35) 

In the vehicle routing framework, two important factors in the cost of servicing a customer are its 

distance to the distribution center, denoted by , and its demand, denoted by .  One possible way 

to compute the row prices is to allocate them based on the product of distance to the depot and the 

demand, i.e., 

d i0 demi

0

0 0
i

i i i i
i j

k k kj k k
k J k

dem d dem dp c
dem d a dem d

+

∈

⋅ ⋅
= =

⋅ ⋅∑ ∑
0

jc+

⋅
 (4.36) 

Other price allocation schemes might be based solely on distance to the depot or demand. 
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A new feasible alternative or column can never be economically desirable if its total cost is more than 

the current cost for the rows it covers.  In other words a new column need only to be considered if its 

savings are positive, where the savings are computed as 

s a pj ij i
i

M
= −

=
∑

1
c j  (4.38) 

Row Price Heuristic 

This heuristic was originally proposed in Cullen et al. (1981).  The heuristic is based on the principle 

that only feasible alternatives that can improve the current best solution are added to the set partitioning 

problem.  This possible improvement is based on the computation of the estimated savings for each 

feasible alternative.  The set partitioning problem is also called the master problem and the function to 

generate additional feasible alternatives is called the subproblem. 

Algorithm 4.3.  Row Price Heuristic for the Set Partitioning Problem 

1. Start with a feasible partition J +  and construct a master SPP problem with this feasible partition. 

2. Determine the new row prices by allocating the column prices "equitable" among the service 

requests covered by it.  The prices must satisfy condition (35). 

3. Generate the next feasible alternative and compute its estimated savings  with  s j s a pj ij i
i

M
= −

=
∑

1
c j

4. If the savings are positive (or at least nonnegative), add this alternative to the master Set 

Partitioning problem, otherwise discard this alternative 

5. If enough new alternatives have been added to the master SPP formulation or if all possible 

alternatives have been evaluated, solve the current master SPP problem and continue with step 5.  

Otherwise return to step 3. 

6. If the solution of the master SPP is within the desired tolerance or if all possible alternatives have 

been evaluated, then stop, else go to step 2. 
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Vehicle Routing (VRP) Example 

We will use the same example that is based on the example data from Cullen et al. (1981).   

2 1

4

5
3

D

3

2

2

1

2

4

2

3

5

2

 
Figure 4.70. Vehicle Routing Distance Data 

In addition, the truck capacity is assumed to be 15 and the customer demands are given in the following 

table. 

Table 4.11. Vehicle Routing Customer Data 

Customer Demand Distance Distance *
to Depot Demand

1 3 4
2 6 5
3 4 2 8
4 7 2
5 6 1 6

12
30

14
 

Assume that we start the algorithm with a feasible partition consisting of routes, each of which visits one 

customer and returns to the depot.  The route costs are then equal to 8, 10, 4, 4, and 2, respectively.  The 

total route cost is 28.  Since each route visits only one customer the row prices are then also equal to 8, 

10, 4, 4, and 2, respectively. 

To illustrate the structure and growth of the Set Partitioning master problem, we will solve this trivial 

problem using the solver included in the Excel spreadsheet.  The data for this iteration, the solver 

parameters, the solver options, and the solution of this iteration are shown in Figures 4.71, 4.72, 4.73, 

and 4.74, respectively.  For the Set Partitioning problem the data area grows when we add columns to 

the problem and the problem formulation in the solver has to be extended as well. 
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Figure 4.71. VRP Excel Data for One Customer per Route 

 
Figure 4.72. VRP Excel Solver for One Customer per Route 

 
Figure 4.73. VRP Excel Solver Options for One Customer per Route 
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Figure 4.74. VRP Excel Solution for One Customer per Route 

In the next pass, we will generate all the alternatives corresponding to routes that visit two customers 

and then return to the depot.  Observe that any route with two customers is feasible with respect to the 

truck capacity.  The computed route costs and savings for each of these alternatives are given in the next 

table.   

Table 4.12.  Two Customer Column Evaluations 

Route Customer Customer Length Savings
One Two

6 1 2 14
7 1 3 10
8 1 4 8 4
9 1 5 8 2

10 2 3 10 4
11 2 4 11 3
12 2 5 12 0
13 3 4 6 2
14 3 5 6 0
15 4 5 5 1

4
2

 

Since all these routes have nonnegative savings, they all will be added to the current master set 

partitioning problem.  The data for this iteration, the solver parameters, and the solution of this iteration 

are shown in Figures 4.75, 4.76, and 4.77, respectively.  Solving the master set partitioning problem, we 

obtain a new best feasible partition, consisting of routes {5, 8, 10}. The total route cost is 20.   
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Figure 4.75. VRP Excel Data for Two Customer per Route 

 
Figure 4.76. VRP Excel Solver for Two Customers per Route 
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Figure 4.77. VRP Excel Solution for Two Customer per Route 

Since customer 5 is still the only customer service by this route, its row price remains the equal to the 

cost of the route, i.e., equal to 2.  The row prices for customers one through four now have to be 

computed based on some allocation scheme.  We will use the allocation scheme based on the product of 

distance to the depot and demand as given by Equation (4.36).  The computations can be summarized as 

follows: 
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In the next pass, we will generated the feasible alternatives corresponding to routes that visit three 

customers and then return to the depot, provided the demand of the three customers does not violate 

truck capacity.  Observe that every triplet of route candidates consists of the permutations of the 
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sequence of three customers on this route, so they have the same route demand.  Also observe that since 

the routes can be executed in the reverse sequence at the same cost, only three different permutations are 

possible for each set of three customers on a route.  The computed route cost and savings for each of 

these alternatives are given in the next table.   

Table 4.13.  Three Customer Route Evaluations  

Route Customer Customer Customer Route Route Savings
One Two Three Demand Length

16 1 2 3 13 14
17 1 3 2 13 16
18 2 1 3 13 16
19 1 2 5 14 16
20 1 5 2 14 18
21 2 1 5 14 14
22 1 3 4 14 12
23 1 4 3 14 10
24 3 1 4 14 10
25 1 3 5 13 12
26 1 5 3 13 12
27 5 1 3 13 10

-0.31
-2.31
-2.31
-2.42
-4.42
-0.42
-1.89
0.11
0.11

-4.20
-4.20
-2.20  

Only routes 23 and 24 will be added to the set partitioning problem.  The data for this iteration, the 

solver parameters, and the solution of this iteration are shown in Figures 4.78, 4.79, and 4.80, 

respectively.  Solving the set partitioning problem, we obtain the same best feasible partition, again 

consisting of routes {5, 8, 10}. The total route cost is 20.  Since no feasible routes with more than three 

customers on a route can be generated, the heuristic terminates.  The last set partitioning problem to be 

solved contained 17 feasible alternatives. 
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Figure 4.78. VRP Excel Data for Three Customer per Route 

 
Figure 4.79. VRP Excel Solver for Three Customer per Route 
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Figure 4.80. VRP Excel Solution for Three Customer per Route 

This algorithm is a heuristic because the row prices have been determined in a heuristic manner, i.e., in 

this example we used equation (4.36) to allocate the row prices.  The row prices in turn determined if a 

feasible alternative entered the set partitioning problem or not.  If no feasible alternatives could be added 

for any set of row prices satisfying equation (4.35), then the current feasible partition would be an 

optimal solution.  If we had added all 27 feasible alternatives to the set partitioning problem, its solution 

would also have been optimal.  But this strategy is obviously not practical for large scale problem 

instances. 

