CRANFIELD UNIVERSITY

Karen M. Feigh

An Airspace Simulator for Air Traffic Management
Research

School of Engineering

MASTER OF PHILOSOPHY THESIS






CRANFIELD UNIVERSITY
SCHOOL OF ENGINEERING

DEPARTMENT OF POWER, PROPULSION, AND AEROSPACE ENGINEERING

MASTER OF PHILOSOPHY THESIS
SUBMITTED IN ACADEMIC YEAR 2003-2004

BY

Karen M. Feigh

An Airspace Simulator for Air Traffic Management
Research

Under the Supervision of Professor David J. Allerton

November 2003

THIS THESIS IS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE
DEGREE OF MASTER OF PHILOSOPHY.

(©CRANFIELD UNIVERSITY NOVEMBER 2003. ALL RIGHTS RESERVED. NO PART OF THIS
PUBLICATION MAY BE REPRODUCED WITHOUT THE WRITTEN PERMISSION OF THE COPYRIGHT

OWNER.






ABSTRACT

Presently the airspace system has reached capacity. Radical changes are required
to take advantage of emerging technologies (to provide the dramatic increases in
airspace capacity) to accommodate the projected increase in air traffic demand.
Conventional commercial airspace simulators are too structured to simulate some
of the unconventional proposals to increase airspace capacity. This has lead the
development of dedicated simulators by NASA and EUROCONTROL to evaluate
the potential capacity benefits of radical changes in the airspace structure. These
proprietary, high-fidelity simulation tools require dedicated equipment and specially
trained operators.

This thesis describes the construction of a high-level, low-fidelity non-proprietary
airspace simulator for the purpose of conducting exploratory research into radical
new approaches to enhance airspace capacity. The simulator developed is capable
of simulating over 300 aircraft using the BADA v3.3 PTF performance database,
while mimicking FMS guidance to navigate over a spherical earth. In addition, the
simulation includes an observed winds aloft model, and an air traffic control model
which provides conflict detection and avoidance guidance as implemented by an air
traffic service provider.

Three scenarios (North Atlantic Endurance, Landing at Gatwick, Simple Eu-
rope) have been simulated to verify and evaluate the capabilities of the simulator.
These scenarios show that the simulator has successfully implemented the BADA
performance database and great circle navigation over a spherical earth. The sce-
narios also demonstrate that the impact of the wind model was small but noticeable.
The impact of the air traffic control model is significant. The scenarios illustrated
that the air traffic control model is capable of solving most of the conflicts it de-
tects. However, the simulator’s ability to merge arrival streams was met with limited
success.

The simulator presented has the advantages over existing ATM simulators of
being able to run on a single PC and in fast time. Being open source, it facilitates
novel research through the software organisation and data structures. Additional
advantages include implementing an observed wind field model, data link simulation

and natural language style control logic.







ACKNOWLEDGEMENTS

I would like to extend gratitude to the many individuals who shared their time and
expertise with me. Without their help this work would not have been possible. I am
also grateful to the Marshall Commemoration Commission whose generosity enabled

this work.

“A close accord between our two countries is essential to the good of mankind in
this turbulent world of today, and that is not possible without an intimate
understanding of each other. These scholarships point the way to the continuation
and growth of the understanding which found its necessity in the terrible struggle of

the war years.”

George C. Marshall

111



v



TABLE OF CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
LIST OF TABLES

LIST OF FIGURES
NOTATION

CHAPTER 1 : INTRODUCTION AND MOTIVATION
1.1 Air Transportation Capacity . . . . . . . .. .. .. ... ... ....
1.2 Current Air Traffic Management Environment . . . . . . . . ... ..
1.2.1 Communication . . . . . . . . ... ...
1.2.2 Navigation . . . . . . . . .. .
1.2.3 Surveillance . . . . . ..o
1.3  Future Air Traffic Management Environment . . . . . . . . . ... ..
1.3.1 Flight Management Systems . . . . . . . ... ... ... ...
1.3.2 Navigation . . . . . . . .. .. L
1.3.3 Surveillance . . . . . . ...
1.3.4 Communication . . . . . . .. .. ... Lo
1.4 Existing Airspace Simulators . . . . . . . ... ... ...
1.4.1 Commercial ATM Simulation Tools . . . . . . .. .. ... ..

1.4.2  Non-commercial Simulation Tools . . . . . . . ... ... ...
1.5 Case for a Non-proprietary,

Open Source Airspace Simulator . . . . . . . . . . .. .. ... ....
1.6 Simulation Constraints . . . . . . . . . . .. ... ... ... .....
1.7 Research Objectives. . . . . . . . . . .. .. ... ...

iii

xi

xiii

Xix

10
10
11
12
12
13
14
14

15
16
16




CHAPTER 2 : AIRSPACE SIMULATOR REQUIREMENTS 17

2.1 Simulation Requirements . . . . . . . . .. ... L. 17
2.1.1 Capabilities . . . . . . ..o 17
2.1.2 Speed and Fidelity . . . ... ... ... L. 18

2.2  Performance Database: BADA . . . . . . .. ... ... .. ...... 21

2.3 Programming Language
and Operating System . . . . . . . .. ... 22

2.4 Simulation Organisation . . . . . . .. .. .. ... ... ... ... . 22
2.4.1 Aircraft Performance Model . . . . . . .. ... ... ... .. 23
2.4.2  Atmospheric Environment . . . . . .. ... 23
2.4.3 Airspace Model . . . . . ... 24
2.4.4 Air Traffic Control . . . . ... ... ... ... ... .... 24

2.5  Simulation Assumptions . . . . . . . . . ... 24

2.6 Simulator Initialisation . . . . . . . . .. ... ... L. 25

2.7 Simulator Outputs . . . . . .. . . ... 25

CHAPTER 3 : AIRCRAFT PERFORMANCE MODULE 27

3.1 Requirements . . . . . . . . .. 27

3.2 Data Structures . . . . . . . ... 28
321 Input Files. . . . . . . . .. .. ... 28
3.2.2 Initialisation Data Structures . . . . . . . ... ... ... .. 28
3.2.3 Operational Data Structures . . . . . .. ... ... ... ... 29

Master Record & Current Record Array . . . . . .. ... .. 30
Aircraft & Command State Arrays . . . . .. ... ... ... 31
Flight Plan Record & Way Point List Arrays . . . . . . . . .. 31
3.2.4  Storage Data Structures . . . . .. .. ... .. ... ... .. 32
3.2.5 Storage Size . . . . . ... 33

3.3 Logical Design . . . . . . . . . ... 35
3.3.1 Initialisation Phase . . . . . . . .. ... 00 35
3.3.2  Simulation Loop Phase . . . . . .. .. ... ... ... ... . 36

Random Aircraft Generation . . . . . . .. ... ... ... .. 37

Navigation & Command Generation . . . . . ... ... ... 38

Position Update . . . . . . . .. .. ... .. ... .. ... .. 39

Record Data . . . . . . . . . ... . 41

3.3.3 Shutdown Simulation . . . . . . ... .. ... ... ... ... 42

3.4 Validation . . . . . . . ... 43

vi



3.4.1 Correct Implementation of BADA v3.3 Data . . . . ... ...
3.4.2  Correct Implementation of Great Circle Navigation . . . . . .
3.4.3 Verification of Capacity . . . .. ... ... ... ... ...,

3.5 Summary . o.o.o. ...

CHAPTER 4 : ATMOSPHERIC ENVIRONMENT
4.1 Model Motivation . . . . . . . . ...
4.2 Model Requirements . . . . . . . . ... L
4.3 Data Source . . . . . . . ..
4.4 Data Preparation . . . . . . . ... ...
4.5 Interpolation Scheme . . . . . . . .. ... Lo
4.6 Wind Field Accuracy . . . . . . . . ...

4.7 Summary ...

CHAPTER 5 : AIRSPACE MODULE

5.1 Data Link Equipage Assumption . . . . ... .. ... ... ... ..
5.2 Purpose . . ...
5.3 Requirements . . . . . . . . ..
5.4 Data Structure Options. . . . . . . . . . . ... .. ... ... ..
5.5 Quadtree Options . . . . . . . . . . . ...
5.5.1 Traversal Method . . . . . . . .. ... ... ... ... ....
Pointer quadtrees . . . . . . . ... ... L
Indexed/Linear quadtrees . . . . . ... ... ... .. ....

5.5.2  Decomposition Method . . . . . ... ... ... ... ...
5.5.3 Spherical Decomposition . . . . . . . ... ... ... ... ..
5.5.4 Region Indexing for Linear Quadtrees . . . . . . . . .. .. ..
5.5.5 Point-Region Quadtree Implementation . . . . . . ... .. ..

5.6 Geographic Location Algorithms . . . . . . . ... .. ... ... ...
5.6.1 Neighbour Node Location . . . .. .. ... ... ... ....
5.6.2 Inter-Aircraft Conflict Detection . . . . . . . . . ... ... ..
5.6.3 Location of All Aircraft within a Circle . . . . . . . . ... ..

5.7 Quadtree Primitives . . . . . . . ... ... .
5.7.1 Quadtree Creation and New Node Insertion . . ... ... ..
5.7.2  Updating the Quadtree . . . . . . . .. .. ... .. ... ...
5.7.3 Removing Aircraft . . . .. ... ...

5.8 Summary ... oL

47
47
47
48
o1
o4
95
38

59
29
99
60
61
63
63
63
65
66
67
68
69
70
70
74
74
5
76
7
78
79

Vil



CHAPTER 6 : AIR TRAFFIC CONTROL MODULE 81

6.1 Control Module Requirements . . . . . . . .. ... ... ... ... .. 83
6.1.1 Functional Requirements . . . . . .. ... ... ... ..... 83
6.1.2 Communications Requirements . . . . . . . . ... ... ... 83
6.1.3 Modelling Controller Behaviour Requirements . . . . . . . .. 84
6.1.4 Modelling Pilot Behaviour Requirements . . . . . . . . .. .. 84
6.1.5 Response Time Requirements . . . . . . .. .. ... ..... 85
6.1.6 Requirement Summary . . . . . . ... ... 85

6.2 ATC Module Architecture . . . . . . .. ... ... L. 86

6.3 Interprocess Communication Via Message Queues . . . . . . . .. .. 87

6.4 Controller Module . . . . .. ... ... ... ... ... ... ... 90
6.4.1 Implementation Options . . . . . . .. ... ... ... ... .. 90
6.4.2 Data Structure Overview . . . . . . . ... .. .. ... .... 92
6.4.3 External Script Files . . . . . . .. ... ... 92
6.4.4 Script Interpretation and Stack Compilation . . . . . . .. .. 94
6.4.5 Stack Machine Execution . . . . . . ... ... ... ... ... 94
6.4.6 Enroute Controller . . . . . .. ... ... .. ... ...... 96
6.4.7 Terminal Manoeuvering Area (TMA) Controller . . . . . . . . 98
6.4.8 Conflict Log . . . . . . . . . .. . 100

6.5 Pilot Module . . . . . . . ... 100

6.6 Process Harmonisation . . . . . . . . ... ... ... ... ..... 101

6.7 Performance Characteristics . . . . . . . . . ... .. ... ... .. 102

6.8 Simple ATM Controller Example . . . . ... .. ... .. ...... 103

6.9 Summary . . . ... 106

CHAPTER 7 : TESTING AND EVALUATION 109

7.1 Airspace Metrics . . . . . . ... 110

7.2 Simulation Metrics . . . . . .. ... 110
7.2.1 Implementation Simulation Metrics . . . . . . . .. . ... .. 111
7.2.2  Translation Simulation Metrics . . . . . . ... .. ... ... 112

7.3 Simulation Limitations . . . . . . . . .. ... ... ... ... 113

7.4 Test Scenarios . . . . . . . . . .. 113
7.4.1 Endurance, North Atlantic . . . . ... ... ... ... .... 113

Case Description . . . . . . . .. . .. ... 113
Testing Methodology . . . . . . . .. . ... ... .. ... .. 114
Results . . . . . . . . . 116

viil



7.4.2

7.4.3

Landing at Gatwick . . . . . . .. .. ..o
Case Description . . . . . . . ... ...
Testing Methodology . . . . . . .. . .. ... ... .. ....
Results . . . . . . . . . .
Simple Europe . . . . . . . ...

Case Description . . . . . . . .. . ... ...

CHAPTER 8 : DISCUSSION
8.1 Research Objectives. . . . . . . . . . ... ... ...

8.2 Simulation Review . . . . . . . . .

8.2.1
8.2.2
8.2.3
8.2.4

Multiple Aircraft Performance Module . . . . . ... ... ..
Wind Field Module . . . . . .. .. ... ... ... .. ...
Airspace Module . . . . ... ... L
Control Module . . . . . . ... ... ... .

8.3 Simulator Requirements:

Origin & Satisfaction . . . . . . . . . . ... ...
8.4 Suggestions for Further Work . . . . . .. ... ... ... ......
8.5 Airspace Simulator Benefits . . . . ... ... ... L.

APPENDIX A : CONTROL VOCABULARY
Al KeyWords. . . . . . . . .
A.2 Internal Variables . . . . . . . . . . .. . ... ... ... ... . ...
A.3 External Variables . . . . . . .. ... ... ... L.
A4 Setting Internal Variables . . . . .. ... ... ... 0.
A.5 Incrementing Internal Variables . . . . . . . ... ... ... ... ..
A.6 Calculation Words . . . . . . . ...
A7 Command Words . . . . . . . .. . .. ... ... ...

APPENDIX B : SCENARIO SET-UP FILES
B.1 North Atlantic Crossing . . . . . . . . . .. ... ... ... .....

B.1.1
B.1.2
B.1.3
B.14

North Atlantic Crossing Flight Plans . . . . . . ... ... ..
North Atlantic Crossing ATC Plans . . . . . . ... ... ...

North Atlantic Crossing Initial Conditions . . . . . . .. . ..
TIMBA2B . . ... . .

139
139
140
141
141
142
142

143
147
150

153
153
155
156
161
161
162
165

169
169
169
173
174
174

1X



B.1.5 North Atlantic Crossing TMA Controller Logic . . . . . . .. 175

B.2 Landing at Gatwick . . . . . . . .. ... oo 176
B.2.1 Landing at Gatwick Flight Plans . . . . . ... ... ... .. 176
B.2.2 Landing at Gatwick ATCPlan . . . . ... ... ... .... 181
B.2.3 Landing at Gatwick Initial Conditions . . . . . ... .. ... 182

TIMBA 2B . . . . . . 182
TIMBA1H . . ... . 183
B.2.4 TMA Controller Logic: EGKK tester . . . . . . ... ... .. 184

B.3 Core Europe . . . . . . . . .. 187

B.3.1 Flight Plans . . . . . . . .. .. .. . o 187
Frankfurt, Germany - Amsterdam, The Netherlands . . . . . . 187
Hamburg, Germany - Paris, France . . . . . ... .. .. ... 189
Munich, Germany - London, United Kingdom . . . . .. . .. 191
London, United Kingdom - Zurich, Switzerland . . . . . . .. 193
Amsterdam, The Netherlands - Madrid, Spain . . . . . . . .. 195
Paris, France - Rome, Italy . . . . . .. ... ... .. .. ... 197
Rome, Italy - Frankfurt, Germany . . . . . . . . ... .. ... 199
Madrid, Spain - Munich, Germany . . . . .. ... ... ... 201
Zurich, Switzerland - Hamburg, Germany . . . . . . . . . . .. 203

B.3.2 [Imitial Conditions . . . . . . . . .. .. .. ... .. ... 205
Frankfurt, Germany - Amsterdam, The Netherlands . . . . . . 205
Hamburg, Germany - Paris, France . . . . . .. ... ... .. 206
Munich, Germany - London, United Kingdom . . .. .. . .. 207
London, United Kingdom - Zurich, Switzerland . . . . . . .. 208
Amsterdam, The Netherlands - Madrid, Spain . . . . . . . .. 209
Paris, France - Rome, Italy . . . . . ... ... ... ... ... 210
Rome, Italy - Frankfurt, Germany . . . . . . . . . .. .. ... 211
Madrid, Spain - Munich, Germany . . . . . .. ... .. ... 212
Zurich, Switzerland - Hamburg, Germany . . . . . . . .. . .. 213

B.3.3 Core Europe ATCPlan. . . . . . ... ... ... ... .... 214

B.3.4 TMA Controller Logic: vsepcore . . . . . . ... ... .... 215

GLOSSARY 217
BIBLIOGRAPHY 220




LIST OF TABLES

W N

O 00 3 O Ot

11
12
13
14
15
16

Simulator Requirements . . . . . . . ... ... ... ... .. ... .
Operational Data Structure Description . . . . . . .. ... ... ..
Total Number of Aircraft Allowable Assuming Data Block Size and

Continuous Flight . . . . .. ... ... . . 0.
Data Block Structure . . . . . . . ..o
Implementation of BADA v3.3 Data Evaluation Results . . . . . ..
Great Circle Navigation Evaluation Results . . . . .. ... ... ..
Sources of Wind Data . . . . . . ... .. ... ... ... ...
Geographic Area and Number of Aircraft Covered in each Leaf Node

for Equal Area Point-Region Quadtrees of Varying Levels . . . . . .
Memory Required for Quadtrees of Varying Levels with 5,000 Leaf

Nodes . . . . . . .
Interprocess Message Description . . . . . . . . . .. ... ... ...
Controller Module Response Time . . . . . . .. ... ... .....
North Atlantic Crossing Metric List . . . . . . . .. ... ... ...
Landing at Gatwick Metric List . . . . .. .. .. ... .. ... ...
Simple Core Europe Metric List . . . . . . ... ... ... .....

Simulator Requirements . . . . . .. ... ..o

x1



xii



LIST OF FIGURES

© 00 N O U = W N

NN NN N DN P = s e = e e e
L = W NN P O © 0 N O Ot = W N = O

26
27
28
29
30

Simulation Architecture . . . . . . .. .. ... ... ... ... ... 23
Simulator Architecture . . . . . . . . ... ... 27
Initial Structure for BADA Data . . . . .. ... ... ... ..... 29
Initial Structure for Flight Plan and Initialisation Data . . . . . . . . 29
Permanent Storage Structure . . . . . ... .. ... ... .. .... 33
Data Transfer Time Comparison . . . . . . . . . . ... ... .... 34
Multiple Aircraft Performance Module Control Flow . . . . . . . .. 36
Aircraft Generation Linkages . . . . .. ... ... ... ... ... 37
Command Generation Control Flow Diagram . . . . ... .. .. .. 38
Inside Turn . . . . . . . . ... 39
Position Update Control Flow Diagram . . . . . ... ... .. ... 40
Shutdown Control Flow Diagram . . . .. .. ... ... ... .... 43
Simulator Architecture with Wind Field Model . . . . .. .. .. .. 47
Grid Data Visualisation . . . . . ... .. .. ... ... ... .. 48
NPN Geographic Site Location . . . . .. .. ... ... ... .... 50
Operational Stations . . . . . . .. ... .. ... .. ... ..., . 52
Wind Filed Mirroring Across Lines of Latitude and Longitude . . . . 53
Interpolation Cube . . . . . . . . ... .. L 54
Interpolation Error by Magnitude and Direction . . . . . ... .. .. 55
Upper Atmospheric Wave Four Pattern . . . . . . ... ... .. ... 56
Upper-level Wave Pattern . . . . . .. ... ... ... ... ..... 56
Airspace Module Architecture . . . . . . ... 60
Three Levels of decomposition of a Rectangular Area . . . . . . . .. 61
Quadtree Representation of a Rectangular Area . . . . . ... .. .. 64

Indexed Quadtree Representation of a Rectangular Area using Morton(Z-

Index) Ordering . . . . . . . ... 64
Vector Quadtree Decomposition . . . . . . . ... ... ... ... 67
Space-filling Curves . . . . . . . .. ... 68
3-Level Linear Point-Region Quadtree Implementation Example . . . 70
Neighbouring Nodes to Node 18 . . . . . . . . . . ... .. ... .. 71
Graphic representation of Samet’s Basic Algorithms . . . . . . . .. 71




31

32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
23
54
95
26
57
o8
59
60

61

Time to Find Neighbouring Leaf Nodes for a Randomly Generated
Quadtree for Varying Numbers of Leaf Nodes . . . . . .. .. .. ..
Comparison in Time to Find Neighbouring Leaf Nodes between De-
generate and Randomly Populated Quadtrees . . . . . . .. ... ..
Search Region within Node Boundaries . . . . . . . .. ... ... ..
Search Region Spanning Several Nodes in Search Algorithm . . . . .
Insertion of New Node into an Indexed Point Region Quadtree
Deletion of an Aircraft in an Indexed Point Region Quadtree

Control Module Architecture . . . . . . ... ... ... ... ...,
Interprocess Communication Tools . . . . . . ... ... ... ....
Message Queue Timing . . . . . . . . ... ... L.
Detailed Control Module Architecture . . . . . . ... ... .. ...
Generic Controller Module Architecture . . . . .. . ... ... ...
Sample ATM Script File . . . . . . .. .. .. ... ...
Sample ATM Instruction Stack . . . . ... ... ... ... .....
[lustration of a Simple Stack Machine . . . . .. ... .. ... ...
Upper-level Airspace Sectors and Level-7 Quadtree Comparison
TMA Control Module Airspace Monitoring Data Structures . . . . .
Airspace and ATC Module Time Line Illustration . . . . . . .. . ..
Sample Controller Log . . . . . . .. ... ... ... ... ...
Conflict Detection Time Line . . . . . . ... .. ... .. ... ...
Conflict Solution Time Line . . . . . . . . .. .. ... ... .. ...
Representative North Atlantic Track . . . . .. ... ... ... ...
Impact of Aircraft Loading on Simulation Time . . . . .. ... ...
Impact of Aircraft Loading and Controllers on Simulation Time
Impact of Controllers on Simulation Time . . . . ... .. ... ...
Standard Arrival Routes TIMBA 2B and TIMBA 1H . . . . . .. ..
Aircraft Separation Times in Wind for Aircraft Loading of 20 .
Aircraft Separation Times without Wind for Aircraft Loading of 20
Aircraft Separation Times in Wind for Aircraft Loading of 25
Aircraft Separation Times without Wind for Aircraft Loading of 25
Comparison of Average Aircraft Separation for Varying Aircraft Load-
ings and TMA Update Frequency . . . . . ... ... ... ... ...
Comparison of Average Aircraft Separation Standard Deviation across
Aircraft Pairs for Varying Aircraft Loadings and TMA Update Fre-

QUENCY  + v v v v v e e e e e e e e

Xiv



62
63
64

65
66
67

68
69

70
71
72
73
74
75
76
7
78
79
30
81
82
83
84
85
86
87
88
89
90
91
92
93
94

Representative European Flight Plans . . . . . . ... ... ... .. 127

Simulation Time Relationships . . . . . ... .. .. ... ... ... 128
Comparison of Simulation Time for Different Controller Complexity
Levels . . . . . . o o 129
BADA 3.3 Performance Table Velocity v. Flight Level . . . . . ... 130
Number of Aircraft Present in Simulation at t=21600s . . . . . . . . 131
Comparison of the Number of Aircraft Present in Simulation at t=21600s
for Different Controller Complexity Levels . . . . . .. .. ... ... 131
Simulation Time per Aircraft as a Function of Aircraft Loading . . . 132

Comparison of Simulation Time per Aircraft for Different Controller
Complexity Levels . . . . . . . .. ... 133
Comparison of Controller Response Times . . . . . .. .. ... ... 134

Comparison of Average Aircraft Separation at Controller Intervention 135

Comparison of Average Flight Time Deviation . . . ... ... ... 136
Simulation Architecture . . . . . . . ... ... ... ... ... ... 141
A320 JFK-EGKK Flight Plan . . . . . ... ... ... ........ 170
B737-300 JFK-EGKK Flight Plan . . . . . .. ... ... ... .... 171
B737-800 JFK-EGKK Flight Plan . . . . . .. ... ... ... .... 171
B747-200 JFK-EGKK Flight Plan . . . . . .. ... ... ... .... 172
MD-80 JFK-EGKK Flight Plan . . . . . ... .. ... .. ...... 172
EGKK A320 TIMBA 2B Flight Plan . . . . . ... ... ... .... 176
EGKK B737-300 TIMBA 2B Flight Plan . . . . . ... .. ... ... 176
EGKK B737-800 TIMBA 2B Flight Plan . . . . . . . ... ... ... 177
EGKK B747-200 TIMBA 2B Flight Plan . . . . . . .. ... .. ... 177
MD-80 TIMBA 2B Flight Plan . . . . . ... ... ... ... .... 178
A320 TIMBA 1H Flight Plan . . . . . ... ... ... ... ..... 178
B373-300 TIMBA 1H Flight Plan . . . . . . .. .. ... ... .... 179
B737-800 TIMBA 1H Flight Plan . . . . . . . .. ... .. .. .... 179
B747-200 TIMBA 1H Flight Plan . . . . . . . ... ... ... .... 180
MD-80 TIMBA 1H Flight Plan . . . . . . .. ... ... ... .... 180
A320 Flight Plan . . . . oo oo 187
B737-300 Flight Plan . . . . . . ... ... ... ... ... ...... 187
B737-800 Flight Plan . . . . . . .. . .. ... ... ... ... 188
B747-200 Flight Plan . . . . . . . . .. ... .. ... .. ....... 188
MD-80 Flight Plan . . . . . . . ... ... ... ... 188
A320 Flight Plan . . . . . . . . . ... ... ... .. ... ... ... 189

XV



95

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

B737-300 Flight Plan . . . . . . ... .. ... . o 189

B737-800 Flight Plan . . . . . . .. ... ... .. 190
B747-200 Flight Plan . . . . . . .. ... .o oo 190
MD-80 Flight Plan . . . . . . . .. .. . .. .. . 190
A320 Flight Plan . . . . . . . . ... .. .. ... ... .. ... 191
B737-300 Flight Plan . . . . . . .. ... ... . o 191
B737-800 Flight Plan . . . . . . .. . .. ... .. 192
B747-200 Flight Plan . . . . . . ... ... oo 192
MD-80 Flight Plan . . . . . . . ... ... ... . 192
A320 Flight Plan . . . . . . . ... ... 193
B737-300 Flight Plan . . . . . . ... ... . oo 193
B737-800 Flight Plan . . . . . . .. ... ... . 194
B747-200 Flight Plan . . . . . . ... ... oo 194
MD-80 Flight Plan . . . . . . . .. ... ... ... ... 194
A320 Flight Plan . . . . . .. ... .. . 195
B737-300 Flight Plan . . . . . . .. ... ... . o 195
B737-800 Flight Plan . . . . . . . .. .. ... . o 196
B747-200 Flight Plan . . . . . . . ... ... oo 196
MD-80 Flight Plan . . . . . . . ... ... ... ... 196
A320 Flight Plan . . . . . .. ... .. 197
B737-300 Flight Plan . . . . . . ... .. ... . o 197
B737-800 Flight Plan . . . . . . .. ... ... . 198
B747-200 Flight Plan . . . . . . ... ... oo 198
MD-80 Flight Plan . . . . . . . .. ... ... ... 198
A320 Flight Plan . . . . . .. ... .. 199
B737-300 Flight Plan . . . . . . . .. ... . o 199
B737-800 Flight Plan . . . . . . . . . .. ... .. 200
B747-200 Flight Plan . . . . . . ... ... oo 200
MD-80 Flight Plan . . . . . . . ... ... ... ... 200
A320 Flight Plan . . . . . .. ... ... o 201
B737-300 Flight Plan . . . . . . .. . .. ... ... ... ... ..., 201
B737-800 Flight Plan . . . . . . . .. .. ... . o 202
B747-200 Flight Plan . . . . . . ... ... o 202
MD-80 Flight Plan . . . . . . . . ... .. ... .. ... .. ..., 202
A320 Flight Plan . . . . . .. . ... o 203
B737-300 Flight Plan . . . . . . .. . .. ... ... ... ... ... 203

Xvi



131 B737-800 Flight Plan . . . . . . ... ... . o 204
132 B747-200 Flight Plan . . . . . . . .. .. ..o oo 204
133 MD-80 Flight Plan . . . . . .. ... ... . o 204

Xvil



Xviil



NOTATION

o =

+ Je o9 I >> e n

S a8 b

Veas

Vras

Amplitude of the assumed wave four structure

Drag

Phase angle

Earth’s gravitational constant

Altitude above mean sea level

Longitude

Time rate of change of longitude

Mass

Latitude

Time rate of change of latitude

Heading with respect to true north

Radius of the Earth

Time

Time step

Thrust

Flight path angle

Mean wind velocity over the longitude range of the original NPN region
Mean wind magnitude for wave four wave structure

Calibrated airspeed

True airspeed

Up-down component of true airspeed, aircraft frame (Down is positive)
Up-down component of true airspeed, inertial frame (Up is positive)
East-West component of true airspeed, aircraft frame (East is positive)
East-West component of true airspeed, inertial frame (East is positive)
North-South component of true airspeed, aircraft frame (North is positive)
North-South component of true airspeed, inertial frame (North is positive)
Up-down component of wind, inertial frame (Up is positive)

East-West component of wind, inertial frame (East is positive)
North-South component of wind, inertial frame (North is positive)
Position

Velocity

Position at time t

XiX



Z;  Velocity at time t

¢ Position at time t41




CHAPTER 1

Introduction and Motivation

1.1 Air Transportation Capacity

In its short history, ATM (Air Traffic Management) has experienced several major
paradigm shifts in response to capacity crises. The responses have come through
the introduction of new technologies such as light guns, radio communication, radio
beacons and radar [1]. The technological evolution has resulted in an airspace sys-
tem comprised of a network of fixed routes and finite capacity. As a consequence the
continued growth of the air transport industry has resulted in an overloaded air traf-
fic system[2, 3]. Zeghal and Hoffman state,“The major challenge facing ATC (Air
Traffic Control) is to enhance air traffic capacity and flight efficiency while providing
safety improvements.” [4] According to a capacity study carried out by Donohue and
Laska in 2001, most European and U.S. airports are currently operating at or above
50% of their stated capacity®, at which point ATM systems begin to experience sig-
nificant delays, i.e. greater than 15 minutes [5]. When operating close to capacity
limits it is common for demand to exceed the availability of runway and airway slots,
resulting in delays which are attributed to ATM systems [6]. These delays can be
found in all flight segments [7]. In addition to airport congestion, which dominates
in the U.S., en route congestion currently accounts for 75% of delays in Europe [8].
These delays grew by 40% from 2000 to 2001 even though air traffic during this
period only increased by 5% [8]. In order to reduce these delays, the capacity of the
entire air transport system, not just at airports, must be increased [9].

