
Chapter 17. Layout Models 
This is an introduction chapter quotation.  It is offset three 

inches to the right. 

17.1. Introduction 
With the current state of the art, theoretical layout models can provide an optimal solution only to a 

significantly simplified version of the facilities design problem and for limited problem sizes.  Their 

primary use is to provide a bound on what can be achieved by heuristic methods.  However, since 

theoretical layout models are becoming more realistic and computer resources are becoming more 

inexpensive, the role of theoretical models is growing. 

17.2. Model Classification and Hierarchy 
The theoretical layout models can be classified and organized based upon the properties shown in the 

Figure 17.1.  Graph based models generate an adjacency graph, while area based models generate a 

conceptual block layout or a material handling layout.  Primal models maintain a feasible solution while 

attempting to obtain an optimal solution.  Dual models maintain an optimal solution while attempting to 

obtain a feasible solution.  In discrete area models the departments and building are composed of a 

number of equally sized unit squares.  In continuous area models the dimensions of the building and 

departments can have fractional values. 
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Figure 17.1. Theoretical Layout Models Hierarchy 

17.3. Area Based Layout Models 

Quadratic Assignment Formulation (QAP) 

Problem Definition   

One of the original modeling techniques for plant layouts with departments of equal size is the 

Quadratic Assignment Problem or QAP.  The model was later extended to the case of departments with 

unequal size.  If the department areas are unequal, then the departments are split up in a number of unit 

departments of equal area.  Similarly, the total layout area is subdivided in a number of equal unit 

locations.  See Figure 17.2 for a graphical illustration of the QAP. 
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Figure 17.2. Quadratic Assignment Problem Illustration 

Formulation   

Parameters 

M = number of unit departments 

N = the number of unit locations 

d jl  = distance between unit locations j and l 

Fpq  = total relation between departments p and q 

fik  = relationship between unit department i and k 

a p  = area of department p  
Usually M and N are equal.  If necessary this always can be achieved through introduction of a dummy 

department with zero flow to all other departments. 

fik  can be computed as follows if unit department i belongs to department p and unit department k 

belongs to department q: 

f
F

a aij
pq

p q
=  (17.1) 

Variables 

xij  = 1 if unit department i is assigned to unit location j, zero otherwise 

Formulation 

The QAP can then be formulated as: 
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x iij ∈ =0 1 1 1, ..l q   (17.5) 

Solution Algorithms 

A large number of mathematical programming algorithms exist to solve the QAP, but current problem 

instances are limited to M around 20.  A review of QAP algorithms is given in Hanan and Kurtzberg 

(1972). 

A simple heuristic is to order the  in non-increasing order and the d  in non-decreasing order and then 

assign unit departments to unit locations in these orders.  This inner product of the f and d vectors 

provides a lower bound on the QAP solution value. 

fik jl

The QAP formulation determines the shape of departments and strangely shaped departments can be 

generated if no cohesion cost is incorporated.  The cohesion cost is relationship cost between two unit 

squares that belong to the same department.  The cohesion cost forces departments to have a compact 

shape.  Usually, the QAP is run initially with a cohesion cost equal to zero.  If a department shape is not 

compact enough, then the cohesion cost of this department is increased and the QAP is solved again 

until all shapes are acceptable.  The inability to constrain or predict department shapes is a major 

weakness of the QAP method. 

Quadratic Assignment Example 

Consider the layout problem with three departments.  The department areas are 3, 2, and 1 for 

departments A, B, and C respectively.  The building is a 3 by 2 rectangle.  The objective is the 

rectilinear centroid-to- centroid distance score.  The departments have the following relationships with 

each other. 
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Table 17.1.  Department Affinities in the QAP Example 

A B C Ar
A 12 18

ea
3

B 6
C 1

2

 

The relationships between the unit squares belonging to the respective department are then given by: 
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The first three unit squares belong to department A, the 4th and 5th unit square belong to department B, 

and the 6th unit square belongs to department C.  The building squares are numbered 1 through 6, as 

shown in the next figure. 

1 2 3

4 5 6

 
Figure 17.3. Quadratic Assignment Example Building 

The rectilinear centroid-to-centroid distances between the unit locations are shown in the next table. 

Table 17.2.  Rectilinear Distances between Unit Locations in the QAP Example 

1 2 3 4 5 6
1 1 2 1 2 3
2 1 2 1 2
3 3 2 1
4 1
5 1
6

2

 

There are 6 times 6 or 36 variables, corresponding to every combination of unit square with unit 

location, and there are 6 plus 6 or 12 constraints, corresponding to six unit square assignment constraints 

and six unit location capacity constraints.  The twelve constraints are given next. 
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Consider the number of terms in the quadratic objective function.  There exist initially 36 possible 

combinations of locations in the objective function.  But when the first unit square occupies a particular 

unit location, then the second unit square cannot occupy the same unit location, so there remain only 30 

combinations of locations.  If we represent all possible combinations of locations as a square matrix with 

N rows and N columns, then the elements on the main diagonal do not have to be considered.  The 

number of remaining elements is then ( )1 2N N − . We can also represent all possible combinations of 

unit squares as a square matrix with N rows and N columns.  There exist initially 36 possible 

combinations of unit squares, but because of the symmetry of the problem we only have to consider the 

combinations in the upper triangular section of the matrix, i.e., all elements above the main diagonal. 

The number of remaining elements is then ( )1 2N N − . For this particular example that leaves 15 

combinations.  In addition, if there is no cohesion cost then we do not have to consider unit square 

combinations where both unit squares belong to the same department.  For this example, the 

combinations between unit squares of the same department are 1-2, 1-3, 2-3, and 4-5.  This leaves 11 

combinations for this particular example.  The total number of terms in the objective function is then 11 

times 30 or 330, which is fairly large even for this extremely small case.  For instance, one term in the 

objective function is 2 2 , when unit square 1 is located in unit location 1 and unit square 4 is 

located in unit location 3. 

