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Abstract 
We will present a model for the strategic design of the global supply 

chain of an individual company.  The model presented is a multi-period, 
two-stage stochastic, multi-country, multi-product, multi-echelon 
formulation based on forecasted exchange rates and with bill of materials 
(BOM) flow conservation.  The objective is maximization of the expected 
value of the time-discounted world-wide after-tax net cash flows 
NPV(NCF).  The uncertainty of the data is explicitly considered through 
the inclusion of scenarios in the deterministic equivalent problem (DEP).  
However, the problem size of the DEP is so large that convergence of 
standard Benders decomposition requires an excessive amount of 
computer time.  We have implemented several acceleration techniques for 
Benders decomposition.  The following observations are based on the 
statistical analysis of the required computing times for an industrial case 
study.  1) Acceleration techniques significantly decrease the computation 
times.  2) Strengthening of the dual variables contributes the most, while a 
primal heuristic contributes the least.  3) The largest reductions in 
computer time are achieved when all acceleration techniques are used in 
concert.  We are continuing the numerical experiment to further 
differentiate the effectiveness of the acceleration techniques. 

1 Introduction 
In today’s global economy corporations constantly have to evaluate and redesign their 
supply chains to respond to the rapidly changing conditions.  Capital investment 
decisions have to be made long before all the relevant data are known with certainty.  
Evaluation of the capital investments and supply chain configurations has to be consistent 
with generally accepted accounting principles and financial reporting, incorporate global 
trade and taxation laws and regulations, and be compatible with the risk preferences of 
the corporation. 

We will present a model for the strategic design of the global supply chain of an 
individual company.  The model presented is a multi-period, two-stage stochastic, multi-
country, multi-product, multi-echelon formulation based on forecasted exchange rates 
and with bill of materials (BOM) flow conservation.  The objective is the maximization 



of the expected value of the time-discounted world-wide after-tax net cash flows, or in 
other words, the net present value of the net cash flows NPV(NCF).   

The uncertainty of the data is incorporated explicitly in the model through the 
inclusion of scenarios.  The accuracy of the expected value of the objective function, 
which in our case is the NPV(NCF), in two-stage stochastic programming problems 
increases with the number of scenarios included in the deterministic equivalent 
formulation or DEP.  The DEP problem is a very large mixed integer programming 
problem, where the flow variables have five indices: scenario, time period, product, 
origin, and destination.  The DEP is solved for in the framework of the sample average 
approximation (SAA) method, which itself requires tens of master iterations and each 
master iterations requires hundreds of solutions of the second-stage recourse problem, 
which is a capacitated multi-period multi-commodity network flow problem with BOM 
constraints.      

 

2 Model and Solution Algorithms for Strategic Supply Chain Design 
under Uncertainty  

2.1 Scenario-Based Model 
The accurate assessment of the risk associated with a strategic supply chain 

configuration requires the use of a large number (hundreds or thousands) of scenarios.  At 
the same time, increasing the number of scenarios in the DEP yields unacceptable 
computation times.  We will describe an algorithm that integrates a recently proposed 
sampling strategy, the Sample Average Approximation (SAA) scheme, with an 
accelerated Benders decomposition algorithm to solve the strategic supply chain design 
problem with continuous distributions for the uncertain parameters, and hence an infinite 
number of scenarios. 

We will approximate the two-stage stochastic optimization formulation for the 
strategic design of supply chains (1.1) with its deterministic equivalent problem (1.3) 
based on randomly sampled scenarios. 
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Where the second stage or inner optimization problem is defined as 
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With: 



y binary facility, size, and technology status variables 
x continuous material flow and storage variables 
c fixed facility cost vector (costs are negative) 
( )d ξ  operational sales and cost vector consisting of variable 

(positive) sales revenues and (negative) transportation, 
purchasing, production, and inventory costs  

( )h ξ  right-hand side of the technological constraints 
( ) ( ),E Fξ ξ  technology and conservation of product flow and storage 

matrix 
H relationships between facility status variables 
g right-hand side of the facility relationship constraints 
[ ]E v  expected value of random variable v 

ξ  random vector 
The above stochastic optimization problem can in theory be transformed into an 

equivalent deterministic optimization problem (DEP) by including all possible scenarios 
weighted by their associated probabilities.   
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With 

S scenario index, 1,2...s N=  
sp  probability of scenarios s, in the SAA method 1sp N=  