Vehicle Routing Example 

Consider the problem of finding the routes that minimize the total travel distance for the distribution 

system with six customers.  The location and demand of the customers are specified in Table 4.14.  All 

trucks are based at the depot and have the same capacity of 20 pallets.  All routes start and terminate at 

the depot. 
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Table 4.14. Vehicle Routing Data 

Customer x y demand
(depot) 0

1
2
3
4
5
6  

Travel distances can be approximated with the Euclidean distance norm rounded to the nearest integer 

value.  The distances are shown in upper triangular format in Table 4.15. 

Table 4.15. Vehicle Routing Integer Euclidean Distance Matrix 

0 1 2 3 4 5 6
0
1
2
3
4
5
6  

Vehicle routes are computed with the Nearest Neighbor, Sweep Cluster-First-Route-Second, Sweep 

Great Tour, Clarke and Wright savings, and Generalized Assignment heuristic by Fisher and Jaikumer. 

Vehicle Routing with Backhauling (VRPB) 

Introduction 

#1 Savings Technique in Routing 

Problem Definition 

Single Depot 

NL Customers (xi, yi, demi) and NB Suppliers (xi, yi, supi) 

M Equal Size Vehicles (capj) 

Rear Loaded Vehicles 

• all customers before any supplier 
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Minimize Total Travel Distance 

Travel Distance Norm 

 
Figure 4.81. Vehicle Routing with Backhauling Tour Illustration 

Logistics Systems Design Chapter 4. Transportation Models ● 68 



 
 
 

 

69 ● Chapter 4. Transportation Models Logistics Systems Design 



Figure 4.82. Lineback Illustrations 

Vehicle Routing with Backhauling Algorithms 

Nearest Neighbor 

The Nearest Neighbor algorithm starts each route at the depot facility and then iteratively appends the 

nearest unvisited customer to the route.  When appending the next customer would violate the truck 

capacity, the algorithm switches to iteratively appending the nearest unvisited supplier to the route.  

When appending the next supplier would violate truck capacity, then the route returns to the depot.  If 

unvisited customers or suppliers remain and the maximum number of routes has not been reached, then 

a new route is started.   

This algorithm was originally described by Rosenkrantz et al. (1977) for the Traveling Salesman 

Problem and is extended in a straightforward manner to the case of linehaul-backhaul vehicle routing. 

Sweep 

The Sweep algorithm rotates a ray around the depot.  The starting angle and the rotational direction of 

the ray are algorithm parameters.  When starting a new route, the first customer traversed by the ray 

becomes the first customer on the route, and the first supplier traversed by the ray becomes the last 

supplier on this route.  When adding a facility to the route, it is inserted at one of the two endpoints of 

the empty vehicle travel link of the current tour and thus one of the two interface points of the empty 

vehicle travel link will change.  Facilities are no longer being added to the current route, when adding 

the next facility would either violate the linehaul or the backhaul quantity on the vehicle.  A new route is 

then started as long as the number of routes is less than or equal to the number of vehicles. 

This algorithm was originally described by Gillett and Miller (1974) for the vehicle routing problem and 

is extended in a straightforward manner to the case of linehaul-backhaul vehicle routing. 

Savings 

Deif and Bodin (1984) adapted the original savings algorithm of Clarke and Wright (1964) to the case of 

the linehaul-backhaul vehicle routing.  They observed that once the crossover link, corresponding to the 

empty vehicle travel, is added to a tour the tour becomes asymmetric and the possibilities for adding 

further facilities is cut in half.  To avoid this phenomenon, they reduced the savings of the crossover link 

to delay the creation of this crossover link.  The savings are then computed as: 
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They found that a good value for α is around 0.2. 

Vehicle Routing Problem with Backhauling Example 

Consider the single origin vehicle routing problem with backhauling (VRPB).  The distances between 

the various facilities are given in the network shown in Figure 4.83.  The trucks can only drive over the 

given road network.  The depot is indicated by a square.  All routes start and terminate at the single 

depot.  All suppliers are indicated by triangles and all customers are indicated by circles.  The 

coordinates of the supplier and customer facilities and the supplies and demands are given in Table 4.44.  

All trucks have a capacity of 10 units.  Additional constraints require that a truck can visit at most three 

facilities on a route aside from the origin and destination depot, because of the long load/unload times.  

We will solve this vehicle routing problem with several algorithms.  If necessary, we will break any ties 

by selecting the facility with the smallest index. 
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Figure 4.83. VRPB Example Network and Distance Data 

Table 4.16. VRPB Example Facility Data  

Facility X-Coord Y-Coord Quantity
D 6 4
1 1 3 4
2 2 7 6
3 4 1 7
4 8 2 5
5 10 7 8
6 11 5 9  
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We will first compute the shortest distance between every pair of facilities using Dijkstra’s shortest path 

algorithm, since the distances on all network links are positive.  The results are shown in the upper 

diagonal section of the distance matrix shown in Table 4.44. 

Table 4.17. VRPB Example Interfacility Distances  

D 1 2 3 4 5 6
D 10 9 5 3 9 7
1 2 9 13 17 1
2 11 12 15 1
3 6 13 11
4 7
5 2
6

7
6

5

 

Nearest Neighbor 

We will first compute the routes with the Nearest Neighbor algorithm.  Every time we add a facility to a 

route, we show the added or append facility, the anchor facility on the route to which this newly added 

facility is connected, the append distance to the new facility, and the linehaul and backhaul quantity on 

the route so far.  When we start a new route, the anchor facility is the depot.  The results are summarized 

in Table 4.18. 

The closest unvisited customer to the depot is customer 4 with a distance equal to 3.  Since this is the 

first customer on the route its demand will never exceed the truck capacity, so customer 4 is added to the 

route and the total demand or linehaul quantity on the route so far is equal to 5 units and the remaining 

linehaul capacity is also 5 units. 