11 43⋅ ⋅ x x
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Quadratic Set Packing Formulation (QSPP) 
Bazaraa (1975) developed an optimal algorithm to construct a layout from departments with a 

predetermined shape.  For each department all possible locations and orientations are enumerated.  The 

resulting quadratic set packing problem is solved with branch and bound.  A graphical illustration of the 

QSPP is given in Figure 17.4. 
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Figure 17.4. Quadratic Set Packing Problem 

Let  be the list of candidate locations for department i.  Let b  = 1 if candidate location j of 

department i occupies unit square n.  The other symbols are identical to the QAP formulation.  The 

QSPP is then modeled as: 

Li ijn
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x iij ∈ =0 1 1 1, ..l q   (17.9) 

Additional side constraints can be added without making the problem any harder.  Problems with 14 

departments and 60 unit locations can be solved in seconds. 
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Three computation schemes for the lower bound are given in order of decreasing computational 

requirements.  First, the bound on a partial layout can be computed by completing the layout while 

ignoring interaction among not yet located departments.  The resulting formulation is a linear set 

covering problem (SCP).  Second, the above linear SCP can be solved with linear programming.  

Finally, the best location for each unassigned department can be determined independently. 

Linear Assignment Problems (AP) 
Malette and Francis (1972) model the case where there is no interaction between the facilities, but there 

is interaction between facilities and fixed (interface) points with a linear Assignment Problem (AP).  

Typical examples of fixed interface points are doors and locks.  Such models occur frequently in the 

layout of warehousing systems.  An illustration of the AP is given in Figure 17.5. 
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Figure 17.5. Linear Assignment Problem Illustration 

Assume there are K fixed interface points.  The problem can then be formulated as: 
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{ }0,1 1.. , 1..ijx i M j∈ = N=   (17.13) 

If the factoring condition is satisfied, then the problem can be solved by a simple ranking procedure, see 

Malette and Francis (1972).  The factoring condition is equivalent to stating that all departments have 

the same distribution (i.e. proportion) of interaction with the fixed interface points.  The best layout can 

then be found by assigning the department with highest material flow to the locations with minimal 

weighted distance to the interface points. 
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Let  be the total material flow from department i to and from all interface points.  Let p be the 

probability mass vector of interaction with the interface points, i.e.  is the proportion of the flow 

interacting with each interface point k.  Let  be the weighted distance to a location j.  Then the 

objective function of the AP can be transformed with: 
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If there are as many departments as locations, then the solution can be obtained by sorting  in 

decreasing order and  in increasing order and by assigning the corresponding elements.  This 

equivalent to minimizing the inner product of two vectors by sorting the vectors in opposite directions. 

Fi

Dj

17.4. Graph Theoretic Layout Models 
The completed block layout can be represented as a graph.  Similarly, the original relationship matrix 

can be represented as a complete undirected graph, where each department corresponds to a node and 

pair wise relationships form the edges.  The adjacency graph is constructed from the relationship 

diagram by deleting all edges between non-adjacent departments, i.e. an edge is included in the 

adjacency graph if and only if the two departments are adjacent.  The adjacency graph is thus a subgraph 

of the relationship diagram. 

The block layout graph and adjacency graphs are related, in fact they are dual graphs.  The relationship 

diagram can be constructed from the block layout by placing a node inside each department and by 

drawing the connecting relationship edge if and only if the two departments are adjacent, i.e. have a 

common wall.  The resulting adjacency graph is planar.  A graph is planar if it can be drawn in a two-

dimensional plane without crossing edges. 

From an adjacency graph a block layout can be constructed if and only if the adjacency graph is planar, 

see Seppanen and Moore (1970).  The concepts of layout graph, adjacency graph and their dual 

relationship are shown in Figure 17.6. 
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Figure 17.6. Adjacency Graph and Layout as Dual Graphs 

Maximum Planar Subgraph Formulation (MPSP) 
The graph theoretic models are concerned with determining the best relative location of departments, 

ignoring the complexities of department and building shape and area.  Their objective is to maximize the 

adjacency score.  But in order to construct a block layout, the adjacency graph must be planar.  Hence 

the problem is to extract a planar subgraph out of the relationship diagram, so that its edge weight is 

maximized and the graph is planar.  This problem is called the Maximum (Weight) Planar Subgraph 

Problem (MPSP).  This problem is NP-Complete and cannot be solved for practical problem size in 

reasonable amount of computer time. 

The following notation will be used.  Let  be 1 if department i is adjacent to department j, zero 

otherwise.  Let G(E) be the adjacency graph consisting of edges E. Then the MPSP can be formulated 

as: 

xij

Max f xij ij
j

M

i

M

=

+

=

+

∑∑
1

1

1

1
 (17.16) 

s t e x planarij ij. . G = =1e j  (17.17) 

xij ∈ 0 1,l q  (17.18) 

Observe that the perimeter or outside is represented as an additional department M + 1. 

Foulds and Robison (1976) developed a branch and bound algorithm for the above formulation.  It 

involves the testing at every node if the current partial graph is planar.  Even though planarity testing is a 
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polynomial procedure developed by Hopcroft and Tarjan (1974), it is still the bottleneck in the above 

algorithm.  This algorithm has also the tendency to connect high weight nodes with many other 

departments, which yields an undesirable "umbrella effect". 

It is known that a maximal planar graph can have at most 3(M+1)-6 edges.  An upper bound to the 

MPSP can then be computed by adding the 3(M+1)-6 largest weights.  This assumes there are at least so 

many positive weight edges in the relationship diagram. 

Given that the original MPSP problem is unsolvable for realistic problem sizes, two heuristic approaches 

have been developed.  The primal approach attempts to achieve a high adjacency score while always 

maintaining a planar and hence feasible graph.  Heuristics are used to maximize the adjacency score.  

