
Chapter 8. Discrete Point 
Location 

This is an introduction chapter quotation.  It is offset three 

inches to the right. 

8.1. Set Covering and Set Partitioning 

Set Covering and Set Partitioning Formulation 
Every column j corresponds to a feasible alternative service action.  Every row i corresponds to a service 

request.   

x j  1 if alternative j is executed, 0  

aij  1 if alternative j satisfies request i 

c j  cost of alternative j 

pi  cost estimate for servicing request I 
  

The objective is to minimize the overall cost while servicing all the requests.  otherwise, which means 

that the x are binary variables.   

If the service request can be served by exactly one service alternative, then the resulting formulation is 

called the Set Partitioning Problem (SPP) as shown in the formulation 8.1. 
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If the service request can be served by more than one service alternative, then the resulting formulation 

is called the Set Covering Problem (SCP), as shown in formulation 8.2.  Since in most logistics systems, 

not servicing one particular service request in a feasible service alternative also is a feasible service 

alternative and the cost of the reduced service alternative is no larger than the cost of the original service 

request, the Set Partitioning and Set Covering problems can be solved in the same way.  The discussion 

from now on will focus on the Set Partitioning Problem. 
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Set Partitioning Problem Characteristics 

Alternative Selecting Algorithm 

Accurate Costs and Feasibility Constraints 

Optimal Solution for “Small” Problem Sizes (IP Solver) 

Efficient Column Generation and Pricing 

Models Complex Problems 

Set Partitioning Algorithm 

Notation 

To facilitate the description and notation of the algorithm the following set notation is introduced.  J +  is 

the set of service alternatives currently executed.  I D  is the set of request currently not serviced. 

J j a

I i a

J j x

I i i I

i ij

j ij

j

j
j J

= =

= =

= =

= ∉
R
S|
T|

U
V|
W|

+

∈ +

:

:

:

:

1

1

1

o t
o t
o t

D ∪

 (8.3) 

Logistics Systems Design Chapter 8. Discrete Point Location ● 2 



Column Generation Heuristic 

Algorithm 8.1.  Set Partitioning Column Generation 

1) Start with a feasible partition J +  

2) Determine row prices by allocating column prices “equitable” such that 

c aj ij
i

M
+

=
= ∑

1
pi  (8.4) 

3) Generate and evaluate a column j.  If its "reduced price" is negative, add the column to the 

partitioning master problem. 

c a pj ij i
i

M
− ≤

=
∑ 0

1
 (8.5) 

4) If enough columns are added, solve the partitioning master problem and go to step 2.  If not all 

columns have been evaluated go to step 3. 

5) If all columns have been evaluated and none have been added or the solution or row prices are within 

the tolerance, stop, else solve the partitioning master problem and go to step 2. 

The SPP master problem is a pure integer (binary) programming problem and must be solved with an 

integer programming solver.  Problems of intermediate size can be solved to optimality in a reasonable 

amount of time.  Since only potentially attractive columns are added in step 3, the master problem size is 

significantly reduced.  The number of rejected columns depends on the quality of the row prices which 

in turn depends on the quality of the current feasible partition.  So the algorithm efficiency is greatly 

enhanced if it is started with a good initial feasible partition.  This partition can be generated either with 

an heuristic algorithm or can be the current configuration for an existing system. 

Row Price Allocation Schemes 

There are many alternative schemes to determine "equitable" row prices and the selection of such 

scheme depends on the physical characteristics of the problem.  For example, in the case of locating a 

distribution center that services a number of customers with demand de and distance to the distribution 

center d , a reasonable allocation of the cost can be based on the product of demand and distance to the 

distribution center, or 

mi

i0
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The column generation algorithm is only guaranteed to yield the optimal solution if all feasible columns 

are evaluated with all possible combinations of row prices satisfying (8.4) and no column can be added 

to the master problem, i.e., all have a positive reduced cost as computed by (8.5). 

Reduction Rules 

The size of the master problem can be further reduced by applying a set of reduction rules. 

Row Infeasibility 

If  then the problem is infeasible Jk = ∅

Since no service alternative can satisfy service request k the problem has no feasible solution. 

Row Feasibility 

if  then   and eliminate rows J cr = l q x c Jc = ∈ +1, k k Ic: ∈ . 

Since service request r can only be served by service alternative c, alternative c must be executed and all 

service request served by it can be eliminated from the problem.  The cost of service alternative c must 

be added to the current objective function value. 

Row Dominance 

If then eliminate row q J Jr ⊆ q

Since whatever service alternative that services request r will also service request q, request q can be 

eliminated from the problem.  So the "easier" service requests are eliminated from the problem. 

Column Dominance 

If It = ∅  then  xt = 0

If then  I I and c cs t s⊇ ≤ t xt = 0

If a particular service alternative does not serve any request, then it can be eliminated from the problem.  

If a particular service alternative services more requests and costs less than another alternative t, then the 

alternative t can never be included in an optimal solution and can thus be eliminated from the problem. 
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The rules can be applied in any sequence and the application should cycle through all the rules until no 

further reductions can be made. 

Reduction Example 

A study is being conducted to determine the optimum number and locations of fire towers in a large 

national forest.  The forest consists of 12 tracts that need to be surveyed by rangers located in the fire 

towers.  The objective is to minimize the total cost of establishing the fire towers.  Eight locations have 

been selected as potential sites for the fire towers due to their altitudes and visibility ranges.  The 

coverage matrix is given in Table 8.1 with the last row showing the cost of constructing a fire tower at 

each of the eight sites. 

Table 8.1. Original Cost and Coverage Matrix 

i↓ / j→ 1 2 3 4 5 6 7 8
1 1 1 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0
3 0 1 1 0 0 0 0 0
4 1 1 0 1 0 0 0 0
5 0 1 1 1 0 1 0 0
6 0 0 1 1 1 1 0 1
7 1 0 1 1 1 1 0 0
8 1 0 0 1 0 0 0 0
9 0 0 0 1 1 1 1 1

10 1 0 0 0 1 0 1 0
11 0 0 0 0 1 1 1 1
12 0 0 0 0 1 1 1 1
cj 175 225 145 115 105 165 135 195  

The objective is to determine the correct locations of fire towers to be established and the minimal cost 

solution in the most efficient way.  The following reductions are possible during the preprocessing 

phase.  In the reduction phase the terms tract and row, and also tower and column will be used 

interchangeably. 