Over the past decade, considerable effort has been expended on different meth-
ods to increase the overall capacity of the air transportation system [1, 10]. “The
evolutionary path that ATC must follow is one of steadily improving the accuracy
and integrity of the information base and making the decision process more opti-
mal - until at some point the ‘physical’ capacity of airspace as defined by minimum

separation criteria is reached.”[3] Until the mid 1990s, these studies had focused

Tt should be noted that European stated capacity is calculated based on IMC (Instrument
Meteorological Conditions), and U.S. stated capacity is calculated based on VMC (Visual Meteo-
rological Conditions).




CHAPTER 1. INTRODUCTION AND MOTIVATION

primarily on improving the system (ground based and aircraft based) within the

constraints of its current structure.

In ground based systems, research has been conducted on automation to aid
controllers to regulate air traffic more efficiently [10, 11, 12, 13, 14, 15]. The two
most extensive projects in this area are the CTAS (Center-TRACON Automation
System) begun in 1989 in a joint program with NASA Langley and NASA Ames
Research Centner, and the URET (User Request Evaluation Tool) developed by
the MITRE Corporation. “CTAS is an integrated system. .. [compromised of three
tools to] assist controllers in achieving greater efficiency in the management and
control of arrival traffic in the extended terminal area, as well as assist in the conflict
prediction and resolution of traffic along airway and user-preferred trajectories.” [9]
URET provides the controller with a 20-minute look-ahead conflict probe, and
URET allows controllers to play what-if scenarios to avoid conflicts early on with

minimal flight path impact [10].

In aircraft based systems, research efforts focused on the development of au-
topilot and FMS (Flight Management System) to enable more precise and fuel effi-
cient navigation [16, 17, 18], as well as demonstrating the feasibility of data link sys-
tems to connect the autopilot and FMS to ground controllers and navigation aides
[11, 19, 20]. Advances in these areas led the ICAO (International Civil Aviation
Organisation) to embrace the concept of CNS/ATM, a concept which “envisages
the use of data link communications, satellite navigation, and the ADS (Automatic
Dependent Surveillance).” [21] Despite the advances in onboard avionics to improve
aircraft fuel efficiency and navigational capability, the current air traffic management

system is not capable of exploiting these advances [22].

A handful of studies, however have investigated a radical departure from the
current airspace structure. Both NASA and several U.S. airlines conducted stud-
ies into the cost savings and feasibility of user preferred routing [23]. In addition
EUROCONTROL initiated the PHARE (Program for Harmonised Air Transport
Management Research) in 1989. In the mid 1990s Zegal and Hoffman stated, “the
forecasted traffic density growth in Europe and in the United States over the next
fifteen years suggests that solely improving ground systems might not be sufficient
to achieve the required capacity at appropriate safety levels.” [4] It had become ap-
parent that improvements are also needed to the air route structure. “This network
[of jet routes] imposes restrictions which lead to less efficient routing than director

or wind-optimal trajectories.”[24, 25] The current route structure also limits the

2



CHAPTER 1. INTRODUCTION AND MOTIVATION

impact new technologies can make in the areas of tracking, prediction and commu-
nication [26]. One of the concepts that has gained considerable attention in the past
decade is the the concept widely known as free flight.

In 1995, free flight was highlighted by the RTCA (Radio Technical Commis-
sion for Aeronautics), whose members include aircraft manufacturers, operators, air
traffic controllers, and government agencies, as the way to increase capacity of the

air transport system [27]. The report put forward by RTCA defined free flight as:

... a safe and efficient flight operation capability under IFR (Instrument
Flight Rules) in which the operators have the freedom to select their path
and speed in real time. Air traffic restrictions are only imposed to ensure
separation, to preclude exceeding airport capacity, to prevent unautho-
rised flight through SUA (Special Use Airspace), and to ensure safety
of flight. Restrictions are limited in extent and duration to correct the
identified problem. Any activity which removes restrictions represents a

move toward free flight.

The acceptance of RTCA’s definition of free flight affirmed that the funda-
mental constraint of ATC is the safe separation of aircraft, and that any other
constraints placed upon aircraft navigation were viewed unfavourably by the indus-
try [28]. However, some researchers have claimed that there is a lack of quantifiable
evidence in the public domain justifying free flight [29]. The definition put forward
in the report was purposefully vague and open for interpretation. The report also
failed to settle questions not only about the feasibility of mature free flight, but
more importantly about, the transition to a mature free flight state.

After almost a decade of active research into free flight, its feasibility and

implications, three overarching research areas have emerged.

+« the technical aspects of airborne separation assurance and airspace optimisa-
tion
+ the procedural aspects of the delegation of separation assurance and the re-

definition for the responsibilities of aircrews and ATSP (Air Traffic Service

Provider)s

+« the human factors and workload aspects of the emerging roles of both air traffic

controllers and aircrews

Research in these three areas has indicated the feasibility of free flight, al-
though a range of free flight implementations has lead to various degrees of endorse-
ment [8, 25, 29, 30, 31, 32, 33]. Ratcliffe showed that free flight in Europe would

3



CHAPTER 1. INTRODUCTION AND MOTIVATION

result in fewer potential collisions than the current route structure, but that colli-
sions in the current route structure are easier to resolve with altitude restrictions
[29]. Magill also found that free flight would result in fewer potential collisions due
to a reduction in airspace density [31]. However a study by Andrews & Welch [32]
concludes that the variability in sector loading will be higher in free flight and that
“simultaneous multiple conflicts will be a routine occurrence when traffic flow is not

highly conditioned and may impose a limitation on the tolerable traffic loading.”

The primary area of contention in free flight’s ambiguity is the human factors
element, where minor variations in the definition of free flight can lead to major
effects on its effectiveness. Andrews & Welch conclude “reasonable assumptions re-
garding the amount of workload relief provided by decision-support tools leads to
the conclusion that only limited growth can be accommodated by this means.”[32]
However, this view is refuted by Hoekstra et al. [33] who concluded, “none of the
studies [both off-line and man-in-the-loop studies of no-ATC, mature free flight]
could refute the feasibility of an airborne separation assurance concept.” Stan-
dardised airways simplify the job of the controller by limiting the trajectories that
aircraft may follow, thus also limiting the number of trajectories liable to conflict.
Eby concludes that “Indeed, without the use of airways, the current ATC system
would simply be unable to handle typical daily traffic.”[25] Several major programs
and projects have investigated variations of the free flight concept in both Europe
and the U.S.

In Europe most of the research has been conducted by EEC (EUROCON-
TROL Experimental Center). A major program conducted by the EEC throughout
the last decade was PHARE. The free flight concept behind PHARE was an evo-
lutionary approach increasing the accuracy and availability of information, leading
to a greater precision in aircraft position and thus increasing the capacity of the
system [3]. Under PHARE, each aircraft in the EUROCONTROL region would
be assigned a 4D trajectory in the form of a tube-in-the-sky, which it would fol-
low to a specific navigational precision [34]. The PHARE program provided the
basis for the European Commission’s AFAS (Aircraft in the Future ATM System)
program. The free flight concept behind the AFAS program is a time-based ATM
where “first-come, first-served” scheduling is replaced by first-planned, first served
scheduling in which equipped aircraft receive priority [35]. The notion of equipped
aircraft is important because of the extensive range of aircraft avionic capabilities.
These range from simple magnetic compasses to sophisticated flight management

systems which integrate satellite and inertial navigation systems. One of the key

4



CHAPTER 1. INTRODUCTION AND MOTIVATION

issues facing any change in airspace structure is how to accomplish the transition
with a fleet of mixed equipage. One solution put forth is to restrict large sections of
airspace to aircraft with the proper equipage for free flight.

In the U.S., both NASA and the FAA (Federal Aviation Administration
(U.S.A.)) have conducted research with their own versions of free flight. NASA’s
approach to free flight is based on DAG-TM (Distributed Air-Ground Traffic Man-
agement) [36]. The premise behind this version of free flight is that aircraft will
not be autonomous in a small region segregated airspace, set aside for free flight,
but that distributed responsibility for traffic management would be between aircraft
and ground-based controllers enabling free flight to be applied to a larger area of
airspace [36]. The FAA is overseeing the development of a set of tools to aid in the
transition towards free flight called FFPI (Free Flight Phase I), which concluded
at the end of 2002. The free flight concept behind FFPI is yet uncertain, as it is
primarily concerned with developing a set of core technologies to enable a variety of
free flight concepts to be implemented [37].

It is clear from the current literature that radical changes in the fundamental
airspace infrastructure are underway in both Europe and the U.S. However it is yet
unclear what form the future structure will take as the FAA, NASA, Boeing and
EUROCONTROL are each pursuing their own vision [38, 39, 40]. This structure will
be greatly influenced by the emergence and maturation of new technologies, such
as data link. The next section will provide some background information on the
technologies currently deployed, and Section 1.3 will discuss the future technologies

likely to be deployed to replace the current generation of technology.

1.2 Current Air Traffic Management Environment

The current ATM system consists of a rigid route structure where aircraft are con-
stantly under ground based control. The system operates in the following manner.
A commercial transport aircraft will begin its flight by advising the control tower
of its intention to execute a flight plan, which has been scheduled in advance with
the ATSP. On most modern aircraft, this flight plan is also loaded into the aircraft
FMS. The flight will then be given clearance by the tower to taxi and take-off follow-
ing a SID (Standard Instrument Departure). The flight is controlled by the tower
until it has cleared tower airspace, at which point, control of the aircraft is handed
off to the TRACON (Terminal Area Controller) to complete the climb-out and turn

onto its initial jet route. Once clear of terminal air space, the aircraft enters centre

5



CHAPTER 1. INTRODUCTION AND MOTIVATION

airspace and is now under the control of a sector controller. The aircraft remains
in centre airspace, under the control of different sector controllers as it traverses its
flight path from one jet route to another. At sector boundaries and the convergence
of airways, the aircraft may be issued with speed and altitude restrictions. Following
the established jet routes, the aircraft follows a flight path, which may not neces-
sarily be a direct routing. When the aircraft approaches its destination, it reenters
TRACON airspace and begins a STAR (Standard Terminal Arrival Route), where
it is merged into a single stream of arriving aircraft before being cleared to land.
When the number of arriving aircraft is too great, the aircraft may be fed into a
holding pattern. The holding pattern is used to evenly space randomly arriving
aircraft in order to maximise runway throughput. A rigid route system has been
historically necessary to maintain aircraft separation; however it comes at the cost

of inefficiency resulting in added flight time.

ATM can be generally characterised by three components: communication,
navigation and surveillance, often referred to collectively as CNS. All three com-
ponents are currently ground-based and the collaboration between aircraft or air
carriers and ATSPs is limited [41]. The different facets of the CNS (Communi-
cation, Navigation and Surveillance) system are available to and are utilised by
ATSPs, flight crews, and AOC (Airline Operational Centers)s, who share responsi-
bility for safe, economic and efficient air transport. A major limitation of the current
air transport system is that the three key participants in the ATM system does not
have access to the same set of information. For example, radar track information is
known to the ATSPs, but not the aircrew or the AOCs. The limitations imposed
by these different facets, coupled with the rigid route structure and limited capacity
of the current ATM system, have led to a very conservative use of airspace. The

following three sections will describe each aspect of the CNS system.

1.2.1 Communication

Ground-to-ground voice exchange is carried out over telephone lines, but ground-
to-ground data exchange is far more complicated. In Europe, two different systems
are currently available for ground-based data exchange, the AFTN (Aeronauti-
cal Fixed Telecommunications Network), and the SITA (Societé Internationale de
Telecommunications). In the United States AFTN is also used along with AviNet.
AFTN has been available for several decades, and is capable of providing ICAO-

format flight plan data to even the smallest airports. However, smaller airports tend

6



CHAPTER 1. INTRODUCTION AND MOTIVATION

to have older versions of AFTN hardware, and as a consequence are “not capable of
supporting the efficient exchange of data required by the present ATS (Air Traffic
Services) system.”[42] AFTN is used primarily by the area control centres and air
traffic service providers, but not airline operation centres.

In Europe AOCs prefer to use the SITA network. SITA provides a “global
network for data communications” and allows the data to be formatted by the user
[42]. In the U.S. AOCs and airports often use AviNet, which provides data com-
munications, message switching and content services using a variety of customisable
data formats [43]. Because of the number of different systems available, there are
effectively two different sets of data being employed in ATM, one for ATSPs and
one for AOCs. As each network carries a different set of information, both ATSPs

and AOCs could benefit from a unified communication system.

Air-to-ground/ground-to-air voice communication includes HF (High Frequency),
VHF (Very-high Frequency), and UHF (Ultra-high Frequency) analogue and satel-
lite digital signals. Civilian aircraft primarily utilise the VHF spectrum and reserve
the HF spectrum for long distances over water [1]. The UHF spectrum is reserved
for use by military aircraft. Air crews must tune their radios to the correct frequency
for each ATSP along their route [42]. In modern aircraft equipped with a FMS, the
radios are tuned automatically. While tuned to a specific frequency, the air traffic
controller and all the air crews on that frequency and in range, hear all messages
passed over the channel. All communication on the channel is available to anyone
listening to the channel. This ‘party-line’ effect is the main source of situational
awareness for pilots. In order to minimise miscommunication, both controllers and
air crew follow a standard set of procedures and phraseology [1].

The ACARS (Airborne Communications Addressing and Reporting System)
is the only widespread air/ground data link, but is not approved for flight critical
messaging. ACARS utilises both VHF radio and satellite communications links and
the information is fed into the appropriate ground-to-ground data network SITA or
ARINC depending on location.[42]

1.2.2 Navigation

Traditionally aircraft have relied on ground based radio beacons and inertial nav-
igation systems to navigate. Modern aircraft combine traditional methods with

newer technologies and navigational aids including satellite based radio navigation

7



CHAPTER 1. INTRODUCTION AND MOTIVATION

to provide greater accuracy and a higher level of redundancy [7].

The primary method of navigation for commercial aircraft consists of beacon-
to-beacon navigation. The U.S. maintains a system of federal airways, compromis-
ing VOR (VHF Omnidirectional Range), DME (Distance Measuring Equipment)
systems, TACAN (Tactical Air Navigation) and combinations thereof. Depend-
ing on altitude, these highways-in-the-sky are designated as either ‘victory’ airways
up to 18,000ft MSL (Mean Sea Level) or jet routes between 18,000ft to 45,0001t
MSL. Similar air routes used in Europe are designated airways [44]. Currently
VOR/DME navigation is approved by the ICAO as the primary means of terres-

trial navigation [1].

1.2.3 Surveillance

ATM currently uses a combination of primary and secondary radar for surveillance
purposes. Primary radar provides the controller with aircraft range, azimuth, and
in some cases elevation, whereas secondary radar includes the aircraft’s altitude and
transponder identification, which enables each aircraft to be uniquely identified.
Secondary radar utilises a variety of modes, A, C, and S [7]. Mode C and S provide
the pressure altitude referenced to 29.92in (1013mm) of mercury in 100ft increments
from 1,000-126,700ft [7]. Mode S is the current standard for civil transport aircraft
[45].

1.3 Future Air Traffic Management Environment

The capacity crisis, which currently threatens both European and U.S. airspace,
reached a temporary climax (in the U.S.) in the summer of 1998 [46] and has become
the impetus for the transition from airspace-based ATM, where route structures are
based on fixed ground stations, to trajectory based ATM, where route structures
are more fluid and can take advantage of area navigation [22]. This transition is
being facilitated by advances in CNS technologies which are blurring the traditional
boundaries between communication, navigation and surveillance as most of these

new technologies are designed to serve multiple CNS functions.

8



CHAPTER 1. INTRODUCTION AND MOTIVATION

1.3.1 Flight Management Systems

In order to increase both efficiency and safety, modern aircraft are routinely equipped
with FMS to guide aircraft along a desired flight plan. According to Kayton & Fried
the FMS has three specific capabilities relevant to ATM [7]. The first is its ability
to accurately guide aircraft along a specific path through a series of two- or three-
dimensional (2D or 3D) way points. The second is minimising the cost of a flight
by selecting optimal speeds or altitudes for fuel efficiency. The third is its ability to
meet a RTA (Required Time of Arrival), often referred to as four-dimensional (4D)

navigation capability.

Flight management systems hold databases of static information such as lo-
cations and frequencies of navigational beacons, dynamic information such as the
current flight plan, and predicted wind velocities along the flight path. The FMS
integrates data from avionics systems to acquire current position, velocity and atti-
tude, and generates altitude, heading and throttle commands to guidance systems.
FMS architectures have been developed with data link interfaces to allow the FMS
to transmit current location, flight plan and wind data and to receive new flight
plans [7, 35]. However most of the data link capabilities of FMS are under utilised
by current ATM systems. With the increase of dataflow in the future airspace

system, however, FMS is likely to become more critical to all three areas of CNS.

1.3.2 Navigation

Navigation technology is based on satellite radio navigation augmented by onboard
internal navigation systems coupled with a flight management system. The main
form of satellite navigation to date is the GPS (Global Positioning System) es-
tablished and maintained by the U.S. Department of Defense. GPS will soon be
reinforced by the Europe’s Galileo system, consisting of twelve medium earth orbit
satellites. Ochieng et al. conducted a simulation study of the combined accuracy
and integrity of the combined GPS/Galileo system and concluded that the horizon-
tal error can be reduced to under 6m, and vertical error can be reduced to under
10m respectively. Even more important however is the improvement in integrity
monitoring, where the a combination of GPS and Galileo systems, leaves, "only a
few isolated points having availability below 99% and a majority of areas having
between 99.7 and 100% availability.” [47] This capability will allow aircraft to use

satellite navigation as a primary means of navigation, which will in turn allow radio




CHAPTER 1. INTRODUCTION AND MOTIVATION

beacons to be removed [48].

Equally as important as changes to navigation aids is a change to the manner
in the way that navigation requirements are specified. The new concept is known
as RNP (Required Navigation Performance). RNP “is a statement of the required
navigation accuracy required for operation within a defined airspace.”[7] RNP type
is based on navigation performance accuracy, i.e. the difference in lateral distance
between true aircraft position and measured aircraft position, and is stated in nau-
tical miles [49]. In addition to accuracy RNP also specifies the integrity, continuity
and availability requirements [47].

Changing to RNP will allow aviation authorities to certify the overall navi-
gation system accuracy instead of specific pieces of navigation equipment; however,
an aircraft can only be RNP certified if it has an FMS capable of calculating the

total system error of the aircraft.

1.3.3 Surveillance

In addition to primary and secondary radar, future surveillance will also depend on
information transmitted by aircraft. This technology is known as ADS (Automatic
Dependent Surveillance). Two versions are currently proposed: ADS-A for com-
munication addressed to specific aircraft and ADS-B for broadcast communication.
ICAO specifies that ADS systems must transmit at least the 3D position of the
aircraft, time of day and aircraft identification [7]. The difference between ADS
and the current surveillance systems is that the quality of the data processed by a
surveillance system is highly dependent on the quality of the aircraft’s sensors [7].
For older, more poorly equipped aircraft, relying on the ADS-B may decrease the
accuracy of surveillance data, but for modern aircraft, it will most likely improve
it, as “the navigation accuracy of today’s state of the art aircraft well exceeds that
of ground based radar.”[35] ADS also provides a suitable medium to transmit the
information gathered by FMS to both ATSPs and AOCs. ADS reporting intervals

are expected to range from 10s in enroute phases of flight to 4s in terminal areas [7].

1.3.4 Communication

The ATN (Aeronautical Telecommunications Network) is proposed for the future
of both ground-to-ground and air-to-ground communications [7, 42]. The ATN

will allow ground, air-ground and avionics sub-networks to communicate via data

10



CHAPTER 1. INTRODUCTION AND MOTIVATION

link using the “International Organisation of Standardisation (ISO) open-system
interconnection (OSI) 7-layer protocol architecture.”[7] This system should enable
AOCs, ATSPs and aircrews to access the same set of information, thus ensuring
more efficient operations. The airborne segment of the ATN is proposed to provide
ADS, which will broadcast current aircraft state, and possibly the next trajectory
change point or wind data, to both ATSPs and AOCs. The technology used to im-
plement ADS or the broadcast version, ADS-B (Automatic Dependent Surveillance
Broadcast) is still under discussion in Europe; however, in 2002 the FA A published a
series of reports endorsing 1090ES (Mode-S Extended Squitter) and UAT (Universal
Access Transceiver) as it’s choice for ADS-B technology [21, 50, 51].

Voice communications will also be included in the ATN data network. “The
controller-pilot data link communications (CPDLC) service is planning to use the
ATN and is designed to replace the controller/pilot dialogue under certain condi-
tions.” [52] After conducting data link experiments onboard NASA’s 737, Knox
and Scanlon concluded that the use of data link for routine tactical and strategic
communications with ATC resulted in a perceived reduction in pilot workload and a
reduction in crew communication errors [20]. It is believed therefore, that messages
exchanged via data link will “reduce communication errors and relieve overloaded
ATC voice radio frequencies.”[20] Dieudonne, Joseph, and Cardosi performed a
comparative risk analysis between today’s voice system and the proposed data link
using CPDLC (Controller-Pilot Data Link Communications) and similarly con-
cluded that, “the probability of an error occurring via the mechanism of delivery
has been reduced by orders of magnitude.” [53] However concerns have been raised
about the potential workload implications and loss of situational awareness caused
by the lack of the party-line that such a transition may cause [54]. These concerns
lead Sigmore and Hong to investigate the possibility of adding party line data to
a data link network, which they deemed feasible. Additionally mixing voice and
data link communications poses its own problems. Lozito et al. found that when
time pressure was applied to flight crews using a mixed voice data link environment

resulted in longer transmission times and more instances of missed message loading
[55].

1.4 Existing Airspace Simulators

The widespread implementation of satellite navigation, flight management systems

and automatic dependent surveillance systems is the foundation for fundamental

11



CHAPTER 1. INTRODUCTION AND MOTIVATION

change to the air traffic system. However, as the cardinal tenet of ATM is to
maintain or improve the current safety level, [4, 7] while maintaining the efficiency
of the air transportation network, it is not feasible to “test out” new ATM schemes
without extensive simulation [4, 7]. Currently two simulation packages have been

developed commercially, to enable ATSPs to develop new procedures.

1.4.1 Commercial ATM Simulation Tools

Two simulation packages are commercially available for air traffic management re-
search: TAAM (Total Airspace & Airport Modeler) and RAMS (Reorganised ATC
Mathematical Simulator). TAAM is a commercial package developed by The Pre-
ston Group (TPG) in association with the Australian Civil Aviation Authority, and
is maintained by TPG, currently a subsidiary of The Boeing Corporation. RAMS
was developed by EUROCONTROL and is maintained under the name RAMS Plus
by ISA Software. Both TAAM and RAMS are discrete event simulators capable of
running in FAST-TIME (Simulating one second in less than on second of real time),

and both are widely used by industry.

TAAM

TAAM is used primarily as a planning tool to conduct analysis and feasibility
studies of ATM concepts. TAAM has the ability to simulate most ATM functions
in detail including ground movement and handling. Additionally, it can generate
scenarios for real-time AT C simulators. TA AM specialises in simulations that cover

the entire ATM process from gate to gate [56].

Due to the size and complexity of performing a large scale simulation of an
Air Traffic system, TAAM requires comprehensive input data files describing the
entire air traffic system. TAAM allows these files to be configured for simulation of
varying levels of fidelity to allow, “better modelling of critical areas.” [56] The inputs

can be specified on either a system or sector wide basis.

TAAM is capable of generating 2D or 3D graphical visualisation of the simu-
lation, viewable in several independently scalable windows simultaneously. TAAM
also provides a range of output data choices, which can be tailored for specific re-
search needs. TAAM’s main strengths lie in its ability to perform ground and

terminal area simulations. The latest version of TAAM allows for limited weather

12



CHAPTER 1. INTRODUCTION AND MOTIVATION

modelling using winds aloft in sectors, SIGMET (Significant Meteorological Infor-
mation) and METAR (Meteorological Airfield Report). TAAM’s principal areas
of application have been: [56]

—Airport capacity (gate, taxiway, runway capacity)

—Planning airport improvements, extensions

—Noise impact

—Impact of severe weather

—Design of terminal area procedures (SIDs/STARs)

—Design of terminal area AT C sectors Controller workload assessment

—Impact of new ATC rules, e.g. reduced vertical separation.

RAMS

RAMS Plus is a fast-time discrete-event simulation software package which, like
TAAM, is used as a planning tool to conduct analysis and feasibility studies of
ATM concepts. RAMS has placed special emphasis on being able to study and
analyse airspace structures, ATC systems and future ATC concepts, but lacks the
ability to model ground and terminal areas to the same level of fidelity as TAAM
[57]. RAMS has the ability to be run in real time as well as FAST-TIME, thus allowing
human interaction [58]. Like TAAM, RAMS requires comprehensive input data
files describing the entire air traffic system. Input files necessary to run RAMS
include an airspace description, flight plan description, a rule based ATM system,

workload analysis and weather pattern files.

RAMS is capable of generating a 2D graphical visualisation of the simulation,
in a single scalable window. RAMS also provides a range of output data choices,
which can be tailored for specific research needs. RAMS’ main strengths lie in
its ability to perform rule-based conflict detection and avoidance during the en-
route phase of flight. The latest version of RAMS includes a limited convective
weather model represented as dynamic forbidden-zones [58]. RAMS’ principal areas

of application have been: [5§]

—ATC Workload
—Free routing investigation
—Free flight investigations

—Airspace capacity, density

13



CHAPTER 1. INTRODUCTION AND MOTIVATION

Limitations

Many compelling arguments exist for using either TAAM or RAMS for ATM re-
search. They are both high-fidelity simulation tools capable of simulating large num-
bers of aircraft. Both tools have been extensively verified for accuracy directly by the
developer and indirectly by the end users. However, these tools also present many
challenges to researchers as a consequence of their inherent complexity. Donohue
and Laska found that TAAM and RAMS, “require significant amounts of data that
are sometimes difficult to obtain.”[5] They also stated, “Learning to use these mod-
els takes considerable time and effort limiting their use to specialised individuals.” 5]
Additionally, RAMS and TAAM are closed source tools, thus eliminating the pos-
sibility of extending their capabilities to novel research applications. Consequently,
it is possible neither to simulate data link equipped aircraft nor to pass messages
between system. This limitation prevents RAMS and TAAM from begin used for
work such as that suggested by Wichman, Carlsson and Lindberg, who conducted
experiments in feeding back observed wind data between pairs of aircraft to improve
the performance of an experimental FMS [35]. Furthermore TAAM is prohibitively

expensive for independent researchers.