Examples of such primal algorithms are the Deltahedron and Hexagonal Adjacency Graphs.  The dual 

approach always finds the maximum adjacency score while forcing the resulting graph closer and closer 

to planarity.  The Perimeter Specified Adjacency Graph method is an example of a dual algorithm.  One 

of the inherent advantages of a primal method is that a feasible planar graph exists if the method has to 

be terminated prematurely. 

Deltahedron Heuristic 
It is easy to construct either a maximum weight subgraph or a planar subgraph, but the combined MPSP 

is NP-complete, see Foulds (1983).  On approach is to construct a guaranteed planar graph with a very 

high edge weight. 

Foulds and Robison (1978) presented such a heuristic procedure to solve the MPSP which avoid 

planarity testing.  The algorithm constructs a graph out of triangles.  Such a triangulated graph is always 

planar.  The algorithm attempts to achieve a high adjacency score.  The algorithm starts by constructing 

a tetrahedron, i.e. a complete triangular graph with four vertices.  The remaining vertices are then 

inserted one at a time in the triangle which maximizes the their insertion gain.  One variant inserts the 

vertices by decreasing total edge weight.  A second variant inserts the vertices by decreasing difference 

(regret) between their first and second candidate triangle. 

Observe that if relationships with the outside have to be incorporated, one of the initial four vertices 

must correspond with the outside department.  The algorithm is illustrated in Figure 17.7. 
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Figure 17.7. Deltahedron Heuristic Illustration 

Hexagonal Adjacency Graph Heuristic 
Another heuristic to construct a maximum weight planar subgraph is given by the SPIRAL technique, 

which is discussed in the section on Computer Aided Layout.  The spiral technique was originally 

introduced by Reed (1967) and adapted to a computer implementation by Goetschalckx (1986, 1991).  

The SPIRAL technique constructs a guaranteed planar graph with high adjacency score based on an 

underlying hexagonal grid. 

 
Figure 17.8. Hexagonal Grid Illustration 
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Figure 17.9. SPIRAL Adjacency Graph Illustration 

In the case of the hexagonal grid, an upper bound on the adjacency score of the graph can be computed 

based on the following integer programming formulation, where 0 represents the artificial outside 

department: 

max r x r yij ij io i
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 (17.20) 

y x i Ni io≤ 1..  (17.21) 

x y iio i≤ 6  (17.22) 

yi ∈ 0 1 1,l q  (17.23) 

x i Nij ∈ = −0 1 1 1 1, .. ,l q  (17.24) 

xi0 0≥ ..   (17.

The following notation is used: 

xij   1 if departments i and j are adjacent, 0 otherwise 
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0ix   represents the number of times department i is adjacent to the outside perimeter for 
the artificial outside department, with  j = 0 

Error! Objects cannot be created from editing field codes.  1 if department i is adjacent 
to the outside, 0 otherwise 

rij   the binary relationship between departments i and j 

 
The formulation maximizes the adjacencies between departments and between a department and the 

outside (17.19), subject to the constraint that each department must have exactly six neighbors (17.20).  

These neighboring departments can be the artificial outside department.  If a department has at least one 

outside department as a neighbor the relationship with the outside is satisfied and included in the 

objective function (17.21) and (17.22).  All the adjacencies are binary variables, except the adjacencies 

with the outside department that are integer (17.23), (17.24) and (17.25). 

The value of the formulation lies in the fact that it provides an upper bound on the optimal solution 

quality and on the maximum deviation of the heuristic solutions.   

Perimeter Specified Adjacency Matching 
The Perimeter Specified Adjacency Matching algorithm by Montreuil et al. (1987) creates a maximum 

weight subgraph and imposes incrementally additional constraints to impose planarity.  In addition the 

model is more specific since departments can be one or more times adjacent depending on the length of 

their perimeter. 

The perimeter length  of each department i is computed, based on the suggested department shape.  

Each department has to be adjacent exactly b  times with other departments.  The value of each of those 

adjacencies is stored in the relationship matrix.  Based on the shape of the two departments, there exists 

an upper and lower bound on the number of times those departments can be adjacent.  Let  be the 

number of times departments i and j are adjacent, let  and u  be the lower and upper bound on the 

number times they can be adjacent and let  be value for each time they are adjacent.  The following 

matching formulation is then solved: 

bi
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l x u i M j Mij ij ij≤ ≤ = = +1 1.. , .. 1

j M= +1

 (17.28) 

x i Mij ∈ =+N 1 1.. , ..  (17.29) 

The resulting solution is usually not a feasible layout, because the graph is not planar or the perimeter is 

not feasible.  It is the task of the human operator to impose additional constraints (by modifying l  and 

) that will force the solution to a feasible layout.  An example of the perimeter specified adjacency 

graph is given in Figure 17.10. 
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Figure 17.10. Perimeter Specified Adjacency Graph 

Montreuil et al. (1987) have incorporated this algorithm in an interactive layout system called MATCH.  

The location of the departments must be done interactively by the human operator on the CRT screen.  

As such there is no location procedure build into the algorithm.  It is possible to have a heuristic drawing 

method for the matching graph based on the expanded spiral technique. 
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17.5. Area Layout Models with Shape 
Constraints 

Problem Definition 
The objective is to design a conceptual block layout for a number of departments with unequal areas. All 

departments have to fit inside the confines of a rectangular building and the departments cannot overlap.  

In addition, the departments must satisfy a shape ratio constraint. The departments have pairwise 

affinities.  The objective function is to minimize the affinity-weighted centroid-to-centroid rectilinear 

distance score. 