The unvisited customer closest to customer 4 is customer 3 with a distance equal to 6.  The demand of 

customer 3 is 7 units and the remaining linehaul capacity on this route is 5 units, so customer 3 cannot 

be appended to this route.  The route now switches from delivery to pickup operations.  The unvisited 

supplier closest to customer 4 is supplier 6 with a distance equal to 5.  Since this is the first supplier on 

the route its supply will never exceed the truck capacity, so supplier 6 is appended to the route.  The 

backhaul quantity so far is equal to 9 units and the remaining backhaul capacity is 1 unit. 

The unvisited supplier closest to supplier 6 is supplier 2 with a distance equal to 16.  The supply quantity 

of supplier 2 is 6 units and the remaining backhaul capacity on the route is equal to 1 unit, so supplier 2 

cannot be appended to this route.  The route is closed and a new route is started. 
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The unvisited customer closest to the depot is customer 3 with a distance equal to 5.  Since this is the 

first customer on the route its demand will never exceed the truck capacity, so customer 3 is appended to 

the route and the linehaul quantity on the route so far is equal to 7 units and the remaining linehaul 

capacity on the route is 3 units.   

The unvisited customer closest to customer 3 is customer 1 with a distance equal to 9.  The demand of 

customer 1 is 4 units and the remaining linehaul capacity on this route is 3 units, so customer 1 cannot 

be appended to this route.  The route now switches from delivery to pickup operations.  The unvisited 

supplier closest to customer 3 is supplier 2 with a distance equal to 11.  Since this is the first supplier on 

the route its supply will never exceed the truck capacity, so supplier 2 is appended to the route.  The 

backhaul quantity so far is equal to 6 units and the remaining backhaul capacity is 4 units. 

Since there are no remaining unvisited suppliers, this route is closed and a new route is started.  The 

unvisited customer closest to the depot is customer 5 with a distance equal to 9.  Since this is the first 

customer on the route its demand will never exceed the truck capacity, so customer 5 is appended to the 

route and the linehaul quantity on the route so far is equal to 8 units and the remaining linehaul capacity 

is 2 units. 

The unvisited customer closest to customer 5 is customer 1 with a distance equal to 17.  The demand of 

customer 1 is 4 units and the remaining linehaul capacity on this route is 2 units, so customer 1 cannot 

be appended to this route.  Since there are no remaining unvisited suppliers, this route is closed and a 

new route is started.   

The unvisited customer closest to the depot is customer 1 with a distance equal to 10.  Since this is the 

first customer on the route its demand will never exceed the truck capacity, so customer 1 is appended to 

the route and the linehaul quantity on the route so far is equal to 4 units and the remaining linehaul 

capacity is 6 units. 

There are no remaining unvisited customers or suppliers, so this route is closed and the Nearest 

Neighbor algorithm terminates after having created four routes. 
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Table 4.18. VRPB Example Nearest Neighbor Facility Additions 

Index Append Anchor Append Linehaul Backhaul
Facility Facility Distance Quantity Quantity

1 4 D 3 5 0
2 6 4 5 5 9
3 3 D 5 7 0
4 2 3 11 7 6
5 5 D 9 8 0
6 1 D 10 4 0  

We list the sequence of all the facilities on the routes that we have created, using one route per row in 

the matrix shown in Table 4.19.  Each route starts and ends with the depot.  We compute the route 

length of each individual route and the total route length of all the routes created by this Nearest 

Neighbor algorithm.  Since the Nearest Neighbor algorithm only created four routes, not all the rows in 

the following matrix are used. 

Table 4.19. VRPB Example Nearest Neighbor Routes  

Route Facility Length
1 2 3 4 5 6 7 8

1 D 4 6 D 1
2 D 3 2 D 2
3 D 5 D 1
4 D 1 D 2
5 D
6 D

Total 78

5
5
8
0

 

Sweep 

There exist many variants of the sweep algorithm.  We will execute the variant of the sweep algorithm 

where a route is terminated or closed as soon as adding either the next customer or next supplier facility 

would violate the truck capacity.  We will start the rotating ray in the due north direction and turn the 

ray counterclockwise.  Each time we add a facility to a route, we will show the added or append facility, 

the anchor facility on the route to which this newly added facility is connected, the append distance to 

the new facility, and the linehaul and backhaul quantity on the truck on that route so far.  When we start 

a new route, the anchor facility is the depot for both the linehaul and the backhaul section of the route.  

Until a route is closed, it consists of a linehaul and a backhaul segment that have not yet been connected. 

The first encountered facility is supplier 2.  Since this is the first supplier on the route its supply will 

never exceed the truck capacity, so supplier 2 is included in the route.  The total backhaul quantity on 

this route is now 6 units and the remaining backhaul capacity is 4 units. 
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The next facility traversed by the ray is customer 1.  Since this is the first customer on the route its 

demand will never exceed the truck capacity, so customer 1 is included in the route and the linehaul 

quantity on the route so far is equal to 4 units and the remaining linehaul capacity is 6 units. 

The next facility traversed by the ray is customer 3.  The demand of customer 3 is 7 units and the 

remaining linehaul capacity on the route is 6 units, so customer 3 cannot be inserted in the route.  So this 

route is closed by connecting customer 1 to supplier 2 and a new route is started.   

The next facility traversed by the ray is customer 3.  Since this is the first customer on the route its 

demand will never exceed the truck capacity, so customer 3 is included in the route and the linehaul 

quantity on the route so far is equal to 7 units and the remaining linehaul capacity is 3 units. 

The next facility traversed by the ray is customer 4.  The demand of customer 4 is 5 units and the 

remaining linehaul capacity on the route is 3 units, so customer 3 cannot be inserted in the route.  So this 

route is closed and a new route is started.   

The next facility traversed by the ray is customer 4.  Since this is the first customer on the route its 

demand will never exceed the truck capacity, so customer 4 is included in the route and the linehaul 

quantity on the route so far is equal to 5 units and the remaining linehaul capacity is 5 units. 

The next facility traversed by the ray is supplier 6.  Since this is the first supplier on the route its supply 

will never exceed the truck capacity, so supplier 6 is included in the route and the total backhaul 

quantity on the route so far is equal to 9 units and the remaining backhaul capacity is 1 unit. 

The next facility traversed by the ray is customer 5.  The demand of customer 5 is 8 units and the 

remaining linehaul capacity on the route is 5 units, so customer 5 cannot be inserted in the route.  So this 

route is closed by connecting customer 4 to supplier 6 and a new route is started.   