Track 2 requires tower 2 since its row contains only a single 1, so tower 2 must be established.  This 

eliminates all tracks that are served by tower 2, i.e., {1, 2, 3, 4, 5} and it also eliminates column 2.  The 

resulting matrix is as follows. 
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Table 8.2. Cost and Coverage Matrix after One Reduction 

i↓ / j→ 1 3 4 5 6 7 8
6 0 1 1 1 1 0 1
7 1 1 1 1 1 0 0
8 1 0 1 0 0 0 0
9 0 0 1 1 1 1 1

10 1 0 0 1 0 1 0
11 0 0 0 1 1 1 1
12 0 0 0 1 1 1 1
cj 175 145 115 105 165 135 195  

Tract 9 is dominated by tract 12, since row 9 has a one wherever row 12 has a one and thus if tract 12 is 

covered then tract 9 will also be covered.  Similarly, track 11 is dominated by tract 12, and track 7 is 

dominated by tract 8.  This eliminates rows 7, 9, and 11.  The resulting matrix is as follows. 

Table 8.3. Cost and Coverage Matrix after Two Reductions 

i↓ / j→ 1 3 4 5 6 7 8
6 0 1 1 1 1 0 1
8 1 0 1 0 0 0 0

10 1 0 0 1 0 1 0
12 0 0 0 1 1 1 1
cj 175 145 115 105 165 135 195  

Tower 5 dominates tower 6 since its column has a one wherever column 6 has a one and its cost is 

lower, so tower 6 can be eliminated.  Tower 5 dominates tower 7 and its cost is lower, so tower 7 can be 

eliminated.  Tower 5 dominates tower 8 and its cost is lower, so tower 8 can be eliminated.  Tower 4 

dominates tower 3 and its cost is lower, so tower 3 can be eliminated.  This eliminates columns 3, 6, 7, 

and 8.  The resulting matrix is as follows. 

Table 8.4. Cost and Coverage Matrix after Three Reductions 

i↓ / j→ 1 4 5
6 0 1 1
8 1 1 0

10 1 0 1
12 0 0 1
cj 175 115 105  

Track 12 requires tower 5 since its row contains only a single 1, so tower 5 must be established.  This 

eliminates all tracks that are served by tower 5, i.e., {6, 10, 12} and it also eliminates column 5.  The 

resulting matrix is as follows. 
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Table 8.5. Final Cost and Coverage Matrix after Four Reductions 

i↓ / j→ 1 4
8 1 1
cj 175 115  

Tower 4 dominates tower 1 and its cost is lower, so tower 1 can be eliminated.  This leaves only tower 4 

covering tract 8 and the problem has been solved to optimality by reduction only.  The optimal solution 

is  and all other  equal to zero.  The optimal solution value is 225 + 115 + 105 = 445. x x x2 4 5 1= = = x j

Algorithm 8.2 Greedy Set Partitioning Heuristic 

I I J
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f c k f c k j J
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There exist many alternatives for the "reduced cost" function f(c, k).  A particular alternative is the 

inverse of the "most bang for the buck" function, where the cost of the service alternative is divided by 

the number service requests it satisfies and that are not currently serviced, or 
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 (8.7) 

Linear Relaxation and Cutting Planes 
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The Covering Problem (CP) is a set covering problem for which all cover cost are equal to one.  The CP 

is then the un-weighted or counting variant of the SCP. 

For the Covering Problem usually the following single cut added to the linear relaxation suffices to find 

the optimal integer solution 
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Branch-And-Bound 

Branch-and-Bound is the most widely used methodology to solve integer programming problems. 

Procedures 

• Branching Variable Selection 

• Lower Bound Computation 

• Primal Heuristics (Incumbent Solution) 

8.2. Generalized n-Median Problem 

Generalized n-Median Formulation 
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Lagrangean Relaxation 
If we relax the assignment constraints using Lagrangean multipliers,  

a x uij ij i
j

N
=

=
∑ 1

1
[ ] (8.11) 

the resulting objective function is 
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and the Lagrangean relaxation is then 
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Observe that the objective function of the Lagrangean relaxation is a lower bound to the objective 

function of the original problem, or 

z U zLAR ( ) *≤   (8.14) 

We can condense this formulation by introducing a site's relative cost factor 
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Lagrangean  Subproblem 

1. Compute and Sort  in Increasing Order ( )j Uρ

2. Discard All Nonnegative ρ  ( )j U

3. If No ρ  Remaining, Pick Single Smallest Positive ( )j U ( )j Uρ  

4. Else Pick, up to n, Most Negative ( )j Uρ   
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Algorithm 8.3. Greedy Heuristic for the n-Median Lagrangean Relaxation 
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if J r z u stop

else while and J n

J J r k
k k

U

endwhile

z u

r
j

j
t

r LAR i
i

M

r k

r k
j J J

j

LAR i j
j Ji

M

+

+

=
+

+ +

∈

∈=

= ∅ =

=

> ← = +

< <

← ∪
← +

=

= +

∑

∑∑

+

+

,

min{ ( )

, { ( )}, ,

{

{ ( )}

min { ( )}

}

( )

( ) ( )

( )

( )
\

0

0 1

0

1

1

1 1
1

1

ρ ρ

ρ ρ

ρ

ρ ρ

ρ

r

 

Dual Master Problem 

Choice of the Lagrangean multipliers. 

u
N

ci i
j

N
=

=
∑1

1
j  (8.17) 

u ci
j

ij= max{ }  (8.18) 

Lagrangean relaxation dual master problem 

max ( )
U

LARz U  (8.19) 

This problem can be solved by subgradient optimization of by heuristic adjustment of the Lagrangean 

multipliers. 
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Algorithm 8.4.  n-Median Dual Adjustment Heuristic 
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8.3. Warehouse Location Problem 

Warehouse Location Problem Definition 
Determine the location of the warehouses and their associated customer zones 

Satisfying the given deterministic customer demands 

Minimizing a sum of concave costs (fixed site and constant marginal transportation) 
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Warehouse Location Formulation 
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Erlenkotter DUALOC procedure 
Compact dual formulation 

Dual Ascent, then dual adjustment 

Primal heuristic 

Used as bound in branch-and-bound 

Magnitude faster than contemporary algorithms 

Linear relaxation 
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Dual formulation 

max

. . [ ]