1.4.2 Non-commercial Simulation Tools

In order to investigate innovative concepts researchers also use non-commercial AT C
simulation tools. Unfortunately tools of this nature are difficult to find, and the
ones mentioned in the literature, which are not proprietary, often have undesirable
characteristics. First, as most of these simulation tools are written for a specific
research application, they are often not portable nor readily extendable. Secondly,
they often come with no technical support or documentation, and these simulation

tools are often of unknown quality.

In the literature review undertaken for this research, several airspace and
ATM simulators were identified. However many of the smaller and lower fidelity
simulation tools were only referenced as background to conflict detection and avoid-
ance studies, such as the general purpose research flight simulator used by Funabiki
and Muraoka to investigate potential human error in the cockpit [59] or the Com-
plete Air Traffic Simulator used by Alliot and Bosc to study the impact of reduced

vertical separation minimums (RVSM) [60]. Other references outline methods for

14



CHAPTER 1. INTRODUCTION AND MOTIVATION

developing simulation tools, such as the Aircraft Construction Tool (ACT) devel-
oped by CAE Electronics, which developed a general aircraft model to simulate
different aircraft types from data available in Jane’s All the World’s Aircraft. These
simulations appear to lack documentation in the public domain.

Even references to some of the larger, high fidelity tools currently in develop-
ment at NASA, EUROCONTROL and the NLR (National Aerospace Laboratory
(The Netherlands)) are obscure and difficult to obtain. It is apparent from the
literature available that NASA is developing a high fidelity FFSIM (Free Flight
Simulation) which will incorporate a number of smaller simulation tools with the
intent of modelling the future of free flight airspace in the U.S. [61, 62]. However,
according to Schleicher and Davis, FFSIM lacks a wind model and is not yet com-
plete [62]. It seems however that NLR has already developed such a simulator, called
NARSIM (NLR’s Air Traffic Control Research Simulator), which they have been
using to simulate new operational procedures and new controller assistance tools,
and to develop human machine interfaces for the new Amsterdam Advanced ATC
system [63]. EUROCONTROL also has its own airspace simulator called EURO-
CONTROL Simulation Capability and Platform for Experimentation (ESCAPE),
which has similar capabilities to NARSIM. All of these systems, are restricted to the
current state of the art and are complex pieces of software which run over multiple
computers, in a dedicated setup. Consequently, they are not suitable for exploratory

research applications.

1.5 Case for a Non-proprietary,
Open Source Airspace Simulator

After considering all the airspace simulators found in the literature, it is clear that
a high-level, low-fidelity airspace simulator did not exist. Moreover, it was also
apparent from the literature that research into radical changes to increase airspace
capacity were needed and on-going. This need had sparked the creation of several
non-commercial airspace simulators by NASA, NLR and EUROCONTROL, as both
TAAM and RAMS were found to be too restrictive to investigate novel methods to
improve capacity [64]. However, the complexity, and somewhat proprietary nature
of these non-commercial (academic) simulation tools, limits their use is restricted
to large research programs associated with these organisations. There is, therefore,

a need for a simpler, more flexible and more accessible simulator for exploratory

15



CHAPTER 1. INTRODUCTION AND MOTIVATION

research into radical changes to increase airspace capacity that is especially suited

to small research teams.

1.6 Simulation Constraints

In order to take full advantage of creating a high-level, low-fidelity simulator, it was

important to meet the following constraints:

% Run on a single personal computer (PC)
% Run faster than real-time
% Be Open source

« Be Nonproprietary

The first two computational constraints make the creation of efficient data structures
and algorithms essential. Having a simulator that can run faster than real time, but
requires several computers working in parallel would limit the usefulness of the
simulator. Conversely having a simulator that can run on a single PC but takes
several days to compute a six hour simulation period would also be less than ideal.
The second two constraints have little impact on the simulation’s computational
aspects, but require a clear modular design so that the simulation may be easily

adapted to different research applications.

1.7 Research Objectives

The research presented in this thesis has a single overarching aim:

To create a new simulation tool for the purpose of conducting exploratory
research into radical new approaches to improve airspace capacity with

the following capabilities and characteristics:

% Develop discrete event simulator
< Simulate atmospheric conditions
« Simulate data link communications

% Simulate ATC guidance

while meeting the constraints outlined above.

16



CHAPTER 2

Airspace Simulator Requirements

Due to the complexity of existing simulation tools, a high level, low fidelity simulator
was developed to meet the objectives outlined in Section 1.7. This simulator is
designed to model possible ATM structures in the 2020 time frame. Section 2.1
in this chapter outlines the simulator’s requirements in terms of capability, fidelity,
and speed. Section 2.2 describes the performance database employed. Section 2.3
describes the programming language and computer platform. Section 2.4 outlines
the simulator’s organisational structure. The overall assumptions upon which the
simulator is based are presented in Section 2.5. Finally, Sections 2.6 and 2.7 describe

the inputs and outputs of the simulator.

2.1 Simulation Requirements

The simulation requirements can be organised into three areas: simulation capa-
bilities, speed and fidelity. The simulation capabilities summarise the functional
requirements of the simulation tool and are discussed in Section 2.1.1. The speed
and fidelity requirements address the simulation performance requirements and are
discussed in Section 2.1.2. Table 2 summaries the simulation requirements discussed

below.

2.1.1 Capabilities

The air traffic simulator has four distinct functional requirements, covering the sim-
ulation of specific aircraft and the simulation of the natural and manmade environ-

ments in which the aircraft operate:

% To efficiently simulate aircraft performance through an adequate dynamics
model. As the simulation tool is intended to facilitate research into future
air space concepts, this requirement must include the simulation of the per-

formance characteristics of multiple aircraft simultaneously. Additionally, the

17



CHAPTER 2. AIRSPACE SIMULATOR REQUIREMENTS

72
*o*

Y
**

simulation tool must to allow the manipulation of the aircraft dynamic models
while the simulation is in progress through guidance updates. This element of
the simulation tool is critical in the evaluation of information feedback through
data link systems. Information feedback over data link will play an important
role in future airspace systems as the information passed will provide the pri-

mary source of information for communications and surveillance.

To simulate the airspace environment in which the simulated aircraft will be op-
erating. The aircraft within the airspace need to be organised so that the they
may be monitored and controlled by an air traffic control algorithm. Addition-
ally, the simulation tool needs to be capable of simulating real-time broadcast
and monitoring of simulation parameters. The simulation tool must be able to
locate individual aircraft so that data-link transmissions can be transmitted
between aircraft. Additionally, the simulation tool needs to broadcast a much
more diverse set of information than RAMS or TAAM over a simulated data-
link network. In addition to the information such as current position, velocity
and heading, the current wind readings, intent information, and flight phase
must also be provided.[20, 65, 66].

To realistically simulate the atmospheric environment in which the aircraft
operate. The atmospheric environment includes both natural phenomenon,
e.g. wind fields and weather phenomena. Variability and uncertainty in wind
fields have been shown in the literature to cause significant variation in aircraft
performance [12, 67, 68]. These environmental factors therefore need to be

simulated to enable the effect of atmospheric variation to be investigated.

To simulate the air traffic management structure, which includes airspace sec-
torisation, airport location, and air traffic control procedures such as altitude
and speed restrictions. The air traffic management procedures need to be
flexible and capable of handling a wide range of existing and experimental

procedures.

2.1.2 Speed and Fidelity

In a simulation environment, speed refers to the number of computations the simu-

lation is capable of running during a specified period of time. This speed is governed

by several factors including the time step used, the data structures used, the logical

structure of the simulation, and the computer hardware i.e. the processor speed.

18



CHAPTER 2. AIRSPACE SIMULATOR REQUIREMENTS

Table 2: Simulator Requirements

Simulator Requirements Level of Necessity
Handle 300 aircraft simultaneously Desired
Handle 4000 aircraft total Desired
Capable of running FAST-TIME Necessary
Capable of running on a standard PC Necessary
Allows data link simulation Necessary
Allows intent broadcast Necessary
Allows aircraft state broadcast Necessary
Allows current wind broadcast Necessary
Allows flight phase broadcast Desired
Allows data link feed back Necessary
Allows wind field simulation Necessary
Includes conflict detection and avoidance algorithms Necessary

The time step refers to the amount of time covered in one simulation step.
The choice of time step is directly related to the fidelity of the simulator; the smaller
the time step the greater the fidelity. However, the speed of simulation does not
effect the fidelity of the simulator. The speed of a simulator is classified as either

fast, real or slow time.

In simulators which run in real time, one second of simulated time is equivalent
to one second of real time, regardless of the time step chosen. A real time simulator
that has a time step of one second computes the calculations required for each time
step, once per second, but a real time simulator with a time step of half a second
will compute the calculations twice each time step. Consequently, for a simulator
to run in fast time with a time step of half a second, then the calculations need to
be computed faster than every half second such that one second of simulated time
is computed faster than one second of real time. Similarly simulators which run
in slow time compute one second of simulated time slower than one second of real

time.

The fidelity of a simulator is a relative description of how accurately it models
the motion of the entity it is simulating. The fidelity level of a simulation is often
tied to the performance model used, which in turn dictates the time step allowable.
The time step chosen must be sufficiently small so that error introduced by the
discretization of the simulation can be neglected. Hoffman summarises the following

performance model classification system suggested by Renteux:[69, 70]

19



CHAPTER 2. AIRSPACE SIMULATOR REQUIREMENTS

% Class A: Full flight dynamical models, utilising six degrees of freedom (DoF)

equations of motion incorporating translational and rotational motion.

+ Class B: Point mass models, utilising three DoF equations of motion covering

translational motion.

% Class C: Parametric models, where the actual forces, i.e. lift, drag, thrust, are

not considered, but the resulting acceleration and speeds are modelled.

% Class D: Fixed models, where horizontal and vertical speeds are extracted from

tables as functions of altitude and flight phase.

Using this classification system, Class A simulators afford the highest level
of fidelity and consequently have the slowest speed and require the smallest time
step. Fidelity impacts on speed because of number of calculations computed during a
single time step increases with the level of fidelity. While increasing fidelity decreases
speed, several other aspects of a simulation also impact on speed. Any increase in
the number of calculations per time step, decreases the simulation speed. Therefore
additional time can be added by inefficient data structures which require multiple
calculations to locate and access data required. Consequently, a simulator with
a higher fidelity level and more efficient data structures and architecture can run
faster than a simulator with a lower fidelity level simulator with less efficient data
structures and architecture.

The simulation tool required for this research programme needs to be suffi-
ciently powerful to simulate large numbers of aircraft simultaneously while running
in fast-time. It decided that the minimum requirements for the simulation should be
derived from the projected 2020 traffic level for the busiest airport in Europe, Lon-
don’s Heathrow Airport, as the that airspace would be the most congested airspace
in Europe. It was further decided that the minimum number of concurrently sim-
ulated aircraft should be equivalent to two hours of the 2020 Heathrow daily peak
traffic. Additionally, the minimum number of total simulated aircraft should be
equivalent to 12-16 hours of 2020 Heathrow traffic. Specifically the simulator needs
to be able to model at least 4,000 aircraft in total and 300 aircraft simultaneously
over a 12-16 hour period [6].

Although the requirement for speed is in direct opposition to the level of
fidelity of the simulator, the widespread use of FMS, allows the individual perfor-
mance characteristics of aircraft to be captured with relatively few parameters, i.e.
mass, true air speed at cruise, rate of climb or descent, and fuel flow rate as a func-

tion of altitude. By assuming an aircraft is equipped with an FMS the assumption

20



CHAPTER 2. AIRSPACE SIMULATOR REQUIREMENTS

is made that an aircraft will behave in a uniform fashion because the FMS will
handle all of the lower level control functions which would otherwise vary among
aircraft types. It was concluded that aircraft under FMS control, could be ade-
quately modelled using either a Class B, (3 DOF (Degrees of Freedom)) [71], Class
C (parametric) or Class D (tabular) model [72].

2.2 Performance Database: BADA

EUROCONTROL has developed and maintains a performance database of the co-
efficients for a Class B (3DoF) and Class D simulation. This database contains
tabulated performance information for over 186 different aircraft types and is called
the BADA (Base of Aircraft Data) dtabase [72]. The BADA database is based on

the energy formulation outlined below:

dVras
pn (1)

(T — D)Vpas = mgh + mViras

where T is Thrust; D is Drag; Vras is the true airspeed; m is aircraft mass;
h is the time rate of change of altitude and g is the Earth’s gravitational constant.
Since its inception BADA has become the industry standard for aircraft perfor-
mance modelling in Europe [72]. The current version of the BADA database, 3.3
incorporates 186 aircraft types [73], which constitute over 90% of the aircraft using
EUROCONTROL airspace [74]. As the BADA database is readily available, and
well documented in the literature [42, 33, 74, 75, 76], it was decided to use the
BADA 3.3 as the basis for the aircraft performance model.

The BADA database is made up of three separate text files for each supported
aircraft type:[72]

e OPF (Operations Performance File)
e APF (Airline Procedure File)
e PTF (Performance Table File)

The OPF contains the performance data specific to the aircraft type such
as aerodynamic parameters, flight envelope, thrust, fuel consumption and ground
handling, which allow a 3DoF model to be constructed [72]. The APF “specifies

recommended speed procedures for climb, cruise, and descent conditions,” for each

21



CHAPTER 2. AIRSPACE SIMULATOR REQUIREMENTS

aircraft type. The OPF and APF contain the basis of a 3DoF simulation and they
are used to derive the PTF, which “specifies cruise, climb, and descent performance
at different flight levels,” [72] for each aircraft type. These three files form an aircraft
performance model. Depending on the type of simulation required different BADA
files are required. For example, a Class B simulation uses the APF and OPF
files, and a Class D simulation includes the PTF for each aircraft type used. The
format of these files is given in the BADA User’s Manual [72]. To minimise the
computational load, it was decided that the simulation should use the PTF portion
of the BADA database to create a Class D dynamics model.

2.3 Programming Language
and Operating System

The efficiency of software is affected by the capabilities of the language in which it is
written. The simulator created for the proposed research is written in the Modula-2
programming language. Modula-2 provides several advantages over programming
languages such as C, C++, or FORTRAN. Modula-2 allows the use of specialised
data types, modular design, and pointers similar to C and C++, but with much
stricter syntax and data type compatibility requirements. Arguably, Modula-2 is
easier to learn and less prone to programming errors. In addition both the flight
simulators at Cranfield University are written in the Modula-2 language, compiled
under the MS-DOS operating system with a compiler known as Stony Brook Modula-
2 (SBM). Because DOS has been phased out in recent versions of the Microsoft’s
Windows operating systems, and Stony Brook Modula-2 only supports a 16-bit
environment, it was decided to use the GPM (Garden’s Point Modula-2) compiler
under the Linux operating system. Linux is an open source operating system, which

is inexpensive and widely available.

2.4 Simulation Organisation

The simulation architecture is modelled according to the functionality required by
the research specified in Section 2.1. The research proposed requires a multi-aircraft
performance model, a weather model, an airspace model, and an ATC model.

Therefore the overall system structure includes primary modules corresponding to

22



CHAPTER 2. AIRSPACE SIMULATOR REQUIREMENTS

Observed Initial Flight .
Weather BADA Conditions|| Plans Alr;%ice

Data

/
Airspace Module / “/l

4 v v w AIC Module

Wind Field o  Multiple Aircraft g | FPlof i | Confrol
Module _'Performonce Module Module |; | Module

Figure 1: Simulation Architecture

each modelling requirement. The modularity is designed to accommodate future

changes and enhancements to the simulator. This structure is shown in Figure 1.

2.4.1 Aircraft Performance Model

The aircraft performance module forms the basis of the simulation tool. Its objective
is to model aircraft equipped with 3D or 4D FMS navigating over a spherical earth
using either conventional or satellite navigation to follow a flight plan made up of set
way points. It takes in data from the BADA input files and the weather module.
The AT C module interacts with the performance model by modifying the individual
aircraft flight plans. It outputs the aircraft position, altitude, velocity, heading, rate

of climb or descent.

2.4.2  Atmospheric Environment

The atmospheric environment module supplements the aircraft performance mod-
ule by generating the wind velocity components which are added to the aircraft’s
velocity (which is relative to the air) to obtain the aircraft’s inertial velocity, or
velocity relative to the Earth-fixed frame. A wind field model is required in order
to accurately simulate aircraft motion, because the variability in winds aloft causes
trajectory deviation [9, 30]. The wind velocity is imported from external wind files

and is output to the aircraft performance model.

23



CHAPTER 2. AIRSPACE SIMULATOR REQUIREMENTS

2.4.3 Airspace Model

The airspace environmental module includes the atmospheric and aircraft perfor-
mance modules. The airspace module’s objective is to efficiently organise all air-
craft in the simulator in terms of their geographic location to facilitate data-link
transmissions and ATC control. It is necessary to simulate data link transmissions
because future ATM systems will rely on data link information as their primary
means of communication and surveillance. Providing an efficient data link simu-
lation is essential to ensure that only the correct aircraft receive the appropriate
messages. Without such a system the computational load required to simulate a

data link network would be prohibitive.

2.4.4  Air Traffic Control

The ATC module monitors the airspace module and maintains the safe separation
of aircraft. An ATC module is required to accurately model the ATM environment,
which operates under ground control and to allow different types of air traffic control
to be simulated. The ATC module uses the data structure maintained by the
airspace module to organise the aircraft into discrete control sectors. The ATC
module takes in data from the ATC plan and issues the appropriate commands to
the airspace module to alter specific aircraft flight plans. It is important to note
that this module appears split in Figure 1. This model has two distinct functions,
which correspond to the functions of a pilot and a controller. The Control Module is
completely separate from the Airspace Module, and only interacts with the Airspace
Module through a simulated data link with the Pilot Module. The Pilot module
therefore serves as an interface for the Control Module to access the Airspace Module

in order to implement the commands that the Control Module generates.

2.5 Simulation Assumptions

Throughout the simulation the assumption is made that aircraft will operate under
FMS guidance. It was felt that this was a legitimate assumption for the 2020
time frame, as most air carriers actively encourage the use of FMS to minimise
fuel burn and because future RNAV requirements will require an FMS. Thus it is
assumed that each aircraft behaves in a fairly uniform fashion because the lower

level control loops, which are specific to each aircraft type, are assumed controlled

24



CHAPTER 2. AIRSPACE SIMULATOR REQUIREMENTS

by the autopilot function as a part of the flight management system. Consequently,
all turns were modelled as rate-one turns (3° per second), and all transitions from

cruise to climb or descent were modelled as instantaneous.

2.6 Simulator Initialisation

The simulation tool requires three different input file types: initial conditions file, the
airspace plan file and the flight plan files. Depending on the simulation application,
the number of the initial condition files and flight plan files will vary. A separate
initial condition file is required for each flight plan used during the simulation run.
Additionally a separate flight plan file is required for each aircraft type and flight
plan used during a simulation run. For example a simulation set up that includes
two different flight plans and three different aircraft types will have two initial con-
dition files and six flight plan files. These initialisation files will allow aircraft to
be automatically created in the correct proportions throughout the simulation run.

Examples of these input files can be found in Appendix B.

2.7 Simulator Outputs

The output capabilities required by the simulation tool are straight forward, as they
involve standard metrics such as aircraft state, creation and removal times. The
simulation tool records the position, altitude, velocity, heading, rate of climb or
descent of each aircraft at each time step. Additionally the simulation needs to
record the actions of the ATC module, and the commands that are issued. These
outputs allow researchers to gather the data necessary to determine the effectiveness

of different airspace structures and ATC schemes.

25



CHAPTER 2. AIRSPACE SIMULATOR REQUIREMENTS

26



CHAPTER 3

Aircraft Performance Module

The core module of the simulation is the Multiple Aircraft Performance Module, as
every other module interacts with it. This chapter will describe the development and
evaluation of the module. The first two sections present the module’s requirements
and assumptions. The next section discusses the necessary data structures. The
fourth section presents the logical structure of the module, and the final section
provides a validation of the module’s performance abilities. The organisation of this

module is illustrated in Figure 2.

3.1 Requirements

The Multiple Aircraft Performance module needs to meet four requirements. First,
it must accurately implement the BADA performance database. Second, it must
be capable of simulating multiple aircraft types simultaneously. Third, it must be
capable of simulating aircraft flying multiple flight plans simultaneously. Fourth,
the multiple aircraft performance module needs to model spherical navigation, so

that the aircraft may fly as they would under FMS guidance.

Base of | |Initial Flight
Aircraft Data | [Condiions| | o yne
Multiple Aircraft

Performance Module

Figure 2: Simulator Architecture

27



CHAPTER 3. AIRCRAFT PERFORMANCE MODULE

3.2 Data Structures

The core of the Multiple Aircraft Performance Module is the individual aircraft per-
formance model, which requires a comprehensive set of aircraft dynamic coefficients
or a database of performance characteristics. This section will describe four different
types of data structures for storing these performance characteristics: the text-based
input files, the initialisation data structures, the operational data structures and the

binary storage data structures.

3.2.1 Input Files

The simulator requires that the BADA files be read in for each aircraft type used.
In addition to the parametric parameters, the simulator also requires a flight plan
and a set of initial conditions for each aircraft to be simulated. The format of these
files can be seen in Appendix B. The data from both the BADA and the initial
condition files are stored in a set of initial data structures which are described in
Section 3.2.2.

3.2.2 Initialisation Data Structures

The initialisation data read from the text files is stored in five separate static struc-
tures for use throughout the simulation. Since the number of different types of
aircraft and the different flight plans to be used in each simulation are known prior
to simulation and will not change during simulation, it was not necessary to use a
dynamic data structure to store the initialisation data. The first three structures
are arrays corresponding to the three sets of BADA data, as illustrated in Figure
3. The length of the arrays corresponds to the number of different types of aircraft
to be used in the simulation. In the case of Figure 3 there are five different aircraft
types.

The other two structures are two-dimensional matrices corresponding to the
set flight plan and initial condition data derived from the initial condition files, as
illustrated in Figure 4. The matrices have dimensions of the number of different
aircraft types to be used (five) by the number of different set flight plans to be used
during the simulation (three). It is necessary to have flight plans tailored for each

aircraft type because the current version of the simulator has not implemented logic

28



CHAPTER 3. AIRCRAFT PERFORMANCE MODULE

APF DatQ| ac 1ype 1| AC Type 2 |AC Type 3 |AC Type 4 IAC Type 5
OPF Data| ac 1ype 1| AC Type 2| AC Type 3| AC Type 4| AC Type 5
PTF Data|Ac type 1| AC Type 2| AC Type 3 | AC Type 4| AC Type 5

Figure 3: Initial Structure for BADA Data

ACType 1| ACType 2 | ACType 3 | ACType 4 | AC Type 5
P 1 Flight Plan | Flight Plan | Flioht Plan | Flight Plan | Flight Plan
Data Data
ACType 1| ACType 2 | ACType 3 | ACType 4 | AC Type 5
FP 2 F||gDhO’r”Fgon F"g[;l Init. Cond. | Init. Cond. | Init. Cond. | Init. Cond. | Init. Cond.
—_— FP 1 Data Data Data Data Data
Flight PI i
Fp 3| Hignt Flan | FiQ Init. Cond. | Init. Cond. | Init. Cond. | Init. Cond. | Init. Cond.
Data Dq FP 2
Data Data Data Data Data
Ep Slnit Cond. |Init. Cond. | |nit, Cond.| Init. Cond.| Init. Cond.
Data Data Data Data Data

Figure 4: Initial Structure for Flight Plan and Initialisation Data

to automatically determine TOD (Top of Descent) or BOC (Bottom of Climb)

points to meet ATC restrictions.

3.2.3 Operational Data Structures

Operational data structures include the structures necessary to store the data gen-
erated and used during each simulation time step. The operational data structures
are created during the initialisation phase of the simulation and consist of seven
data arrays. Table 3 lists the arrays which make up the operational data structures
as well as their length and function. The length of the arrays corresponds to the
number of concurrent aircraft allowable, as each array entry corresponds to the same
simulated aircraft in each array. The exception to this rule is the Master Record
array which keeps a log of all aircraft simulated over the course of the simulation,

and thus has a length equal to the total number of aircraft simulated. This number

29



CHAPTER 3. AIRCRAFT PERFORMANCE MODULE

Table 3: Operational Data Structure Description

Array Name Length Function

Master Record Total No. of Aircraft Record array position and
start /finish time for aircraft
Current Master Record No. of Concurrent Aircraft Array of active aircraft

Aircraft State No. of Concurrent Aircraft Record aircraft position, ve-
locity and heading

Command State No. of Concurrent Aircraft Record aircraft guidance
commands

Predicted Wind State  No. of Concurrent Aircraft Record predicted wind de-
termined by aircraft

Flight Plan List No. of Concurrent Aircraft Hold aircraft flight plan

Way Point List No. of Concurrent Aircraft Hold list of way points de-
rived from Flight Plan List

may exceed the total number of concurrent aircraft allowable. As aircraft are re-
moved from the simulation upon their arrival at their destination, the data at that
index is deleted in all arrays except the Master Record array, and the space is then
available to store data for a newly created aircraft.

With the exception of the Flight Plan List and Way Point List arrays, data
in each array is arranged in a static data structure known in Modula-2 as a record.
The Flight Plan List and Way Point List arrays, however are arrays of linked lists
derived from the initial flight plan text file. It was felt that to keep the simulation
as simple as possible, only the Flight Plan List and Way Point List arrays warranted
a dynamic structure. It was not possible to use a dynamic structure for the Master
Record array as the length of the Master Record array is required at initialisations

to leave enough space in the permanent storage file.

Master Record & Current Record Array

Both the Master and Current Master Record arrays are arrays of the same data
structure. This record holds the aircraft type, the flight plan, the start and finish
time of simulation for the aircraft, the aircrafts’s generation number, and the array
index in which it is stored. The Master and Current Master Record arrays serve
two distinct purposes. The Current Master Record array contains all of the aircraft
actively being simulated, whereas the Master Record array contains all of the aircraft

simulated up to that point in the simulation. When an aircraft is created it is added

30



CHAPTER 3. AIRCRAFT PERFORMANCE MODULE

to both the Master and Current Master Record arrays, however when an aircraft is
removed, its entry is removed only from the Current Master Record array, and the
Master Record array records the time of removal. At the culmination of a simulation

the Master Record array is transferred to the permanent storage file.

Aircraft & Command State Arrays

Each entry in the Aircraft State array contains the set of data necessary to com-
pletely describe the position, heading, velocity and mass of a specific aircraft. This
array is initialised during the initialisation phase of the simulation, and is updated
at each time step, as described in Section 3.3.

Each entry in the Command State array contains the set of data necessary
to guide an aircraft along its given trajectory. The Command State array serves as
temporary storage for parameters which are derived in one section of the simulation,
and will be used in a later section. The Command State array consists of both
specific guidance commands, i.e. specifying a particular rate of climb, and a number
of flags, which trigger commands such as to turn to new way point and to remove

an aircraft. For further explanation of these arrays please refer to Section 3.3.

Flight Plan Record & Way Point List Arrays

The Flight Plan Record is read in as a single data structure, which contains phase of
flight information, altitude commands, and way point information as a single flight
plan. It is subsequently split into two separate linked-list structures to allow more
flexibility in execution and alteration of the flight plan during simulation: one for
the vertical and one for the lateral navigation components. The Flight Plan list is
derived from the Flight Plan record and serves as the vertical navigation component.
This component controls the phase of flight (climb, cruise, descent) and the altitude
desired for each phase. The vertical navigation component is governed by a set of
six switches (time, command, latitude, longitude, altitude, heading) which trigger
the switch to the next vertical navigation segment. These switches allow the vertical
profile of the aircraft to be tied to other aspects of the aircraft state such as lateral
position. The Way Point list is derived from the Flight Plan list and serves as the
lateral navigation component, providing a basis for trajectory calculation. Both
the Flight Plan list and the Way Point list are organised into arrays whose entries

correspond to the entries in the Current Master Record array.

31



CHAPTER 3. AIRCRAFT PERFORMANCE MODULE

3.2.4 Storage Data Structures

Storage data structures include the structures necessary to temporarily and to per-
manently store data derived from the simulation. After the initial time step, the
temporary data storage is created then subsequently added to after each additional
time step, until it is cleared and begun again. The permanent data storage structure
consists of a single random access file, which is opened during initialisation, written

to over the duration of the simulation and closed at termination.