The following notation will be used: 

Parameters 

K = number of departments, indexed by k 

W = width along the x axis of the building 

L = length along the y axis of the building 

A = area of the building 

ak  = area of department k 

Sk  = maximum value of the shape ratio of department k 

Fkl  = affinity between departments k and l 

pk  = shape penalty for department k 
 

The parameter and variable definitions are illustrated in Figure (17.11).   
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Figure 17.11.  Variable and Parameter Illustration in Block Layout with Shape Constraints 
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Variables 

sk  = shape ratio of department k 

xlk  = leftmost x coordinate of the smallest rectangle enclosing department k 

xrk  = rightmost x coordinate of the smallest rectangle enclosing department k 

ytk  = topmost y coordinate of the smallest rectangle enclosing department k 

ybk  = bottommost y coordinate of the smallest rectangle enclosing department k 

wk  = width along the x axis of the smallest rectangle enclosing department k 

lk  = length along the y axis of the smallest rectangle enclosing department k 

xck  = x coordinate of the centroid of department k 

yck  = y coordinate of the centroid of department k 

dy dykl kl
+ −,  = y components of the rectilinear distance between departments k and l 

dx dxkl kl
+ −,  = x components of the rectilinear distance between departments k and l 

 
Notice that in the discrete formulation, when a department is composed of a number of unit squares, the 

shape of the department is not necessarily rectangular and in that case the centroid of the department 

may not coincide with the centroid of the enclosing rectangle. 

Definitions 

The length and width of a department are defined as 

w xr xlk k k= −  (17.30) 

l yt ybk k k= −  (17.31) 

The shape ratio of a department is defined as the maximum of the length to width or width to length 

ratios of the smallest rectangle complete enclosing the department, or 

s
l
w

w
lk

k

k

k

k
=
RST

UVW
max ,  (17.32) 

For rectangular buildings, the building area is equal to the product of the building width and length, or 

A L W= ⋅  (17.33) 

Feasibility Constraints 

Based on the input parameters, the following feasibility constraints can be immediately tested 
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Discrete Assignment Formulation 
The first decision in the discrete assignment formulation is the determination of the unit square size.  

Large unit squares tend to produce more regular department shapes but limit the flexibility of the 

algorithm and thus tend to yield higher distance scores.  Small unit squares allow more irregularly 

shaped departments and make the problem size larger, but they tend to yield lower distance scores.  

Based on the size of the unit square, the building is divided into R rows by C columns of unit locations 

and each department is divided into a number of unit squares.  All areas are then normalized by dividing 

them by the unit square size and all distances are normalized by dividing them by the length of the side 

of the unit square. 

Notation 

Parameters 

u = length of the side of the unit square 

R = number of rows along the y axis in the building 

C = number of columns along the x axis in the building 

bk  = number of unit squares for department k 

Ik  = set of unit squares belonging to department k  

M = total number of unit squares for all departments, index by i 

N = number of unit locations in the building, indexed by j 

c j  = column index along the x axis of unit location j 

rj  = row index along the y axis of unit location j 

Variables 

xij  = 1 if unit square i is located at unit location j, 0 otherwise 

Definitions 

N R C= ⋅  (17.35) 

M bk
k

K
=

=
∑

1
 (17.36) 
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b Ik k=  (17.37) 

Feasibility Constraints 

Based on the input parameters, the following feasibility constraints can be immediately tested 

b Rk C
k

K
≤ ⋅

=
∑

1
 (17.38) 

Assignment Constraints 

Just as in the case of the Quadratic Assignment Problem, we have two sets of constraints.  The first set 

ensures that every unit square is assigned to exactly one unit location.  The second set ensures that every 

unit location holds at most one unit square and thus ensures that department will not overlap. 

x iij
j
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= =

=
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x jij
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=
∑ 1 1
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 (17.40) 

Shape Ratio Constraints 

The definition of the shape ratio contains a maximum operator, which prevents this constraint to be 

included into a linear programming solver.  However, there exists an easy transformation of (17.32) into 

two linear constraints. 

l S w
w S l
k k

k k

≤
≤

 (17.41) 

Using the definitions of the length and width of a department we then get the following constraint set, 

with two constraints per department. 

Error! Objects cannot be created from editing field codes. (17.42) 

Error! Objects cannot be created from editing field codes. (17.43) 

The boundary values of each department have to be derived from the assignment variables.  Adding the 

following constraint sets determines the upper bounds on the coordinates. 

Error! Objects cannot be created from editing field codes. (17.44) 

Error! Objects cannot be created from editing field codes. (17.45) 
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The lower bounds can be determined with the following constraints. 

xl c x C x k K i I j Nk j ij ij k≤ − + − = ∈ =1 1 1 1d i d i .. , , ..  

yb r x R x k K i I j Nk j ij ij k≤ − + − = ∈ =1 1 1 1d i ( ) .. , , ..  

These constraints can then be simplified to the following constraints. 

xl c C x C k K i I j Nk j ij k≤ − − + = ∈ =1 1d i .. , , ..1

1

 (17.46) 

yb r R x R k K i I j Nk j ij k≤ − − + = ∈ =1 1d i .. , , ..  (17.47) 

Centroid Constraints 

The coordinates of the centroid of each department are computed as the average of the centroids of the 

unit squares belonging to that department.  The centroid coordinates are then linked to the assignment 

variables with the following constraints 

xc

c x

b
kk

j ij
j

N

i I

k

k= −=∈
∑∑

1 05 1. K= ..  (17.48) 

yc

r x

b
kk

j ij
j

N

i I

k

k= −=∈
∑∑

1 05 1. K= ..

=

=

 (17.49) 

Since the centroid coordinates of each department only will be used in the distance calculations, we can 

ignore the 0.5 offset to yield the following simplified constraints. 

b xc c x k Kk k j ij
j

N

i Ik

=
=∈
∑∑

1
1..  (17.50) 

b yc r x k Kk k j ij
j

N

i Ik

=
=∈
∑∑

1
1..  (17.51) 

Distance Terms in the Objective Function 

For each pair of departments there exists a term in the objective function which multiplies the centroid 

to centroid rectilinear distance with the corresponding affinity. 