[

z u

s t w f y

u w c x

w

u unrestricted

D i
i

M

ij j
i

M
j

i ij ij ij

ij

i

=

≤

− ≤

≥

=

=

∑

∑

1

1

0

]

f
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Variable transformations 
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Condensed dual formulation 
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Complementary slackness conditions 
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x c u w if x then u c

if u c then x
ij ij i ij ij i ij
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Primal Heuristic 
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Dual Ascent Method 

Increase each dual variable in turn until one or more dual constraints become binding  
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Algorithm 8.5.  Erlenkotter Dual Ascent Algorith m for WLP 
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Violations of complementary slackness correspond to primal-dual gap.  Make set J +  as small as 

possible by dropping non-essential sites. 
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Table 8.6. Erlenkotter Example 1, Initial Data 

1 2 3 4 5 u i
1 ∆ 1 ∆ 2 u i

2

1 120 210 180 210 170
2 180 ∞ 190 190 150
3 100 150 110 150 110
4 ∞ 240 195 180 150
5 60 55 50 65 70
6 ∞ 210 ∞ 120 195
7 180 110 ∞ 160 200
8 ∞ 165 195 120 ∞

f j 100 70 60 110 80

ρ j
1

1
2
3
4
5
6
7
8

ρ j
2

 

Table 8.7. Erlenkotter Example 1, Iteration 1 

1 2 3 4 5 u i
1 ∆ 1 ∆ 2 u i

2

1 120 210 180 210 170 120 100 50 170
2 180 ∞ 190 190 150 150 80 30 180
3 100 150 110 150 110 100 50 10 110
4 ∞ 240 195 180 150 150 50 30 180
5 60 55 50 65 70 50 60 5 55
6 ∞ 210 ∞ 120 195 120 110 75 195
7 180 110 ∞ 160 200 110 70 50 160
8 ∞ 165 195 120 ∞ 120 35 45 (b)155

f j 100 70 60 110 80 920 1205

ρ j
1 100 70 60 110 80

1 50
2 50
3 40  
4  20
5 55  
6  35
7 20  
8 0

ρ j
2 40 20 55 0 20  
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Note that (b) means that the dual variable u  is blocked after this iteration, i.e. can not be further 

increased.  Blocked variables do not have to the examined in the next iteration. 

i

We can use the current dual variables to obtain a primal solution as explained before.  Since only one 

slack variable equals zero, only one distribution center can be opened, or .  This contributes its 

fixed cost of 110 to the solution value.  Since only distribution center is open all customers will be 

served from it and the non-zero primal transportation variables are then 

.  The transportation cost is then 210 + 190 + 150 + 

180 + 65 + 120 + 160 + 120 = 1195.  The corresponding primal feasible cost is then 110 + 1195 = 1305.  

Only for customers 6 and 8 are the dual variables (gross revenue) larger than or equal to the 

corresponding transportation costs from the open distribution center, so these are the only two customers 

we would like to serve. 

y =  4 1

1x x  x =  x =  x =  x =  x =  x =  41 = 42 = 43 44 45 46 47 48 

Table 8.8. Erlenkotter Example 1, Iteration 2 

1 2 3 4 5 u i
1 ∆ 1 ∆ 2 u i

2

1 120 210 180 210 170 170 20 10 180
2 180 ∞ 190 190 150 180 10 10 (b) 190
3 100 150 110 150 110 110 0 0 (b) 110
4 ∞ 240 195 180 150 180 0 15 (b) 180
5 60 55 50 65 70 55 20 5 60
6 ∞ 210 ∞ 120 195 195 0 15 (b) 195
7 180 110 ∞ 160 200 160 0 20 (b) 160
8 ∞ 165 195 120 ∞ (b) 155 (b) 155

f j 100 70 60 110 80 1205 1230

ρ j
1 40 20 55 0 20

1 30 10
2 20 0
3
4
5 15 50
6
7
8

ρ j
2 20 15 50 0 0  
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Table 8.9. Erlenkotter Example 1, Iteration 3 

1 2 3 4 5 u i
1 ∆ 1 ∆ 2 u i

2

1 120 210 180 210 170 180 0 30 (b) 180
2 180 ∞ 190 190 150 (b) 190 (b) 190
3 100 150 110 150 110 (b) 110 (b) 110
4 ∞ 240 195 180 150 (b) 180 (b) 180
5 60 55 50 65 70 60 15 5 65
6 ∞ 210 ∞ 120 195 (b) 195 (b) 195
7 180 110 ∞ 160 200 (b) 160 (b) 160
8 ∞ 165 195 120 ∞ (b) 155 (b) 155

f j 100 70 60 110 80 1230 1235

ρ j
1 20 15 50 0 0

1
2
3
4
5 15 10 45
6
7
8

ρ j
2 15 10 45 0 0  

Table 8.10. Erlenkotter Example 1, Iteration 4 

1 2 3 4 5 u i
1 ∆ 1 ∆ 2 u i

2

1 120 210 180 210 170 (b) 180 (b) 180
2 180 ∞ 190 190 150 (b) 190 (b) 190
3 100 150 110 150 110 (b) 110 (b) 110
4 ∞ 240 195 180 150 (b) 180 (b) 180
5 60 55 50 65 70 65 0 5 (b)   65
6 ∞ 210 ∞ 120 195 (b) 195 (b) 195
7 180 110 ∞ 160 200 (b) 160 (b) 160
8 ∞ 165 195 120 ∞ (b) 155 (b) 155

f j 100 70 60 110 80 1235 1235

ρ j
1 15 10 45 0 0

1
2
3
4
5
6
7
8

ρ j
2 15 10 45 0 0  
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The primal solution is now derived based on complementary slackness conditions.  Since ρ4  and ρ5  are 

equal to zero distribution centers 4 and 5 are candidates to be opened.  Just opening center 4 would not 

open up a distribution center for customer 1 with cost smaller than or equal to its dual variable.  Just 

opening center 5 would not open up a distribution center for customer 5 with cost smaller than or equal 

to its dual variable.  So both distribution centers 4 and 5 need to be opened or , which 

contributes their fixed costs 110 + 80 = 190 to the primal solution.  Then the customers are assigned to 

the cheapest distribution center, which yields 

y y4 5 1= =

x x74 84 1x x x x x x15 25 35 45 54 64= = = = = = = = , which 

contributes their transportation costs 170 + 150 + 110 + 150 + 65 + 120 + 160 + 120 = 1045 to the 

primal solution.  The primal objective is then 190 + 1045 = 1235, equal to the dual objective.  No 

complementary slackness conditions were violated since the transportation cost to the open distribution 

center(s) to which each customer is not assigned is larger than or equal to the corresponding dual 

variable. 