If the probability distribution functions of the parameters are discrete, the resulting 
number of scenarios is finite but extremely large.  For example, a problem with 1000 
parameters, each having a probability distribution with five discrete values, yields 

scenarios.  If the probability functions of the parameters are continuous the number 
of scenarios is infinite.  Solving such large DEP instances is not feasible in practice 
because of the excessive computation times. 
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In the SAA method, a random sample of N realizations (scenarios) of the random 
vector ξ  is generated, and the expectation ( ),E Q y ξ⎡ ⎤⎣ ⎦  is approximated by the sample 

average function (1
1
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=∑ . Consequently, the original stochastic problem is 

approximated by the following deterministic equivalent problem containing N scenarios 
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Kleywegt et al. [8] have shown that the SAA method converges to the optimal 
solution and solution value.  Based on the solutions  a lower bound to the original 
minimization problem and an incumbent feasible solution to the original problem can be 
computed.   From these the optimality gap can then be derived.  Further details can be 
found in Santoso et al. [14] and Kleywegt et al. [8].  Finally, the SAA algorithm uses an 
exterior sampling method, since the samples can be generated independently of the 
optimization method.  This independence allows a modular structure of the overall 
algorithm, so that different optimal and heuristic methods can be used to solve (1.4).  The 
evaluation of a given configuration with its corresponding recourse actions requires the 
solution of a large number (N’) of recourse problems that are themselves large 
multicommodity network flow problems with identical network structure.  Typically, N’ 
is chosen much larger than N.  However, the most time consuming step in the overall 
algorithm remains the solution of the DEP problem with a large number of scenarios. 

iy

The DEP exhibits a block-diagonal structure which makes it suitable for primal 
(Benders) decomposition developed by Benders [1].  Van Slyke and Wets [17] developed 
the same primal decomposition algorithm in the framework of scenario-based stochastic 
programming.  This algorithm is known as L-Shape decomposition. L-shaped 
decomposition is sometimes also referred to as stochastic Benders decomposition.  

Benders decomposition separates the variables of the problem to be solved into easy 
and hard variables.  The hard variables correspond to the configuration of the supply 
chain, which are the decision variables in the first stage of the stochastic program.  
Constraints on the supply chain configuration together with constraints or cuts based on 
the solution of the sub-problems constitute the master problem.  The sub-problems 
correspond to the recourse decisions for the tactical production and distribution planning 
after the strategic variables have been determined.  The sub-problems contain the easy 
variables, which are continuous variables in multicommodity network flow problems, 
with the temporarily fixed values of the hard variables used as parameters. 

The computation times by a standard MIP procedure of a commercial solver (CPLEX 
MIP) for the monolithic model, by the standard Benders decomposition algorithm, and by 
the accelerated Benders decomposition algorithm for industrial sized supply chain design 
project in South America in function of the number of scenarios in the DEP were 
compared in Santoso [13].  Standard Benders decomposition becomes more efficient than 
the monolithic MIP algorithm if the number of scenarios exceeds 15.  Both standard 
algorithms are strongly dominated by accelerated Benders, especially for large number of 
scenarios in the DEP.  The time ratio is already 50 for a DEP with 20 scenarios.  The 
accelerated Benders decomposition is the only algorithm that can solve the DEP in a 
reasonable amount of time for more than 20 scenarios. 



 
Figure 1: Computation Times in function of Number of Scenarios 

2.2 Acceleration Techniques 
For the complex strategic supply chain design problem Benders decomposition has 

poor convergence properties and a large relative difference between upper and lower 
bounds in the initial iterations as researchers like Magnanti and Wong [10], Santoso [13], 
Santoso et al. [14], and Santoso et al. [15] have reported.  Many different acceleration 
techniques for Benders decomposition have been proposed.  However, most of these 
acceleration techniques make a successful implementation even more difficult than the 
standard implementation.  Geoffrion and Powers [6] report on the declining use of 
Benders decomposition in commercial software.  Acceleration techniques for Benders 
decomposition and their descriptions can be found in the work of Magnanti and Wong 
[10], Magnanti and Wong [11], Dogan and Goetschalckx [5], Cordeau et al. [4], Santoso 
[13], Santoso et al. [14], Santoso et al. [15], and Goetschalckx [7]. The most powerful 
acceleration techniques developed up to date are the logistics constraints, trust region 
methods, primal heuristic methods, warm starting techniques, knapsack constraints, 
disaggregation of the Benders cuts, cut strengthening methods, and linear relaxation 
(Magnanti and Wong [10], Ruszczynski [12]; Magnanti and Wong [11]; Linderoth [9]; 
Santoso [13]; Santoso et al. [14]; Santoso et al. [15]; Goetschalckx [7]). These 
acceleration techniques are briefly explained in the following paragraphs considering a 
profit maximization problem for the master problem. 