F xc xc yc yc k K l Kkl k l k l− + − = =c h 1 1.. , ..  (17.52) 
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The absolute value operator cannot be directly used in a linear programming formulation.  We use the 

following standard definitions and substitutions. 

dx
xc xc if xc xc

otherwise

dx
xc xc if xc xc

otherwise

kl
k l k

kl
l k k

+

−

=
− ≥RST

=
−RST

0

0

l

l≤
 (17.53) 

We can then substitute for each absolute value term in the objective function based on the following 

equality 

xc xc dx dxk l kl− = ++
kl
−  (17.54) 

provided we add the following two constraints. 

xc xc dx dxk l kl− = −+
kl
−  (17.55) 

dx dxkl kl
+ −⋅ = 0 (17.56) 

Observe that the columns in the constraint matrix corresponding to the dxkl
+  and dx  variables are 

identical but with opposite signs.  Those columns and the corresponding variables are thus linearly 

dependent and they cannot appear together in the optimal solution basis.  This implies that at least one of 

the two variables must be non-basic and thus equal to zero, and so we do not have to add explicitly the 

nonlinear constraint (17.56) to the formulation.  The terms in the objective function are then 

kl
−

F dx dx dy dy k K lkl kl kl kl kl
+ − + −+ + + = =e j 1 1.. , .. K  (17.57) 

Provided we add the following constraint sets 

xc xc dx dx k K l Kk l kl kl− = − = =+ − 1 1.. , ..  (17.58) 

yc yc dy dy k K l Kk l kl kl− = − = =+ − 1 1.. , ..  (17.59) 

The evaluation of location of departments with respect to relations with the outside requires different 

formulas, since the centroid of the outside department is not defined.  We define the distance of a 

department to the outside as the smallest distance of the centroid of the department to any of the four 

borders of the building. 

d xc W xc yc L yc k Kko k k k k= − −min , , , ..l q 1=  (17.60) 
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We can then add the weighted distance score to the objective functions and add the following constraints 

for each department.  Observe that different constraints must me added depending on the sign of the 

relationship of the department with the outside. 

if F Min F d

s t d xc dl
d W xc dr
d yc db
d L yc dt
dl dr db dt
dl dr db dt

ko ko ko
k

ko k k

ko k k

ko k k

ko k k

k k k k

k k k k

> ⇒ ⋅

≥ ⋅

≥ − ⋅

≥ ⋅

≥ − ⋅

+ + + ≥

∈

∑0

1
0 1

.

. .

, , , ,

b g

b g

l q

 (17.61) 

The dl, dr, db, and dt variables are logical OR variables indicating that one the relationships has to be 

satisfied. 

if F Min F d

s t d xc
d W xc
d yc
d L yc

ko ko ko
k

ko k

ko k

ko k

ko k

< ⇒ ⋅

≤
≤ −
≤
≤ −

∑0 .

. .
 (17.62) 
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Discrete Formulation 

Min F dx dx dy dy F d

s t x i M

x j N

c x xr k K i I j N

r x yt k K i I j N

xl c C x C k K i I j N

yb r R x R k

kl kl kl kl kl
l k

K

k

K

ko ko
k

K

ij
j

N

ij
i

M

j ij k k

j ij k k

k j ij k

k j ij

.

. . ..

..

.. , , ..

.. , , ..

.. , , ..

+ − + −

= +=

−

=

=

=

+ + + + ⋅

= =

≤ =

≤ =

≤ =

≤ − − + = ∈ =

≤ − − +

∑∑ ∑

∑

∑

e j

d i
d i

11

1

1

1

1

1 1

1 1

1 1

1 1

1 1

1 = ∈ =

− ≤ − =

− ≤ − =

= =

= =

− = − = − = +

− = − = − = +
≥ ⋅ =

=∈

=∈

+ −

+ −

∑∑

∑∑

1 1

1

1

1

1

1 1 1

1 1 1

1

1

.. , , ..

..

..

..

..

.. , ..

.. , ..

K i I j N

xr xl S yt yb k K

yt yb S xr xl k K

b xc c x k K

b yc r x k K

xc xc dx dx k K l k K

yc yc dy dy k K l k K
d xc dl k

k

k k k k k

k k k k k

k k j ij
j

N

i I

k k j ij
j

N

i I

k l kl kl

k l kl kl

ko k k

k

k

b g
b g

1
1
1
1

1 1
0 1 1

0 1 1 1

0 1

0 1 1

..

..

..

..

..
, , , , ..

{ , } .. , ..

, , , , , ..

, , , .. , ..

K
d W xc dr k K
d yc db k K
d L yc dt k K
dl dr db dt k K
dl dr db dt k K
x i

xr xl yt yb xc yc k K

dx dx dy dy k K l K

ko k k

ko k k

ko k k

k k k k

k k k k

ij

k k k k k c

kl kl kl kl

≥ − ⋅ =

≥ ⋅ =

≥ − ⋅ =

+ + + ≥ =

∈ =

∈ =

≥ =

≥ = =+ − + −

b g

b g

l q

∈ =

∈ =

1

M j N=

 

For notational simplicity, only the constraints for the case of positive relationships with the outside are 

shown in this formulation.  If the relationship of a department with the outside is negative, then the 

constraint set (17.Error! Bookmark not defined.) should be used instead. 

Example 

We expand the example given in the section on the quadratic assignment formulation. Consider again 

the layout problem with three departments.  The department areas are 3, 2, and 1 for departments A, B, 

and C respectively.  The building is a 3 by 2 rectangle.  The objective is the rectilinear centroid-to-
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centroid distance score.  The departments have the relationships with each other as shown in Table 17.3.  

In addition, the maximum shape ratio for each department is equal to 3. The first three unit squares 

belong to department A, the 4th and 5th unit square belong to department B, and the 6th unit square 

belongs to department C.  The building squares are numbered 1 through 6, as shown in the Figure 

(17.12). 

Table 17.3. Department Data for Discrete Layout Formulation 

A B C Area Max Shape I
A 12 18 3 3 1,2,3
B 6 2 3
C 1 3 6

4,5

 

1 2 3

4 5 6
1 2 3

2

1

0
0

Y-
A

xi
s

X-Axis

 
Figure 17.12. Discrete Layout Formulation Example Building 

The rectilinear centroid-to-centroid distances between the unit locations as well as the row and column 

indices are shown in Table 17.4. 