The temporary data storage structure is a two dimensional matrix, the di-
mensions of which are the number of concurrent aircraft allowable by the number of
simulation updates or time steps allowable before sending data to permanent data
storage. Thus a simulation with 100 concurrently simulated aircraft running for one
hour (3,600s) has dimensions of 100x3600. The matrix is built up of a number of
arrays which record the aircraft information for each time step, and is held in local
memory. The simulation is capable of handling a variety of resolutions, which effect
the frequency that the data is placed into temporary storage. For example the same
simulation with 100 concurrent aircraft running for one hour, might have a resolution
of 5s, which would reduce the dimension of the permanent data storage to 100x750.
As with the operational data structures, each entry in the array corresponds to an
individual aircraft. The data contained in each entry is a amalgamation of data from
the state operational arrays condensed into a data block and is discussed further in
Section 3.3.2.

The permanent data storage structure is a random access file which holds three
separate data structures. The first is an eight byte block of file data, which includes
the number of total aircraft simulated, number of concurrent aircraft allowable, the
resolution, the size the master record and the size of the data block. The second
is the master record array, with a length of the total number of aircraft processed
in the simulation. The second is a two dimensional matrix with dimensions of the
number of concurrent aircraft allowable by the total number of simulation updates
run during the entire simulation. A graphical illustration of the permanent data
storage structure can be seen in Figure 5, where a total of n aircraft were simulated
with m aircraft simulated simultaneously. The data held in the file is in binary

format to minimise the amount of space required for storage.

32



CHAPTER 3. AIRCRAFT PERFORMANCE MODULE

File Data | AC 1 Master| AC 1 Master|AC 1 Master|AC 1 Master|AC 1 Master| IAC n-3 Master
AC n-2 MasterAC n-1 Masterl AC n Master | AC 1 Data \ AC 2 Data \ AC 3 Data AC 4
4 Data AC 5 Data AC m-1 Data AC m Data

[ IMaster Record Data Block [ Time =1 Aircraft Data Block HEM Time=2 Aircraft Data Block

Figure 5: Permanent Storage Structure

3.2.5 Storage Size

The total number of aircraft the simulator can handle is a direct consequence of
the size of the permanently stored data blocks, the frequency with which the data
is recorded (time step size), and the resolution of the output data required, e.g.
every b seconds. The maximum number of concurrent aircraft the simulator can
handle is also a function of data block size and time step, as well as a function
of the frequency with which the data blocks are transferred to permanent storage.
As these parameters are arbitrary, to determine these simulation parameters it was
necessary to consider any overriding limits on storage size. For permanent data
storage, it was decided that each simulation run should be capable of being stored
on a single CD, thus setting a maximum storage size of 700 MB (Megabyte). In
addition it was decided that the maximum amount of storage used by the temporary
data structure should remain under 10 MB for portability to other machines. It is
important to note that the limits on data storage are parameters in the simulation
and can be changed. However for the majority of cases it is believed that these
limits are appropriate.

With these two limits set, the number of total aircraft allowable for a given
resolution and simulation period were calculated and are presented in Table 4. From
these calculations it is obvious that in order to simulate the large numbers of aircraft
desired, the data blocks would need to be condensed under 76 B (Byte). However
it is important to note that Table 4 assumes that a single aircraft will be flying for
the duration of the simulation period to illustrate the amount of memory such long
flights require. It is possible to simulate 4264 aircraft in a 24 hour simulation if the
aircraft fly routes which average three hours in length and the resolution is set to
five seconds.

To determine the frequency with which the temporary data structure needed
to be transferred to the permanent storage structure file, an investigation was carried
out to determine the time impact of transfer frequency. In other words, to determine

if a time penalty would be incurred by transferring less data at a higher frequency,

33




CHAPTER 3. AIRCRAFT PERFORMANCE MODULE

Table 4: Total Number of Aircraft Allowable Assuming Data Block Size and Con-
tinuous Flight

DB Number of Hours Simulated
Resolution Size | 24 20 12 6 3
128B | 63 76 127 253 506
76B | 107 128 213 426 853
128B | 12 150 252 500 1000
76B | 127 152 253 506 1013
128B | 375 375 630 1250 2500
76B | 533 640 1066 2132 4264

Once a Second
Every Two Seconds

Every Five Seconds

than transferring more data at a lower frequency. The investigation timed the
transfer of data blocks of either 265, 384 or 512 bytes for 100, 200, 300, 400 and
500 aircraft at a time with update rates of 1, 10, 30, 60, 300, 1,800, 3,600s. For
comparison, the times were then normalised to the time to transfer 3,600 data
blocks per 100 aircraft. The resulting averages and standard deviations can be seen

in Figure 6.

As expected, the larger the data block size, the longer the transfer time is.
However instead of increasing transfer time, increasing the frequency of transfers
actually decreases it slightly. Therefore it was decided that to provide as much

flexibility as possible, to allow any combination of total number of aircraft, maximum

W 256 Byte Packet [1384 Byte Packet [0512 Byte Packet

Average Time (s) o Write
3,600 Data Blocks

1 " 10 30 60 300 1800 3600
Number of Data Blocks Written at a Time

Figure 6: Data Transfer Time Comparison

34



CHAPTER 3. AIRCRAFT PERFORMANCE MODULE

number of concurrent aircraft and data block size which meet both the temporary
(10 MB) and permanent (700 MB) size restrictions. Information regarding total
aircraft simulated, concurrent aircraft simulated, data block size and resolution is
thus stored at the beginning of each permanent storage file so that it can be read

at a later date.

3.3 Logical Design

The logical design for the Multiple Aircraft Performance Module has three distinct
phases: Initialisation, Simulation Loops, and Shutdown. The initialisation phase
includes reading in required initialisation data, placing it into the appropriate ini-
tialisation data structures, generating the aircraft, and linking them with the ap-
propriate operational data structure entries. The simulation loop phase includes all
of the navigation and guidance calculations, condensing of data, recording data to
both temporary and permanent data storage structures, the dynamic creation and
removal of aircraft from active simulation, and hooks for broadcasting and down-
loading data. The shutdown phase records all remaining data in temporary data
storage to permanent storage, deallocates all dynamically allocated data and termi-
nates the program. Figure 7 illustrates the control flow diagram for the Multiple

Aircraft Performance Module.

3.3.1 Initialisation Phase

The initialisation phase consists of a linear flow of data from text files to the ini-
tialisation data structures. Once the data has been successfully imported, then the
initial aircraft are pseudo-randomly generated from a specified distribution of air-
craft type and assigned a specific flight plan from a specified distribution of flight
plans and placed into the Current Master Record array. If there are fewer aircraft
initially generated than the maximum number of concurrent aircraft allowable, then
the remaining current master record entries will be given an aircraft type of EMPTY.
The simulation loop phase will only take into account aircraft with an aircraft type
other than EMPTY.

Consequently, each aircraft generated will have an assigned aircraft type and
an assigned flight plan. These two assignments link the aircraft described in a

particular Current Master array entry to the appropriate entries in the initialisation

35



CHAPTER 3. AIRCRAFT PERFORMANCE MODULE

Read in data

Loop: Each Aircraft

‘ Command Generation ‘ Upload Data

Derive AC Position |

v
‘ Condense Data ‘

ime to
Upload

End Program

Figure 7: Multiple Aircraft Performance Module Control Flow

data structures. An illustration of this linkage can be seen in Figure 8. With the
Current Master array linked correctly, the Aircraft State, Command State, Flight
Plan list, and Way Point list operational arrays can be initialised. The final step in

the initialisation phase is to open the random access file for permanent data storage.

3.3.2 Simulation Loop Phase

The simulation loop phase consists of two nested loops. The inner loop cycles
through each aircraft in the Current Master array with an aircraft type other than

EMPTY. The outer loop cycles through time and is incremented by a preset time

36



CHAPTER 3. AIRCRAFT PERFORMANCE MODULE

Aircraft 1 | Aircraft 2| Aircraft 3 | Aircraft 4 | Aircraft 5
AC Type 3] AC Type 2] AC Type 3| AC Type 4 | AC Type 3 1
FP 2 FP 1 FP 1 FP 2 FP 3
AC Type 1| ACType 2 | ACType 3 | AC Type 4 | AC Type 5
P 1 Flight Plan | Flight Plan | Flight Plan | Flioht Plan | Flight Plan
] Data Data ACT
yoe 1| AC Type 2 | AC Type 3 | AC Type 4 | AC Type 5
FP 2 FI|gIDr1OTTI20n F"gt?( Init. Cond. linit. Cond.| Init. Cond. | Init. Cond. | Init. Cond.
. — FP 1" patg Data Data Data Data
Fp 3|l Pan | FIA Tinit, Cond. |Inft. Cond. | inft. Cond. | Init. Cond. | Inft, Cond.
ata 4 Fp 2
Data Data Data Data Data
FP 3 Init. Cond. |Init. Cond. | |nit. Cond.| Init. Cond.| Init. Cond.
Data Data Data Data Data

APF DOTO ‘AC Type 1
OPF DOTG‘ AC Type 1
PTF Datalacmee:

AC Type 2| AC Type 3 ‘AC Type 4 ‘AC Type 5 ‘

I AC Type 2] AC Type 3‘ AC Type 4 ‘ AC Type 5 ‘

AC Type 2| AC Type 3 ‘ AC Type 4‘ AC Type 5 ‘

Figure 8: Aircraft Generation Linkages

step. Inside the loops a set of commands are generated for each aircraft, the air-
craft’s position is updated and the data generated is condensed and temporarily or

permanently stored.

Random Aircraft Generation

There are two primary ways to generate aircraft in simulation. The first is to gener-
ate them randomly according to some preset distribution. The second is to generate
them according to some input file or pre-established order. In order to reduce the
number of input files required by this simulation, it was decided to implement a
pseudo random generation algorithm. The random aircraft generation occurs be-
tween the outer time loop and the inner command generation loop. At pseudo-
random time intervals an aircraft is generated. The time intervals have a Gaussian
distribution specified by an average generation frequency and deviation from that
frequency. The aircraft type and flight plan are pseudo-randomly chosen according
to a distribution provided to the algorithm from a specified array of aircraft types
and flight plans. During generation the aircraft is added to the Current Master and
Master arrays, and both the Flight Plan and Way Point lists are created.

37



CHAPTER 3. AIRCRAFT PERFORMANCE MODULE

Navigation & Command Generation

The command generation phase determines the guidance commands to follow a great
circle route from one way point to another. The aircraft will climb, cruise, or descend
according to the prescribed flight plan. Additionally the command generation phase
also determines if an aircraft has reached its destination and if so, removes the
aircraft from active simulation. The overall control flow diagram for the command
generation phase can be seen in Figure 9.

The first step in the command generation phase is to independently update the
current flight plan segment and current way point if necessary. During this procedure
two separate flags are set. The NewWP flag is set if the current way point has been
updated, and the RemoveAC flag is set if the aircraft has reached its destination. The
NewWP flag is part of the lateral guidance logic and triggers the calculation of the
distance out from the current way point to begin the turn to the next way point.
The RemoveAC flag is part of the dynamic aircraft creation and removal logic and
triggers the removal of the aircraft from the active simulation. During the simulation
aircraft can only be removed by reaching their destination.

The next three procedures make up the vertical guidance component of the

et Initial Conditions

Update ould th
Flight plon——><"_gircraftbe 88 v
Segment Remove
No . aircraft from
”| the current
4 Set Get master array

Find altitude [+ Command —» Atmosphere
Procedures State _‘ Record Data

Get command | | Get tun rate N
Velocity & ROCD| | and heading

Integrate

Derive AC
0sitio

Figure 9: Command Generation Control Flow Diagram

38



CHAPTER 3. AIRCRAFT PERFORMANCE MODULE

@
Figure 10: Inside Turn

command generation phase. They set the altitude command, the procedure mode
(climb, cruise, descent), the velocity and rate of climb/descent from the current
flight plan, aircraft state, and BADA PTF. The present simulator assumes perfect
accuracy in the aircraft’s knowledge of its altitude. Later versions may benefit
from the addition of an altitude uncertainty model. Currently the data is linearly
interpolated from the BADA PTF. Changes in rate of climb and descent are assumed
instantaneous so no logic is provided to increase or decrease the aircraft’s rate of
climb/descent before a vertical maneuver is executed.

The following two procedures (shown as one procedure in Figure 9) make up
the lateral guidance component of the command generation phase. They set the
turn rate and heading from the way point list and the aircraft state. The lateral
guidance assumes a spherical earth and great circle routing between way points. The
aircraft follow the great circle heading to parameterised accuracy, allowing in effect
FMS accuracy to be modelled. Additionally in order to better mimic the flight path
taken by the aircraft under FMS guidance, all turns are assumed to be rate one,
inside turns, see Figure 10, executed at a turn rate of 3° a second. The turn rate is
modelled as linearly increasing turn rate until a rate of 3° a second is achieved, and

then a linear decrease in turn rate until a rate of 0° a second is achieved.

Position Update

The position update phase uses the command data generated previously and incre-
ments the aircraft by one time step using numerical integration. The control flow
diagram for the position update phase is illustrated in Figure 11. A time step of
one second is used by the simulator, thus allowing the simulator to run in fast time
while maintaining a high level of accuracy. Due to the relatively small time steps

involved a simple Euler numerical integration scheme shown in Equation 2 is used

39



CHAPTER 3. AIRCRAFT PERFORMANCE MODULE

Command Generation

v
V TAS to Velocity in NE
NED | ©Et9round | icoordinates fo latitude, {»] Integrate
coordinates speed longitude rates
Update Aircraft State

A 4

position position mass Record Data
Figure 11: Position Update Control Flow Diagram

throughout the position update phase.

Tiy1 = (.I't X At) + Xy (2)

The first step in this phase is to break the aircraft’s TAS (True Air Speed)
into its components of North, East, Down (NED) with respect to the air, as shown
in Equations 3 - 5 where 6 is the flight path angle, and ¢ is the heading from true
north.

VD = VTAS sin 9 (3)
Vv = VpagcosOsiny (4)
Ve = Vryagcosfcosvy (5)

From these components the ground speed can then be calculated by transforming
the from the air frame to the Earth-centred, Earth-fixed frame (ECEF), This trans-
formation is accomplished by adding in the wind vector, as shown in Equations 6 -

8.

Vi = Vb + Vi, (6)
Vi = Vn+ Viny (7)
Vi = Vg + Vi, (8)

Then the ground speed components are transferred into latitude and longitude rates

40



CHAPTER 3. AIRCRAFT PERFORMANCE MODULE

using Equations 9 and 10 [7].

. Vi
9
¢ R, +h (9)
: L
% x cos L (10)

The final step in the update position phase is to integrate the latitude and
longitude rates along with the rate of climb/descent and the aircraft mass using
Equation 2. The new aircraft position and mass transferred to the aircraft state
record. Additionally commanded velocities, rates of climb/descent, turn rates and

heading are also transferred to the aircraft state record.

Record Data

The Record Data phase of the Simulation Loop transfers data from the operational
arrays such as the aircraft state array, first to temporary data storage structure and
finally to a permanent data storage structure. The first step in the data recording
process is to condense the data from the three operational array records into a single
record structure, called a data block, while minimising the record’s memory usage.
Table 5 illustrates a sample data block structure and illustrates how transformations
prior to data storage are used to reduce storage size. For instance both latitude and
longitude are stored as integers, but are in reality reals with a precision of 6
decimal places. A real requires 8 bytes or 64 bits of storage space, whereas a
integer only requires 4 bytes or 32 bits of storage space.

Once the data has been condensed into a data block, the block is placed into
the temporary storage array. This process is repeated throughout the aircraft loop
and then over a specified number of time steps. At each time step an array is
added to the temporary storage matrix. The number of time steps in the temporary
storage matrix depends on the size of the data block as it must remain small enough
to ensure the temporary storage matrix stays less than 10MB. The size of the storage
blocks is left as a variable parameter in the simulator.

Once the maximum number of time steps allowable has been reached the
temporary storage matrix is transferred to the permanent storage file. The data is
transferred as raw data from the temporary storage matrix to the random access file
one block at a time. The starting position in the random access file is positioned

to leave space for the eight bytes of file data and for the Master Record array to be

41



CHAPTER 3. AIRCRAFT PERFORMANCE MODULE

Table 5: Data Block Structure

Variable Modula-2 Data Type Range Necessary Multiplier Bytes Used
Master Information
ACtype AC-TYPE type of aircraft 4
time CARDINAL current time (s) from sim beginning 4
AC State
lat INTEGER [-1.5708 : 0.000005 : 1.5708] rad *1,000,000 4
long INTEGER [-3.1416 : 0.000005 : 3.1416] rad *1,000,000 4
alt SHORTCARD [0:1: 14000] m 2
mass CARDINAL [0: 1: 300000] kg 4
Viras SHORTCARD [0:0.1:400] = *10 2
Vau SHORTCARD [0:0.1:400] = m *10 2
Ve SHORTCARD [0:0.1: 400] ™ m *10 2
heading SHORTREAL [-0.0873 : 0. 0018 0.0873] rad *1,000 4
ROCD SHORTREAL [-50 : 0.1: 50] = 4
Vertical Guidance
altema SHORTCARD [0:1: 14000] m 2
ProCemd C-PROCEDURE commanded procedure mode 4
ROCD, 4 SHORTREAL [-50 : 0.1: 50] = 4
Vras.,., SHORTCARD [0:0.1:400] = *10 2
Lateral Guidance
turngate,,,, INTEGER [-0.0873 : 0.001745 : 0.0873] ™ rad %1 000,000 4
headingema SHORTREAL [-0.0873 : 0.0018 : 0.0873] rad 4
Predicted Wind
time,head CARDINAL [0:14400] s 4
wWindyortn INTEGER [-400 : 400] = 4
windgqgr INTEGER [-400 : 400] = 4
Windpown INTEGER [-400 : 400] = 4
Total 72

written at the beginning of the file after the simulation has been concluded.

3.3.3 Shutdown Simulation

The final phase of the simulation is the Shutdown phase. Figure 12 illustrates the

control flow diagram for the Shutdown phase. The first step in this final phase is

to transfer the remaining data in temporary storage structures over to the random

access file for permanent storage. Next the eight bytes of file data and the Master

Record are written to the file and the random access file is closed. Finally all of the

dynamically allocated memory for the Way Point list and Flight Plan list arrays are

42



CHAPTER 3. AIRCRAFT PERFORMANCE MODULE

Broadcast
Data

| Condense remaining data |

Record data

Record
master array
¢ - File
Close output files Closed

De-allocate all

l dynamically allocated
Send Alert way point lists —‘

to Screen
' >

End Program

Figure 12: Shutdown Control Flow Diagram

de-allocated and the simulation program is terminated.

3.4 Validation

Before employing the aircraft performance model, it was necessary to validate it.
The validation conducted consisted of three separate evaluations. The first sought
to verify that the simulator correctly implemented version 3.3 of BADA. The sec-
ond sought to verify that the simulator could correctly guide the aircraft along a
great circle route, and the third sought to verify that the simulator was capable of

simulating the required number of aircraft concurrently and in total.

3.4.1 Correct Implementation of BADA v3.3 Data

This evaluation is aimed at eliminating any trivial problems arising from an incorrect
implementation of the BADA data. The investigation consisted of running five
separate aircraft types through three separate maneuvers at or between specified
flight levels to allow a comparison to be made to the data given in the BADA PTF.

The comparison was made by determining the average velocity of the aircraft from

43



CHAPTER 3. AIRCRAFT PERFORMANCE MODULE

Table 6: Implementation of BADA v3.3 Data Evaluation Results

Aircraft Type Time For Maneuver %
Simulator BADA  Error
Cruise for 2000km

A320 8675 8643 0.37%
B737-300 9143 9108 0.38%
B737-800 8580 8548 0.37%
B747-200 8307 8275 0.39%
MD80 8913 8879 0.38%
Climb From FL290 To FL310
A320 215 215 0%*
B737-300 192 192 0%*
B737-800 148 148 0%*
B747-200 177 177 0%*
MDB80 203 203 0%*
Descent From FL330 To FL290
A320 112 112 0%*
B737-300 123 123 0%*
B737-800 137 137 0%*
B747-200 145 145 0%*
MD80 233 233 0%*

*To 1s accuracy

the flight time produced by the simulation using Equation 11.

Distance
\ = — 11
ras FlightTime (11)

The results are given in Table 6. It can be seen that the aircraft climbs and descends
exactly as the BADA directs. The minor error seen in the Cruise segment can be
attributed to the navigation error and numerical error and is well within current

aircraft navigational tolerances [7].

3.4.2  Correct Implementation of Great Circle Navigation

This evaluation is aimed at verifying that the navigation and guidance logic used
by the simulator is capable of controlling aircraft along great circle paths. The
investigation consisted of simulating five different aircraft types navigating between

two way points at a constant altitude for approximately 1080Nmi (2,000km), over

44



CHAPTER 3. AIRCRAFT PERFORMANCE MODULE

Table 7: Great Circle Navigation Evaluation Results

Aircraft Comparison Point Average Percent Error
Type Bast West North South South-West  North-East
A320 5.79x107% 5.79x107% 7.39x107" 9.66x107" 2.15x107°  1.77x107*

B737-300 5.79%x1078 5.79x107% 1.90x107¢ 1.79x107% 2.08x107>  1.69x107*
B737-800 5.79x107% 5.79x107% 1.82x107% 1.90x107% 2.12x107° 1.80x10~*
B747-200 5.79x107% 5.79x107% 1.98x107% 1.88x107% 2.21x107° 1.86x107*
MD80 5.79x107% 5.79x107% 1.72x107% 1.79x107¢ 2.12x107° 1.72x10~*

six different directions. The trajectories were compared with the great circle joining
the two way points every 108Nmi (200km) for a total of 10 comparison points. The
comparison was carried out using MATLAB™¢to first calculate the great circle route
and then to compare the trajectories of the aircraft as recorded by the simulator.
The results are listed in Table 7. The table indicates that the guidance imbedded in
the simulator provides an accuracy of approximately half a kilometre over a 2000km
flight, which is within specifications for RNAV-1 [7, 77].

3.4.3 Verification of Capacity

In addition to the implementation and navigation verification, a capacity verifica-
tion was also conducted. Aircraft were flown on two distinct flight paths with an
approximate length of 600Nmi (1,117km) for a simulated period of 18 hours. New
aircraft were created every of 15s which resulted in an average of 321 aircraft being
concurrently simulated and 4,000 aircraft being simulated in total, thus verifying
that the simulator is capable of meeting the capacity requirements established in
Chapter 2.

3.5 Summary

The requirements and capabilities of a set of simulation tools necessary to com-
plete the research proposed have been discussed. The simulator’s architecture was
discussed in detail and both the data structure and the control flow architectural as-
pects were covered. The adherence of the simulator to the BADA database has been

verified, and the simulator has also been shown to have the required capacity of 300

45



CHAPTER 3. AIRCRAFT PERFORMANCE MODULE

concurrent and 4,000 total aircraft simulated. Additionally the simulator’s naviga-
tion algorithm has been verified, and its accuracy falls within the RNP requirements

for enroute navigation.

46



CHAPTER 4

Atmospheric Environment

4.1 Model Motivation

In order to accurately simulate aircraft flights, it is necessary to provide an accu-
rate wind field model as the variability in winds aloft is a primary contribution
to trajectory uncertainty [9, 30]. Existing simulations such as RAMS, TAAM,
and NARSIM all allow some form of wind simulation [56, 63, 78]. NARSIM and
TAAM use METAR and METAF (Terminal Aerodrome Forecasts)s to generate
wind. RAMS uses an add-on model called ATMOS (Atmospheric Weather Model)
to model winds aloft using a set of data provided by the FAA for the continental
United States at a single point in time and with a resolution of 1° of latitude and
longitude and 1,000ft of altitude. The purpose of the wind field model developed
for this simulator is to supply wind data to the multiple aircraft performance model

as shown in Figure 13.

4.2 Model Requirements

The wind field model is required to supply the wind vector necessary for each aircraft

to compute its ground speed. The form of the wind model includes a series of uniform

Observed

Initial
Conditions

Base of
Aircraft Data

Weather
Data

Weather Multiple Aircraft
Module Performmance Module

Figure 13: Simulator Architecture with Wind Field Model

47



CHAPTER 4. ATMOSPHERIC ENVIRONMENT

A
f Alfitude Levels
— — 0-13,250m every 250m
— — (0-43,47 1 every 820ft)
I
<=
—
— ————
< > = > W=
T = 00h T=01h T = 23h

Figure 14: Grid Data Visualisation

grids over a series of time intervals and altitude levels as shown in Figure 14. By
using a set of uniform grids, the computation required during the simulation run can
be minimised by using a simple linear interpolation algorithm. The wind field needs
to cover a large geographic area and a large time span so that multiple aircraft can be
subjected to the same wind field. As there is no data source capable of generating
a wind model over the entire globe, a more restricted wind model was used. An
average flight in both Europe and the US is 470Nmi (~870 km) or 80 minutes
in duration and traverses 5 or 3 sectors respectively [6]. Thus the minimum size
wind field required should cover the equivalent area of 3 U.S. sectors, 312,351 Nmi?
(1,071,334km?).

Additionally, the range and scale of altitudes covered needs to be sufficient to
capture the variability in wind magnitude and direction experienced both on climb
out and on approach. The primary cruising altitudes for commercial transport
aircraft are located between 30,000ft to 43,000ft, as high-bypass turbojet engines
are most efficient at these pressure altitudes. Consequently, the wind field required
needs to extend from ground level to 43,000ft (13,106m) to capture the majority of

flight levels used by commercial transport aircraft.

4.3 Data Source

In order to construct a wind model to calculate the wind vectors at aircraft locations,
a suitable source of wind data was required, which met the requirements set out in
Section 4.2. The purpose of the data source is to construct the uniform grids which
make up the model. The fidelity of the resultant model depends on the resolution
of the grid, i.e. the greater the number of data points the greater the resolution,

and the frequency with which data is available at those sites. Thus a data source

48



CHAPTER 4. ATMOSPHERIC ENVIRONMENT

with 15 data collection sites which records data every hour will result in a model
of higher fidelity than a data source with 5 data collection sites which records data
every 6 hours.

A number of different sources of data for the wind field model are available,
several of which are compared in Table 8. The majority of wind data available to
aircrews consists of surface observations and is distributed in the form of METARS.
METAFs and forecasted winds-aloft are based on sophisticated weather models
based on observed winds-aloft data from discrete locations around the globe are
also available.

METARS, however, do not provide the range of altitude for wind data neces-
sary for the required wind field model. Additionally, as has been shown in the litera-
ture, the predicted winds aloft used to generate METAF's and forecasted winds-aloft
are often inaccurate [67]; it was felt that predicted winds-aloft data is not a suitable
source on which to base the model. Consequently it was decided that the model

should be based on actual observed winds aloft instead of forecasted data, if possible.

Area Area Altitude  Altitude Duration Duration Observed/ Collection
Cov- Scale Range Scale Scale Fore- Method
ered casted
METAR World  Airfield Surface n/a Constant Hourly Observed Ground
Wide Obser-
vation
METAF World  Airfield Surface n/a Constant Every 6 Forecasted Ground
Wide Hours* Obser-
vation?
Forecasted World  Major  1el03m — 1,000m Constant Every 8 Forecasted Computer
Winds Aloft | Wide  Air- 1.3e10*m Hours* Weather
fields (MSL) Model
Statistical World ~ Strategic 1e10>m — 1,000m Several Every 12 Observed Weather
Recreation Wide Loca-  2.7e10*m Yearst  hours balloon
tions (MSL)
NPN 2¢106  7e10*  2000m — 250m  Constant Hourly Observed Clear
km? km? 1.6e10%*m Air
(AGL) Radar

*for the U.S.A. T[79]

Table 8: Sources of Wind Data

Unfortunately observed winds-aloft data is primarily gathered by weather bal-
loons, which are not launched in close proximity. Extensive statistical wind veloc-
ity and direction data was collected by NASA in the 1960s and was subsequently
compiled and published [79, 80]. Due to the low number of observation locations
available through weather balloon launches, this type of data was considered too

crude to construct a wind field model.

49



CHAPTER 4. ATMOSPHERIC ENVIRONMENT

Alternatively, the NOAA (National Atmospheric and Oceanographic Agency
(The United States)) NPN (NOAA Profiler Network) collects observed winds aloft
data every six minutes and reports it hourly from a series of radar stations located
over a large portion of the central U.S. The NPN was the only set of observed winds
aloft which satisfied the scale and range criteria for geographic area, altitude and

time, and was consequently chosen as the basis for the wind field model.

m NLGm.
L

PLTC 9
va Hﬂm

GOACE

ATTHE

HKLDE
TCLIME
D0 Lo
DKUMS

® RADAR
* RADAR with RASS

Figure 15: NPN Geographic Site Location

The NPN covers 33 collection sites, with 30 sites located in the region from
the Mississippi river valley west to the eastern edge of the Rocky Mountains in the
continental United States (CONUS) and three are located in Alaska, as shown in
Figure 15. From these sites, data is available for an area from the 33rd to the 44th
parallel and from the 87° to 107° longitude, covering an area of over 2 million square

kilometres.