The next facility traversed by the ray is customer 5.  Since this is the first customer on the route its 

demand will never exceed the truck capacity, so customer 5 is included in the route and the linehaul 

quantity on the route so far is equal to 8 units and the remaining linehaul capacity is 2 units. 
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Table 4.20. VRPB Example Sweep Facility Additions  

Index Append Anchor Append Linehaul Backhaul
Facility Facility Distance Quantity Quantity

1 2 D 9 0 6
2 1 D 10 4 6
3 3 D 5 7 0
4 4 D 3 5 0
5 6 D 7 5 9
6 5 D 9 8 0  

We will list the sequence of all the facilities on the routes that we have created, with one route per row 

in the following matrix.  Each route starts and ends with the depot.  We compute the route length of each 

individual route and compute the total route length of all the routes created by this Sweep algorithm.  

Since the Sweep algorithm created only four routes, not all rows or columns in the matrix are used.   

Table 4.21. VRPB Example Sweep Routes  

Route Facility Length
1 2 3 4 5 6 7 8

1 D 1 2 D 2
2 D 3 D 1
3 D 4 6 D 1
4 D 5 D 1
5 D
6 D

Total 64

1
0
5
8

 

Set Partitioning Algorithm 

Next we will create the linehaul-backhaul routes for this problem with the Set Partitioning heuristic.  We 

start of with a feasible partition for which each facility is on an individual route.   
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Figure 4.84. VRPB Example Set Partitioning Single Facility Routes 

We compute the total partition cost and then compute the row prices based on this partition.  In general, 

we will allocate the row prices proportional to the product of the quantity and the distance of the facility 

to the depot.  However, for the initial feasible partition, the row prices are equal to the round trip 

distances since each route contains a single facility. 
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In the next column generation step, we consider only routes that have at most two facilities on each 

route (besides the depot).  The formula used to compute the savings for each of these routes is 

j j ij
i

js c a= − + ⋅∑ p  

We compute the savings for each route considered and we indicate which routes get added to the master 

set partitioning problem.  For each route, the route index, the sequence of facilities on that route, the 

route length, the potential route savings, and indication if this route is added to the set partitioning 

problem or not are shown in the next table.  The start and end depot facility is included in the facility 

sequence of each route.  We start indexing the routes with number 7, since there are already six out and 
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back routes included in the set partitioning problem.  There are only nine feasible routes with two 

facilities on the route. 

Table 4.22. VRPB Example Two Facility Routes  

Index Facility Length Savings Added
Sequence (Y/N)

7 D-1-2-D 21 17 Y
8 D-1-4-D 26 0 N
9 D-1-6-D 34 0 N

10 D-3-2-D 25 3 Y
11 D-4-2-D 24 0 N
12 D-5-2-D 33 3 Y
13 D-3-6-D 23 1 Y
14 D-4-6-D 15 5 Y
15 D-5-6-D 18 14 Y  

Finally, we solve the resulting set partitioning problem, show the used routes and compute the total 

partition cost.  Each route starts and ends with the depot.  We compute the route length of each 

individual route and the total route length of the routes created by the Set Partitioning algorithm so far.  

Not all rows or columns have to be used.   

 
Figure 4.85. VRPB Example Set Partitioning Two-Facility Routes 
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Table 4.23. VRPB Set Partitioning Routes (Two Facilities Maximum) 

Route Facility Length
1 2 3 4 5 6 7 8

1 D 1 2 D 2
2 D 3 D 1
3 D 4 D
4 D 5 6 D 1
5 D
6 D

Total 55

1
0
6
8

 

We compute the row prices based on this partition, where prices are allocated proportional to the 

product of the quantity and the distance of the facility to the depot.  The row price formula following the 

notation used in class is thus.   

0

0

i i
i j

ij i i
i

d qp c
a d q

⋅
=

⋅ ⋅∑
 

1

2

3

4

5

6

10 4 4021 21 0.43 21 8.94
10 4 9 6 94

9 6 5421 21 0.57 21 12.06
10 4 9 6 94
10
6

9 8 7218 18 0.53 18 9.60
9 8 7 9 135

7 9 6318 18 0.47 18 8.40
9 8 7 9 135

p

p

p
p

p

p

⋅
= = = ⋅ =

⋅ + ⋅
⋅

= = = ⋅ =
⋅ + ⋅

=
=

⋅
= = = ⋅ =

⋅ + ⋅
⋅

= = = ⋅ =
⋅ + ⋅

 

In the next column generation step, we consider only routes that have three facilities on each route 

(besides the depot).  We compute the savings for each route considered and indicate which routes get 

added to the set partitioning problem.  We show for each route considered the route index, the sequence 

of facilities on that route, the route length, the potential route savings, and indication if this route is 

added to the set partitioning problem or not.  The start and end depot facility are included in the facility 

sequence of each route.  The computations for the savings of the route 24 are as follows 

( ) ( )24 24 1 4 2 44 8.94 6 12.06 44 27 17

j j ij j
i

s c a p

s c p p p

= − + ⋅ =

= − + + + = − + + + = − + = −

∑
 

Observe that route 23 has a savings potential with respect to the current row prices that is equal to zero.  

Including this route by itself will not improve the overall solution, but it gives additional flexibility 
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because alternative route sets, that have the same cost, can now be generated by the Set Partitioning 

algorithm.   

Table 4.24. VRPB Three Facility Routes  

Index Facility Length Savings Added
Sequence (Y/N)

23 D-4-1-2-D 27 0 YorN
24 D-1-4-2-D 44 -17 N
25 D-4-1-6-D 40 -16.66 N
26 D-1-4-6-D 35 -11.66 N  

Finally, we solve the resulting set partitioning problem, we show the used routes and compute the total 

partition cost.  Each route starts and ends with the depot.  We compute the route length of each 

individual route and the total route length of the routes created by the Set Partitioning algorithm.  

Observe that the algorithm selected the alternative configuration of routes, but with the same cost as the 

previous incumbent solution.   

 
Figure 4.86. VRPB Example Set Partitioning Three-Facility Routes 
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Table 4.25. VRPB Set Partitioning Routes (Three Facilities Maximum) 

Route Facility Length
1 2 3 4 5 6 7 8

1 D 4 1 2 D 2
2 D 3 D 1
3 D 5 6 D 1
4 D
5 D
6 D

Total 55

7
0
8

 

The Set Partitioning algorithm as executed above generates a heuristic solution, without guarantee of 

optimality.  However, in this small example case we generated all possible feasible routes since a route 

could contain at most three facilities.  Solving the Set Partitioning problem with all the feasible routes 

included would generate the optimal solution.  We can also solve the linear relaxation of the Set 

Partitioning formulation with all the feasible routes included.  If the optimal linear programming 

solution value is not lower than the current best integer feasible solution value or incumbent, then the 

incumbent is optimal.  Implementation of this last step requires only the solution of a linear 

programming formulation and not of an integer (binary) set partitioning formulation.  However, for most 

real life cases, generating all feasible routes is not possible. 