Table 17.4. Distance Data for Discrete Layout Formulation 

1 2 3 4 5 6 r c
1 1 2 1 2 3 2 1
2 1 2 1 2 2 2
3 3 2 1 2 3
4 1 2 1 1
5 1 1 2
6 1 3  

Continuous Formulation 
The continuous formulation is based on the assumption that only rectangular department shapes are 

allowed. 
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Variables 

zrkl  = 1 if department k is located completely to the right of department l 

zbkl  = 1 if department k is located completely to the bottom of department l 

Building Constraints 

To ensure that all departments lay within the building enclosure, we add the following constraint set, 

with constraints for each department. 

0 ≤ ≤ =yt L k Kk ..1

1

1

1

 (17.63) 

0 ≤ ≤ =xr W k Kk ..  (17.64) 

To avoid negative length and width of a department we add the following constraint set, with two 

constraints for each department. 

0 ≤ ≤ =xl xr k Kk k ..  (17.65) 

0 ≤ ≤ =yb yt k Kk k ..  (17.66) 

Centroid Coordinates and Distances 

Given the rectangular department shape, the computation of the centroid coordinates is straightforward 
as the middle between the boundary coordinates. 

xc xr xl kk
k k=
+

=
2

1..K  (17.67) 

yc yt yb kk
k k=
+

=
2

1..K  (17.68) 

The transformation of the objective function is also identical to discrete formulation.  Substituting the 

definition of the centroid coordinates, we get the following equations for the centroid to centroid 

distances. 

xr xl xr xl dx dx k K l k Kk k l l kl kl+ − − = − = − = ++ −2 2 1 1 1.. , ..  (17.69) 

yt yb yt yb dy dy k K l k Kk k l l kl kl+ − − = − = − = ++ −2 2 1 1 1.. , ..  (17.70) 

If the relationship between two departments is negative, any optimal solution will make the 

corresponding distances as large as possible.  Without any additional constraints, the problem becomes 

unbounded.  The original nonlinear constraint (17.56) is required for the optimal solution.  Alternatively, 

two new binary variables can be used to ensure that either the positive or negative component of the 
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distance between two departments is positive, but not both.  For every pair of departments with a 

negative relationship between them the following set of constraints is added to the formulation. 

xr xl xr xl dx zpx dx znx

yt yb yt yb dy zpy dy zny
zpx znx
zpy zny
zpx znx zpy zny

k k l l kl kl kl kl

k k l l kl kl kl kl

kl kl

kl kl

kl kl kl kl

+ − − = ⋅ − ⋅

+ − − = ⋅ − ⋅
+ =
+ =

∈

+ −

+ −

2 2

2 2
1
1

0 1, , , { , }

 (17.71) 

xr xl xr xl dx zpx dx znx
xr xl xr xl vpx vnx

k k l l kl kl kl kl

k k l l kl kl

+ − − = ⋅ − ⋅ ⇒
+ − − = −

+ −2 2
2 2

 (17.72) 

dx zpx vpx dx Wzpx

dx vpx

dx vpx Wzpx W

kl kl kl kl kl

kl kl

kl kl kl

+ +

+

+

= ⇔ ≤

− + ≤

− + ≤

0  (17.73) 

For every pair of departments with a negative relationship between them, this adds 14 extra constraints 

and four extra binary variables.  

Department Non-Overlap Constraints 

The constraints to ensure that a department is to the right or to the bottom of another department can be 

formulated as 

xr xl W zr k K l Ll k kl− ≤ − = =( ) .. , .1 1 .1

.1

 (17.74) 

yt yb L zb k K l Lk l kl− ≤ − = =( ) .. , .1 1  (17.75) 

They can be transformed into 

xr xl W zr W k K l Ll k kl− + ⋅ ≤ = =1 1.. , ..  (17.76) 

yt yb L zb L k K l Lk l kl− + ⋅ ≤ = =1 1.. , ..  (17.77) 

zb zr zb zr k K l Kkl kl lk lk+ + + ≥ = =1 1.. , ..1

1 1

1 1

 (17.78) 

zr zr k K l Kkl lk+ ≤ = =1 .. , ..  (17.79) 

zb zb k K l Kkl lk+ ≤ = =1 .. , ..  (17.80) 

Just like in the case of the discrete formulation, we add the constraint set, with two constraints per 

department, to limit the shape ratio of each department.   
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Department Area Constraints 

The area constraint for each department is the following nonlinear equation. 

l
a
wk

k

k
=  (17.81) 

The gradient is given by 

dl
dw

a
w

k

k

k

k
= − 2  (17.82) 

The second derivative is given by 

d l
dw

a
w

k

k

k

k

2

2 3
2

=  (17.83) 

The second derivative is positive everywhere and thus the area constraint is a convex curve and the 

tangent to the curve in any point p on the curve will be a lower support of the curve.  The equation of the 

support in point p is then 

( )l l
a

w
w wk k

p k

k
p

k k
p− ≥ − −

e j
e2 j  (17.84) 

A number of these supports can be added to the formulation to construct a linear approximation of the 

nonlinear area constraint.  The more supports are added the closer the approximation, but the larger the 

problem size.  Three to five supports usually suffice to satisfy the area constraint with a relative 

precision of 0.001.  P will indicate the number of supports and is a parameter determined by the user. 

