Robust Storage Systems Design

Marc Goetschalckx
marc.goetschalckx@isye.gatech.edu

ISERC 2014 Montreal, Canada
Warehouse Operations
Flow Path Schematic (FFN)

Receiving

Cross Docking

Storage

Full Pallet Picking

Case Picking

Item Picking

Sortation

Packaging

Shipping

Sharp et al. 1991
Research Goal

- **Design framework for storage systems**
 - Unit loads
 - Single and dual command
 - Direct access
 - Single-deep rack and single-load high floor stacks
 - Comprehensive
 - Rich set of facility configurations and storage policies
 - Robust: efficiency and risk (stochastic)
 - Component of design methodology for warehousing systems
Empty Single-Deep Pallet Rack with Four Levels
ASRS Pallet Unit Load High-Rise Storage
Wine Barrels in a Cantilever Rack
Definitions

- **Storage Policy**

 ✓ Set of rules that determine where to store arriving SKUs in a warehousing system

- **Unit Load**

 ✓ A collection of materials that can be transported, stored, and controlled (managed) as a single unit

 • Examples

 • Vast majority of discrete goods
Warehousing Storage Objectives: Back to Basics

- Minimize the cost of expected travel time for given input-output operations
 - Minimize MH equipment and personnel
 - Variable (marginal) costs

- Minimize the cost of required storage space for given stored inventory
 - Minimize capital investment
 - Fixed costs
Main Design Observation

- Very few configuration decisions
- Most compared with complete enumeration (user driven comparison)
 - Technology, type of material handling equipment, aisles have ladder structure or not, aisle orientation, location of the input/output points, storage policy
 - Many combinations
 - Need computational support to evaluate designs quickly
Design Decision Variables

- Main design decision variables
 - Number of aisles, number of levels (rack height), number of columns (aisle length)

- Secondary decisions
 - Load locations, number of personnel and MH equipment

- Decomposition

- Pareto optimal comparison of efficiency versus risk
Pareto Risk versus Efficiency Comparison

![Graph showing Pareto Risk versus Efficiency Comparison. The graph displays the relationship between Standard Deviation of Total Cost (M$) and Average Total Cost (M$), with different symbols representing N=5 and MVP.](image-url)
Prior Research on Storage Systems
Design and Storage Policies

- Long research history and still active area
 - Heskett (COI) 1963,…to Ang et al. 2012
 - Most recent reviews Gu et al. 2007 + 2010
 - Contemporary blogs
 - Industry norms FEM, VDI

- Results and algorithms are strongly assumption driven
 - Integration and unified assumptions are the challenge
Storage Policies Classification

- **Storage Policies**
 - Non Unit Load
 - No Information
 - Random Closest Open Location
 - Product Based
 - Factoring
 - Demand Ranked
 - Inventory Ranked
 - Assignment Formulation
 - Non-Factoring
 - Load Based
 - Factoring
 - Perfectly Balanced
 - Duration of Stay
 - Non Perfectly Balanced
 - #-Zone
 - Non-Factoring
 - Vector Assignment Formulation
Storage Policy Classification: Additional Considerations

- Stationary or not warehousing operations
 - Repetitive, seasonal, build-up (single use), random events
Decomposition Algorithm

- **One user-specified design**
 - E.g. ASRS, random storage

- **Master problem: determine NA, NL, NC**

- **Sub problem:**
 - Split by scenario
 - Compute assignment costs (parameters)
 - Optimize scenario variables and (objective) cost
 - Return EV and SD of scenario costs
Two Examples

- **General load-based assignment (VAP)**
 - Most general, very large MIPs, most computationally demanding
 - Ultimate verification algorithm

- **Technology comparison with random storage**
 - Using FEM travel time norms
 - Different risk measures
Occupancy Gantt Chart: Rack Based Direct Access
VAP Conclusions

- Very large integer optimization problem
- Very tight LP relaxation
- Efficient sub problem and problem size indicate decomposition
- Very small gap for Lagrangean relaxation upper bound
- Highly primal and dual degenerate
- Acceptable penalty for primal heuristic
Technology Comparison Example

- Automated storage and retrieval system (ASRS) versus person-controlled narrow aisle reach truck (NAT)
- System and construction, operations, and maintenance costs
- ASRS
 - Simultaneous travel, aisle-captive crane
- NAT
 - Sequential travel in the aisle, non aisle-captive
Technology Comparison Example

- **Model characteristics**
 - Cubic space constraint (master), volume and area cost terms (sub) become parameters, quadratic sub objective (risk = variance), efficiency versus risk tradeoff weight

- **Algorithm**
 - Finite ranges for NA, NL, NC
 - Solved by complete enumeration in master
Technology Comparison Example: Standard Deviation Risk
Technology Comparison Example: Downside Risk (Semi-Deviation)
Unit Load Storage Policy

Conclusions

- Unit load systems are very common
- Single or dual command cycles
- Two main objectives:
 - Cost of storage space,
 - Cost of total travel time
- Three planning problems
 - Strategic configuration and sizing
 - Tactical storage policy
 - Operational storage & retrieval sequence
Operator-controlled systems are less expensive, but have larger cost variability.

Above is true regardless of the risk measure (standard deviation or downside risk).

On an equal low-risk basis automated systems are less expensive.
May I answer any questions?