If we solve the linear relaxation of the final formulation, which contains 16 continuous variables, the 

optimal solution is identical to the solution of the binary Set Partitioning formulation.  The optimal 

linear programming solution provides the following dual row prices 

1 2 3 4 5 620, 1, 10, 6, 18, 0p p p p p p= = = = = =  

They represent a different cost allocation of the route cost to the facilities on the route.  Observe that 

these costs satisfy the sum of the row prices condition expressed in equation (4.35).   A similar strategy 

could have been followed for each iteration, i.e., the row prices are determined at each iteration by the 

optimal linear programming solution.  If the integer and linear programming solution values are the 

same and no additional feasible route exists with positive savings, then the incumbent solution is 

optimal.  Again, for most real life cases, it is impossible to establish that no additional feasible route 

exists with positive savings since it is impossible to generate all additional feasible routes. 
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4.6. Exercises 

True-False Questions 

Maximum flow networks are primarily used in the design of public sector and government networks, 

(T/F)_____(1). 

The 2-Opt procedure by Lin to improve an existing TSP tour takes a sequence of nodes out of the tour 

and inserts it into another place in the tour to form a tour of shorter length, (TF) ______(2). 

The use of computerized methods becomes more important in single vehicle roundtrip routing if the 

spatial relationships between the delivery points does not represent their true travel time, travel distance, 

or travel cost, (TF) ______(3). 

Consider the classical Traveling Salesman Problem (TSP).  The problem is to construct the single 

shortest cycle that visits all points exactly once, (T/F)_____(4). 

If all the points of a TSP fall on the boundary of the convex hull of these points then this boundary of the 

convex hull is the shortest TSP tour, (T/F)_____(5). 

If all possible columns, when evaluated with the current row prices, yield non-positive savings or 

equivalently non-negative reduced cost, then the current feasible partition on which the row prices are 

based is optimal, (T/F)_____(6). 

On of the main advantage of set partitioning based solution methods is the fact that they can incorporate 

many complex feasibility constraints, (T/F)_____(7). 

The largest problem instances of the Shortest Path Problem that can be solved in a reasonable amount of 

computer time contain about 2400 nodes, (T/F)_____(8). 

The successive shortest path algorithm is currently the most efficient method for solving minimum cost 

network flow problems, (T/F)_____(9). 

If the two and three exchange improvement procedures by Lin and Kernighan can no longer find any 

improvements in a traveling salesman tour then this tour is optimal, i.e., has the shortest length, 

(T/F)_____(10). 
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The subtour elimination constraints in the traveling salesman formulations make the problem so hard to 

solve because of the large coefficients in the right hand side of the constraints, (T/F)_____(11). 

The vehicle routing problem attempts to minimize the cost of vehicles and distance traveled necessary to 

deliver goods to a number of customers with a fleet of vehicles, (T/F)_____(12). 

The row price determination in the set partitioning algorithm can assign prices to the customers served 

on a particular route without any other conditions, (T/F)_____(13). 

Consider the set partitioning problem solved with the row pricing algorithm as presented in class.  If the 

master problem in the set partitioning algorithm is solved to optimality, then the routes selected by the 

master problem are optimal, (T/F)_____(14). 

The network used to model emergency high-rise building evacuations belongs to the class of maximum 

flow networks, (T/F) _____(15). 

The network used to model the assignment of workers to shifts in a 24-hour service operation belongs to 

the class of maximum flow networks, (T/F) _____(16). 

The computational complexity of solving network formulations limits the size of the networks that can 

be solved to optimality to 10,000 arcs, (T/F) _____(17). 

The standard network flow formulation can incorporate capacity restrictions on the nodes without any 

changes to the network structure, (T/F) _____(18). 

A necessary requirement to convert the operator scheduling problem to a network flow formulation is 

that any shift or work tour covers an uninterrupted number of time periods, (T/F) _____(19). 

The successive shortest path algorithm belongs to the class of dual algorithms, (T/F) _____(20). 

Shortest Path Exercise One 

Find the shortest duration path from node A (Amarillo, TX) to Node J (Fort Worth, TX) in the network 

below.  The numbers on the edges indicate the approximate driving time between nodes, and the nodes 

indicate road junctions. 
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Figure 4.87. Simplified Highway Network for the Shortest Path Exercise 

Shortest Path Exercise Two 

Consider the network given in Figure 4.88.  The length of each arcs is shown on the arc, with arrows 

indicated the arc length in a particular direction.  Initial labels are shown above or below the nodes.  

Find manually the shortest path from node 1 to node 7 with Dijkstra's algorithm.   
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5→,1←
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2→,3←
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13→,2←
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4→,1←

4→,1←

6→,1←

8→,1←

 
Figure 4.88. Shortest Path Exercise 

Directed Graph Data Structures 

Show first the network in the three data structures presented above for the shortest path network exercise 

2 shown in Figure 4.88.   Then show the three data structures for the network after the deletion of the arc 

from node 5 to node 4 and the insertion of a new arc from node 3 to node 2 with distance of 8.   

Pseudo Code for Visiting All Direct Predecessors of a Node 

For the three data structures presented above for the representation of directed graphs, give the pseudo 

code for implementing the two functions find_first_predecessor and find_next_predecessor used in 

performing an action on all direct or immediate predecessor nodes of node k.  Use the notation 

developed above such as head and arc_array and pred and succ.  This pseudo code should consider and 
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incorporate the actual data structure used.  The sequence of predecessor nodes is determined by the data 

structure used and is not relevant as long as all predecessor nodes get identified by these two functions. 

The pseudo code for performing an action on all predecessor nodes of node k that is independent of the 

data structures used to represent the directed graph may look as follows: 

Algorithm 4.4.  All Predecessor Nodes Loop 

p = find_first_predecessor (k) 

while (p <> null) { 

 perform_action (p) 

 p = find_next_predecessor (k, p) 

 } 

where p and k are node indices and perform_action is the function that actually performs the required 

action and is not further discussed here 

find_first_predessor (k) returns the first predecessor node of node k if node k has a predecessor or a null 

value indicating a non-existing node otherwise.   

Find_next_predecessor (k, p) returns the next predecessor node of node k after the predecessor node p if 

the next predecessor node exists or a null value indicating a non-existing node otherwise.   

This illustrates the principle where a different data structure implementation may be used to represent a 

directed graph and each data structure has different memory and execution time characteristics, but the 

higher level code would remain unchanged and does not need to be debugged again.  Further 

information can be found in the references on the use of such abstract data types. 