20



CHAPTER 4. ATMOSPHERIC ENVIRONMENT

Each station records the wind velocity and direction at every 250m AGL
(Above Ground Level) to around 16,000m and reports the data hourly. The wind
data is collected by using 404 MHz clear air radar with a wave length of 74cm, capa-
ble of detecting, “fluctuations in the atmospheric density, caused by turbulent mixing
of volumes of air with slightly different temperature and moisture content.” [81] The
mean wind is calculated from the fluctuations in the index of refraction. The NPN
radar is capable of operating in the presence of clouds and moderate precipitation
[81] and has an accuracy of 1m/s wind velocity.[81]

The NPN data had the additional benefit of being available to the public
through an interactive website [82]. This website provides the data collected by each
station in a variety of different text formats. The availability and text formatting of
the NPN data allows researchers to create as many wind field models (under different
observed weather conditions) for as long a duration as desired, by downloading
different data sets. The public availability of weather data further adds to the

accessability of this simulation to researchers.

4.4 Data Preparation

In order to create the wind field model, the data collected from each station over
a period of 24 hours needs to be mapped onto a uniform grid that the simulated
aircraft could then interpolate between grid points to calculate the wind at their
location. Additionally, as the grid does not cover the entire globe, it was necessary
to transpose and reflect the data through vertical and horizontal planes in a patch
work fashion to simulate global coverage. To demonstrate how the data from the
NPN networks is prepared for use by the simulator, data collected on May 8" 2002
will be used as an example, and the following section will outline its preparation.
Of the 30 stations located in CONUS, four were not functioning on May
8" 2002 when the data sample was down-loaded. These non-functioning stations
can be seen in Figure 16 as the crossed out locations. Twenty-four hours of data

was downloaded in units of KNOTS (nautical miles per hour) for wind speed and

o1



CHAPTER 4. ATMOSPHERIC ENVIRONMENT

*

. 1600.7Tkm R
42' L4 ¢ *

444

381 T a

1221.07km

361 .

Latitude (deg)

*

34 .
o 1866.23km

321 R .

30 -
-110 -105 -100 -95 -90 -85 -80 -75

Longitude (deg)

Figure 16: Operational Stations

degrees relative to true North for wind direction [83] from the NPN website [82]
in 26 separate formatted text files (one per station). To configure the data into
a useful data structure it was necessary to first interpolate the data from each
hour from the unique altitude levels of each station location onto a uniform set of
altitude levels. For the purposes of this research the data is only needed from ground
level to 43,000ft (13,250m). Unfortunately, each station has a unique altitude and
consequently records data at slightly different altitudes because the data readings
that are taken every 250m AGL. The elevation of the highest recording station was
1,900m and accordingly, the uniform altitude levels begin at 2,000m and increase
by 250m until 13,250m. All altitude levels below the 2,000m are duplicates of the
2,000m level. This interpolation was completed with MATLAB™using a cubic-
spline interpolation.

Next, the uniform data levels are transferred from the discrete geographic
data-collection-locations onto the uniform grid mentioned above and shown in Figure

14. This transformation is also performed in MATLAB™ using a method that is

52



CHAPTER 4. ATMOSPHERIC ENVIRONMENT

0 5 10 15 10 5 0

- 00
0

Figure 17: Wind Filed Mirroring Across Lines of Latitude and Longitude

based on biharmonic spline interpolation [84]. This method was chosen because it
handled the non-smooth nature of the wind data better than other interpolation
options such as nearest neighbour, triangle-based linear, or triangle-based cubic
which were all based on a Delaunay triangulation of the data. The resulting data is
formatted as a set of grids for each altitude level and each hour as shown in Figure
14 on page 48. The grid size chosen was 10° of latitude by 15° of longitude, which
is the largest grid that would provide complete coverage of the globe. The data is

stored in a large matrix comprising 46 by 24 data grids.

To cover the entire globe, the wind data is mirrored across lines of latitude and
longitude by first incrementing then decrementing the lateral portion of the grid,
such that the wind field on either side of the edge form a mirror image, as shown in
Figure 17. This enables one patch of wind to provide a uniform and smooth wind
field over the entire earth. This tiling also introduces a source of error for aircraft
completing journeys that cover more than a single wind field patch. The extent
of the error introduced by tiling the wind field is discussed in Section 4.6. As the
NOAA Profiler Network expands, however, the individual grids will can be enlarged

and this error will be reduced.

53



CHAPTER 4. ATMOSPHERIC ENVIRONMENT

4.5 Interpolation Scheme

!
5l i 6
I A
""T """"" ;I"""':"i';"' 1
1 ’ : 1
8—— 7 '
1 | | H 1
o ' ! i
e
1, 1 'll [
QO [ 1 H [
| AT e 1
S B [ Vel e P il
= { 41 : : H
- q | J—_—————— =, — = = — e = = — ] >
<| T
[T byl 1
/7 I q
4 / 1,0 OQ
. A
/’ Latitude 3

Figure 18: Interpolation Cube

The wind model is implemented by interpolating the wind direction and mag-
nitude data stored in the data grids. The interpolation scheme used is a tri-linear
interpolation, whereby each dimension is linearly interpolated independently of the
other dimensions. A linear interpolation was chosen to minimize the computational
load induced by the wind field model. The first step in the tri-linear interpolation
scheme is to define the interpolation cube around the aircraft’s current position.
The interpolation cube is illustrated in Figure 18 based on the latitude, longitude,
altitude coordinate set. The eight vertices are numbered starting from the back
lower left-hand corner and proceeding clockwise around the lower face continuing
to the back upper left-hand corner and proceeding clockwise around the upper face.
The percentage of linear distance between each set of vertices is calculated for each
dimension. Then the values of wind magnitude and direction are combined using
the linear weighting to produce a fully interpolated value. This value is used by the
simulation to determine the actual wind encountered by the aircraft. It is calcu-
lated at each time step and incorporated into the position calculation as described

in Equations 6 - 8 in Chapter 3.

o4



CHAPTER 4. ATMOSPHERIC ENVIRONMENT

4.6 Wind Field Accuracy

The accuracy of the new interpolated set of grids for the May 8! sample data has
been checked by interpolating back to the original set of points using a tri-linear
interpolation method. The average error and standard deviation over 24 hours and
each flight level for the points reproduced from the grids are shown in Figure 19. If
the data collection error and the interpolation error are assumed to be independent,

then the average overall accuracy of the wind field model is approximately 2.5m/s.

6 D
® Magnitude Error  Direction Error
> —_
£ &
5 4 02 O
5 e
L
% 3 15 p
3 o
2 I ‘ ©
5 2 l 0 g
= | [ 1] 5
1 T T . T T 5
I I |
1 [ 1] I :
0ol 1 L : ! s ! d 0
0 5 10 15 2

NPN Stations

Figure 19: Interpolation Error by Magnitude and Direction

In order to determine the accuracy of the weather model over a region larger
than the original wind field data, a comparison of the wind variability given by the
model should be made with the variability of the actual wind field. The day-to-day
variability (variance) of longitudinally averaged winds obtained by tiling the NPN
wind field longitudinally is likely to be significantly greater than the corresponding
variability for actual longitudinally averaged winds, so it is desirable to quantify
the relationship between the variances derived from the two approaches. A direct
comparison to the real wind field is not possible however, due to the lack of such
data. Therefore it is necessary to assume a simplified model of the upper atmosphere
and use this model for comparison. Palmen and Newton state that the predominant

wave form for the upper atmosphere (between 20,000-40,000ft) has an average wave

95



CHAPTER 4. ATMOSPHERIC ENVIRONMENT

A
- %)
-7
3

K ’ *‘%
% 808

Figure 20: Upper Atmospheric Wave Four Pattern

(0) (0}
O O _
2 _ 2 —U
9 N N o
= % —MAN - u
g ; ; ; > £ ; o,
=) 90 180 270 0 =0 90
Longitude (A) Longitude ()
(a) Complete Wave (b) Single Wavelength

Figure 21: Upper-level Wave Pattern

length of 90°, as shown in Figures 20 and 21 [85].

This wave pattern is designated wave four and is an appropriate model to
analyse the impact of tiling the NPN wind field across lines of longitude. The NPN
model can be assumed to represent a small fraction of the whole wave, as shown in
Figure 21 (b), where the A\ represents the longitudinal width of the NPN region.

Using the wave four model, a generalised equation can be derived to describe the

26



CHAPTER 4. ATMOSPHERIC ENVIRONMENT

wave four wind structure, see Equation 13:

A =1U+A (12)

e
U = U,+ A/ sin(4\ + €) dA (13)
A

_AX
2

where U is the mean wind velocity over the longitude range of the original NPN
region data at a specific latitude and altitude level; U, is the mean wind magnitude
for wave four wave structure; A is the amplitude of the assumed wave four structure;
A is the longitude; and € is the phase angle. By deriving the parameters in this
equation from the NPN region data (upon which the wind model is derived), it is
possible to generalise the NPN model to a corresponding wave four structure. U can
be found by examining the data from a set of wind measurements. By calculating
U over a several day period the variance of U, VAR(U), can also be found because
over several days € can be assumed to take all values with an approximately uniform
density distribution. The U in the sample is proportional to the value of A. Therefore

A can be derived by varying € to match the highest and lowest values of VAR(U).
Similarly U, can be found by taking the average of the U values.

Up = U,+ A v sin(4\ + €) dA (14)
A1

Once the coefficients for the wave four wind field are known, then the gener-
alised wave form can be used to investigate the variance of the wave four structure
over specific longitudinal distances using Equation 14, where the mean wind mag-
nitude over the range of longitude is designated Ug. The variance for the wave four
wind field, VAR(Ug) can be calculated by varying the phase angle, ¢ in Equation
14. The variance for the NPN model, however, is not a function of longitudinal
distance, as it is a repeated pattern and therefore has the same variance regardless
of longitudinal distance. The variance for the NPN model is derived directly from

the data.

57



CHAPTER 4. ATMOSPHERIC ENVIRONMENT

The variance in flight time when using the wave four model can be compared

to the flight time variance when using the NPN model using Equations 15 and 16.

Dist =
FlightTimeuwave four %(wxocﬁy + Ug) (15)
DistaAnce2 ‘
FlightTimenpNmodel = NPgs;ZZZZ;dm (Velocity + U) (16)

4.7 Summary

This chapter developed the requirements for the wind field model required by a high-
level, low-fidelity airspace simulation tool. As ground observations and the available
forecasted winds aloft data sets proved inadequate, it was decided to base the wind
field model on observed winds aloft data provided by the NOAA’s Profiler Network
of wind radar stations. A method was then presented to transform this data into a
set of uniform grids which formed the database for the wind model. The tri-linear
wind model used to generate the required wind vector for each simulated aircraft

was then described and its overall accuracy verified to within 2.5m/s.

o8



CHAPTER 5

Airspace Module

5.1 Data Link Equipage Assumption

In the future aircraft will rely on high-speed data-links with other airspace users
and ground control stations for communication, surveillance, and in conjunction
with Air Traffic Controllers, navigation [52, 86, 87, 88, 89]. As described in the
introduction, several different technologies are being developed and evaluated to
provide these services. The FAA recently announced its endorsement of Mode-S
extended squitter technology which is now in operation at the Miami Centre [88].
As the industry is now committed to implementing data-link throughout the U.S.
and Europe to ease congestion, it is vital that any airspace simulation have the
ability to model aircraft with data link capabilities. Therefore it was decided that

this simulation tool would assume all simulated aircraft to be data-link enabled.

5.2 Purpose

Simulating airspace with a complex data-link network poses a computational chal-
lenge for real and fast time simulation. It is necessary to develop a data structure to
locate aircraft within the range of both airborne and ground ADS-B transmitters.
For example, the broadcast range of air-to-air data-link messages is on the order of
10 miles in the TMA and 40 miles en route [90]. Consequently the aircraft within
the range of the signal must first be located from the set of all aircraft before the
message can be sent, which is a 2-combination problem [91] as shown by Equation

17.

29



CHAPTER 5. AIRSPACE MODULE

Observed Base of Initial

Aircraft Data | (©ondifions

Weather
Data

Airspace Module
v vV Vv

Weather Multiple Aircraft
Module Performmance Module

Figure 22: Airspace Module Architecture

n!

C(n,2) = 72(75 _)1>! (17)

In this equation n is the total number of aircraft. If the total airspace con-

tains 5,000 aircraft, the worst case scenario for sorting through them once requires
comparing 12.5 million aircraft pairs, which is a significant number of computations
to complete, considering that each comparison may take up to 1us and that the
objective of this simulation tool is to simulate airspace faster than real-time, i.e. to
simulate one second of simulated time in less than one second of real time. However,
by properly designing an appropriate data structure and efficient algorithms, this
worst-case estimate can be reduced. Additionally, the structure must satisfy Air
Traffic Control constraints, such as aircraft separation. In order to simulate both
the ATC and data link requirements, a data structure needs to be created to or-
ganise the aircraft simulated in the multiple aircraft performance module, into an

airspace module as shown in Figure 22

5.3 Requirements

To properly simulate a data-link network, the data structure must support three

primary algorithms:

60



CHAPTER 5. AIRSPACE MODULE

Level O Level 1 Level 2 Level 3
VR Y b o A
o W A SR f o

Figure 23: Three Levels of decomposition of a Rectangular Area

% Locate aircraft within a specified distance of a given static location
% Locate aircraft within a specified distance of a given aircraft

« Compute of inter-aircraft distances

The data structure needs to support these functions while minimising the storage
size of the structure and maximising the efficiency of the algorithms necessary to
complete these functions. An ideal data structure would incorporate the geographic
nature of the data into the form of the structure itself, thereby reducing the com-

putational time necessary to locate aircraft within the structure.

5.4 Data Structure Options

While it is possible to arrange the aircraft position data in a number of basic data
structures such as an array or a linked list, such a simple structure would not im-
prove upon the worst case estimates described above. Consequently these structures
were quickly discounted. The standard data structures which take advantage of the
geographic aircraft locations are binary trees, quadtrees, or octtrees [92, 93]. “The
term quadtree is used to describe a class of hierarchical data structure whose com-
mon property is that they are based on the principle of [recursive] decomposition of
space.” [93] Consequently any geographic region can be subdivided repeatedly, until
a desired level of resolution is reached, as can be seen in Figure 23.

For the application of aircraft geographic location, a quadtree is most appro-

priate because it allows a two dimensional representation of the surface of the earth

61



CHAPTER 5. AIRSPACE MODULE

Table 9: Geographic Area and Number of Aircraft Covered in each Leaf Node for
Equal Area Point-Region Quadtrees of Varying Levels

Level Number of Regions Area per Region Maximum number of Aircraft

km? per Flight Level
0 1 5130F + 14 -
1 4 1.283F 4+ 14 —
10 1,048,576 975.05 ~ 20
11 4,194,304 243.76 ~ 6
12 16,777,216 60.94 ~ 2

to be broken up into reasonably sized regions with a tree of only 10-12 levels. Table 9
gives properties of a Quadtree with 10-12 levels. The area per region is approximated
by dividing the area of the surface of a spherical earth by the number of regions
in a given quadtree type, as described by Tobler and Chen [94]. The maximum
number of aircraft per flight level is approximated by calculating the number of cir-
cular regions representing the minimum horizontal aircraft spacing (5 miles) fit into
an average size region. Although binary trees can be used to represent geographic
regions, they are less appropriate because they generate more levels to represent the
same geographic region. Oct-trees, which would allow individual flight levels to be
represented by distinct tree regions, would require significantly more regions, as can

be seen in Equations 18 and 19:

QuadtreeRegions = 4" (18)

OcttreeRegions 8- (19)

where L is the number of levels of decomposition. For example, from Equations
18 and 19 it can be deduced that a ten level octree would have approximately 1024
times as many regions as a ten level quadtree, while representing the same geographic

region.

62



CHAPTER 5. AIRSPACE MODULE

5.5 Quadtree Options

Quadtrees are well documented and have been used extensively for the representa-
tion of geographic and spatial information, for location of obstacles in robotic motion
[92, 93] or for efficient storage and access of three-dimensional graphics [95]. Figure
24 illustrates the structure of a small quadtree and the region which it represents.
Quadtrees consist of three types of tree node: Parent Node, Leaf Node or Empty
Node. The total number of nodes in a quadtree is given by Equation 20, where L is

the number of levels of decomposition.

QuadtreeNodes = Z4L (20)
i=1

It is important to note that each Parent Node contains a maximum of four
Child nodes, which can be either a Leaf Node or an Empty Node. Each Leaf Node
corresponds to a specific geographic region, as illustrated in Figure 24, and contains
data about the region or about objects inside the region, e.g. aircraft location. Each
Empty node also corresponds to a specific geographic region, but no data is stored
in it. Quadtrees can be classified by the method by which they are traversed and

the method by which the region is decomposed.

5.5.1 Traversal Method

Pointer quadtrees

Pointer quadtrees contain pointers to the Parent and four Child Nodes in addition
to data stored about the region the node represents. By including the pointer
information in the node itself the tree can be traversed by following the pointers
up to the first common ancestor and then down to the Child Node required. The
advantage of the Pointer quadtree is that no external indexing is required to traverse

the tree. The disadvantages of the Pointer quadtree are the increasing storage space

63



CHAPTER 5. AIRSPACE MODULE

Q Parent Node
Child Node
E - AE W (Leaf Node)
Child Node
(Empty Node)

Figure 24: Quadtree Representation of a Rectangular Area

Q Parent Node

Child Node
a1/ 18 . (Leaf Node)

Child Node
(Empty Node)

IndexArray [0 F1 |23 14 5 Nl 8 9 10 11 12QK]14 15 RkRVAREY 17| 20

Figure 25: Indexed Quadtree Representation of a Rectangular Area using Morton(Z-
Index) Ordering

necessary, 5" for n levels, and the additional traversal computations required. In
a Pointer quadtree, the storage space required increases because each node holds
pointers to five additional nodes: four Children and a Parent. However, for sparse
quadtrees in which only a small number of nodes contain data, for example air
traffic simulation, Pointer quadtrees can provide substantial memory reduction in
comparison with Indexed quadtrees, as illustrated in Table 10. However, traversing
Pointer quadtrees requires additional computation because each node along a path
must be accessed to determine the next parent or child node, e.g. a node three levels

up cannot be accessed in one step, but requires three steps.

64



CHAPTER 5. AIRSPACE MODULE

Indexed/Linear quadtrees

Indexed/Linear quadtrees contain only data stored about the region each Leaf Node
represents. The structure of the tree is contained in a separate Index Array, whereas
in Pointer trees the structure is contained in the nodes via the parent and sibling
pointers. The creation of the Index Array requires that the two dimensional regions
represented by the tree nodes be mapped into the one dimensional array. A number
of different methods, called tile indexing, are suggested by Samet [96, 93]. Tile index
options are more thoroughly discussed in Section 5.5.4. For this comparison, it will
be assumed that the tree nodes are numbered sequentially, as illustrated in Figure
25 such that Child and Parent Nodes can be accessed via equations 21-22 where I
is the Child Index, Ip is the Parent Index, and n € [1,4]:

Io = (Ip*4) +n (21)

Ip = (Ic —n)/4 (22)

The disadvantage of the Indexed quadtree is the additional storage space
required by the Index Array, which can be quite substantial for sparse trees covering
large geographical areas. However this additional storage space is inconsequential
for dense trees covering large geographic areas because it is only a small fraction of
the space required by the five pointers held in each node.

To illustrate the differences in memory required for airspace simulation, Table
10 compares the memory required for a Pointer and an Indexed/Linear quadtree
containing 5,000 Leaf Nodes over 10-12 levels. In these calculations each Leaf Node
is assumed to require 16B of storage, and each pointer to require 4B of storage. The
Indexed Array size is a function of the quadtree level (see Equation 20), regardless
of the number of Leaf Nodes. The Indexed Tree size is obtained by adding the
memory required for 5,000 pointer-less Leaf Nodes (16B) to the Index Array size.
The Pointer Tree size is the memory required for 5,000 pointer Leaf Nodes (36B)

plus the approximate number of nodes necessary to create 5,000 Leaf Nodes in the

65



CHAPTER 5. AIRSPACE MODULE

Table 10: Memory Required for Quadtrees of Varying Levels with 5,000 Leaf Nodes

Tree Index Array Size Indexed Tree Size Pointer Tree Size
Depth Levels (MB) (MB) (MB)
10 5.6 5.77 0.28
11 22.4 25.2 0.30
12 89.5 180.2 0.36

specified number of levels. It is clear that the Indexed quadtree requires substantially
more storage space than the Pointer quadtree.

The main advantage of the Indexed quadtree is the computational improve-
ments traversing the quadtree via the Index Array. For example, to traverse three
levels up the tree, only two steps are required because the node index of the current
node is known and from it the index of the required node can be calculated. For the
air traffic application it is clear that the Pointer Quadtree offers substantial mem-
ory reduction. However, the Indexed Quadtree size is within the range of modern
desktop computers, and affords reduced computation time for node location. It was

therefore decided to use an Indexed/Linear quadtree in this simulation.

5.5.2 Decomposition Method

Indexed/Linear quadtrees can be further categorised by the geographic area rep-
resented by the quadtree and can be decomposed by several different methods as
discussed by Samet [96, 93], which can be broadly classified as either region or vector.
A region quadtree is illustrated in Figure 23, where region size is dependent upon
tree level and independent of aircraft location. A vector quadtree is illustrated in
Figure 26, where region size is independent of tree level and dependent upon aircraft

location.

66



CHAPTER 5. AIRSPACE MODULE

1 Aircraft] 2 Aircraft 3 Aircraft 5 Aircraft
4 1 4 1 4 1 204 174

16| 13 16 13 16 | 13
3 2
2 150 142 15 | 60 572 ﬁ?éo 57
59 BBs 63082 50N

Figure 26: Vector Quadtree Decomposition

As one of the main purposes of the proposed quadtree structure is to quickly
locate aircraft within a given geographic region, and given the number of aircraft and
their relative locations are variable, the most germane of these options is the Point-
Region (PR) quadtree, a specialised form of Region quadtrees designed specifically
to store point data, as opposed to vector data. The PR quadtree is most appropriate
because the geographic area represented by each quadtree child is one fourth of the
area of its parent. Additionally, in PR quadtrees the final structure of the quadtree
is independent of order of the node addition, which is necessary since aircraft will
be created and removed from the quadtree randomly, and the number of aircraft

present each moment will vary throughout the simulation [92].

5.5.3 Spherical Decomposition

It was necessary to develop a method for adapting PR quadtree decomposition to
spherical geometry. Tobler and Chen studied three different solutions in [94] to the
decomposition problem; two use map projections and one uses platonic solids to
approximate spherical geometry. They dismiss both map projection techniques due
to excessive complexity and dismiss the use of platonic solids due to poor approx-
imation of the sub-facet edges to great circle distances and the variability in child

region sizes. Tobler and Chen [94] devise a system of using authalic coordinates as

67



CHAPTER 5. AIRSPACE MODULE

described in Equations 23 and 24,

I %(AQHI) (23)

O = Sinl(%(sm(qbz)—i—sm((bl))) (24)

where ), is the longitude division point, and ¢, is the authalic latitude division point.
Authalic coordinates have the advantage of making use of pre-existing spherical
gridding system of latitude and longitude by only introducing an authalic latitude

to maintain equal area regions during decomposition.

5.5.4 Region Indexing for Linear Quadtrees

To gain the computational savings facilitated by a Linear/Indexed quadtree, it is
necessary to map the 2D region represented by a quadtree onto a 1D array. The
results of these mappings are known as a space-filling curves [92, 93]. According
to Samet [93], the most germane space-filling curves for quadtrees are Morton and
Peano-Hilbert ordering, as illustrated in Figure 27 because they complete a quadrant
or subquadrant before leaving it, which is consistent with the recursive decomposi-
tion inherent in the quadtree structure. In quadtrees, Morton Ordering has several
advantages over Peano-Hilbert Ordering such as symmetry and simple recursive

generation [93, 92].

Peano-Hilbert Morton (Z-Index)
—H N
. I~ ] _ _

. Ml 1 [ [
EEpEEN 1 N
mmiias —h =

T = =

M [ [
N .

Figure 27: Space-filling Curves

68



CHAPTER 5. AIRSPACE MODULE

Morton Ordering is primarily implemented using bitsets, which require two to
three bytes per decomposition level. This allows the position of each region to be
determined by “interleaving the bits of the x and y coordinates” [93] of that region’s
index. However bitset operations can be complicated for trees with many levels as
the bit sets become very long. Additionally, the authalic coordinate system chosen
is recursively defined, and therefore difficult to derive an explicit function to map it
to a binary index. Without this function, the benefits of using bitset based Morton
ordering are negated. It was therefore decided that the Morton ordering would be
implemented with CARDINAL based indices such that Child and Parent Nodes can
be accessed via equations 21-22, where n = 1 for the Southwest quadrant, n = 2
for the Southeast quadrant, n = 3 for the Northwest quadrant and n = 4 for the
Northeast quadrant, as illustrated in 25.

5.5.5 Point-Region Quadtree Implementation

The quadtree structure implemented in this simulation tool is an Indexed Point-
Region Quadtree. The quadtree therefore has two primary structures, an Index
Array and a Leaf Node Record. The Index Array is an array of a variant record,
Index Record, which contains either a pointer to an individual Leaf Node Record,
in the case of Leaf Nodes, or nothing, in the case of Parent Nodes or Empty Nodes.
In this way the storage space necessary for the Index Array can be minimised, as
the Array is a fixed size regardless of the number of Leaf Node Records. Switching

between node types is achieved by switching between CASE types.

Each aircraft is represented by a Leaf Node Record. Leaf Node Records
contain pointers to the Aircraft State Array, the Master State Array and to a linked
list of other Leaf Node Records containing aircraft in the same quadtree region,
as illustrated in Figure 28. Linking the Leaf Node Records to the Aircraft State
Array with pointers allows the trees to be updated as the aircraft move without the
need for additional computation. As the Quadtree is a PR quadtree, only the lowest

level Leaf Nodes contain more than one aircraft, i.e. all leaf nodes which occur at a

69



CHAPTER 5. AIRSPACE MODULE

Index Array O[T 2|3 5K 8 9 10

11

12

ol - O ol 0

Index Record |Index Record [Rstelch N tTelekae!
Case: PARENT |Case:EMPTY Case:LEAF
Leaf Pointe

Leaf Node Record

AC_STATE Ptr
MASTER Ptr

Region Bounds

NextPtr
PrevPtr

Figure 28: 3-Level Linear Point-Region Quadtree Implementation Example

higher levels will only contain one aircraft because the addition of a second aircraft

into that region will trigger a decomposition into two nodes at a lower level. These

Leaf Node Records are held in a linked list, which must be accessed through the

Quadtree Index Array.

5.6 Geographic Location Algorithms

The Point Region Quadtree using authalic coordinates for space decomposition de-

scribed in Section 5.2 allows the three primary functions of neighbour node location,

neighbouring aircraft distance computation, and regional aircraft location required

for data link and ATC simulation to be efficiently conducted. The following sub-

sections will describe the algorithms developed to perform each of these primary

functions, and where applicable, different algorithms developed for the same func-

tion will be compared.

5.6.1 Neighbour Node Location

One of the primary functions required to simulate ATC and Data link function-

ality is the location of Leaf Node Records (representing aircraft) which reside in

70



CHAPTER 5. AIRSPACE MODULE

13 NS 17

2

Figure 29: Neighbouring Nodes to Node 18

Side & Comer- Side & Corner-

Total Region Cormer-Adjacent  Side-Adjacent . .
to 14 to 14 Adjacent Adjacent
to 2 (W, NW) to 2 (N, NW)
1511619 |20 15 19 16
13/14(17/18 14 13/14(17 8 17
718 2 7 2 8 2 2

516

Figure 30: Graphic representation of Samet’s Basic Algorithms

neighbouring regions, as illustrated in Figure 29. To locate all nodes which are ge-
ographically adjacent to a specified node, three different algorithms are proposed.
They employ the same set of basic recursive algorithms for finding nodes adjacent
to a corner, a side, or a side and a corner, as outlined by Samet [96] and as illus-
trated in Figure 30. In Samet’s algorithms, the only neighbouring Leaf Nodes at or
above the current node level are returned. The proposed algorithms modify Samet’s
algorithms so that all of the neighbouring nodes are returned, regardless of whether
it is an Empty or Leaf Node. This modification was necessary to find neighbouring

nodes below the current node level.