Dual Adjustment Method 

Notation for the sets and costs used in the dual adjustment method 

J j J u c

J j J u c

I i J j

c c

c c

i
c

i ij

i i

j i
c

i i
j J

ij

i i
j J j i

ij

= ∈ ≥

= ∈ >

= =

=

=

+

+ +

+

∈

∈ ≠

+

+

{ }
{ }
{ }{ }

min{ }

min { }

( )

( )
, ( )

α

β
α

ij

 (8.32) 
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Algorithm 8.6. Erlenkotter Dual Adjustment Algorithm for WLP 

for i to M

if J

if I I

u c u c

for j J u c

U U

u u

I I I

execute dual ascent

I I i
execute dual ascent

I I
execute dual ascent
endif

endif
endfor

i

i i

i
j

ij i ij

i ij

j j

i i
a

i i

a a

a

=

>

∪ ≠ ∅

= − >

∈ >

← +

← −

← ∪

← ∪

←

+

+ +

+ +

1

1

α β

α β

ρ ρ

( ) ( )

( ) ( )

max

( ) ( )

{ }

∆

∆

∆

{ }

 

 

Table 8.11. Erlenkotter Example 2, Initial Data 

1 2 3 4 5 u i
1 ∆ 1 ∆ 2 u i

2

1 120 210 180 210 170
2 180 ∞ 190 190 150
3 100 150 110 150 110
4 ∞ 240 195 180 150
5 60 55 50 65 70
6 ∞ 210 ∞ 120 195
7 180 110 ∞ 160 200
8 ∞ 165 195 120 ∞

f j 200 200 200 400 300

ρ j
1

1
2
3
4
5
6
7
8

ρ j
2

 

19 ● Chapter 8. Discrete Point Location Logistics Systems Design 



Table 8.12. Erlenkotter Example 2, Iteration 1 

1 2 3 4 5 u i
1 ∆ 1 ∆ 2 u i

2

1 120 210 180 210 170 120 200 50 170
2 180 ∞ 190 190 150 150 300 30 180
3 100 150 110 150 110 100 150 10 110
4 ∞ 240 195 180 150 150 270 30 180
5 60 55 50 65 70 50 200 5 55
6 ∞ 210 ∞ 120 195 120 400 75 195
7 180 110 ∞ 160 200 110 200 50 160
8 ∞ 165 195 120 ∞ 120 325 45 165

f j 200 200 200 400 300 920 1215

ρ j
1 200 200 200 400 300

1 150
2 270
3 140
4 240
5 195
6 325
7 150
8 280

ρ j
2 140 150 195 280 240  

Table 8.13. Erlenkotter Example 2, Iteration 2 

1 2 3 4 5 u i
2 ∆ 1 ∆ 2 u i

3

1 120 210 180 210 170 170 140 10 180
2 180 ∞ 190 190 150 180 130 10 190
3 100 150 110 150 110 110 120 0 110
4 ∞ 240 195 180 150 180 220 15 195
5 60 55 50 65 70 55 150 5 60
6 ∞ 210 ∞ 120 195 195 205 15 210
7 180 110 ∞ 160 200 160 145 20 180
8 ∞ 165 195 120 ∞ 165 125 30 195

f j 200 200 200 400 300 1215 1320

ρ j
2 140 150 195 280 240

1 130 230
2 120 220
3  
4 265 205
5 145 190
6 250 190
7 125 230
8 95 200

ρ j
3 120 95 190 200 190  
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Table 8.14. Erlenkotter Example 2, Iteration 3 

1 2 3 4 5 u i
3 ∆ 1 ∆ 2 u i

4

1 120 210 180 210 170 180 120 30 210
2 180 ∞ 190 190 150 190  0 190
3 100 150 110 150 110 110 90 40 150
4 ∞ 240 195 180 150 195 120 45 240
5 60 55 50 65 70 60 50 5 65
6 ∞ 210 ∞ 120 195 210 75 ∞ (b) 285
7 180 110 ∞ 160 200 180 15 20 (b) 195
8 ∞ 165 195 120 ∞ 195 0 ∞ (b) 195

f j 200 200 200 400 300 1320 1530

ρ j
3 120 95 190 200 190

1 90 160 160
2   
3 50 120 120
4 75 155 75
5 45 90 70
6 15 80 0
7 30 0 65
8   

ρ j
4 30 0 70 65 0  

Table 8.15. Erlenkotter Example 2, Iteration 4 

1 2 3 4 5 u i
4 ∆1 ∆2 u i

5

1 120 210 180 210 170 210 0 0 (b) 210
2 180 ∞ 190 190 150 190 0 ∞ (b) 190
3 100 150 110 150 110 150 0 0 (b) 150
4 ∞ 240 195 180 150 240 0 ∞ (b) 240
5 60 55 50 65 70 65 0 5 (b)   65
6 ∞ 210 ∞ 120 195 (b) 285   (b) 285
7 180 110 ∞ 160 200 (b) 195   (b) 195
8 ∞ 165 195 120 ∞ (b) 195   (b) 195

f j 200 200 200 400 300 1530 1530
ρj

4 30 0 70 65 0
1    
2   
3    
4    
5    
6    
7    
8   

ρj
5 30 0 70 65 0  
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The primal solution is now derived based on complementary slackness conditions.  Since ρ2  and ρ5  are 

equal to zero distribution centers 2 and 5 are candidates to opened.  Just opening 2 would not open up a 

distribution center for customer 2 with cost smaller than or equal to its dual variable.  Just opening 5 

would not open up a distribution center for customer 5 with cost smaller than or equal to its dual 

variable.  So both distribution centers 2 and 5 need to be opened or y y2 5 1= = , which contributes their 

fixed costs 200 + 300 = 500 to the primal solution.  Then the customers are assigned to the cheapest 

distribution center, which yields x x x x x x x15 25 35 45 52 65 72= x82 1= = = = = = = , which contributes their 

transportation costs 170 + 150 + 110 + 150 + 55 + 195 + 110 + 165 = 1105 to the primal solution.  The 

primal objective is then 500 + 1105 = 1605, which is not equal to the dual objective function value of 

1530.  Some complementary slackness conditions have to be violated, i.e. the transportation cost to the 

open distribution center(s) to which each customer is not assigned is strictly smaller than the 

corresponding dual variable.  This is the case for customer 6 with a dual variable of 285 but a second 

best assignment cost of 210.  A dual adjustment phase is required. 