Pseudo Code for Listing All Ancestors of a Node 

Develop an algorithm that will list all the ancestors of a node k in a network.  In this exercise ancestor 

indicates any node from which the node k can be reached.  The algorithm should be independent of the 

actual data structure implementing the directed graph structure.  Show the pseudo code for this 

algorithm.  The requested function is called List_all_ancestors (k).  The actual listing function is called 

List_node (p) and its implementation is not relevant.  A node may be listed more than once as an 

ancestor of node k.   
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Modify the algorithm that you have developed above to incorporate the additional constraint that a node 

may be listed at most once as an ancestor of node k. 

Ballou Ch7-4 Network Exercise 

Compute the minimum cost network flows in the following network.   Show the residual network after 

each iteration. 
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Figure 4.89. Network Exercise 

Minimum Cost Network Exercise 

Compute the minimum cost network flows in the following network.  Show the residual network after 

each iteration.  Interrupt the successive shortest path algorithm after two flow changes have been made.  

Compute the total cost of the flow solution determined so far.  Is the current flow a feasible solution to 

the original problem?  What would you be willing to pay for one extra unit of capacity on arc (1, 7)?  

Justify your answer in a single sentence.  What would you be willing to pay for a reduction of a single 

unit in the required outgoing flow out of node 6 at this particular stage in the algorithm?  Justify your 

answer in a single sentence. 
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Figure 4.90. Network Exercise 3 

TSP Exercise 1 

Consider the problem of finding the shortest distance cycle through the following eight delivery points, 

given that the cycle visits each delivery point exactly once.  The coordinates of the eight delivery points 

are given in Table 4.26. 

Table 4.26. Point Coordinates 

Point x y
1 5
2 8
3 3
4 7
5 1
6 2
7 4
8 8

1
9
5
6
9
1
8
2  

The travel distances between each pair of points can be approximated with the Euclidean distance norm 

rounded to two digits behind the decimal point.  First show the formula for the distance norm using the 

notation of Table 4.26 and point indices i and j.  Next compute and show the distances in upper 

triangular format in Table 4.27. 
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Table 4.27. Delivery Points Distance Table 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

8

8

 

Compute heuristic delivery sequence with the Clarke and Wright (CW) savings algorithm.  For the 

Clarke and Wright savings algorithm assume that the base or anchor point is point 2.  First give the 

formula for the computation of the savings using the notation of Table 4.26 and observing that point 2 is 

the base point.  For the Clarke and Wright algorithm show the pairwise savings with respect to the 

anchor or base point in Table 4.28.  Show the savings based on points i and j (j>i) in matrix element 

[i,j].  Not all rows and columns in the table have to be computed or filled in! 

Table 4.28. Clarke and Wright Savings 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

8

8

 

Write the formula that determines which points first form a shortcut on the tour, observing that point 2 is 

the base point.  Assume that all points that not yet have been part of a shortcut and are not the base point 

are collected in a set F.  Assume that the end points of the tour segment that has been rearranged with 

the shortcuts have indices p and q, respectively.  Further assume that the base point has index b.  Write 

the formula that determines which point will next form a shortcut on the tour. 

For the Clarke and Wright savings algorithm, show chronologically the tour that you construct.  First, 

show the length of the tour before any shortcut is made in row 1 of Table 4.29.  Then compute and show 

for each iteration: the point for which you found the shortcut, the savings for the shortcut, the length of 

the tour after the shortcut, and the sequence of all the points on the tour that have been so far part of a 
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shortcut.  In other words, you do not have to list the points that are by themselves on the out and back 

segments.  For row 2, and row 2 only, two points are part of the first shortcut.  Give both these points of 

the first shortcut in the column with "Shortcut Points". 

Table 4.29. Clarke and Wright Tours 

Shortcut
Route Points Savings Length Points

1 2 2

2

3

4

5

6

7  

TSP Exercise 2 

Consider the problem of finding the shortest distance cycle through the following six delivery points, 

given that the cycle visits each delivery point exactly once.  The coordinates of the six delivery points 

are given in Table 4.30. 

Table 4.30. Delivery Point Coordinates for Exercise 2 

# x y
1 200 900
2 900 200
3 400 300
4 100 100
5 300 600
6 800 700  

The travel distances between each pair of delivery points can be approximated with the Euclidean 

distance norm rounded to the nearest integer value.  Compute and show the distances in upper triangular 

format in Table 4.31. 

Table 4.31. Delivery Points Distance Table for Exercise 2 

1 2 3 4 5 6
1
2
3
4
5
6  
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Compute heuristic delivery sequences with the Nearest Neighbor (NN), Sweep, Convex Hull followed 

by Priciest Insertion (CH+FI), and Clark and Wright (CW) savings algorithms.  For the Nearest 

Neighbor algorithm the starting point is point 3.  For the Sweep algorithm assume that the rotation 

center is located at coordinates (500, 500), the starting angle for the rotation ray is due east, and the 

rotation direction is clockwise.  For the Clarke and Wright savings algorithm assume that the base or 

anchor point is point 6. 

For the Convex Hull and Priciest Insertion algorithm show the insertion penalties for all points not on 

the convex hull after the convex hull has been determined in Table 32.  Each row corresponds to an 

unvisited point and each column corresponds to an edge on the partial tour.  Separate the insertion 

penalties for each iteration of the Priciest Insertion algorithm by a blank row from the lines for the next 

iteration.  Clearly label your rows and columns.  Not all rows and columns in the table have to be used. 

Table 4.32.  Insertion Penalties on the Convex Hull 

 

For the Clarke and Wright algorithm show the pairwise savings with respect to the anchor point in Table 

33.  Show the savings based on points i and j (j>i) in matrix element [i,j].  Not all rows and columns in 

the table have to be computed. 

Table 4.33.  Clarke and Wright Savings 

1 2 3 4 5 6
1
2
3
4
5
6  

For each algorithm give the chronological sequence in which you inserted or appended the points 

(starting with the base point or initial tour if applicable) and the delivery sequence starting with point 1.  

The chronological sequence is the sequence in which the points are added to the tour, i.e., which point is 

added first, second, third, etc.  The delivery sequence is the sequence in which the points are visited by 

the tour.  For example, is you inserted a point k between points i and j already on the tour, in the 
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chronological sequence point k would be the last point so far in the delivery sequence there would be a 

segment of points i, then k, and then j.  For each heuristic compute the tour length and the ratio of the 

tour length divided by the length of the best tour you have found.  Summarize your answer in the Table 

4.34. 

Table 4.34. Heuristics Summary Statistics 

Heuristic Chronological Sequence Delivery Sequence Length Ratio
NN
Sweep
CH+FI
CW  

Is the tour generated by the Convex Hull followed by Priciest Insertion algorithm guaranteed to be 

optimal?  Base your answer only on the results of executing the Convex Hull and Priciest Insertion 

(CH+FI) algorithm.  Give your answer in a few succinct sentences. 