Algorithm 1 locates all four corner-adjacent nodes. Starting with the Northeast
corner and moving South, all nodes which are adjacent to the East side of the
specified node are identified using the adaptation of Samet’s CORNER_ADJ NEIGHBOR
[96] until the Southeast corner node is found. Proceeding clockwise, the same process
is repeated on each side of the specified node. As the nodes are identified, the Leaf

Nodes are entered into an array, which is returned at the end of the algorithm.

71



CHAPTER 5. AIRSPACE MODULE

600 - ]
500
A
‘w 400
E
o 300 ¥
S A
= 200 & Algorithm 1
100 m Algorithm 2
» A Algorithm 3
0 ' . T T T T T g 1
0 20,000 40,000 60,000 80,000 100,000 120,000
Number of Nodes

Figure 31: Time to Find Neighbouring Leaf Nodes for a Randomly Generated
Quadtree for Varying Numbers of Leaf Nodes

Algorithm 2 locates all four corner-adjacent nodes. Starting with the East side,
all the nodes adjacent to the East side of the specified node are located using an adap-
tation of Samet’s basic algorithm GTEQUAL_ADJ NEIGHBOR [96]. Proceeding Clock-
wise, this procedure is repeated for each of the four sides. As the nodes are identified,
the Leaf Nodes are entered into an array, which is returned at the end of the algo-

rithm.

Algorithm 3 begins by locating all four corner-adjacent nodes. Starting with
the East side, all the nodes adjacent to the side are located using an adaptation
of Samet’s basic algorithm, GTEQUAL_ADJ NEIGHBOR [96]. Proceeding clockwise, this
procedure is repeated for each of the four sides. Unlike Algorithm 2, all the nodes are
entered into an array, even if they are not Leaf Nodes. After the array is complete,
it is filtered to remove any Empty Nodes and any duplicated Leaf Nodes.

To determine the most efficient of the three algorithms, the algorithms were
tested by generating an array of neighbouring leaf nodes for a randomly generated
tree containing different numbers of leaf nodes. The trees were consistent for all the
algorithms and were limited to ten levels. The results from these trials is shown in
Figures 31 and 32, where the time required to complete the task, in milliseconds

(ms), is plotted against the number of leaf nodes in a given tree. It is clear from

72



CHAPTER 5. AIRSPACE MODULE

< Algorithm 1, Degen
O Algorithm 2, Degen
A Algorithm 3, Degen
N ﬂ  Algorithm 1, Rand
B Algorithm 2, Rand
A Algorithm 3, Rand

> OO 4l

Time (ms)
- N W b~ 00 O

o

0 200 400 600
Number of Nodes

Figure 32: Comparison in Time to Find Neighbouring Leaf Nodes between Degen-
erate and Randomly Populated Quadtrees

the results that Algorithm 3 is the most efficient, and that the efficiency increases
as the number of nodes in a tree is increased. In practice, based on likely number
of aircraft to be simulated, the variance between the three algorithms is less than 1

ms.

In addition to testing the efficiency of the algorithms for randomly generated
quadtrees, the performance was also evaluated for degenerate trees, as the simulator
will be used to simulate sections of airspace considerably smaller than the globe. A
degenerate tree is any tree whose leaves are not evenly distributed. For this analysis
degenerate trees were created that had at most two children on any level. An identi-
cal test was performed on a degenerate set of quadtrees. Memory considerations and
the ten level tree restriction reduced the maximum size of quadtree to 500 nodes.
The results from these trials can be compared with the timings with randomly gen-
erated trees in Figure 32, where the time required to complete the task is plotted
against the number of nodes in a given tree. It is also clear from the results that
Algorithm 3 is the most efficient, for trees with at least 500 Leaf Nodes. However,
unlike the randomly generated case, the differences between the three algorithms

becomes negligible in degenerate trees with fewer than 500 nodes.

73



CHAPTER 5. AIRSPACE MODULE

5.6.2 Inter-Aircraft Conflict Detection

To maintain proper inter-aircraft spacing, it is necessary to determine if aircraft are
within a specified horizontal or vertical distance from one another. To minimise the
computation time necessary to calculate the distance between each set of possible
aircraft conflicts, the number of aircraft pairs are first minimised using the Quadtree
by only comparing the aircraft in neighbouring nodes. First intra-node aircraft
pairs are computed for the Leaf Node with the lowest Quadtree Index, which is
designated the Comparison Node. Then inter-node aircraft pairs are computed for
each neighbouring node with a Quadtree Index higher than the Comparison Node.
All aircraft pairs which are within a specified distance are added to an array. Then
the Leaf Node with the next lowest Quadtree Index becomes the Comparison Node
and the process is repeated. In this way the distance between any two aircraft
pairs is computed only once, and only aircraft in neighbouring nodes are compared.
The distances are calculated using the equation for a great circle distance given in
Equation 25 as given in [7], where d is the angular distance given in radians, A¢ is

the difference in Latitude, and A\ is the difference in Longitude.

d = /A2 + cos(¢)cos(N\) AN (25)

5.6.3 Location of All Aircraft within a Circle

To simulate data-link transmissions it is necessary to locate all aircraft within a
circular search region specified by a centre point and a radius. To determine if an
aircraft is within the region it is necessary to calculate the distance between the
aircraft and the centre of the region.

To minimise the computation time, the number of aircraft to be so tested
are first reduced using the quadtree structure. The trapezoid representation of the
circular region is tested to determine if it is contained within the Quadtree Node in

which the centre of the required region falls, as illustrated in Figure 33. If it does, as

74



CHAPTER 5. AIRSPACE MODULE

Node Boundary

Figure 33: Search Region within Node Boundaries

i

Node Boundary

Figure 34: Search Region Spanning Several Nodes in Search Algorithm

seen in Figure 33, then all of the aircraft within that Node are logically tested to see
if they fall within the trapezoid representation of the circular region. The distance is
computed only for aircraft falling within this trapezoid to determine which of these
aircraft are within the search region.

However if the trapezoid representation of the circular region is not fully con-
tained within the Quadtree Node, then all eight of the neighbouring nodes are
located, as illustrated Figure 34. The level of the neighbouring nodes is determined
by the radius of the search region, so that the neighbouring nodes will always fully

contain the search region.

5.7 Quadtree Primitives

As the quadtree is a dynamic data structure, where aircraft are randomly added and

removed, and aircraft cross from one region into another at random, it is important

)



CHAPTER 5. AIRSPACE MODULE

to develop a set of primitives which are computationally efficient for the construction,
maintenance and disposal of the PR quadtree. Three such primitives are described

below.

5.7.1 (Quadtree Creation and New Node Insertion

The Quadtree is created during the initialisation phase of the simulation, from
the Current Master Array. When new aircraft are added to the Quadtree, a new
Leaf Node Record is dynamically allocated, the appropriate Index Record in the
Quadtree Index Array is switched to a Leaf Node, and a pointer to the new Leaf Node
Record is set. Using the aircraft’s location, the index is found by traversing down
the Index Array until either a Leaf Node or an Empty Node is found. If the node is
empty, then the Index Record is switched to Leaf Node case and the pointer is set
to the new Leaf Node. For example, if an aircraft were added to the region labelled
5 in the Quadtree represented in Figure 25, the Index Array search would begin at
Parent Node 0 then traverse to Parent Node 1, then to Empty Node 5, which would

then be converted into a Leaf Node.

Index Array

191120

index Aray[ 0111213141 s KA s K 1 '2]H 14 15 KERERE] 15| 20

Figure 35: Insertion of New Node into an Indexed Point Region Quadtree

76



CHAPTER 5. AIRSPACE MODULE

If, however, the terminating node is already occupied by a Leaf Node, then
the Leaf Pointer to the Leaf Node Record is set to NIL and the Index Array entry
is switched to a Parent Node. The algorithm is called starting from the new Parent
Node to place the former Leaf Node into a lower level in the Quadtree following the
process outlined above. Once the former Leaf Node has been successfully placed,
then the algorithm is again called starting from the new Parent Node to place the
new Leaf Node. For example, an aircraft with location in region 9 is added to an
existing Quadtree, as shown in Figure 35. The new Leaf Node traverses down the
tree from Parent Node 0 to Leaf Node 2. Upon reaching Leaf Node in region 2, the
Leaf Node is transformed into a Parent Node and the former Leaf Node is moved
down a level to region 10. Then the new Leaf Node is placed by traversing down a
level from Parent Node 2 and is placed in to an Empty Node in region 9. However,
if the old Leaf Node which was found in region 2, was subsequently placed into
region 9, then the process of replacing the current Leaf Node and continuing to try
to place the new Leaf Node would continue until the maximum number of levels in

the Quadtree had been reached.

If a Leaf Node currently resides at the lowest allowable level in the tree, then
the new Leaf _Node Record is added to the end of linked list, as illustrated by Figure
28. These Leaf Node Records must be referenced through the linked list structure

by existing Leaf Pointer in the Quadtree Index Array.

5.7.2 Updating the Quadtree

Once the quadtree has been created, it must be periodically updated so that as
the aircraft move, the tree will continue to accurately represent their position. The
update frequency is a function of the accuracy required by all the functions using the
quadtree. For example to match current ATC en-route radar accuracy the tree would
need to be updated every 12s. However, if there are few aircraft travelling relatively
slowly, then this update rate may be decreased if the impaired accuracy is not found

to impact on the ATC or Data-link functions. Updating the Quadtree involves

7



CHAPTER 5. AIRSPACE MODULE

three steps. The first is to search the Quadtree to find all aircraft which have left
the boundaries of their region. The second step is to remove these aircraft and place
them in a temporary list. The final step is to re-insert each aircraft in the list back
into the Quadtree. This update is accomplished by removing the Leaf Pointers
from the Quadtree Index Array and placing them into a temporary list, and then
removing them from the list and placing them back into the Quadtree Index Array.
During the entire process the actual Leaf Node Records are untouched, only the

Leaf Pointers which point to them are re-organised.

5.7.3 Removing Aircraft

To minimise the number of small allocations of memory, Tree Node Records are
allocated upon aircraft creation and deallocated upon aircraft removal from the
simulation. Thus, an aircraft, represented by a Tree Node Record, is only removed
from the Quadtree when it has reached its destination or when the simulation is
terminated. As aircraft removal can happen at any time, the removal of an aircraft
from the Quadtree may require that the tree be updated first so that all aircraft will

be in their appropriate regions.

The first step in removing an aircraft is to locate it in the Quadtree. If the
aircraft is not found, it must have moved out of the quadtree region since the last
quadtree update. The Quadtree is then updated and the search process begins again.
After the aircraft is found, the corresponding Tree Node Record is deallocated and
the Leaf Pointer in the Quadtree Index Array is set to NIL and the corresponding

Index Record switched to an Empty Node.

However, if the aircraft removed was the only aircraft in a node, i.e. the
Leaf Node Record removed was the only Leaf Node Record in the linked list, and
there is only one other sibling (which is now an only child), then that sibling node
must be moved up the quadtree until it is no longer an only child. For example,
if the aircraft represented by the Tree Node Record in region 9, as illustrated in

Figure 36 is to be removed, then the Tree Node Record in region 10 will then be

78



CHAPTER 5. AIRSPACE MODULE

191120

index Aray[ 011121314 s KA s K] 1 '2]H 1+

index Aray| 0 | 1 BN 3141 s Rl & | o 10/ 1 281415 CERE] 19 20

Figure 36: Deletion of an Aircraft in an Indexed Point Region Quadtree

an only child. If that region contains only one Leaf Node Record or aircraft, in its
corresponding linked list then the Leaf Node Record in region 10 needs to be moved
up one level. At this point the Index Record in Index 10 is switched to Empty and
the Index Record in Index 2 is switched to a Leaf Node which will now point to

the Leaf Node Record representing the remaining aircraft.

5.8 Summary

This chapter presented a data structure for organising the aircraft simulated in the
multiple aircraft performance module in order to facilitate the simulation of a data
linked network and airspace structure. A Point Region quadtree data structure was
chosen because it was independent of the order of aircraft addition. The indexed
quadtree traversal method was chosen over the pointer method because although
it required more storage space the index structure offered computational benefits.
The quadtree decomposition uses authalic coordinates to maintain equal area re-
gions. Algorithms for PR indexed quadtree creation, maintenance and destruction

have been presented. Algorithms for nearest-neighbour node finding, inter-aircraft

79



CHAPTER 5. AIRSPACE MODULE

conflict detection and the location of all aircraft within a circle have also been pre-

sented. These algorithms form the basis for the airspace module.

80



CHAPTER 6

Air Traffic Control Module

Thus far, this thesis has concerned itself with the creation of a discrete event aircraft
simulation capable of simulating multiple aircraft following multiple flight plans.
Similar to their real counterparts, these simulated aircraft operate in isolation, as

they have no knowledge of the whereabouts and movements of other aircraft.

In reality however, aircraft do need to concern themselves with other aircraft,
and due to their inherent lack of information about other airspace users, they rely
upon Air Traffic Control Service Providers (ATCSPs) to monitor the airspace and
to to provide safe separation for all airspace users. Unlike individual aircraft, the
ATCSPs are aware of all of the airspace users and the airspace structure in which
they are operating. Their primary function is to monitor the airspace for possi-
ble conflicts and to communicate any pertinent information to the aircrews of the
aircraft under their control. The pilots in turn also communicate with the ATC-
SPs, providing them with position updates and intentions. ATCSPs accomplish this
function of aircraft separation by establishing and maintaining an airspace structure

and a set of standard operating procedures to be used inside that airspace structure.

This thesis has not yet considered the representation of the airspace structure
and the rules under which the air traffic operate. The airspace structure contains
two elements: the air route structure which is based on a series of ground based
radio navigation beacons and airspace divisions called centres and sectors; and the
Air Traffic Management (ATM) procedures implemented by ATCSPs. In order
to complete the airspace simulation tool, a simulation equivalent of the airspace

structure with the associate ATSP is required.

As the airspace simulation module is implemented as a discrete event sim-

ulation, it follows that the airspace structure, or the ATC Module should also be

81



CHAPTER 6. AIR TRAFFIC CONTROL MODULE

implemented as a discrete event simulation capable of interacting with the air traf-
fic simulation by monitoring aircraft positions and issuing instructions to specific

aircraft.

Additionally, recent advances in navigation technology and the desire to in-
crease system capacity have resulted in a high degree of uncertainty in the evolution
of the air space structure over the next 20-30 years [3, 10, 97, 98, 99]. Thus an
airspace simulator which can flexibly implement different ATM strategies will be
very useful to the research community as it seeks to develop new strategies to ac-

commodate the changing air space structure.

This chapter outlines the control module’s requirements and describes the
implementation of the simulation of controller functions. Section 6.1 will explain
the requirements of the control module and the need for a flexible and efficient im-
plementation of controller logic. Section 6.2 will discuss the architecture used to
implement the controller logic, and how the requirements and functions were di-
vided up between the controller modules and pilot module. Section 6.3 will provide
background on Linux interprocess communication tools, and relate them to the con-
trol module communications requirements. Section 6.4 will describe the controller
module implementation and data structures. It will also include an introduction
to the controller vocabulary, script interpreter, stack creation, and stack machine
execution of controller logic. Section 6.5 will define the control module’s interaction
with the individual aircraft simulation, and the implementation of the commands
issued by the control module. Concurrent operation of the simulation modules will
be addressed in Section 6.6. Section 6.7 will discuss the performance characteristics
of the control module, including the time responsiveness of the controller to detect-
ing conflicts, and to responding to updates. A simple example is given in Section
6.8 to illustrate the control module’s response time. Section 6.9 will summarise the

controller module and its role in the air space simulation.

82



CHAPTER 6. AIR TRAFFIC CONTROL MODULE

6.1 Control Module Requirements

6.1.1 Functional Requirements

The overall function of the Air Traffic Control module is to implement a system
which would make the simulated aircraft behave as if they were under positive ATC
guidance. Accordingly, the control system is responsible for the safe separation of
aircraft, the avoidance of convective weather conditions and the avoidance of re-
stricted airspace while maintaining efficient traffic flow. This task involves the ATC
monitoring the aircraft movements, invoking some set of logic to simulate controller
behaviour, issuing commands and modifying aircraft behaviour to comply with those
commands. These commands include altitude clearances, altitude and speed restric-
tions, and flight plan alterations. Presently, the ATC module is only required to
maintain aircraft separation and is not responsible for maintaining efficient traffic

flow, avoiding severe weather, or avoiding restricted airspace.

6.1.2 Communications Requirements

In reality the air traffic controllers work very closely with the aircrews and and are in
constant communication with one another. This constant communication is neces-
sary because without it, neither the pilot or the controller have the information they
require. The controller is dependent upon the aircraft to provide current position
passively via secondary surveillance radar, and on the pilot to provide intent actively
via verbal communication. In turn the pilot is dependent upon the controller to pro-
vide altitude and speed clearances to maintain safe separation. Simulating both the
passive and the active forms of communication between the airspace module and

the ATC module efficiently is therefore a key requirement of the ATC module.

83



CHAPTER 6. AIR TRAFFIC CONTROL MODULE

6.1.3 Modelling Controller Behaviour Requirements

As discussed in Section 6.1.1 the ATC module has two distinct functions. The
first is to detect any possible loss of separation, formulate a resolution strategy and
implement the resolution strategy by issuing flight plan corrections. The second
function is to execute the resolution strategy corrections issued by altering the flight
plan of the affected aircraft. These functions correspond to the role of the air traffic
controller and the flight crew.

As this simulation is a high-level airspace simulation, it is not interested in
modelling a controller’s cognitive process, but rather in modelling the results of those
processes. Therefore, to fulfill its first function of maintaining aircraft separation,
the ATC module must employ an algorithm to mimic the results of a controller’s
behaviour rather than the distinct behaviours themselves. This algorithm needs to
be devised and implemented in a flexible way to address the uncertainty in future
airspace constructs. Additionally, it needs to be efficiently applied as it will be
called repeatedly during the simulation. Since a controller’s goal is to maintain safe
separation and the controller is employing a standard set of procedures to achieve
this goal, it is conceivable to conceptualise an algorithm to encode the underlying
logic used by the controller. This leads to the idea of encoding the logic at initial-
isation and executing it when necessary, to increase efficiency. Implementing a set
of logic in such a way introduces two distinct requirements. The first requirement

is to encode the logic, and the second is to execute the logic.

6.1.4 Modelling Pilot Behaviour Requirements

To fulfill its secondary task of implementing commands issued by the ATC agent,
the ATC must incorporate a module to manipulate the flight plans of the aircraft
affected. As with the requirements to model controller behaviour, it is beyond the
scope of this simulation tool to model flight crew behaviour beyond a time delay
model, i.e. the pilot behaviour is treated as an agent who completes the task set

without error in a finite period of time. As such, the requirement for modelling

84



CHAPTER 6. AIR TRAFFIC CONTROL MODULE

the pilot’s behaviour is reduced to correctly implementing the flight play alterations

contained in the ATC module command.

6.1.5 Response Time Requirements

To correctly simulate the airspace structure the ATC module would need to carry
out all of its functions within a representative time window, in order to correlate
with reality. Previous studies into controller response time are not available in the
literature, however studies into the response time of pilots to controller commands
have shown that on average pilots can respond to a verbal command in 10s, or to a
data link command in about 25s [54, 100]. However these timings do not cover the
time taken by the controller to maintain her mental model of the airspace, the time
to locate any possible conflicts, or the time to determine a solution. As these timing
studies only cover the pilot’s half of the overall response function, it is conceivable
that the overall response time, i.e. the time from the aircraft position update until
the time of pilot command execution, could be on the order of 10-50s. Consequently
one of the requirements of the ATC module is to implement its functions within this

time window.

6.1.6 Requirement Summary
The following points summarise the ATC control module requirements:

« The controller modules must maintain a current representation of the geo-

graphic location of the aircraft under their control.

Y
**

The controller modules must monitor the aircraft positions for possible loss of

separation.

7
*o*

The controller modules must devise a plan to maintain separation distances

and develop commands to implement the plan.

« The controller modules must communicate the commands to the appropriate

85



CHAPTER 6. AIR TRAFFIC CONTROL MODULE

aircraft.

Y
**

The ATC module must efficiently simulate the transfer of data between the

controller modules and the airspace module.

« The controller module must separately encode the controller logic at initiali-

sation.
% The controller must execute the control logic repeatedly during the simulation.

« The pilot module must correctly alter the aircraft flight plans in accordance

with commands issued by the controller module.

« The ATC module must provide a controller response time between 10-50s.

6.2 ATC Module Architecture

Following the requirements discussed above, the implementation of the control mod-
ule led to two distinct sub-modules: a controller module and a pilot module, as
shown in Figure 37. The controller module is implemented as a separate process to
the air traffic module; in practice the controller is a separate entity operating in its
own time frame and with a limited knowledge of the airspace environment. Imple-
menting the controller as a separate process ensures that the only knowledge the
controller has of the airspace environment must be explicitly passed to it. The pilot
module is, however, implemented as an addition to the air traffic module because it
must interact closely with the air traffic performance module. The controller mod-
ule and the pilot module communicate with one another via a form of inter process
communication, which is represented in Figure 37 by solid arrowheads. These com-
munication channels simulate information being passed between the aircraft and
controller either actively via VHF radio or data-link communications or passively
via secondary surveillance radar. Universal time is maintaining by the airspace sim-
ulation and is accessible by the controller module. The dashed lines indicate access
to the information in the direction indicated by the arrowhead. For example the

controllers can access the universal time, but cannot alter it.

86



CHAPTER 6. AIR TRAFFIC CONTROL MODULE

Airspace Module . Controller Module
Atmospheric A
Module
Performance
Module 5
Universal
Pilot Module| €2 1ime

Figure 37: Control Module Architecture

6.3 Interprocess Communication Via Message Queues

It has been established in Section 6.2 that providing autonomy for the controller
module from the rest of the airspace module is desirable to more accurately simulate
the separate airspace players. However, this autonomy poses a challenge to provide
the controller with the appropriate data at the appropriate time and doing so across
multiple separate Linux processes. Thus it is necessary to develop a set of messages
to pass the appropriate data between the autonomous controller modules and the
airspace module, and to develop or utilise a method of passing the messages between
processes.

Six standard messages were developed to allow the airspace module to com-
municate with the controller modules. These messages are listed in Table 11. It is
important to note that, from the standpoint of the controller module, all of the mes-
sages (with the exception of the Update Aircraft message) are sent asynchronously.

In order to allow an autonomous process to communicate, it was necessary
to develop a suitable form of interprocess message passing. The Linux operating
system provides a set of tools which allow information to be passed between separate
processes, the most basic of which is a pipe. Pipes transfer the output of one
process to the input of another process, providing the two different processes have

been started by a common ancestor process [101]. To connect unrelated processes

87



CHAPTER 6. AIR TRAFFIC CONTROL MODULE

Table 11: Interprocess Message Description

Sender  Recipient Time  Blocking
Message Name P
& urpose Module Module  Stamp Mode
Initialisation Send@ alrspace Airspace Controller  No Y?S
initialisation information Airspace
New Aircraft | Senc}s a%rcraft . Airspace Controller  No Y?S
initialisation information Airspace
Update Aircraft Sends updated at craft Airspace Controller  Yes No
state information
Remove Aircraft Removes aircraft from Airspace Controller  No Ygs
controller data structures Airspace
Terminate Shutdown the controller Airspace Controller  No Ygs
module Airspace
Understand & Will .
Comply Airspace, Airspace Yes
WILCO Con- ' No Con-
acknowledgement of last Controller
troller troller
message
Commands aircraft to
Command alter flight plan or Controller Airspace Yes No

transfer controller

Message Queue

Figure 38: Interprocess Communication Tools

B|C|D|IC|D|A B| ADCB

it is necessary to use a a named pipe or FIFO, which is external to either of the

processes it is connecting. Unfortunately pipes work on the principle of a first-in

first-out queue, as illustrated in Figure 38 so unless the order of the information that

is being passed into the pipe is known, then the receiving process cannot correctly

process the data. For example if message A contains eight bytes but message B, C

88



CHAPTER 6. AIR TRAFFIC CONTROL MODULE

and D contain only 4 bytes, the receiving process will not know how much data to

receive from the pipe unless it what order the messages are sent in.

In a situation such as the case with the simulation tool where different types
of messages are randomly sent, it is necessary to identify what type of message was
coming through the pipe. A message queue, which is a more advanced FIFO, has
the ability to identify messages by type and remove different typed messages from
the queue on request [101]. This ability is illustrated in Figure 38 as a list of boxes,
which the receiving process has access to. The receiving process has the ability to
pull off the first message of a given type to receive messages in the order it requires.
Message queues also allow a process to be suspended while it waits for a certain
message type or to return to the calling function without retrieving any messages,
known as non-blocking mode [101]. For example, in blocking mode if the receiving
process was using the message que in Figure 38 and needed the next message it
received to be of type E, then it would suspend the process because there are no
messages of type E. The process would remain suspended until a message of type
E was placed into the queue. This feature facilitates faster simulations by making
more efficient use of processor time. Message queues were therefore implemented to

pass data between the airspace and the ATC module.

To determine how efficient a message que would be at transmitting messages
between the control modules and the airspace module, a representative message que
was created and a message the same size as the Update Aircraft message was sent
between two processes. The number of messages sent was varied between 100 and
1,000,000. The results of these trials are illustrated in Figure 39. The relationship
is linear when plotted on a log-log scale. It is clear that to send a million messages
would take just over 1 second. From this data the impact of using message ques to
transmit data can be extrapolated. Assuming the simulation has 350 simultaneous
aircraft each updating every second for a 24 hour simulation period, the impact
to the overall simulation time would therefore be approximately 100s, which is less
than 5% of the overall simulation run time for simulations running up to 50 times

faster than real time.

89



CHAPTER 6. AIR TRAFFIC CONTROL MODULE

1.E+07

O Average Sent Average Received Il

1.E+06

(A}

1.E+05

1.E+04

1.E+03

1.E+02

1.E+01

Time to Send or Receive Messages (us)
3

1.E+00 T T T
100 1000 10000 100000 1000000
Number of Messages Sent and Received

Figure 39: Message Queue Timing

6.4 Controller Module

The controller module is required to locate any potential loss of separation, to formu-
late a solution strategy and to implement the solution strategy by issuing commands
to the appropriate aircraft. In so doing, the controller module must be flexible, i.e.
it must be able to implement different control strategies for different sections of
airspace. The controller module must also have a mechanism to easily change the
control strategy in order to investigate the impact of different strategies on the air
traffic flow. The following sections describe the data structures of the controller

module.

6.4.1 Implementation Options

Without the emphasis on a flexible implementation for research purposes, the sim-
plest way to implement the controller module ATM strategy would have been to
create a standard set of ATM strategies, and allow the user to invoke an appropri-
ate strategy. However since one of the main objectives for this simulation tool was

to facilitate ATM research, it was felt that a simple set of standard ATM strategies

90



CHAPTER 6. AIR TRAFFIC CONTROL MODULE

Universal TimeJ

=~ /N Enroute
<

T Controller Module
[Controller 1
Controller 2

Performance TMA Controller Module

Module
Pilot Module TMA Controller 2

o
[
[

Airspace Module

Afmospheric
Module

o

,

Figure 40: Detailed Control Module Architecture

would be too restrictive. Instead it was decided that a limited controller vocabulary
could be assembled, similar to the control text files used in RAMS and TAAM. This
approach would enable the ATM strategy to be imported from a text file and to be
interpreted by the controller, thus fulfilling the requirements set out to establish the
controller logic at initialisation and implement it during run time. By developing a
controller vocabulary, the simulator could then facilitate many more combinations
of ATM strategy. Additionally, the vocabulary could be easily expanded for future

work.

To further increase the flexibility of the simulation and its ability to correctly
simulate the airspace structure, it was necessary to implement different types of
controllers. The present airspace structure employs many different types of con-
trollers for different phases of flight, such as ground controllers, tower controllers,
terminal area maneuvering (TMA) controllers, and enroute (radar) controllers [87].
Because this simulation tool is not concerned with simulating aircraft ground oper-
ations or low-level procedures it was not necessary to simulate ground controllers or
tower controllers. It was felt that it was possible to adequately simulate the current
airspace structure using two representative controller types: enroute controllers and
TMA controllers. The TMA controllers would have control of an aircraft from initial
approach through to landing, and the enroute controller would have control of all
other phases of flight. The expanded control module architecture is illustrated in

Figure 40.