The dual variable u  is decreased from 285 to its next lower level of 210.  The affected slacks 6 ρ2 , ρ4 , 

and ρ5  are each increased by 75.  The best and second best distribution center for customer 6 are centers 

2 and 5.  The customers which can only be served by one of these distribution centers form prime 

candidates to increase their dual variables, since two dual variables might be increased to take up the 

slack caused by decreasing the one dual variable.  This would yield a net increase in the dual objective 

function.  The customers which can be served only by center 2 are 5, 7 and 8, i.e.,  and the 

customer which can be served only by center 5 is 2, i.e., 

J2 5 7 8+ = , ,l q
J5 2+ = { }.  The union of those customers {2, 5, 7, 

8} is examined in the first pass of the dual adjustment procedure. 
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Table 8.16. Erlenkotter Example 2, Iteration 5 

1 2 3 4 5 u i
5 ∆ 1 ∆ 2 u i

6

1 120 210 180 210 170 210   210
2 180 ∞ 190 190 150 190 30 ∞ (b) 220
3 100 150 110 150 110 150   150
4 ∞ 240 195 180 150 240   240
5 60 55 50 65 70 65 0 5 (b)   65
6 ∞ 210 ∞ 120 195 210   210
7 180 110 ∞ 160 200 195 0 5 (b) 195
8 ∞ 165 195 120 ∞ 195 40 ∞ (b) 235

f j 200 200 200 400 300 1455 1525

ρ j
5 30 75 70 140 75

2 0 40 110 45
5    
7    
8 35 0 70

ρ j
6 0 35 0 70 45  

In the second pass of the dual adjustment procedure, all customers are eligible to have their dual 

variables changed. 

Table 8.17. Erlenkotter Example 2, Iteration 6 

1 2 3 4 5 u i
6 ∆ 1 ∆ 2 u i

7

1 120 210 180 210 170 210 0 ∞ (b) 210
2 180 ∞ 190 190 150 (b) 220   (b) 220
3 100 150 110 150 110 150 0  (b) 150
4 ∞ 240 195 180 150 240 0 ∞ (b) 240
5 60 55 50 65 70 (b)   65   (b)   65
6 ∞ 210 ∞ 120 195 210 35 ∞ (b) 245
7 180 110 ∞ 160 200 (b) 195   (b) 195
8 ∞ 165 195 120 ∞ (b) 235   (b) 235

f j 200 200 200 400 300 1525 1560

ρ j
6 0 35 0 70 45

1
2     
3
4
5    
6 0 35 10
7    
8    

ρ j
7 0 0 0 35 10  
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The primal solution is now derived based on complementary slackness conditions.  Since ρ1 , ρ2 , and 

ρ3

11

 are equal to zero distribution centers 1, 2 and 3 are candidates to opened.  In order to serve customer 

6 distribution center 2 must be opened, i.e. distribution center 2 is essential.  Opening distribution center 

2 covers customers 1, 3, 4, 5, 6, 7, and 8 since the transportation cost is lower than or equal to the 

corresponding dual variable.  To serve customer 2, distribution center 1 is opened since it is cheaper 

with respect to customer 2 than distribution center 3 is.  So distribution centers 1 and 2 need to be 

opened or , which contributes their fixed costs 200 + 200 = 400 to the primal solution.  Then 

the customers are assigned to the cheapest distribution center, which yields 

, which contributes their transportation costs 120 + 180 + 100 

+ 240 + 55 + 210 + 110 + 165 = 1180 to the primal solution.  The primal objective is then 1180 + 400 = 

1580, which is not equal to the dual objective function value of 1560.  Some complementary slackness 

conditions have to be violated, i.e. the transportation cost to the open distribution center(s) to which each 

customer is not assigned is strictly smaller than the corresponding dual variable.  This is the case for 

customer 5 with a dual variable of 65 but a second best assignment cost of 55.  A dual adjustment phase 

is required. 

y y1 2 1= =

x x31 42= = =x x x x x x21 52 62 72 82 1= = = = =

We decrease  from 65 to its next lower value of 60.  The affected slacks u5 ρ1 , ρ2 , and ρ3

J2
+

 are each 

increased by 5.  The cheapest and second cheapest open distribution centers for serving customer 5 are 

centers 1 and 2.  The customers which can be served only by center 2 are 4, 6 and 8, i.e.,  and 

the customer which can be served only by center 1 is 2, i.e., .  The union of those customers {2, 

4, 6, 8} is examined in the first pass of the dual adjustment procedure. 

4 6 8= , ,l q
J1 2+ = l q
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Table 8.18. Erlenkotter Example 2, Iteration 7 

1 2 3 4 5 u i
7 ∆ 1 ∆ 2 u i

8

1 120 210 180 210 170 210   210
2 180 ∞ 190 190 150 220 5 ∞ (b) 225
3 100 150 110 150 110 150   150
4 ∞ 240 195 180 150 240 0 ∞ (b) 240
5 60 55 50 65 70 60   60
6 ∞ 210 ∞ 120 195 245 5 ∞ (b) 250
7 180 110 ∞ 160 200 195   195
8 ∞ 165 195 120 ∞ 235 0  (b) 235

f j 200 200 200 400 300 1555 1565

ρ j
7 5 5 5 35 10

2 0 0 30 5
4
6 0 25 0
8    

ρ j
8 0 0 0 25 0  

In the second pass of the dual adjustment procedure all customers are eligible to have their dual 

variables changed. 