TSP Exercise 3 

You are asked to route the crane in a person-aboard order picking system so that the distance traveled by 

the crane to pick up seven line items for the current customer order is minimized.  The cabin with the 

order picker can move simultaneously up and down the mast of the crane while the crane moves back 

and forth in the order picking aisle.  Therefore, the Chebyshev travel norm is judged an acceptable 

approximation to compute the travel distance of the crane.  The crane starts and ends its picking route at 

the pickup and deposit (PD) station at lower front corner of the rack.  The coordinates of the PD station 

and the seven bins storing the line items are given in Table 4.35, where the index of the PD station is 

zero. 

Table 4.35. Point Coordinates 

Point x y
0 0 0
1 9 9
2 3 5
3 4 3
4 1 9
5 2 1
6 5 6
7 9 2  

First show the formula for the distance norm using the notation of Table 4.35 and point indices i and j.  

Then compute and show the distances in upper triangular format in Table 4.36. 
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Table 4.36. Order Picking Bins Distance Table 

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7  

Next, compute heuristic picking sequences with the Nearest Neighbor (NN), Sweep (SW), Convex Hull 

followed by Priciest Insertion (CH+PI), and Clark and Wright (CW) savings algorithms.  For the 

Nearest Neighbor algorithm, the starting point is the PD station.  For the Sweep algorithm, assume that 

the rotation center is located at PD station, the starting angle for the rotation ray is due east, and the 

rotation direction is counter-clockwise.  Break any point selection or sequencing ties by selecting the 

point with the lowest index and any link selection ties by selecting the link first encountered on the tour. 

Table 4.37.  Nearest Neighbor Route Construction 

Index Anchor Append Append
Point Point Distance

1
2
3
4
5
6
7
8

Total  
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Table 4.38.  Sweep Route Construction 

Index Anchor Append Append
Point Point Distance

1
2
3
4
5
6
7
8

Total  

For the Convex Hull, use the point sequence that follows a counter-clockwise direction.  For the Convex 

Hull and Priciest Insertion algorithm show the insertion penalties for all points not on the convex hull 

after the convex hull has been determined in Table 4.40.  Each row corresponds to an unvisited point 

and each column corresponds to an edge on the partial tour.  Separate the insertion penalties for each 

iteration of the Priciest Insertion algorithm by a blank row from the lines for the next iteration.  Clearly 

label your rows and columns.  Not all rows and columns in the table have to be used!  An example of the 

table structure is shown in the next table, where the tour consists of points {a, b, c, d}, the remaining 

free points are {e, f, g} and in the first iteration point {f} is inserted on the link (b-c).  This table shows 

the structure only, is not complete, and you should not modify this table in any way. 

Table 4.39.  Insertion Penalties Table Structure 

Point Tour Edges

(a-b) (b-c) (c-d) (d-a)

e

f

g

(a-b) (b-f) (f-c) (c-d) (d-a)

e

g
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Table 4.40.  Insertion Penalties for Priciest Insertion 

Point Tour Edges

 

Compute heuristic delivery sequence with the Clarke and Wright (CW) savings algorithm.  For the 

Clarke and Wright savings algorithm assume that the base or anchor point is PD station.  First, give the 

formula for the computation of the savings using the notation of Table 4.35 and observing that the PD 

station is the base point.  For the Clarke and Wright algorithm show the pair-wise savings with respect 

to the anchor or base point in Table 4.41.  Show the savings based on points i and j (j>i) in matrix 

element [i,j].  Not all rows and columns in the table have to be computed or filled in! 
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Table 4.41.  Clarke and Wright Savings 

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7  

Write the formula that determines which points first form a shortcut on the tour, observing that PD 

station is the base point.  Assume that all points that not yet have been part of a shortcut and are not the 

base point are collected in a set F (indicating Free points).  Assume that the end points of the tour 

segment, that has been rearranged with the shortcuts, have indices p and q, respectively.  Further assume 

that the base point has index b.  Write the formula that determines which point will next form a shortcut 

on the tour.  For the Clarke and Wright savings algorithm, show chronologically the tour that you 

construct.  First, show the length of the tour before any shortcut is made in row 1 of Table 4.42.  Then 

compute and show for each iteration the point for which you found the shortcut, the savings for the 

shortcut, the length of the tour after the shortcut, and the sequence of all the points on the tour that so far 

have been part of a shortcut.  In other words, you do not have to list the points that are by themselves on 

the out and back segments.  For row 2, and row 2 only, two points are part of the first shortcut.  Give 

both these points of the first shortcut in the column with title "Shortcut Points." 

Table 4.42.  Clarke and Wright Tours 

Shortcut
Route Points Savings Length Points

1 0 0

2

3

4

5

6

7  

95 ● Chapter 4. Transportation Models Logistics Systems Design 



Finally, for each algorithm, give the chronological sequence in which you inserted or appended the 

points (starting with the base point or initial tour if applicable) and the delivery sequence starting with 

the PD station.  The chronological sequence is the sequence in which the points are added to the tour, 

i.e., which point is added first, second, third, etc.  The delivery sequence is the sequence in which the 

points are visited by the tour.  For example, is you inserted a point k between points i and j already on 

the tour, in the chronological sequence point k would be the last point so far in the delivery sequence 

there would be a segment of points i, then k, and then j.  For each heuristic compute the tour length and 

the ratio of the tour length divided by the length of the best tour you have found.  Summarize your 

answer in the Table 4.43. 

Table 4.43. Heuristics Summary Statistics 

Heuristic Chronological Sequence Delivery Sequence Length Ratio

NN

Sweep

CH+PI

CW  

Vehicle Routing with Backhauls (VRPB) Exercise 1 

Consider the single origin vehicle routing problem with backhauls (VRPB) illustrated in Figure 4.91.  

All routes start and terminate at the single depot.  The depot is indicated by a square.  All suppliers are 

indicated by triangles and all customers are indicated by circles.  The distances between the various 

facilities are also shown in Figure 4.91.  All travel occurs over the network links.  The supplies and 

demands are expressed in fractions of truck capacity and are shown in Table 4.44.  Due to the long 

load/unload times, there is only enough time to visit three facilities on a single truck route.  Hence, an 

additional constraint requires that there are at most three facilities on a route, aside from the origin and 

destination depot.   