2.2.1 Logistics Constraints 
Logistics constraints are also known as pre-processing constraints.  They have been in 
existing for many years and have been proposed by a multitude of authors.  The reason 
for the lack of unique authorship is that the logistics constraints uniquely depend on the 



problem structure and problem data.  Hence, every problem demands a different set of 
logistics constraints.  An example of such a constraint is a condition that specifies that at 
least one facility has to be established in each echelon of the supply chain so that a 
material flow path from external suppliers through the supply chain to the final customers 
can exist.  Logistics constraints force the values of some of the master configuration 
variables to be either zero or one at the start of the solution algorithm.  This forces the 
sub problems to yield much more feasible solutions and results in larger upper bounds 
during the first iterations of the decomposition algorithm, as reported by Santoso et al. 
[14], [15].  Finally, implementing and using the logistics constraints is not 
computationally expensive since the number of such constraints is considerably less than 
the total number of constraints in the final master problem after applying Benders 
decomposition.   

Following is a list of such valid constraints.  Not all constraints may apply to a 
particular supply chain formulation. 

• The existence of paths or segment of paths with sufficient capacity to satisfy the 
demand at the termination nodes.  The capacity must be sufficient for each 
commodity separately and for all commodities combined.   

• The facilities of each echelon must also have sufficient capacity to satisfy the total 
customer demand on a per commodity basis and for all commodities combined.   

• If only certain facilities can supply certain commodities to customers, one or more 
of these facilities must be enabled, which generates additional valid constraints.   

• The disaggregated linkage constraints between machines or manufacturing lines 
inside a facility and the facility status also generate additional valid constraints.   

• The linkage constraints between customer single sourcing variables and the status 
variable of the sourcing facility provide further valid constraints.   

• Status variables for transportation channels are linked to the status of origin and 
destination facilities. 

• Each enabled facility must have at least one incoming and outgoing channel 
enabled.   
 

The existence of such valid constraints is checked in a backwards fashion, starting at 
the customers and working up the supply chain to the raw material suppliers.  All of these 
constraints only have to be generated once for the root formulation.  The disadvantage of 
adding all constraints at the root node is that a very large number of constraints that may 
be generated.  The advantage is that the constraints remain valid for the whole branch-
and-bound tree and constraint management is not required.   

2.2.2 Trust Region Methods 

The notion of trust region or regularized decomposition methods was introduced by 
Rusczynski [12].  The trust region method prevents the master problem solution from 
moving considerably from one region of the feasible domain to another during the first 
iterations by considering a regularized term into de objective function of the master 
problem.  Linderoth and Wright [9] developed the idea of box-shaped trust regions, 



which have the advantage of allowing direct control over the size of the trust region.  It is 
important to observe that in order to apply the trust region acceleration technique while 
running Benders decomposition, an initial master solution different from zero is required.  
Implementing the trust region method is not computationally demanding as reported by 
Santoso et al. [14], [15]. 

2.2.3 Primal Heuristic Methods  
Several primal heuristic methods have been developed to improve the performance of 
Benders decomposition.  They focus on particular characteristics of the problem under 
consideration.  Santoso et al. [14], [15] propose a method in order to improve the upper 
bound of the master problem.  They divide the master variables in major and minor 
variables, fix the major variables and then solve optimally for the minor variables.  The 
major variables correspond to facilities and the minor variables correspond to different 
manufacturing capacity in the facility.  Not only do they generate a new feasible solution 
of better quality, they also contribute to the knapsack constraints and to the reduction of 
the optimality gap.   

2.2.4 Warm Start 
Since the structure of the sub problems remains unchanged between iterations in the 
Benders decomposition algorithm, one way to improve the performance is take advantage 
of the optimal basis of the different sub problems in the previous iteration.  This avoids 
having to solve the sub problems from scratch at each iteration.  Details about taking 
advantage of warm starting are presented by Bertsimas and Tsitsiklis [2]. The 
computational burden of applying warm starts assumes that sufficient memory or fast 
disk cache is available since it involves keeping track of the sub problem and master 
problem bases in an efficient way. 