Table 8.19. Erlenkotter Example 2, Iteration 8 

1 2 3 4 5 u i
8 ∆ 1 ∆ 2 u i

9

1 120 210 180 210 170 210 0 ∞ (b) 210
2 180 ∞ 190 190 150 (b) 225   (b) 225
3 100 150 110 150 110 150 0  (b) 150
4 ∞ 240 195 180 150 (b) 240   (b) 240
5 60 55 50 65 70 60 0  (b) 60
6 ∞ 210 ∞ 120 195 (b) 250   (b) 250
7 180 110 ∞ 160 200 195 0  (b) 195
8 ∞ 165 195 120 ∞ (b) 235   (b) 235

f j 200 200 200 400 300 1565 1565

ρ j
8 0 0 0 25 0

1
2     
3
4
5    
6    
7    
8    

ρ j
9 0 0 0 25 0  
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The primal solution is now derived based on complementary slackness conditions.  Since ρ1 , ρ2 , ρ3 , 

and ρ5  are equal to zero distribution centers 1, 2, 3, and 5 are candidates to opened.  In order to serve 

customer 6 either distribution center 2 or 5 must be opened and since distribution center 5 has the 

cheapest cost it is opened.  Opening distribution center 5 covers customers 1, 2, 3, 4, and 6 since the 

transportation cost is lower than or equal to the corresponding dual variable.  Opening distribution center 

2 covers the remaining customers 5, 7, and 8.  So distribution centers 2 and 5 are opened or y y2 5 1= = , 

which contributes their fixed costs 200 + 300 = 500 to the primal solution.  Then the customers are 

assigned to the cheapest distribution center, which yields x x x x x x15 25 35 45 52 65 x72 x82 1= = = = = = = = , 

which contributes their transportation costs 170 + 150 + 110 + 150 + 55 + 195 + 110 + 165 = 1105 to 

the primal solution.  The primal objective is then 500 + 1105 = 1605, which is not equal to the dual 

objective function value of 1565.  Some complementary slackness conditions have to be violated, i.e. the 

transportation cost to the open distribution center(s) to which each customer is not assigned is strictly 

smaller than the corresponding dual variable.  This is the case for customer 6 with a dual variable of 250 

but a second best assignment cost of 210.  A dual adjustment phase is required. 

During a previous iteration, distribution centers 1 and 2 were opened and this is again acceptable since 

their corresponding slack variables are again equal to zero.  Opening centers 1 and 2 contributes their 

fixed costs 200 + 200 = 400 to the primal solution.  Then the customers are assigned to the cheapest 

distribution center, which yields x x x x x x x x11 21 31 42 52 62 72 82 1= = = = = = = = , which contributes their 

transportation costs 120 + 180 + 100 + 240 + 55 + 210 + 110 + 165 = 1180 to the primal solution.  The 

primal objective is then 400 + 1180 = 1580, which is not equal to the dual objective function value of 

1565.  The gap between the primal objective function value and the dual lower bound is 15 or less than 

1 %.  Some complementary slackness conditions have to be violated, i.e. the transportation cost to the 

open distribution center(s) to which each customer is not assigned is strictly smaller than the 

corresponding dual variable.  This is the case for customer 7 with a dual variable of 195 but a second 

best assignment cost of 180.  A dual adjustment phase is required. 
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Alternative Aggregated Formulation 

min
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Its linear relaxation 
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Substitution at optimality 

x Myij j
i
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 (8.35) 

Condensed linear relaxation 
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Greedy optimal algorithm 
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Algorithm 8.7. Optimal Greedy Algorithm for Linear Relaxation of the Aggregate WLP 

for i to M

x
f
M

c
f

M
c

for j to N
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j
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j ij
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= +
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1

1

1

1

*
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Comments 

IP are identical, but linear relaxations are not! 

Aggregated versus disaggregated constraints 

“Weak” and “Strong” formulation 

Example 

Table 8.20.  Aggregate WLP Example Data 

1 2 3 4 5
1 120 210 180 210 170
2 180 ∞ 190 190 150
3 100 150 110 150 110
4 ∞ 240 195 180 150
5 60 55 50 65 70
6 ∞ 210 ∞ 120 195
7 180 110 ∞ 160 200
8 ∞ 165 195 120 ∞

f j 100 70 60 110 80
f j/M 12.50 8.75 7.50 13.75 10.00

1
2
3
4
5
6
7
8

y j  
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Table 8.21.  Aggregate WLP Solution 

1 2 3 4 5
1 132.50 218.75 187.50 223.75 180.00
2 192.50 ∞ 197.50 203.75 160.00
3 112.50 158.75 117.50 163.75 120.00
4 ∞ 248.75 202.50 193.75 160.00
5 72.50 63.75 57.50 78.75 80.00
6 ∞ 218.75 ∞ 133.75 205.00
7 192.50 118.75 ∞ 173.75 210.00
8 ∞ 173.75 202.50 133.75 ∞

f j 100.00 70.00 60.00 110.00 80.00
f j /M 12.50 8.75 7.50 13.75 10.00

1 1  
2 1
3 1
4 1
5  1
6 1
7 1
8 1

y j 0.250 0.125 0.125 0.250 0.250  

Fixed costs = 88.75 

Allocation costs = 970 

Total cost = 1058.75 (lower bound) 

Round-up cost = 1390, (primal heuristic cost) 

Optimal cost = 1235 

8.4. Capacitated Covering 

Formulation 
In many cases the existing facilities have a certain resource demand and the new facilities have a 

resource capacity.  Examples are the clustering of customers into truck routes or the location of fire 

stations where each fire station can serve at most a certain number of neighborhoods.  The objective is to 

minimize the number of new facilities required to serve the existing facilities.  The formulation for this 

problem is given next. 
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Circle Covering Heuristic 
Savelsbergh and Goetschalckx (1994) have developed an efficient heuristic for this problem.  Initially, 

for each existing facility a covering circle is determined with is center at this existing facility and with a 

radius so that the sum of the resource requirements of all existing facilities inside the circle does not 

exceed the capacity.  In a second step, the covering circles are added by increasing distance until all 

existing facilities have been covered.  This algorithm is formalized below. 

Algorithm 8.8. Circle-Covering (Savelsbergh & Goetschalckx) 

for i to M
rad C i R r
while C I

k d d h I C

if R r s

then rad d C C k
R R r

else next i
endwhile

endfor
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endwhile
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In the first step the circle covers are generated.  For each existing facility i, the other existing facilities 

are sorted by increasing distance to facility i and then indexed by index k.  For each existing facility i the 

set its current cover to this facility i itself, the radius of the cover to zero, and the total demand in the 
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cover to demand of facility i.  While the current cover does not contain all facilities, we check if adding 

the next closest facility k to the current cover would violate the cover capacity.  If so, we stop growing 

the current cover and go to the next facility i.  If not, facility k is added to the current cover and the 

radius and the total demand in the cover are updated. 

In the second step, all covers are ranked by their non-decreasing radius and indexed by index k. 