Since the distance score tends to be smaller for long and narrow departments, one of the supports at the 

endpoints of the feasible interval of wk is often binding.  It is recommended to add at least the two 

supports at the endpoints of the interval.  The feasible interval of wk  is determined by the maximum 

shape ratio for the department and the building dimensions.  The values of wk  and lk  at the endpoints of 

the feasible interval are indexed by p=1 and p=2 and are given by 

l a S L w
a
l

k k k k
k

k

1 1
1= =min , ,o t  (17.85) 

w a S W l
a
w

k k k k
k

k

2
2= min , ,o t 2 =  (17.86) 
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Continuous Formulation 

Min F dx dx dy dy F d

s t xl xr k K
yb yt k K
xr W k K
yt L k K
xr xl S yt yb k K

yt yb S xr xl k K
xr xl W zr W k K l L
yt yb L zb L k K l

kl kl kl kl kl
l k

K

k

K

ko ko
k

K

k k

k k

k

k

k k k k k

k k k k k

l k kl

k l kl
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+ − − = − = − = +

+ − − = − =

+ −

+ −

1
1 1 1

1 1
1 1

1 1

2 2 1 1 1

2 2 1

2

..
.. , ..
.. , ..
.. , ..
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Again for notational simplicity, only the constraints for the case of positive relationships with the 

outside are shown in this formulation.  If the relationship of a department with the outside is negative, 

then the constraint set (17.Error! Bookmark not defined.) should be used instead. 
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Example 

For the same small example as in the case of the discrete formulation, the continuous formulation is 

given next with five supports for the nonlinear area constraint for each department. 

Formulation 17.1. Continuous Formulation for the Tiny Example 
MIN 
 +12 XP001002 +12 XN001002 +12 YP001002 +12 YN001002 
 +6 XP001003 +6 XN001003 +6 YP001003 +6 YN001003 
 +18 XP002003 +18 XN002003 +18 YP002003 +18 YN002003 
S.T. 
XR001 - XL001 >= 0 
YB001 - YT001 >= 0 
XR001 <= 3.000000 
YB001 <= 2.000000 
XR001 - XL001 - 3.000000 YB001 + 3.000000 YT001 <= 0 
- 3.000000 XR001 + 3.000000 XL001 + YB001 - YT001 <= 0 
1.333333 XR001 - 1.333333 XL001 + YB001 - YT001 >= 4.000000 
0.925926 XR001 - 0.925926 XL001 + YB001 - YT001 >= 3.333333 
0.680272 XR001 - 0.680272 XL001 + YB001 - YT001 >= 2.857143 
0.520833 XR001 - 0.520833 XL001 + YB001 - YT001 >= 2.500000 
0.411523 XR001 - 0.411523 XL001 + YB001 - YT001 >= 2.222222 
0.333333 XR001 - 0.333333 XL001 + YB001 - YT001 >= 2.000000 
XR002 - XL002 >= 0 
YB002 - YT002 >= 0 
XR002 <= 3.000000 
YB002 <= 2.000000 
XR002 - XL002 - 3.000000 YB002 + 3.000000 YT002 <= 0 
- 3.000000 XR002 + 3.000000 XL002 + YB002 - YT002 <= 0 
2.000000 XR002 - 2.000000 XL002 + YB002 - YT002 >= 4.000000 
1.202041 XR002 - 1.202041 XL002 + YB002 - YT002 >= 3.101021 
0.801361 XR002 - 0.801361 XL002 + YB002 - YT002 >= 2.531973 
0.572122 XR002 - 0.572122 XL002 + YB002 - YT002 >= 2.139388 
0.428831 XR002 - 0.428831 XL002 + YB002 - YT002 >= 1.852202 
0.333333 XR002 - 0.333333 XL002 + YB002 - YT002 >= 1.632993 
XR003 - XL003 >= 0 
YB003 - YT003 >= 0 
XR003 <= 3.000000 
YB003 <= 2.000000 
XR003 - XL003 - 3.000000 YB003 + 3.000000 YT003 <= 0 
- 3.000000 XR003 + 3.000000 XL003 + YB003 - YT003 <= 0 
3.000000 XR003 - 3.000000 XL003 + YB003 - YT003 >= 3.464102 
1.530612 XR003 - 1.530612 XL003 + YB003 - YT003 >= 2.474358 
0.925926 XR003 - 0.925926 XL003 + YB003 - YT003 >= 1.924501 
0.619835 XR003 - 0.619835 XL003 + YB003 - YT003 >= 1.574592 
0.443787 XR003 - 0.443787 XL003 + YB003 - YT003 >= 1.332347 
0.333333 XR003 - 0.333333 XL003 + YB003 - YT003 >= 1.154701 
XR001 + XL001 - XR002 - XL002 - 2 XP001002 + 2 XN001002 = 0 
YB001 + YT001 - YB002 - YT002 - 2 YP001002 + 2 YN001002 = 0 
XR001 + XL001 - XR003 - XL003 - 2 XP001003 + 2 XN001003 = 0 
YB001 + YT001 - YB003 - YT003 - 2 YP001003 + 2 YN001003 = 0 
XR002 + XL002 - XR003 - XL003 - 2 XP002003 + 2 XN002003 = 0 
YB002 + YT002 - YB003 - YT003 - 2 YP002003 + 2 YN002003 = 0 
XR002 - XL001 + 3.000000 ZR001002 <= 3.000000 
YB002 - YT001 + 2.000000 ZB001002 <= 2.000000 
XR003 - XL001 + 3.000000 ZR001003 <= 3.000000 
YB003 - YT001 + 2.000000 ZB001003 <= 2.000000 
XR001 - XL002 + 3.000000 ZR002001 <= 3.000000 
YB001 - YT002 + 2.000000 ZB002001 <= 2.000000 
XR003 - XL002 + 3.000000 ZR002003 <= 3.000000 
YB003 - YT002 + 2.000000 ZB002003 <= 2.000000 
XR001 - XL003 + 3.000000 ZR003001 <= 3.000000 
YB001 - YT003 + 2.000000 ZB003001 <= 2.000000 
XR002 - XL003 + 3.000000 ZR003002 <= 3.000000 
YB002 - YT003 + 2.000000 ZB003002 <= 2.000000 
ZR001002 + ZR002001 + ZB001002 + ZB002001 >= 1 
ZR001002 + ZR002001 <= 1 
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ZB001002 + ZB002001 <= 1 
ZR001003 + ZR003001 + ZB001003 + ZB003001 >= 1 
ZR001003 + ZR003001 <= 1 
ZB001003 + ZB003001 <= 1 
ZR002003 + ZR003002 + ZB002003 + ZB003002 >= 1 
ZR002003 + ZR003002 <= 1 
ZB002003 + ZB003002 <= 1 
integer 
ZR001002 
ZB001002 
ZR001003 
ZB001003 
ZR002001 
ZB002001 
ZR002003 
ZB002003 
ZR003001 
ZB003001 
ZR003002 
ZB003002 
End 

The optimal solution for the continuous formulation is shown in Figure (17.13) and has an objective 

function value of 53. 