2.2.5 Knapsack Constraints 
The primal decomposition does not ensure that the lower bound or primal feasible 
solution is non-decreasing during the iterations.  The knapsack constraints ensure that this 
event never happens, Santoso et al. [14], [15]; Goetschalckx [7].  In terms of 
computational complexity, this acceleration technique is not hard to implement since it 
involves adding a single constraint to the master problem.  

2.2.6 Disaggregation of the Benders Cuts 

The Benders decomposition algorithm adds one aggregated cut at every iteration.  Cut 
disaggregation is an acceleration technique that disaggregates the cut into several cuts 
whose weighted sum is equivalent to the aggregated cut.  The weight of each 
disaggregated scenario cut is given by the probability of each scenario.  This technique 
was introduced by Birge and Louveaux [3] as the multi-cut.  Obviously, the size of the 
master problem becomes greater in the case of disaggregated cuts.  However, they allow 
a faster convergence of the master problem (Dogan and Goetschalckx [5]; Santoso et al. 



[15]; Goetschalckx [7].  The computational effort required to apply this acceleration 
technique is considerable since the size of the master problem grows very quickly.  

2.2.7 Strengthening Dual Variables 

Magnanti and Wong [10] developed a method to strengthen the constraint or cut that is 
added to the master problem at every iteration.  This is done by maximizing the function 
value of the cut at a point that is close to the true optimal solution or contained in the set 
of the feasible solutions of the master problem.  Santoso [13] reports that using the 
strengthened cut is not always more efficient than the original cut, because the additional 
computational effort to find the stronger cut is considerable.  A secondary linear program 
has to be solved at each iteration.  Careful consideration should be given to the 
computational tradeoffs before applying this acceleration technique.  Goetschalckx [7] 
propose strengthening of Benders cuts through heuristic adjustment of the dual variables.  
This acceleration technique requires the disaggregation of the problem by scenario.  
Dogan and Goetschalckx [5] developed a specialized algorithm for the adjustment of the 
dual variables in a domestic supply chain design formulation.  

2.2.8 Relaxations 
Another acceleration technique for Benders decomposition consists in using the 

objective function value of the linear relaxation of the master problem as an upper bound 
for the original master problem.  This eliminates many solutions that are not acceptable in 
practice during the early iterations of the decomposition algorithm and significantly 
reduces the burden of solving the primal master problem (in the early iterations).  The 
recourse problems are solved with the primal master variables found with the linear 
relaxation and may not yield cuts that are as strong as those generated with primal 
feasible master variables.  However, the benefits of the acceleration technique seem to 
overcome this burden as Goetschalckx [7] and Dogan and Goetschalckx [5] report. 

3 Statistical Experiment 
Some of the previously mentioned acceleration techniques have been successfully 
implemented to solve real supply chain design problems in a reasonable amount of 
computing time.  Magnanti and Wong [10] report that using their strengthening of 
Benders cuts resulted in a problem with at least two or three times fewer cuts than in the 
original Benders decomposition.  Dogan and Goetschalckx [5] argue that disaggregation 
of the cuts reduced the computation time by a factor of 480 compared to a monolithic 
model solution.  Cordeau et al. [4] applied what they call valid constraints to the master 
problem, achieving better computational results than in standard Benders decomposition.  
In summary, all of the research results agree that the application of a single acceleration 
technique improves the computational time of Benders decomposition.   

Clearly, the additional performance of implanting an acceleration technique must be 
balanced against the additional effort to implement and maintain the programming code. 
Thus, it is desirable to determine the relative efficiency of the different acceleration 



techniques for Benders decomposition. Santoso [13], Santoso et al. [14], [15] provide 
computational results that demonstrate that the combination of several acceleration 
techniques yield the largest performance improvement.  However, these results do not 
provide any statistical evidence defining the efficiency of the different acceleration 
techniques for Benders decomposition. Hence, a statistical experiment is designed to 
provide with the statistical evidence required and its development and future analysis is 
described in the following paragraphs. 