In the third step, all facilities are initially marked as uncovered.  While there are uncovered facilities 

remaining, select the cover with the next smallest radius and centered at an uncovered facility.  This 

cover will be part of the solution.  Mark all facilities in this current cover as covered. 

8.5. Generalized Assignment Problem 

Formulation 
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8.6. Capacitated Warehouse Location 
Problem 

Formulation 

min
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 (8.39) 

Various solution and decomposition approaches have been tried 

1. Branch-and-Bound with Linear Relaxation 

2. Branch-and-Bound with Lagrangean Relaxation (Dual Decomposition) 

3. Primal (Bender’s) Decomposition 

4. Cross Decomposition 

Cross Decomposition Solution Algorithm 
Primal transportation subproblem 

• Given Y 

• Yields primal feasible solution 

• Determines V 

Dual uncapacitated warehouse location problem 

• Given V 
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• Yields lower bound 

• Determines Y 

Primal
Transportation

Subproblem

Dual
Location

Subproblem

Primal Location
Variables Y

Dual Variables
V

 
Figure 8.1.  Cross Decomposition Algorithm Flow Chart 

Primal Transportation Subproblem 
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Dual Uncapacitated Location Subproblem 
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In order for the dual problem to yield a primal feasible solution, we have to assure that the total demand 

can be handled by all open facilities. 
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Relaxed dual uncapacitated location subproblem. 

min
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Exercises 

Chemical Arsenal 

A military depot is responsible for storing chemical weapons and needs to establish sites for emergency 

response equipment in case of a chemical accident.  The emergency equipment is very expensive and so 

the depot wants to install as few of these quick response sites as possible.  The chemical weapons are 

stored in bunkers and the emergency site responsible for a particular bunker cannot have a travel time of 

more than 6 minutes to that bunker.  For simplicity, assume that the only possible locations for the 

emergency sites are next to an existing bunker.  Different space constraints at the bunkers generate 

different costs for establishing the emergency sites.  All bunkers must be assigned to an emergency site 

and no emergency site can be responsible for more than three bunkers.  The costs of establishing an 

emergency site at each of the bunkers are given in Table 8.22.  The travel times in minutes between the 
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various locations on the transportation network are given in Figure 8.2.  Find the minimum cost 

configuration for the emergency sites. 

Table 8.22.  Cost of Emergency Equipment Sites 

Site 1 2 3 4 5 6 7 8 9
Cost 105 130 145 125 70 80 110 115 75  

1

2 3 65

4 87

9

53
65

37 8

5 6

2

4 3 54 2 3

4 3

 
Figure 8.2.  Traveling Times between Chemical Storage Bunkers 

State Institute of Technology 

The State Institute of Technology is in the process of creating a campus master plan.  The growing 

student population and the removal of existing parking areas due to new building construction make it 

necessary to construct a number of multilevel parking decks.  The planning committee has made the 

promise to the faculty and staff that no academic area will be farther than five minutes walking or 800 

feet removed from the nearest parking deck.  There exist eight major academic areas on campus and ten 

possible parking deck locations are being considered.  Each of the major academic areas requires a 

number of parking spaces to accommodate its faculty, staff, and students.  The construction costs for 

each parking deck location are different due to different the different sizes of the decks and due to rock 

removal and other civil engineering considerations.  The following table shows the required number of 

parking spaces per academic area, the cost of building a parking deck at a location, and the satisfaction 

matrix, whose elements are equal to a one if a parking deck is within the promised distance to an 

academic area and zero otherwise.  The objective is to build parking decks at the locations that minimize 

the overall cost and so that the distance constraints are satisfied. 
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Table 8.23.  Parking Data 

Academic Area Parking Deck Location
Spaces 1 2 3 4 5 6 7 8 9 10

1 300 1 1 0 1 0 0 1 1 0 0
2 400 1 1 1 1 0 0 1 1 1 0
3 700 1 1 1 0 1 0 1 1 1 0
4 800 1 1 1 1 1 1 1 0 0 0
5 400 0 0 0 0 1 0 0 0 0 0
6 500 0 0 1 1 1 1 1 1 1 1
7 200 0 0 0 1 1 1 1 1 1 1
8 600 0 0 0 0 0 1 1 1 1 1

Cost 380 240 480 450 350 250 850 750 450 175   

Solve this problem in the most efficient way with the standard greedy heuristic.  Show the computations 

and the sequential decisions that you made.  Summarize your solution and compute the total cost of your 

solution.   

The planning committee decided to allocate the construction cost of a particular parking deck to the 

various academic areas served by this deck proportional to the number of parking spaces required by the 

academic areas.  Compute and show the allocated cost for each academic area.  After the planning phase 

has been completed, a new parking deck location had become available.  The data for this new location 

are given in the next table.  Determine if this new location should be added to the list of ten initial 

locations and the solution process should be repeated.  Justify your answer numerically. 

Table 8.24.  Additional Parking Deck Location Data 

Academic Area Deck
Spaces 11

1 300 1
2 400 0
3 700 1
4 800 0
5 400 1
6 500 1
7 200 0
8 600 1

Cost 460  

BRAC-99 

Reduced tensions in the world have led to a reduced military force for the United States.  This reduced 

military requires a smaller number of support bases and significant costs can be saved if some bases are 

closed.  The Base Realignment and Closing Commission for the fiscal year 1999, (BRAC-99), is in the 
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process of determining which bases to close down.  The bases that remain open must be able to provide 

military support for potential operations in various areas of the world.  The world has been divided in 

ten areas of operations.  The following table shows which bases can support operations in which areas of 

the world and the annual cost in millions of dollars to keep each base open.  The objective is to build 

enough bases so that all areas are covered and to minimize the total cost of the open bases. 

Table 8.25. Military Base Covering Data 

World Base Locations
Areas 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 0 1 0 0 1 1 0 0 0 1 0 0 1
2 1 1 1 1 0 0 0 0 1 0 0 1 1 1 0
3 1 1 1 0 1 0 1 0 1 0 0 0 0 0 1
4 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
6 0 0 1 1 0 1 1 1 1 1 1 1 1 1 0
7 0 0 0 1 1 1 1 0 1 1 1 0 1 0 1
8 0 0 0 0 0 1 1 1 1 1 1 0 1 0 1
9 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
800 750 650 450 350 250 1050 750 650 450 350 750 550 500 850   

Solve this problem in the most efficient way with the standard greedy heuristic.  Show the computations 

and the sequential decisions that you made.  Summarize your solution and compute the total cost of your 

solution.   