 
Figure 17.13.  Optimal Continuous Solution for the Tiny Layout Example 

Alternative Continuous Formulation 

The absolute values in the objective function can also be eliminated by substitution based on the 

following constraint. 

x x= −max ,l qx  (17.87) 

or 

x x

x x

≥

≥ −
 (17.88) 

or in terms of the centroid coordinates 

2
2

dx xr xl xr xl
dx xr xl xr xl

kl k k l l

kl k k l l

≥ + − −
≥ − − + +

 (17.89) 
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2
2

dy yt yb yt yb
dy yt yb yt yb

kl k k l l

kl k k l l

≥ + − −
≥ − − + +

 (17.90) 

This formulation has N(N-1) more constraints but N(N-1) fewer variables.  This formulation also has 

difficulties with negative relationships between two departments, since there is no upper bound on the 

distance variable and it will grow to infinity in any optimal solution.  To avoid this the lower bound 

constraints can be converted to equalities and two new binary variables are introduced in a manner 

similar to the original formulation. 

Shape Penalty Based Relaxation 
It is possible that there does not exist a conceptual block layout satisfying the shape constraints.  We can 

relax the continuous and discrete formulation in the following way.  The shape constraints in the original 

model are equivalent to 

xr xl s yt yb k K

yt yb s xr xl k K
k k k k k

k k k k k

− ≤ − =

− ≤ − =

b g
b g

1

1

..

..
 (17.91) 

and 

s S kk k≤ 1.. K=  (17.92) 

We can relax this last constraint set by including it in the objective function with a shape penalty  for 

each department i.  The shape penalty is set by the user. 

pi

Min F d F d s S pkl kl k k
k

K

l k

K

k

K

k k k
k

K
. ma+ + −

== +=

−

=
∑∑∑ ∑0 0

111

1

1
0l qx , ⋅  (17.93) 

Observe that if the realized shape ratio of a department is less than the maximum allowed shape ratio for 

that department no penalty is added.  If the realized shape ratio is larger than the maximum allowed 

value, a penalty proportional to the violation of the shape ratio is added to the objective function.  This 

corresponds to a penalty function for each individual department as illustrated in Figure 17.14. 
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Figure 17.14.  Shape Penalty Function for a Single Department 

17.6. Optimal Shape Penalties Using 
Lagrangean Relaxation 

Introduction 
In the formulation (17.93) the shape constraints were relaxed and incorporated into the objective 

function with a shape penalty determined by the user.  This method is an example of a more general 

class of relaxations, where one or more constraints are relaxed and the amount of violation of the 

constraint is multiplied by a penalty factor and added to the objective function.  This class of relaxation 

is called Lagrangean relaxation and the penalty factor is called the Lagrangean multiplier.  Lagrangean 

relaxation is often used in the solution of difficult integer and mixed integer programming problems 

either by itself or as the algorithm used to compute the bounds in a branch-and-bound algorithm.  This 

method is also denoted as dual decomposition, since the constraints are split into two sets, namely the 

relaxed and non-relaxed constraints. 

We will first develop the generic Lagrangean Relaxation algorithm and then apply it to the block layout 

problem with shape constraints.  The remainder of this section requires a thorough knowledge of linear 

and integer programming and may be more suitable for advanced undergraduate or graduate courses.  
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17.7. Optimal Block Layout with Shape 
Constraints Using Benders Decomposition 

Introduction 
Split variables in hard (integer) and easy (continuous) 

Integer master problem 

Shape relaxation continuous subproblem 

Formulation 

Primal Subproblem 
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Note that the z are parameters and not variables in all the formulations of the subproblem 

Dual Subproblem 
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Extreme Point Formulation of the Dual Subproblem 
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Primal Master Problem 
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Exercises 

Exercise 

Consider the shape and location of a department, as shown in the Figure (17.15), that constitute the 

partial solution to the discrete formulation for the block layout with shape constraints.  Write all the 

equations in algebraic (symbolic) form that 1) compute the centroid location of this department, 2) 

determine the boundary coordinates of this department, 3) ensure that the shape ratio of this department 

is less than S.  Use the notation developed in class.  Do not include any other constraints or objectives.  

The area of the department is four unit squares and there are 50 unit locations in the layout problem.  

Clearly define all variables and parameters that you are using and label the constraints.  Indicate how 

many constraints of each type there are for this department and explain how you derived this number. 

1 2 3

4

Y-
Ax
is

X-Axis

1

2 3 4 6 7 8 91

2

3

4

1 2 3 4 65 7 8 9 10

11 12 13 14 1615 17 18 19 20

21 22 23 24 2625 27 28 29 30

31 32 33 34 3635 37 38 39 40

41 42 43 44 4645 47 48 49 50
5

 
Figure 17.15. Discrete Block Layout Exercise 

Write in numerical format, i.e. with all parameters expressed as numbers, all the equations of the above 

three sets when the corresponding assignment variable is equal to one.  In other words, write those 

constraints and only those in which  for this department k with a set of unit squares Ixij = 1 k = { , , , }1 2 3 4  
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and all possible locations j.  This implies that you should not include the variables  in those 

constraints nor should include constraints that only use variables .  Assume that S=2.  Based on 

these numerical constraints, compute the numerical value for the centroid and boundary coordinates of 

this department.  Do the shape and location of the department satisfy the shape constraints?   

xij = 0

xij = 0
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