91



CHAPTER 6. AIR TRAFFIC CONTROL MODULE

ATM Controller Module

Script _ Script
> Interpreter

Airspace /‘ Airspace Monitor ‘
Module y v
| Stack l\v/lochine| Conflict
Pilot Module | e——(Control Command” Log

Figure 41: Generic Controller Module Architecture

6.4.2 Data Structure Overview

The controller module, which is tasked with maintaining adequate aircraft separation
is implemented as three sections as illustrated in Figure 41: the script interpreter, the
airspace monitor, and the stack machine, which correspond to its three requirements.
At initialisation a script file is read in and converted to an array of logical instructions
by the script interpreter to be used by the stack machine. During the simulation
phase, aircraft update messages are passed from the airspace module to the airspace
monitor, which maintains the controller module’s “mental model” of the aircraft
under its control. At specific intervals the control logic is invoked by executing the
stack machine, which creates command messages and transmits them to the pilot
module. The pilot module then executes the commands and transmits a WILCO
message back to the controller. Once the stack machine has completed its execution
of the array of logical instructions, the controller returns to its airspace monitoring
state. These three sections of the controller are described in detail in subsections
6.4.3-6.4.7. The differences in the implementation of the two controller types are

also discussed in the following subsections.

6.4.3 External Script Files

The purpose of the external script files is to allow a wide variety of ATM strategies

and procedures to be implemented in a form which is understandable to both system

92



CHAPTER 6. AIR TRAFFIC CONTROL MODULE

developers and professional controllers. To fulfill this requirement a set of controller
vocabulary and syntax are developed to describe the logical procedures implemented
in air traffic control procedures. These text files are written in a pseudo-code style
where conditional if-then-else and while-do statements provide a logical struc-
ture. Appendix A contains all of the words which can be used in a script file along
with their appropriate usage and implications. These air traffic control procedures
are then stored as external script files. An example of a simple script file is presented

in Figure 42.

The control vocabulary is made up of five different types of words: key words,
calculation words, action words, internal variable words and external variable words.
Key words occur at the start of each line and determine the action to be taken
for that line. In the example, the following are key words: set, get, s_while,
increment, command, end, stop. Internal variables are variables which can be set
directly via the script file such as conflict _radius and current _conflict. Internal
variables can be set and incremented. Conversely external variables are variables
which cannot be set directly via the script file, such as no_conflicts, acl, ac2, and
sector_id. Calculation arguments are words which follow the key word get, such
as conflicts. Action arguments are words which follow the key word command,
such as RESTRICT_LOWER_FL and RESTRICT_UPPER _FL.

The sample script file begins by setting the conflict radius to 30 nautical
miles. Then all conflicts within that conflict radius are acquired in an array, and

the number of conflicts is returned in the external variable no_conflicts. For each

1: set conflict_radius 30 nm

2: get conflicts sector_id conflict_radius

3: s_while ((current_conflict < no_conflicts) and(no_conflicts > 0)) do
4: increment current_conflict

5: command RESTRICT_LOWER_FL aci (acl_alt + 1000 ft) (30nm / acl_vel)
6: command RESTRICT_UPPER_FL ac2 (ac2_alt - 1000 ft) (30nm / ac2_vel)
7: end

8: stop

Figure 42: Sample ATM Script File

93



CHAPTER 6. AIR TRAFFIC CONTROL MODULE

conflict found, the leading aircraft ac1 is commanded to restrict its lower flight level
to 1,000 feet above its current altitude for a variable number of seconds, and the
trailing aircraft, ac2 is commanded to restrict its upper flight level to 1,000 feet
below its current altitude for a variable number of seconds. The number of seconds
could have also been explicitly specified. This script example illustrates a simple

vertical conflict resolution procedure.

6.4.4 Script Interpretation and Stack Compilation

During the initialisation phase of the simulation the external script file is interpreted
by the script interpretation algorithm. The script interpreter produces an array of
logical instructions to be used by the stack machine to implement the ATM proce-
dures and strategy. This array of logical instructions will increase the computational
efficiency of the control module by reducing the complex logic into stack machine
logic. An illustration of the instruction array for the sample ATM script file in
Figure 42 is shown in Figure 43. As shown, the first instruction is to set variable 1,

conflict_radius, to 30Nmi (55,560m).

6.4.5 Stack Machine Execution

A stack machine or a stack computer is any software or hardware mechanism which
employs last-in first-out (LIFO) storage mechanisms. In this application a stack
machine is a very basic logical compiler which acts on a set of instructions and uses
a single stack as a register. Items are pushed onto and popped off of the stack in
compliance with the active instruction in the instruction array. A basic calculator is
good example of a stack machine. Figure 44 illustrates the primary data structures
found in a stack machine. In the preceding steps the quantity 5 was pushed onto the
stack, followed by the quantity 7. Next acting on the Add instruction they were both
popped off the stack, added together, and the resultant quantity, 12, was pushed
back onto the stack. In the current step, 12 is popped off the stack, and in the next

94



CHAPTER 6. AIR TRAFFIC CONTROL MODULE

[ae
[EES

© 00 N O d W N+~

—
o

SET 1; 0; 0; O 55560; 9999;

GET 3; 44; 1; O 9999;
PUSHIV 2;

PUSHEV 19;

SWAP

COMP

PUSHEV 19;

PUSHC 0.000000000;

COMP

: AND

: JF L 28;
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

INCREMENT 2

PUSHEV 3;

PUSHC 304.800000000;

ADD

PUSHC 55560.000000000;

PUSHEV 5;

DIV

COMMAND 5; 1; 0; O] 9999;
PUSHEV 10;

PUSHC 304.800000000;

SUB

PUSHC 55560.000000000;

PUSHEV 12;

DIV

COMMAND 4; 8; 0; Ol | 9999;
JUMPIN 3;

STOP

9999
9999;

9999;

9999;

9999;

9999

9999

Figure 44: Mlustration of a Simple Stack Machine

Figure 43: Sample ATM Instruction Stack

p| Pop Stack

Push 5
Push 7 12

Add
Pop Stack
Push 32

Stack

Instruction Array

Stack Machine

step the quantity 32 will be pushed onto the stack. The process continues as such

until the end of the stack or a stop instruction is reached.

95



CHAPTER 6. AIR TRAFFIC CONTROL MODULE

6.4.6 Enroute Controller

Section 6.4.1 established that the enroute controller module would be responsible
for maintaining aircraft separation for all aircraft that have not commenced their
approach into an airport. To add flexibility and realism to the simulation tool it
is desirable to facilitate multiple enroute controllers and multiple airspace sectors,
such that each controller module is only responsible for aircraft in its designated
sector. In the present airspace structure, ATC centres and sectors are arbitrary
constructs influenced by political boundaries, air route structures and real-time flow
considerations [6, 64]. Often, over the course of a day, airspace sectors are combined
or divided to maintain controller workload within an acceptable range. Since air
route structures are both arbitrary and dynamic, it was decided that it was not
necessary to implement them exactly as they exist in the current airspace environ-
ment. For the research purposes addressed by this simulator, only a representative
structure is required. To simplify conflict detection algorithms, it was decided to
base the control sectors on the quadtree structure which is used by the airspace
module and was discussed in Chapter 5. A comparison between the current upper
airspace structure and a similar quadtree based airspace structure can be seen in
Figure 45. The advantage of using the quadtree structure over other representations

is the improved efficiency in determining possible aircraft conflicts.

Each controller module constructs and maintains a quadtree representing the
air traffic currently under its control. The information to populate this quadtree
is passed at regular intervals from the individual aircraft to the corresponding con-
troller via the appropriate message queue. Each controller module has a dedicated
message queue, which simulates an ATC controller’s dedicated frequency. The rate
at which individual aircraft send state updates to the controller is aircraft depen-
dent, which allows the simulation of aircraft with mixed equipage. This process of
maintaining a “picture” of the airspace via updates in aircraft location is similar to

the way secondary surveillance radar is used to update a radar controller’s visual

96



CHAPTER 6. AIR TRAFFIC CONTROL MODULE

Figure 45: Upper-level Airspace Sectors and Level-7 Quadtree Comparison

display screen. To the enroute controller module, the quadtree is analogous to the

mental image each ATC controller maintains of the aircraft under his control.

As the control logic is held in the instruction array created during initialisa-
tion, in addition to maintaining an accurate quadtree of the aircraft under its control,
the enroute controller module must also execute the stack machine and thereby im-
plement the ATM logic on the aircraft in the quadtree. The frequency with which
the controller module executes the stack machine is set upon initialisation, and may
differ between controller modules. To more closely approximate actual ATC envi-
ronments if no new aircraft updates have been received during the intervening time
period, then the stack machine will not be executed. During the stack machine
execution command messages are created and sent to the pilot module. After each
command has been sent, the controller module waits for an acknowledgement from
the pilot module. Between stack machine execution calls, the controller module
receives and acts upon all of the messages which arrive in order to maintain the

quadtree representation of the air traffic within the controller module’s sector.

97



CHAPTER 6. AIR TRAFFIC CONTROL MODULE

6.4.7 Terminal Manoeuvering Area (TMA) Controller

Section 6.4.1 established that the TMA controller module is responsible for main-
taining aircraft separation for all aircraft that have begun their approach into an
airport. As each TMA controller is responsible for only one airport, each airport
simulated is required to have a designated TMA controller. Although both controller
modules have the same function, the methods that they use to maintain separation
are very different because TMA conflicts must be resolved so that the aircraft are
successfully merged while maintaining separation, not just successfully separated.
The separation methods used by TMA controllers include, speed restrictions, lateral
deviations and holding patters where aircraft complete a four minute circuit at a

specific location.

The data structures needed to maintain separation for terminal manoeuver-
ing areas are consequently different from the single quadtree used by an enroute
controller module. However, similar to the enroute controller module, each TMA
controller module maintains its own set of location arrays, through regular aircraft
position updates from the air traffic module. The data structures used by the TMA
controller module is illustrated in Figure 46. All aircraft under the TMA controller
module’s control are associated with either the initial approach array, the final ap-
proach array, or a stack array. Stack arrays represent individual holding patterns.
The number of stack arrays is flexible, and is set at initialisation of the TMA con-
troller. These location arrays are mutually exclusive, i.e. an aircraft cannot exist in
more than one array at any time. In addition to these arrays, a comparison array
is used to merge traffic, by using a copy of the aircraft position and estimated time
of arrival at a specified position. Consequently, aircraft in the comparison array are

also associated with another location array.

On commencing its initial approach phase of flight, an aircraft will be trans-
ferred from an enroute controller module to the appropriate TMA controller module,

and placed into the initial approach array. The aircraft will remain in the initial

98



CHAPTER 6. AIR TRAFFIC CONTROL MODULE

& | A | & |
Comparison Array

Final Approach Array

Initial Approach Array
> gm|v

Stack Array

Figure 46: TMA Control Module Airspace Monitoring Data Structures

approach array until it is either transferred to a stack array or the final approach
array. The final approach array is used to hold the fully merged aircraft stream.
The stack arrays are used to hold aircraft in a particular holding stack. The stack
array index corresponds directly to the stack altitude levels, and consequently only
one aircraft is assigned to any stack level. In Figure 46 five aircraft are in the initial
approach array, one aircraft is in the stack array and one aircraft is in the final

approach array.

In this illustration, there are two arrival streams which must be merged. The
comparison array is used to compare the aircraft in each stream which is closest to
the star. Using the comparison array, the aircraft in each stream will be issued with
instructions to continue, to reduce speed, to hold in the stack or some combination
of these actions. Aircraft downstream of the star will have already been instructed.
In general the specific logic implemented by the comparison array is dictated by
the external script file in the same way that the control logic is implemented in the
enroute controller module. Consequently, the vocabulary used to create the logic
implemented in TMA controller modules differs slightly from the vocabulary used

for enroute controller modules. Further clarification of this vocabulary is provided

99



CHAPTER 6. AIR TRAFFIC CONTROL MODULE

in Appendix A.

6.4.8 Conflict Log

As the primary function of both controller modules is the separation of aircraft, it
is desirable to record all of the potential conflicts detected by the controller using
the control logic provided in the script files. Accordingly, whenever the controller
detects a conflict, it is recorded in an external text file, known as the conflict log.
The conflict log records the generation number, position and speed of the aircraft
involved, the time of the incident, the stack instruction number and the controller
identifier. The information is designed to allow a user to postprocess a simulation
run and determine what conflicts were detected and by which instruction out of the
instruction array compiled by the external script interpreter. To analyse a particular
conflict, the time index provides a thorough examination of the full output data. The
data allows for the evaluation of different airspace structures and the corresponding

control logic.

6.5 Pilot Module

The function of the pilot module is to interpret command messages sent from the
various controller modules and to execute the instructions. The pilot module checks
for new commands at a set frequency, and if commands are present, they are re-
sponded to in the order in which they arrive. Depending upon the command, either
the flight plan, the way point list or both will need to be altered. Once the alter-
ations have been made, the pilot module will send a WILCO message acknowledging

the receipt to the appropriate controller.

100



CHAPTER 6. AIR TRAFFIC CONTROL MODULE

6.6 Process Harmonisation

As all simulation scenarios will involve at least one controller module, it is important
to understand how the airspace module interacts with the controller modules to
ensure that they are all running in the same time frame, i.e. that the controller
modules are not sending commands for situations that happened in the past where
the solutions are no longer relevant. It is also necessary to ensure that the simulation
does not enter a deadlock situation, in which each process is waiting for information
from another process. An example of a deadlock situation is where the airspace
module is waiting on a message from an enroute controller module (meaning it is
suspended), while the controller module on which it is waiting, is in turn waiting
on a message from the airspace module (meaning it is also suspended). In this
situation both processes are suspended with no means of becoming reactivated;

they are considered hung.

The simulation tool employs two methods of processes harmonisation. The
first is the provision of universal time which is generated by the airspace module
and is kept in a shared memory space that is accessible by all of the processes. The
controller modules use the universal time to trigger the execution of the stack ma-
chine. This ensures that, provided the stack machine execution takes less time than
the execution frequency, the controllers will be regularly monitoring the airspace
and generating commands as necessary. Figure 47 illustrates the dual time lines
for the controller and airspace modules. The second process harmonisation tool is
the use of process suspension by strategic message queue blocking, i.e. using the
message queue receive function in blocking mode which commands the process to
suspend until a message of the correct type is placed in the message queue. An ex-
ample where the second process harmonisation method is implemented occurs after
a controller issues a command; a blocking message receive function is invoked and
the controller process is suspended until the pilot executes the changes and issues

a WILCO message. Suspending the controller module ensures that the controller

101



CHAPTER 6. AIR TRAFFIC CONTROL MODULE

Controller Response Time

Airspace Module ! ! | ! ! !
Time Acl  Ac? Pilo‘r Acl AC2

Update Update Executes Update Update
Command

Controller Module | |

Time ] | | |
— Acl Ac2 Execute Send Acl New  Ac2
Controller Update Update  Logic ~Command Update Aircraft Update
Lag ReceivedReceived Received Received
Logic Execution Frequency Controller

Reaction Time

Figure 47: Airspace and ATC Module Time Line Ilustration

module does not advance ahead of the airspace module. Earlier in this Chapter, Ta-
ble 11 shows which types of messages are downloaded in blocking mode and which

process they block.

6.7 Performance Characteristics

In order to meet the requirements set out in section 6.1 the control module must
respond to all possible conflicts within a reasonable period of time. The response
time, which can also be characterised as a time lag between the airspace module and
the controller modules, is bounded by a combination of the two process harmon-
isation methods described previously. The best case, and an unrealistic scenario,
would be zero time lag where the airspace module waited for each controller at every
time step and vice versa. The controller module lag is bounded by the rate at which
new aircraft are created and removed because, after each new aircraft is created,
the airspace module waits for a WILCO signal from the specific controller module,
effectively synchronising the two processes.

For simulations involving very few aircraft, the time between the creation and
deletion of an aircraft may be of the order of several hundred seconds. However,
the only way for controller lag to accumulate beyond the lag introduced by the

message queue is for the execution of the stack machine and the processing of the

102



CHAPTER 6. AIR TRAFFIC CONTROL MODULE

aircraft updates to take longer than time between execution calls, i.e. if stack ma-
chine execution frequency is every 30s of simulation time and the controller module
takes 35s of simulation time to execute the stack machine then the controller will
accumulate 5s of lag for every 30s of simulated time, until an aircraft is created or
removed where the airspace module will wait for the controller to catch up. This is
illustrated in Figure 47, where the time line of two aircraft, Acl and Ac2, is traced
through two update cycles. Controller lag is present from the beginning eventually
increasing the controller reaction and response time. Figure 47 illustrates how the
controller lag is propagated until a new aircraft is generated, where it is reset to
the lag introduced by the message queues. The time line begins just after the logic
held in the instruction array has been executed by the stack machine. Thus the
distance between the beginning of the time line and the next call to execute the
stack machine represents the stack machine, or logic, execution frequency.

As the stack machine execution is based on universal time, which is, in turn,
set by the airspace module, the actual time for a controller to respond to a possible
conflict is bounded by the frequency of airspace module update message frequency in
conjunction with the stack machine execution frequency plus any controller module
lag. To ensure that the controller response times remain within an acceptable range,
the command message is time stamped with the time of the most recent aircraft up-
date message, which enables the controller lag to be calculated. If the response time
becomes too long, then simulation parameters such as aircraft update frequency, or
stack machine execution frequency can be adjusted accordingly. Airspace module
lag is not possible because all controller module commands are issued in response

to airspace module update messages.

6.8 Simple ATM Controller Example

To demonstrate how the control module works, the sample ATM script listed in
Figure 42 has been implemented in a basic conflict scenario to illustrate the respon-

siveness of the controller, the effect on the involved aircraft, and the conflict log. In

103



CHAPTER 6. AIR TRAFFIC CONTROL MODULE

the example two MD-80 aircraft were flown at the same altitude on an intersecting
course. The simple ATM script logic was designed to detect potential aircraft con-
flicts at a range of 30Nmi, and to command one aircraft to climb 1,000ft and the
other aircraft to descend 1,000ft to maintain separation. In this scenario, the air-
craft positions were downloaded to the controller every 30 time steps, and command
messages were uploaded from the controller every 5 time steps. The simulation time
step is equal to one second. Additionally, since this was a simple demonstration,
the frequency of aircraft generation was set to 500£10s. The controller invoked the

stack machine every 30s.

Figures 49 and 50 illustrate the conflict detection and its subsequent resolu-
tion. The 30Nmi boundary around the collision point is represented by the oval.
Figure 49, (a) illustrates the position of both aircraft 2161 seconds into the sim-
ulation. At this point Aircraft 1, Northwest bound, downloads its position to the
controller. Figure 49, (b) illustrates the position of both aircraft 2191 seconds into
the simulation. At this point Aircraft 0, Northeast bound, transmits its position to
the controller. After obtaining the position update from Aircraft 0, the stack ma-
chine is run, thus invoking the simple ATC logic. The controller detects a conflict
between Aircraft 0 and Aircraft 1. The conflict is logged in the controller log, and

commands are sent to Aircraft 0 and Aircraft 1.

Figure 48 shows an excerpt from the controller log, generated by the example.
The first column holds the controller number, which corresponds to its quadtree
index. The second column records the time of the last update which triggered
the conflict alert. The third column is the number of the specific instruction in
the instruction stack which generated the command. Columns 5-8 are the aircraft
number, position in degrees, altitude in metres, and velocity in metres per second of
the first aircraft, and Columns 9-13 are the aircraft number, position, and velocity
of the second aircraft. The last column lists the separation distance between the

~Y

two aircraft in metres. (1Nmi = 1,800m)

It can be seen from this excerpt that, at 2191s into the simulation when the

104



CHAPTER 6. AIR TRAFFIC CONTROL MODULE

Cnt Time SC |AC1 1lat 1lon alt vel [AC2 lat lon alt vel Dist
311 2191 19 1 46.54 7.14 3251 150 0 46.67 6.49 3251 150 51956.5
311 2191 26 1 46.54 7.14 3251 150 0 46.67 6.49 3251 150 51956.5

Figure 48: Sample Controller Log

0.82 0.82 0.82
5 0815 = 0.815 5 0.815
g . g o
3 081 N, 3 0.8t S 0.8t
2 2 2
3 0.805 \\ S 0.805 5 0805
0g— 08— 08—
009 01 011 012 013 0.14 009 01 011 012 013 0.14 009 01 011 012 013 014
Longitude (rad) Longitude (rad) Longitude (rad)
(a) t = 2161 (b) t = 2191 (c) t = 2224

Figure 49: Conflict Detection Time Line

conflict was detected, the two aircraft were approximately 28Nmi apart. By exam-
ining the recorded aircraft positions for the two aircraft it can be determined that
at 2224s the message was received by the pilot module and the altitude restrictions
were implemented. At this point the aircraft were approximately 21.6Nmi apart.
Figure 50 illustrates the flight path of the aircraft executing the solution. The re-
sponse time for this scenario was 33s from receipt of the latest aircraft update until
the execution of the controllers command. This scenario was run repeatedly for
three different aircraft loadings and simulation durations. Table 12 shows the av-
erage controller response time for each scenario. As predicted the more frequent
the aircraft generation (or the rate at which the aircraft are introduced into the
simulation) the more responsive the control module becomes due to the increased

synchronisation between the airspace module and the control module.

105



CHAPTER 6. AIR TRAFFIC CONTROL MODULE

10500 ; 10500
" )
_10000 10000
'g iy o —
2 9500 : 3 M
E 2 9500 L
<
9000 Y .
o.sz\M 900(? g~
G, 081 0 081 (
%, 08 0.1 0.12 ly, 0.8 0.1 012
%, Longitude (rad) /"% ; Longitude (rad)
(a) t = 2250 (b) t = 3000

Figure 50: Conflict Solution Time Line

Table 12: Controller Module Response Time

Simulation Aircraft Generation Frequency (s)

Period (s) 125 250 500
5000 19.5 32.0 195
10,000 21.9 38.1 41.6
15,000 18.4 36.7 50.6

6.9 Summary

In this chapter the requirements and implementation of the control module have
been described. The control module meets its functional requirements by enabling
the airspace simulator to implement conflict detection and avoidance strategies as
well as positive control in terminal maneuvering areas using two distinct controller
module types: enroute and TMA. The enroute and TMA controller modules meet
the requirements of simulating the ATC controller behaviour by encoding the control
logic strategy into a text file using the control vocabulary listed in Appendix A.
Encoding the control logic in a text file using a high-level language allows individuals
unfamiliar with the simulation tool to easily understand the control logic, and the
large vocabulary allows considerable variability in the control logic used. The text

file is then interpreted and stored as an array of stack machine instructions, which

106



CHAPTER 6. AIR TRAFFIC CONTROL MODULE

allows the logic to be efficiently implemented via stack machine execution at regular
intervals throughout the simulation.

As required, the controller modules are in constant communication with the
airspace modules sending messages via dedicated message queues. Using multiple
independent control modules that communicate via standard messages further en-
hances the flexibility and the realism of the control module. The commands issued
by the controller module are implemented by a pilot module by altering the aircraft
flight plans and thereby meeting the requirements of modelling the pilot behaviour.

The control modules must operate within a set response time of 10s - 50s.
In this chapter a basic example of enroute control logic has been examined, with a
response time of 34s. In addition it has been demonstrated that the control module
response time can be improved by increasing the aircraft generation frequency, as
this causes the the airspace module and control module time lines to synchronise
more frequently. In Chapter 7 more complicated scenarios will be implemented, and
the performance of the entire simulation tool including the control module will be

evaluated further.

107



CHAPTER 6. AIR TRAFFIC CONTROL MODULE

108



CHAPTER 7

Testing and Evaluation

Up to this point in the thesis the main modules have been introduced and indi-
vidually evaluated. The entire simulation however, has yet to be evaluated as a
whole. In order to determine if the simulation tool met the objectives established in
Chapter 2, the whole simulator needs to be evaluated. In this chapter the simulator
is evaluated using three different scenarios, each investigating different portions and

phases of the overall simulation:

Y

% North Atlantic Crossing
+ Landing at Gatwick

< Simple Europe

The first scenario will evaluate the basic simulator’s performance and the impact
of the control module on runtime performance. The second scenario will evaluate
the TMA control module’s ability to merge arrival streams of aircraft. The final
scenario will evaluate the control module’s ability to separate aircraft and its impact
on the overall simulation runtime performance. All together these scenarios cover
the range of capabilities required by the simulation set forth in Chapter 2. During
these scenarios different airspace and simulation metrics were varied to assesses
their impact on the simulator’s performance. The first two sections will introduce
the metrics used in these evaluations. The third section will discuss the simulator’s
limitations. The fourth section will present the three evaluation scenarios, and the

last section will summarise their findings.

109



CHAPTER 7. TESTING AND EVALUATION

7.1 Airspace Metrics

Airspace metrics are parameters which are inherent in the airspace structure and

affect the simulation runtime performance. Airspace metrics include:

Airspace Density - The number of aircraft in a specific area. Airspace density
greatly affects controller workload and is therefore used to determine when

new airspace sectors should be created.

ATC Sectors - The number of enroute air traffic control sectors is directly related
to the number of controllers needed to control the traffic. In practice, each

sector has one to two controllers, controlling about 20 aircraft at any time [87].

Airports - The number of airports is directly related to airspace complexity, as

each airport will have terminal maneuvering airspace and tower airspace.

Controller Behaviour - The complexity of the algorithm required to simulate the
underlying logic used by controllers is directly related to the complexity of the

airspace and the airspace density.

7.2 Simulation Metrics

Simulation metrics are parameters which either govern the implementation of indi-
vidual modules in the simulation tool or translate airspace metrics into variables in
the simulation tool. The first type of simulation metrics are designated implementa-
tion simulation metrics, and the second type are designated translation simulation
metrics. Each translation simulation metric corresponds to an airspace metric listed
in section 7.1.

In addition to the current airspace metrics listed above, there are inherent
airspace metrics such as human reaction time and radar sweep frequency. These
inherent airspace metrics are implemented in the simulation as an implementation
simulation metric, e.g. frequency of controller stack machine execution. These in-

herent airspace metrics have not been included in the list of airspace metrics because

110



CHAPTER 7. TESTING AND EVALUATION

they are invariable aspects of the airspace system. In a high level simulation, it is not
always necessary to match each inherent airspace metric with a simulation metric,
instead it is enough to mimic their impact on the overall system. Inherent airspace
metrics are implemented in the simulator through implementation metrics, such as
the frequency of enroute controller module updates, which mimics the secondary
surveillance radar system or ADS-B.

However, implementation simulation metrics do not necessarily correspond
to inherent airspace metrics. Others are purely a function of the simulator’s data
structure, such as the frequency of quadtree updates. For example, the quadtree is
a data structure used by the simulator to organise the simulated aircraft, and has

no equivalent in the real airspace system.

7.2.1 Implementation Simulation Metrics
Simulation period is the amount of real time to be simulated.

Frequency of aircraft generation is the mean time between the introduction of

a new aircraft into the simulation.

Number of quadtree levels is equivalent to the smallest possible sector size. As
the number of quadtree levels increases, the sector resolution becomes finer

and the size of the quadtree increases.

Frequency of quadtree updates is the simulated time between aircraft position

updates in the quadtree structure.

Frequency of enroute controller module updates is the time between aircraft
position updates issued to the enroute controller module. This parameter de-
termines the resolution at which the enroute controller module is updated. In

practice, an enroute radar has a refresh rate of 12s [7].

Frequency of TMA controller module updates is the time between aircraft

position updates being issued to the TMA controller module. This parameter

111



CHAPTER 7. TESTING AND EVALUATION

governs the update rate of the TMA controller module. In practice, a TMA

radar has a refresh rate of 6s [7].

Frequency of enroute controller stack machine execution corresponds to the
rate at which the controller’s logic is implemented. In practice controllers con-

tinually monitor their sector for potential conflicts.

Frequency of TMA controller stack machine execution corresponds to the
rate at which the TMA controller’s logic is implemented. In practice TMA

controllers continually monitor their sector for possible loss of separation.

Frequency of data storage is the rate at which data is transferred from the sim-

ulation’s active memory to the hard-drive .
Wind is whether or not the wind field model is included in the simulation.

Data resolution is the rate at which the simulation generates outputs, e.g. aircraft

position, heading, which are subsequently recorded in an output file.

7.2.2 Translation Simulation Metrics

Aircraft Loading is the number of aircraft simulated concurrently. This metric
corresponds to the airspace density and is calculated as the average length of

all the flights simulated divided by the aircraft generation frequency.

Number of enroute control modules corresponds directly to the number of ATC

sectors simulated.

Number of TMA control modules corresponds directly to the number of air-

ports simulated.

Controller Logic Complexity is the number of instructions created in the con-
troller instruction array by the ATC script interpreter. The more complex the

logic the greater the number of instructions.