In order to run the statistical experiment, an industrial single-period global supply 
chain design problem is selected.  The model used in the experiment is described in 
further detail in Santoso [13]. A computer code was developed through modifications of 
the computer code supporting the results of Santoso [13]. The code generates a number of 
random scenarios based on mean values provided by the data from the problem.  For the 
purpose of this experiment, 10 random scenarios are generated for every problem 
(N=10), since 10 scenarios allow the capture of the complexity of a real problem without 
incurring into extremely long computing times. Then, the computer code solves the 
problem using Benders decomposition with and without certain acceleration techniques.   

A Single-Factor ANOVA model can be used to evaluate the relative efficiency of 
several combinations of acceleration techniques of Benders decomposition.  Every 
combination of the acceleration techniques for Benders decomposition is treated as a 
level of the single factor. This experiment is used instead of the traditional Full Factorial 
ANOVA model since both models are mathematically equivalent and the same statistical 
results can be achieved.  Using the Single-Factor ANOVA model reduces the complexity 
of the experiment when considering more than two acceleration techniques.  

For the Single-Factor ANOVA model selected, a reasonable measure of the 
performance of every combination of acceleration techniques is given by the total 
computing time required to solve the problem.  Furthermore, in this experiment Logistics 
Constraints, Trust Region, Knapsack Lower Bound, and Warm Starting acceleration 
techniques are permanently enabled.  Disaggregation of the Cuts (D), Strengthening of 
Dual Variables (S), and Primal Heuristic (H) are acceleration techniques that can be 
turned on and off.  Therefore, there are eight possible combinations of acceleration 
techniques applied to Benders decomposition in the present experiment. The same 10-
scenario problem is tested under the eight possible combinations of acceleration 
techniques per replication.  A new 10-scenario problem is generated for every replication. 

The number of replications to be used for the current experiment is defined based on 
a specified tolerance and a 95% confidence interval for the computing time using all of 
the optional acceleration techniques. Based on previous experience running similar 
experiments and individual results of every possible combination of acceleration 
techniques, the tolerance of the experiment is set to 50 minutes. The software used to get 
the relevant results is C-PLEX 8.1 and Concert Technology 1.3, which was run on a 
Pentium III machine at 700 MHz with 512 MB in memory.  The statistical analysis was 
performed using the Minitab 14 software. 



With the defined tolerance, the number of replications is defined through the 95% 
confidence interval for the computing time using all of the acceleration techniques. For 
our experiment, based on initial results, 12 replications were required to differentiate the 
computation times at a tolerance level of 50 minutes. The number of replications may 
have to be adjusted based on the estimate of the variance of the computation times.  At 
the current time 7 replications have been run for four combinations of acceleration 
techniques: DS, DH, SH, and DSH.  If a single acceleration technique was turned on, i.e., 
either D, S, or H was enabled by themselves, then the computation times exceeded 24 
hours.  Hence, at the 95 % confidence level, it can be stated that using any single 
acceleration technique is different from using any combination of techniques.  But 
because the computer runs were terminated after 24 hours, no statistical information 
exists to differentiate between individual acceleration techniques.  Further computations 
are being executed to increase the number of replications.  Based on the data collected so 
far, 7 replications yield a resolution of 47 minutes at the 95 % confidence level. 

Based on 7 replications the following analysis steps were executed which yielded the 
following conclusions.  The residuals were plotted in a normal probability plot and they 
tended to be normal.   The null hypothesis that the variances are equal for the different 
levels was tested with Levene's Test, which yielded a p-value equal to 0.076.  So at the 
95 % confidence level there was not enough statistical evidence to reject the null 
hypothesis.  The ANOVA analysis yielded a p-value of 0.000 indicating there was no 
statistical evidence that the level means were the same at the 95 % confidence level. 

 
(D: Cut Disaggregation S: Dual Variable Adjustment, H: Primal Heuristic) 
Figure 2: Total Computation Times for Different Acceleration Techniques 



 
(D: Cut Disaggregation, S: Dual Variable Adjustment, H: Primal Heuristic) 

Figure 3:  Box Plots of Computing Times for Different Acceleration Techniques 

The above box plot demonstrates that the combination of dual variable adjustment (S) 
and cut disaggregation (D) yields shorter computation times.  The contrast of both 
techniques is different from zero at the 95 % confidence level.  Using the primal heuristic 
(H) acceleration method with one other acceleration technique yields the longest 
computation times for any pair of acceleration techniques.  Using the primal heuristic 
with the two other acceleration techniques does not yield a statistical different in average 
computation time.  The contrast of using this acceleration technique is not different from 
zero at the 95 % confidence level.  Based on these preliminary results for this specific 
case study, the implementation of this particular primal heuristic appears of very limited 
practical benefit.   