The planning committee wants to provide insight in how much it costs to support military operations in 

a certain area of the world.  For simplicity, all world areas are assumed to require the same amount of 

support from the base that supports it.  If a world area can be supported by more than one open base, the 

support function is allocated in equal parts to all the open bases that can support this area and the total 

cost for this world area is the sum of its costs allocated to the bases that can support it.  Compute and 

show the allocated cost for each world area. 

After the planning phase has been completed, the powerful senator and chairperson of the armed 

services committee wants to establish a new base in his district and uses the argument that it will reduce 

the overall base cost without reducing support coverage.  The data for this new base are given in the next 

table. 
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Table 8.26.  Additional Base Data 

World Base
Areas 16

1 1
2 1
3 1
4 1
5 0
6 0
7 0
8 0
9 1

10 0
800  

Determine if this new base should be added to the list of potential bases to remain open and if the 

decision process should be repeated.  Justify your answer numerically. 

Generalize Median Problem 

Solve the Generalized Median Problem given in the following table with the Greedy Heuristic for the 

case of a maximum of two and three service centers.  An infinite cost indicates that a particular server 

cannot service that particular customer.  Use the notation used in class and in the book and follow the 

same tableau structure.  Specifically list all Lagrangean multipliers in the columns to the right of the 

costs, (one column for each action) and list the site dependent costs in the rows below the costs (one row 

for each stage in the algorithm).  List clearly your solution for the case of maximum two service centers 

and give its costs, and then give your solution for the case of maximum three service centers and give its 

costs.  Which case provides the better solution?  Explain and justify your answer.  Compare your 

solutions for the variant of the greedy heuristic where the infinite cost is implemented with a large finite 

cost (big M method) with the variant of the greedy heuristic where the algorithm is adjusted to skip over 

the infinite cost combinations.  Discuss the differences and similarities in the obtained solutions. 
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1 2 3 4 5
1 12 21 18 21 17
2 18 ∞ 19 19 15
3 10 15 11 15 11
4 ∞ 24 20 18 15
5 6 6 5 7 7
6 ∞ 21 ∞ 12 20
7 18 11 ∞ 16 20
8 ∞ 17 20 12 ∞

f 100 70 60 110 80

 

Dualoc Algorithm by Erlenkotter 

Consider the uncapacitated discrete facility location problem and its solution with the Erlenkotter 

DUALOC algorithm.  The transportation cost coefficients are given in the following table.   

Table 8.27. Transportation Cost Coefficients 

j↓/i→ 1 2 3 4 5 uj

1 120 210 180 210 170 180
2 180 ∞ 190 205 150 190
3 100 150 110 150 115 110
4 ∞ 240 195 180 150 195
5 60 55 50 65 70 6
6 ∞ 210 ∞ 120 195 210
7 180 110 ∞ 160 200 180
8 ∞ 165 195 120 ∞ 195
fi 100 300 200 400 350

0

si 20 195 190 200 240  

The dual variables at the end of iteration two of Erlenkotter's dual ascent method are given to the right of 

the cost coefficient matrix.  The original fixed costs are given on the first line below the cost matrix.  

The current slack variables are given in the last line below the cost matrix. 

Complete the dual ascent phase of the DUALOC algorithm.  Clearly indicate major iterations and the 

corresponding dual variables and slack variables.  Use the tableau format developed in class. 
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At the end of the dual ascent, compute the corresponding primal solution.  Verify and show clearly if a 

dual adjustment phase is required, but execute only one iteration if it is required.  An iteration consists 

of the adjustment plus the following ascend steps until all the dual variables are blocked.  At the end of 

this iteration, compute again the primal solution, verify and show clearly if further dual adjustment 

iterations are required. 

Automotive Emission Inspection Stations 

The State of Georgia requires an annual emission inspection of all non-commercial automobiles.  The 

CLEANAIR company has agreed to establish enough inspection stations so that the average waiting 

time is kept below a limit of 5 minutes. It has been determined that 38 possible station locations exist in 

the service area.  Furthermore, the customer demand data has been aggregated into the same 38 

locations.   Based on the number of cars in the customer zone associated with each location, the 

contribution of each location to the average waiting time has been computed.  It is assumed that the 

waiting times of the individual customers zones assigned to an inspection station can be added to 

determine the waiting time of the inspection station.  The geographical location of each location is 

illustrated in Figure 8.3.  The coordinates of each location and its associated contribution to the average 

waiting time is given in Table 8.28. 

Determine the minimum number of inspection stations, their locations, and their associated customer 

zones, i.e. customer assignments, and the radius of the customer zones with the Savelsbergh and 

Goetschalckx greedy circle covering heuristic.  Copy the above Figure 8.3 and draw the solution. 

Determine the optimal solution with a mixed integer programming solver such as LINDO or CPLEX.  

Copy the above Figure 8.3 and draw the solution. 

Compare the solution quality and solution times for both procedures.  Give a brief assessment of 

modeling assumptions made for this study. 
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Table 8.28.  Customer Data 

# x y r # x y r
1 1.250 5.687 3.89 21 3.250 2.937 3.84
2 3.750 5.562 0.36 22 2.938 2.812 2.79
3 2.688 5.312 4.22 23 3.125 2.750 1.46
4 1.250 4.937 3.34 24 1.688 2.812 3.99
5 4.250 4.812 4.60 25 5.000 2.750 0.15
6 2.750 4.625 3.86 26 5.813 2.687 3.21
7 6.750 4.312 2.18 27 2.750 2.687 3.77
8 3.875 4.125 1.11 28 2.188 2.625 4.72
9 2.688 4.062 1.32 29 1.215 2.500 1.68

10 2.375 4.000 2.68 30 2.688 2.437 2.90
11 1.938 3.812 3.83 31 3.063 2.437 0.53
12 0.813 3.625 0.88 32 3.313 2.437 0.61
13 6.000 3.562 0.34 33 1.813 2.312 3.18
14 5.188 3.437 1.94 34 2.063 2.312 4.21
15 3.000 3.437 1.86 35 3.063 2.187 4.15
16 2.188 3.375 3.64 36 4.375 2.125 1.01
17 1.813 3.375 1.03 37 2.750 1.000 0.82
18 1.500 3.250 0.96 38 1.125 0.437 0.77
19 2.250 3.000 0.01
20 4.000 3.000 0.99  
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Figure 8.3. Customer Locations 
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