Table 4.44. VRPB Example Facility Data 

Customer Demand Distance
 or Supplier or Supply to Depot

1 0.10
2 0.20
3 0.30
4 0.40
5 0.50
6 0.45

9
9
7
3
5

10  
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Figure 4.91. VRPB Exercise 1 Transportation Network 

Table 4.45. VRPB Exercise 1 Interfacility Distances  

D 1 2 3 4 5 6
D
1
2
3
4
5
6  

Nearest Neighbor 

First construct the routes with the Nearest Neighbor algorithm.  Every time you add a facility to a route, 

show the added or append facility, the anchor facility on the route this newly added facility is connected 

to, the append distance to the new facility, and the linehaul and backhaul quantity on the truck on that 

route so far.  When a new route is started, the anchor facility is the depot. 

Table 4.46. VRPB Exercise 1 Nearest Neighbor Algorithm Steps 

Index Append Anchor Append Linehaul Backhaul
Facility Facility Distance Quantity Quantity

1
2
3
4
5
6  

List the sequence of all the facilities on the routes that you have created, with one route per line or row.  

Each route must start and end with the depot.  Compute the route length of each individual route and the 

total route length of all the routes created by this algorithm.  Not all rows or columns in the table have to 

be used.   
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Table 4. 47. VRPB Exercise 1 Nearest Neighbor Routes 

Route Facility Length
1 2 3 4 5 6 7 8

1 D
2 D
3 D
4 D
5 D
6 D

Total  

Sweep 

There exist many variants of the sweep algorithm.  Execute the sweep algorithm for the VRPB problem 

where a route is terminated or closed as soon as adding either the next customer or supplier facility 

would violate the truck capacity and where the facilities are sequenced on the route by the rotating ray.  

Start the rotating ray in the due east direction and turn the ray clockwise.  For every time you add a 

facility to a route, show the added or append facility, the anchor facility on the route this newly added 

facility is connected to, the append distance to the new facility, and the linehaul and backhaul quantity 

on the truck on that route so far.  When you start a new route, the anchor facility is the depot. 

Table 4.48. VRPB Exercise 1 Sweep Algorithm Steps 

Index Append Anchor Append Linehaul Backhaul
Facility Facility Distance Quantity Quantity

1
2
3
4
5
6  

List the sequence of all the facilities on the routes that you have created, with one route per line.  Each 

route must start and end with the depot.  Compute the route length of each individual route and compute 

the total route length of all the routes created by this algorithm.  Not all rows or columns in the table 

have to be used.   
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Table 4.49. VRBP Exercise 1 Sweep Routes 

Route Facility Length
1 2 3 4 5 6 7 8

1 D
2 D
3 D
4 D
5 D
6 D

Total  

Set Partitioning Algorithm 

In the next column generation step, we consider only routes that have at most two facilities on each 

route (besides the depot).  Observe that these routes have to satisfy the standard vehicle routing with 

backhauls condition that all customers on a route are visited before any supplier can be visited.  We use 

the standard formula to compute the savings for each route candidate.   

Table 4.50. VRBP Exercise 1 One-Facility Routes 

Route Facility Length
1 2 3 4 5 6 7 8

1 D
2 D
3 D
4 D
5 D
6 D

Total  

Table 4.51. VRPB Exercise 1 Two-Facility Route Evaluations 

Index Facility Length Savings Added
Sequence (Y/N)
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Table 4.52. VRBP Exercise 1 Two-Facility Routes 

Route Facility Length
1 2 3 4 5 6 7 8

1 D
2 D
3 D
4 D
5 D
6 D

Total  

Table 4.53. VRPB Exercise 1 Three-Facility Route Evaluations  

Index Facility Length Savings Added
Sequence (Y/N)

 

Table 4.54. VRBP Exercise 1 Three-Facility Routes 

Route Facility Length
1 2 3 4 5 6 7 8

1 D
2 D
3 D
4 D
5 D
6 D

Total  

Vehicle Routing Problem with Backhauling Exercise 2 

Find the routes that minimize the total distance traveled to supply a number of customers from a single 

depot and to pickup from a number of suppliers and return to the depot.  The trailers are assumed to be 

rear loaded, so on every trip all deliveries have to be made before any pickup can be made.  All trucks 

are assumed to be the same size.  There are four vehicles, each with a capacity of 160.  Due to loading 

and time constraints, each vehicle can only execute a single route.  There are a total of 34 linehaul 

customers and 16 backhaul suppliers.  The location of the customers and suppliers and their respective 
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demand and supply are given in the table below.  Use the Euclidean distance norm without any 

adjustment factor to determine the interfacility distances.   

You can use any computer algorithm and program that you desire to determine the routes.  You need to 

show the routes on a graph and provide the following summary statistics for each route and for the total 

problem: route distance, number of linehaul customers, total linehaul demand, number of backhaul 

suppliers, total backhaul supply. Report which computer program and what computer hardware you 

used.  If you use a commercial software package you are encouraged to report the purchase price of the 

software.  Describe clearly and succinctly the algorithmic steps you or the computer program used to 

generate the routes.  Record and the report the time it took to enter the data, to find the shortest distance 

routes, and to decode the solution of the computer program and to copy it to the solution graph.  So you 

need to report three different times.  Part of the grade will be based on the total length of the routes you 

generated, i.e., shorter routes will get you a better grade. 

101 ● Chapter 4. Transportation Models Logistics Systems Design 



Table 4.55. VRPB Exercise 2 Facility Locations 

Label X Y Demand/Supply

Depot
D1 10000 10000 0

Linehaul Customers
1 10070 10120 7
2 10190 10090 30
3 9900 9860 9
4 10100 9900 21
5 9870 10230 19
6 10010 10220 23
7 10210 9810 5
8 10120 10010 19
9 9750 9850 23

10 9820 10020 21
11 10220 10010 15
12 9970 9830 3
13 9830 9730 9
14 10270 10180 28
15 10120 10170 8
16 9860 10170 16
17 9770 9980 28
18 9970 10280 7
19 10130 10270 14
20 10280 10080 6
21 10070 10290 11
22 10080 10060 12
23 10310 9930 26
24 10320 10230 17
25 10020 9820 9
26 10150 9950 15
27 9750 9660 7
28 9800 9770 27
29 9750 10240 11
30 10000 9750 16
31 10020 9990 5
32 9950 9920 25
33 10180 9880 18
34 10260 9970 10  
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Backhaul Suppliers
1 10220 10240 16
2 9910 10070 15
3 10220 9930 11
4 10010 9920 29
5 10060 9760 10
6 9870 9930 41
7 10320 10020 8
8 9780 10120 10
9 10000 10080 15

10 10280 9870 19
11 10160 9700 23
12 10330 10290 6
13 10290 9750 14
14 9910 9700 13
15 10090 9700 10
16 9950 10150 17

Note: Use Euclidean Distance Norm (no adjustments)  

 
Figure 4.92. VRPB Exercise 2 Facility Locations 
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