3.1 Discussion of the Solution Robustness 
In this research, the supply chain is optimized (designed) with respect to the expected 

value only, but after the optimization the supply chain is evaluated with random sampling 
to determine the expected value and variability measure.  It would be more realistic to 
define the objective as to maximize the difference of the expected value of NPV(NCF) of 
the corporation over the planning horizon minus a compatible measure of the variability 
of the same NPV(NCF) weighted by a risk-preference parameter α.  That is, the weighted 
multi-objective optimization problem is 

( ) ( ){ }max NPV NCF NPV NCFα− ⋅⎡ ⎤ ⎡⎣ ⎦ ⎣E VM ⎤⎦  (1.5) 

where [ ]⋅Ε  and [ ]⋅VM  denote the expectation and variability measure operators, 
respectively.  One can employ different choices of the variability operator.  Obvious 



choices are the mean absolute deviation (MAD), the standard deviation (SD) or the range 
(R) as the risk measure.  However, for most of the risk measures the objective function 
becomes non-linear, non-concave, or both, which makes the optimization for large scale 
instances computationally very difficult.  A particular strategic configuration of the 
supply chain will have a certain expected value and variability measure.  Each 
configuration can be evaluated based on the solution of the recourse sub problems and 
then plotted in a classical risk analysis graph, with the expected value on one axis and the 
risk measure on the other axis.  If a corporation knows the value of the α parameter that 
corresponds to its risk preferences, the preferred configuration can be determined 
immediately.  More often, a corporation is interested in identifying several alternative 
high-quality supply chain configurations for various values of α.  The efficiency frontier 
is the collection of supply chain configurations that are not Pareto-dominated by any 
other configuration, i.e. for any efficient or non Pareto-dominated configuration no 
configuration exists that has at the same time a larger expected value and a smaller risk 
operator.  For a given set or sample of supply chain configurations that are located in the 
risk analysis graph, the upper envelope of those configurations can be determined.  It is 
denoted by the sample efficiency envelope or SEE.  This SEE is an approximation of the 
efficiency frontier based on the optimal solutions found for a number of random 
replications.  The risk analysis graph for the industrial case is shown in the next figure 
including the SEE. 

 
Figure 4:  Risk Analysis Graph for Five Scenarios 

The preferred supply chain configuration is shown to be very robust with respect to 
variability of the input data as illustrated in the next figure.  Increasing the number of 
scenarios increases the robustness of the solution.  The preferred configuration strongly 
Pareto-dominates the optimal solution of the mean value problem (MVP) and the 
difference becomes more pronounced if the data becomes more variable.  The solution 



quality of a stochastic solution with a large number of scenarios in the DEP can only be 
achieved when using specialized accelerated decomposition algorithms.  For the 
industrial test case of modest size, approximately 72,000,000 continuous flow variables 
were solved for to optimality to determine (design) and characterize (evaluate) the 
preferred supply chain configuration.   

 
DEP(20) is nearly identical to DEP(60) 

Figure 5: Robustness of the Range in function of Data Variability 

4 Conclusions 
The combination of the modeling and solution methodology provides for the first time a 
scientific method to evaluate the financial tradeoff between additional investment cost 
and more stable operational costs when configuring industrial global supply chains for a 
five year planning horizon.  This method allows global corporations to balance high 
profit strategies against the robustness required to deal with real-word change. 

However, the timely solution of the large industrial problem instances requires the 
implementation of acceleration techniques for Benders decomposition.  At this time dual 
variable adjustment and cut disaggregation appear to be the most promising acceleration 
techniques.  The contribution of the implemented primal heuristic appears to be marginal 
at best. 

The supply chains are designed with goal of maximizing the expected value of the 
profit for multiple scenarios.  This optimizing of the expected value has the side benefit 
of simultaneously reducing the risk of the supply chain configuration.  This effect 
becomes stronger when more scenarios are included in the optimization problem.   

The research trends appear to be focused on further integration of the strategic supply 
chain model and on the incorporation of various measures of robustness.  Both trends 



create ever larger problem instances.  Acceleration of Benders decomposition appears to 
be one of algorithms that are sufficiently fast to solve the problem in a reasonable amount 
of time.  However, the performance of other optimizing or heuristic algorithms needs to 
be further investigated. 
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