112



CHAPTER 7. TESTING AND EVALUATION

7.3 Simulation Limitations

As with all software, the simulation tool has limitations due to the data structures
and algorithms contained in it. The simulation has been designed to provide up to
700MB of output to conform to the current data storage standards of a writable
CD. Consequently, the combination of aircraft generation frequency, simulation pe-
riod and resolution are constrained by this requirement. Additionally, the controller
conflict detection algorithm is limited to latitudes below 65°, as at latitudes greater
than this the distance between lines of latitude are greatly exaggerated. Conse-
quently flight plans which exceed this latitude limit will are not able to use any of
the conflict detection or resolution algorithms. Further, several parameters which
are not considered as simulation metrics, as they do not effect the simulation run
time, are currently set at arbitrary levels which can be altered to accommodate ad-
ditional situations. These parameters include the number of airports permissible in
each sector, the number of stacks per sector, the number of aircraft per sector, the

number of aircraft per quadtree region, etc.

7.4 Test Scenarios

7.4.1 Endurance, North Atlantic

Case Description

The purpose of this scenario is to demonstrate the capabilities of the airspace module
alone while varying the frequency of data storage, the frequency of quadtree updates,
and the level of aircraft loading. Additionally this scenario illustrates the effect of
the addition of control modules and different control logic complexity levels on the
overall simulation runtime.

Table 13 lists the metrics used in the test runs, and Figure 51 illustrates the
flight plan followed by the aircraft. The specific input files, which include initial

conditions and flight plans, are listed in Appendix B. In this scenario aircraft fly

113



CHAPTER 7. TESTING AND EVALUATION

Table 13: North Atlantic Crossing Metric List

Simulation Period 10 Hours (36,000s)

Flight Plans 1
Flight Path Crossings 0
Average Aircraft Loading 100, 150, 200
Control Modules 14
Enroute Control Logic None, Simple
Number of Airports 1
Number of Hold Stacks 0
TMA Control Logic None
Data Storage Frequency 300s, 450s
Quadtree Update Frequency 60s, 90s

from New York’s JFK airport through Ebony fix, to the Dogal Fix off the coast of
Ireland. The aircraft then commence their descent into Gatwick (EGKK) airport in

the UK through a series of fixes specified by standard arrival route ASTRA 1B.

Testing Methodology

In this scenario the five simulation metrics varied were:

% the average aircraft loading

% the number of control modules used
+ the control logic complexity employed
+ the frequency of quadtree updates

+ the frequency of data storage

They were varied as shown in Table 13. The resulting experimental design had
15 separate cases, which is fewer cases than a full factorial design. In a factorial
experimental design, every level of each factor is combined with every level of each
other factor. As this experiment included five independent variables, or factors, each
with either 2 or 3 levels, a factorial design requires 24 separate cases to be run in
order to isolate each variable. The cases which were eliminated were unrealistic in

terms of aircraft separation criteria and control module limitations. For example

114



CHAPTER 7. TESTING AND EVALUATION

-60° -40° -20° 0’

Figure 51: Representative North Atlantic Track

with an average aircraft loading of 200, aircraft were initialised within 125s of each
other, which translates to a separation of only 15.5Nmi (assuming the aircraft have
a cruising velocity of 230m/s). The separation criteria for North Atlantic crossings
is 10Nmi instead of the normal 5Nmi, meaning that even slight deviations in velocity
between aircraft would result in conflicts. In addition it was not realistic to use a
single control module to control between 100 and 200 aircraft, as real controllers
handle around 20 aircraft [87]. To observe the repeatability of the simulator, each
case was run three times. This scenario is primarily concerned with the overall

simulation time for the combination of the metrics used.

115

50°



CHAPTER 7. TESTING AND EVALUATION

60s Quadtree Udate 60s Quadtiree Udate
300s Harddrive Transfer 450s Harddrive Transfer

Simulation Time (s)

90s Quadtree Udate 90s Quadiree Udate
300s Harddrive Transfer 450s Harddrive Transfer

Simulation Time (s)

100 AC 150 AC 200AC 100 AC 150 AC 200AC

Average Aircraft Loading Average Aircraft Loading

Figure 52: Impact of Aircraft Loading on Simulation Time

Results

The first objective of the North Atlantic Crossing scenario is to observe the overall
simulation runtime for different average aircraft loadings and to evaluate the effects
of data storage and quadtree update rates on the runtime. Figure 52 illustrates
the results for the appropriate scenario cases. The bars represent the average from
all three runs, with the error bars representing the standard deviation across all
three runs. The quadtree update rate is varied by row, and the data storage rate is
varied by column. It is clear that the affect of varying either of these metrics has
little impact on the overall simulation time. It is also apparent that the primary

metric that affects simulation time is the average aircraft loading. This is to be

116



CHAPTER 7. TESTING AND EVALUATION

No. Controllers/Sectors
Il 1 Controller
I 4 Controllers

750

Error Bars show Mean +/- 1.0 SD

500

250+ I BB

Simulation Time (s)

100 AC 200 AC

Average Aircraft Loading

Figure 53: Impact of Aircraft Loading and Controllers on Simulation Time

expected because increasing the number of aircraft being concurrently simulated in-
creases the number of calculations required per simulation time step. As algorithms
were developed to avoid exponential growth characteristics (by substituting loops
with recursive algorithms wherever possible), it is reassuring to observe that the

relationship between increasing aircraft loading levels and time appears to be linear.

The second objective of the North Atlantic Crossing scenario is to observe
the impact of the average aircraft loading, the number of control modules and the
control module logic complexity on the overall simulation time. Figure 53 compares
the average aircraft loading and the number of controllers, and Figure 54 compares
the number of controllers and the control logic complexity. Again the bars represent

the average across all three runs and the error bars represent the standard deviation.

It is apparent from Figure 53 that the addition of controllers has a significant
impact on the overall simulation time. This is to be expected owing to the increased
simulation overhead associated with each control module. Each module is a separate
Linux process and maintains its own data structures to monitor the aircraft under

its control.

117



CHAPTER 7. TESTING AND EVALUATION

Controller Complexity
I None

[ simple
Error Bars show Mean +/- 1.0 SD

~
(o))
o

5001 N

Simulation Time (s)

250 1 -~~~

1 Controller 4 Controllers

Figure 54: Impact of Controllers on Simulation Time

The computational overhead impact is further confirmed by Figure 54, which
illustrates the variation in simulation runtime for different levels of control module
logic complexity. There is very little difference in the overall simulation time be-
tween the simulation cases, which employ four controllers regardless of the control
module logic. This is expected as the instruction array for the stack machine is
pre-compiled. Additionally, the differences in complexity, which result in different
length instruction arrays, have a negligible effect on the stack machine execution
time when compared to the simulation overhead associated with running separate
processes. In this scenario the simulation was running between 64 and 120 times

faster than realtime.

118



CHAPTER 7. TESTING AND EVALUATION

7.4.2 Landing at Gatwick

Case Description

The purpose of this scenario is to demonstrate the capabilities of the TMA module
logic while varying:

% the frequency of the TMA control module updates

+ the level of aircraft loading

+ the wind implementation

Table 14 lists the metrics used in these test runs, and Figure 55 illustrates the

flight plans followed by the aircraft. The specific input files, which include initial
conditions and flight plans, are listed in Appendix B. In this scenario aircraft fly
from either the TRIPO or GURLU fixes to descend into Gatwick (EGKK) airport
through a series of fixes based on standard arrival routes TIMBA 2B (TRIPO) or
TIMBA 1H (GURLU). The TMA controller logic was either blank or was designed
to merge the air traffic from the two streams at the TIMBA fix. If the lateral
separation between the aircraft was not adequate, i.e. if left on their current speed
and heading the aircraft would violate the standard wake vortex separation criteria,

then the aircraft would be directed to a holding patter located at the TIMBA fix

until an opening in the arrival stream would permit the aircraft to leave the stack.
Testing Methodology

In this scenario the four simulation metrics varied were:

+ the average aircraft loading

+ the control logic complexity

% the frequency of TMA control module updates

+ the implementation of the wind field model

119



CHAPTER 7. TESTING AND EVALUATION

) -1E 0E 1E 2E )
52'E C ] 52E

| ATRIPO

@—QEGKK
51°E E— 0> 51E
\A%
‘,_/’_\
\/ BEXIL
A|GURLU
50E® N / ¥ 50 E
-1E OE 1E 2E

Figure 55: Standard Arrival Routes TIMBA 2B and TIMBA 1H

Table 14: Landing at Gatwick Metric List

Simulation Period 1.4 Hours (5,000s)

Flight Plans 2
Flight Path Crossings 1
Average Aircraft Loading 20, 25
Control Modules 2
Enroute Control Logic None
Number of Airports 1
Number of Hold Stacks 1
TMA Control Logic Complex
Frequency of Control Module Updates 15s, 30s

120



CHAPTER 7. TESTING AND EVALUATION

The first three of these metrics were employed as shown in Table 14. The
wind field model was either implemented or not implemented. The TMA controller
module stack machine execution frequency was set to 15s for each case. The resulting
experimental design had 16 separate cases. This equates to a full factorial design.

The purpose of the TMA control module is to maintain the safe separation of
aircraft while directing them to land. To test the effectiveness of the TMA control
module to fulfil its purpose, the separation between aircraft pairs at two different
thresholds was measured. For example if Aircraft 1 is flying the Timba 2B route and
Aircraft 2 is flying the Timba 1H route, the separation between this aircraft pair
will be measured as the time between Aircraft 1 passing the threshold and Aircraft 2
passing the threshold. The thresholds are located at the TIMBA fix and the runway
threshold. Each case was run once because the controller’s commands were highly
variable between runs. This would lead to inconsistency between runs for the same
case. The variability can be attributed to differences in the allocation of processing

time by the operating system.

Results

The primary objective of the Gatwick Landing scenario is to determine the effective-
ness of the TMA controller, specifically at maintaining separation times to ensure
the minimum separation distances as to avoid wake vortices. Figures 56-59 illus-
trate the separation between aircraft pairs for the two thresholds and the minimum
separation times required at each point. As the simulation only included one air-
craft with a wake vortex classification of heavy, there is only one point at which the
minimum separation is 120s instead of 60s. The graph on the left of each figure is
the control run, where no control logic was employed.

It is clear that the aircraft loading played a significant role in determining
the natural separation between aircraft. This is due to the stochastic nature of the
aircraft generation. The higher the aircraft loading the more frequently new aircraft
are introduced into the simulation. Thus, while the control case with an average

aircraft loading of 20, clearly violated the separation standards for more than half

121



CHAPTER 7. TESTING AND EVALUATION

540

I Runway Threshold 540 Il Runway Threshold 540 Il Runway Threshold

I Mayfield Waypoint I Mayfield Waypoint I Mayfield Waypoint
480 480 480
0 0 0
c 420 z 420 c 420
= o =
& 360 = 360 5 360
g 300 g 300 g a0
& 240 $ 240 B 240
T 180 § 180 g 180
o o £
3 120 I 120 z 120
60 60 60
0 0 0
1234567 8910111213 12345678 910111213 1234567 89101112
Aircraft Paira Aircraft Pairs Avicraft Pairs
(a) No Controller (b) 30s Controller Update (¢) 15s Controller Update
Figure 56: Aircraft Separation Times in Wind for Aircraft Loading of 20
540 540 e 540 — et
480 480 480
2 420 2 420 2 420
c c c
S 360 S 30 S 360
T 5 =
5 300 5 300 £ 300
Q Q Q
% 240 & 240 ko 240
g 180 £ 180 £ 180
£ 120 £ 120 £ 120
< < <
60 60 60
0 0 0
1234567 8910111213 12345678 9101112 12345678910111213
Aircraft Pairs Aircraft Pairs Aircraft Pairs
(a) No Controller (b) 30s Controller Update (c) 15s Controller Update

Figure 57: Aircraft Separation Times without Wind for Aircraft Loading of 20

of the aircraft pairs, the control case with an average aircraft loading of 25 only
violated the minimum separation criteria for a few aircraft pairs. It is important to
compare the controller effectiveness in these control cases, and to note that the AC

loading had a significant effect on the natural aircraft separation.

From observation of Figures 56-57, it is clear that the TMA control module
is successful in separating all of the aircraft pairs. However, in Figures 58- 59 which
illustrate the separation between aircraft pairs with a higher aircraft loading, it is
clear that the TMA control module is less successful. It succeeds in separating

most but not all of the aircraft pairs. It is important to note that although the

122



CHAPTER 7. TESTING AND EVALUATION

Il Runway Threshold 540 Il Runway Threshold Il Runway Threshold
I Mayfield Waypoint I Mayfield Waypoint I Mayfield Waypoint
~ —~ 480 -
) ) w
c 420
S s S
T T 360 T
o = o
g S 300 8
7} $ 7]
e Q2 a0 @
© © ©
5 5 180 s
< < <
60
0
1234567891011121314151617 O 23 45678910111213141516 0 23 45678910111213141516
Aircraft Pairs Aricraft Pairs Aircraft Pairs
(a) No Controller (b) 30s Controller Update (¢) 15s Controller Update

Figure 58: Aircraft Separation Times in Wind for Aircraft Loading of 25

Il Runway Threshold

540 Il Runway Threshold
—_ I Mayfield Waypoint Il Mayfield Waypoint 0 I Mayfield Waypoint
o 480 R z
c » o
s < 3
o 360 Qo @
© T Q
Q o [0)
& a0 g )
= [0) =
T 240 a g
Q © =
2 180 § <
120 <
60
(A ; ;
1234567891011121314151617 12345678910111213141516 12345678910111213141516
Aircraft Pairs Aircraft Pairs Aircraft Pairs
(a) No Controller (b) 30s Controller Update (c) 15s Controller Update

Figure 59: Aircraft Separation Times without Wind for Aircraft Loading of 25

aircraft loading was higher for the cases shown in Figures 58- 59, the severity of
the conflicts, i.e. the number of times the aircraft violated the minimum lateral
separation criteria, is less.

Thus it would appear that the control module is more capable of separating
aircraft flows which produce extreme conflicts, than it is separating aircraft flows
which produce marginal conflicts. This is most likely due to limitations in the control
logic script, please see Appendix B on page 184. This script includes a number of
different intervention thresholds, which are defined as the minimum predicted lateral

separation calculated by the controller. If the controller predicts that the lateral

123



CHAPTER 7. TESTING AND EVALUATION

separation between two aircraft is less than the specified threshold, it will take
action to separate the aircraft. Further experimentation with these implementation
thresholds may have improved the control module performance. Additionally more
complex script capable of implementing intervention thresholds for a greater variety

of scenarios might have improved the success of the TMA controller.

What is important to note is that where the control module is implemented
the average separation of the aircraft pairs is increased and the variation in aircraft
separation is reduced for the case with an aircraft loading of 20. Figure 60 illustrates
the overall average of the aircraft separation. The TMA update frequency is varied
by row. The controller complexity is varied by column, such that the first column
represents the control cases and the second column represents the active controller

cases. It appears that the controller affects the average separation time across all of

TMA Update Frequency = 15s TMA Update Frequency = 15s
Controller Logic Complexity = None Controller Logic Complexity = Complex

Wind Added

25001 pummm s Mon Wor

o
I
o

Average Aircraft Separation
at Thresholds (s)
g 8 8
o o o

TMA Update Frequency = 30s TMA Update Frequency = 30s
Controller Logic Complexity = None Controller Logic Complexity = Complex

=

o I
o o
=) o

at Thresholds

o
o
[=}

Average Aircraft Separation

20AC 25 AC 20AC 25AC
Average Aircraft Loading Average Aircraft Loading

Figure 60: Comparison of Average Aircraft Separation for Varying Aircraft Loadings
and TMA Update Frequency

124



CHAPTER 7. TESTING AND EVALUATION

TMA Update Frequency = 15s TMA Update Frequency = 15s
Controller Logic Complexity = None Controller Logic Complexity = Complex

Wind Added
Won [ off

Average Aircraft Separation

TMA Update Frequency = 30s TMA Update Frequency = 30s
Controller Logic Complexity = None Controller Logic Complexity = Complex

200.0 4~

150.0 1~

100.0 4~

&
©
o

Average Aircraft Separation
Standard Deviation at Thresholds (s) Standard Deviation at Thresholds (s)

©
[=}

20AC 25 AC ’ 20AC 25AC
Average Aircraft Loading Average Aircraft Loading

Figure 61: Comparison of Average Aircraft Separation Standard Deviation across
Aircraft Pairs for Varying Aircraft Loadings and TMA Update Frequency

the aircraft pairs for both aircraft loading cases.

Figure 61 illustrates the average standard deviation for all of the cases. Sim-
ilar to Figure 60 the TMA update frequency is varied by row, and the controller
complexity is varied by column. This figure shows that the TMA control module is
able to moderate the air traffic flow better for most of the cases.

From these two figures, it also appears that the TMA update frequency does
not have any significant effect on the overall effectiveness of the TMA controller.
While this is unexpected, it is possible that the standard TMA stack machine ex-
ecution time of 30s negated any significant improvements provided by the more
accurate aircraft positions. However the wind, did have a noticeable effect on the
air traffic flow, which is expected as the addition of wind can significantly affect

aircraft trajectories during altitude and heading changes [9].

125



CHAPTER 7. TESTING AND EVALUATION

7.4.3 Simple Europe
Case Description

The purpose of the Simple Europe scenario is to demonstrate the simulation of
multiple flight plans, with multiple enroute control modules and multiple airports.
Additionally the impact of wind and the effectiveness of the enroute control modules
control logic on the overall simulation time and aircraft separation are investigated.

Table 15 lists the metrics used in the test runs, and Figure 62 illustrates the
flight plans followed by the aircraft. The specific input files, which include initial
conditions and flight plans are listed in Appendix B. In this scenario, aircraft flew
from one of nine starting cities until they reached a cruising altitude of 37,000ft.
Although some of these aircraft do not usually cruise at 37,000ft, a single level
was chosen to maximise the number of aircraft in conflict with one another. One
exception to this rule is the flight plan from Frankfurt to Amsterdam. For this
flight there was insufficient time to reach the cruising altitude of 37,000ft, instead
the aircraft climbed to 33,000ft Upon reaching their destination, the aircraft then
descend as though landing. The flight plans followed for this scenario are not real,
but are representative. For this scenario the TMA control logic was left blank, as the
purpose was to investigate the effectiveness of the enroute controllers. The enroute

control logic implemented a vertical and speed control strategy which is included in

Table 15: Simple Core Europe Metric List

Simulation Period 6 Hours (21,600s)

Flight Plans 9
Flight Path Crossings 8
Average Aircraft Loading 155, 233, 272, 320
Control Modules 8
Enroute Control Logic ~ None, Nominal
Number of Airports 9
Number of Hold Stacks 0
TMA Control Logic None
Frequency of Controller Module Updates 15s, 30s
Frequency of Controller Stack Machine Execution 15s, 30s

126



CHAPTER 7. TESTING AND EVALUATION

0E 5E 10 E 15E |
A 55 E

LO on

50 E

45E 45 E

40E
5E 0E 5E 10 E 15E

Figure 62: Representative European Flight Plans

Appendix B.

Testing Methodology

In this scenario the five simulation metrics varied were:

% the average aircraft loading

R
L X4

the control logic complexity

Y
*o*

the frequency of enroute control module updates
% the frequency of the enroute control module stack machine execution

+ the implementation of wind

the first four of which were employed as shown in Table 14. The wind model was
either implemented or not implemented.

The resulting experimental design had 24 separate cases, which is fewer cases
than a factorial design. The cases which were eliminated were unrealistic in terms

of aircraft separation criteria. For example, with an average aircraft loading of 233,

127



CHAPTER 7. TESTING AND EVALUATION

5.00E+03 °
Bon Mo Bon Wor R =099 /
’a‘ 4.00E+03 Error Bars show Mean +-1.0SD [ —_ Z
- 2 4000
(0] o
£ £
—  3.00E+03 =
< c
2 ko)
=
% o
£ 200E+037 g piy é’ 3,000 -
g 5
1.00E+037 |
2,000 -
I I T I
155 AC 233AC 272 AC 320 AC 150 200 250 300
Average Aircraft Loading Average Aircraft Loading

(a) (b)

Figure 63: Simulation Time Relationships

aircraft were initialised from the same airport every 180s, which is almost at the
minimum lateral separation of 5Nmi. The simulation runtime and the separation
between aircraft pairs conflict resolution were generated by the simulator to deter-
mine the effectiveness of the enroute control module. Due to the time required to
run and perform analysis, each case was only run once. However for completeness

selected cases were run several times and similar results were obtained each time.

Results

The primary objective of the Simple Core Europe scenario was to again show that
the simulation could handle over 300 aircraft simultaneously and to establish the
relationship between the average aircraft loading and the simulation time. Figure 63
illustrates this linear relationship. Figure 63(a) shows the mean simulation time per
average aircraft loading across all of the cases, and Figure 63(b) illustrates the linear
relationship between the average aircraft loading and the simulation time. Figure
63 corresponds well with the results obtained from the North Atlantic Crossing

scenario, where a linear relationship to average aircraft loading was also established.

128



CHAPTER 7. TESTING AND EVALUATION

3.00E+03 .
: Controller Complexity
col\:(‘:ut';o"er co.ml\’l)ols\)rglty . None . Nominal
Error Bars show Mean +/- 1.0 SD
@ . 40007 y = -588.86 + 16.59x 2
() 3 —
2 2o NN A R =
= £
C —
9] c -
i 9O _
2 *g 3,000 -
£ 10054037 I B g
» 5 -631.51 + 8.33x
0.99
(¢)
2,000 5
T T T I
155 AC 233AC 150 200 250 300
Average Aircraft Loading Average Aircraft Loading

(a) (b)

Figure 64: Comparison of Simulation Time for Different Controller Complexity
Levels

The second objective of this scenario was to determine the impact of the con-
troller logic on the simulation time. It was thought that the addition of the control
module would marginally increase the simulation time. It was discovered that the
relationship between average aircraft loading and simulation time is linear. How-
ever it was also discovered that the relationship is linear within controller complexity
groupings, as shown in Figure 64. This raises the question, why would the simulation

time be so much lower with the control module logic on, than without it?

The answer can be seen by examining the actual number of aircraft concur-
rently simulated instead of the average aircraft loading, because the average aircraft
loading metric assumes that the average aircraft flight time is constant. In this
case, the control logic is commanding aircraft to solve conflicts by either climbing
or descending. However, aircraft are only commanded to climb if they are below the
highest altitude allowable by the BADA performance tables. Figure 65 illustrates

these performance tables, where Boeing 737-300 and 747-200 aircraft are currently

129



CHAPTER 7. TESTING AND EVALUATION

500
490

480 e

- \\\x —e—A-320

X 470 —s—B737-300
% 460 Yt ——B737-800
8 v o5 -1 ] _
o 450 — B747-200
= 440 ——— —— MD-80

430
420 %/ T T T T T T

280 300 320 340 360 380 400

Flight Level

Figure 65: BADA 3.3 Performance Table Velocity v. Flight Level

at the highest allowable altitude. As the BADA performance data is linked to al-
titude, it can be shown that for the aircraft used in this simulation reductions in
Flight Level lead to increases in velocity whereas increases in Flight Level result
in no change in velocity. Thus, the aircraft under control module guidance com-
plete their journeys faster than aircraft without control. This reduces the average
flight time and the corresponding aircraft loading. Figures 66 and 67 illustrate this
point by examining the number of aircraft simulated concurrently at the end of the

simulation run, which is effectively a steady state point in the simulation.

Figure 66 shows the number of aircraft present at the end of the simulation
run. It is important to notice that the error bars represent the standard deviation
for all of the cases simulated. For average aircraft loadings of 155 and 233, the
standard deviation across all of the cases is high. Figure 67 examines the number of
aircraft present at the end of simulation, which reveals that the number of aircraft
present in the cases with active control logic is less than the cases without control
logic. In fact, by comparing the shape of the bars in Figures 64(a) and 67 it is
clear that they are correlated. By normalising the simulation time by the number of
aircraft present at the end of the simulation, it can be seen that the simulation time
per aircraft is fairly constant across all of the average aircraft loadings and wind

implementation as seen in Figure 68. The simulation time per aircraft is also fairly

130



CHAPTER 7. TESTING AND EVALUATION

Wind Added
Bon W osf

300

200

21600s

at t

100

Number of Aircraft Present

155 AC 233 AC 272 AC 320 AC

Average Aircraft Loading

Figure 66: Number of Aircraft Present in Simulation at t=21600s

Controller Complexity
M None B Nominal

2000 - - B

Error Bars show Mean +/- 1.0 SD

-
(&)
T

21600s

att

Number of Aircraft Present

155 AC 233 AC
Average Aircraft Loading

Figure 67: Comparison of the Number of Aircraft Present in Simulation at t=21600s
for Different Controller Complexity Levels

131



CHAPTER 7. TESTING AND EVALUATION

15.00 Wind Added
Bon Mor
»
% Error Bars show Mean +/- 1.0 SD
o
<£ 10.00=
)
o]
0]
£
'—
C
O
= -4
9 5.00
)
£
wn
0.00-

155 AC 233 AC 272 AC 320 AC
Average Aircraft Loading

Figure 68: Simulation Time per Aircraft as a Function of Aircraft Loading

constant across different levels of control logic as seen in Figure 69. The implication
of this consistency is that the control logic has indeed been implemented efficiently.
It appears that the impact of controller logic complexity is minimal compared with
that of the average aircraft loading on the overall simulation time, and that this
impact is consistent over a range of aircraft loadings.

The final objective of the Simple Core Europe scenario was to determine the

effect of:

« the frequency of enroute controller update
+ the frequency of the enroute control module stack machine execution
% the aircraft loading

« the implementation of the wind field model




CHAPTER 7. TESTING AND EVALUATION

15.00 Controller Complexity
= B None B Nominal
=
O Error Bars show Mean +/- 1.0 SD
o
f 10.00—

[0}
o
o
£
'—
(-
9O
T 5.000
>
£
n
0.00-

155 AC 233 AC

Average Aircraft Loading

Figure 69: Comparison of Simulation Time per Aircraft for Different Controller
Complexity Levels

on the effectiveness of the control module logic. Three different aspects of the control

module effectiveness were examined:

¢ the control module response time
« the average aircraft separation at the point of intervention

« average flight time deviation

Figure 70 illustrates the average control module response time for all of the
commands issued by the control module. The control module response time is the
time from the last aircraft update to the execution of the control module command
by the pilot module. It is important to note that for all of the cases tested the
average control module response time was within the 10s-50s controller response

time cited in the literature and set as a requirement of the control module. It is also

133



CHAPTER 7. TESTING AND EVALUATION

ATC Update Frequency = 15s
Logic Execution Frequency = 15s

12.0-4-

®
o
:

Average Controller
»
o

Response Time (s)

o
o
1

ATC Update Frequency = 15s
Logic Execution Frequency = 30s

®
o
1

Average Controller
>
o

Response Time (s)

155 AC 233AC
Average Aircraft Loading

Figure 70: Comparison of Controller Response Times

ATC Update Frequency = 30s
Logic Execution Frequency = 15s

Wind Added
Bon Mof

AIC Update Frequency = 30s
Logic Execution Frequency = 30s

155 AC 233AC
Average Aircraft Loading

interesting to note that as the aircraft loading increased, the average control module

response time decreased. This is expected because, as explained in Section 6.6 on

page 101, the controller module time line synchronises with the simulation time line

at aircraft generation and removal. Consequently, the more frequently aircraft are

generated or removed, the faster the control module response time becomes.

Figure 71 illustrates the average aircraft separation at the time of the control

module intervention. The control module logic was designed to identify possible

conflicts within a 30Nmi radius. It is important to note that the control module

134




CHAPTER 7. TESTING AND EVALUATION

ATC Update Frequency = 15s ATC Update Frequency = 30s
Logic Execution Frequency = 15s Logic Execution Frequency = 15s
§F Wind Added
T = Won [ off
O < 15.00 T
g0
35
5 2 10.00- -
o0&
<5
O = .00 -
o= 5.00
O O
o O
Z 5 0.00- -
ATC Update Frequency = 15s ATC Update Frequency = 30s
Logic Execution Frequency = 30s Logic Execution Frequency = 30s
C =
2 E
Sz
o -
8 CC) 15.00
> 5
B 2 10.007
od
<5
% = 5.007
0 O
o O
Z % 0.00-
155 AC 233 AC 155 AC 233 AC
Average Aircraft Loading Average Aircraft Loading

Figure 71: Comparison of Average Aircraft Separation at Controller Intervention

response time has translated into approximately 10Nmi of closure. However it is also
important that the average aircraft separation is above the 10Nmi threshold. Upon
closer inspection it is observed that the standard deviation for these calculations
is between 8Nmi to 10Nmi, leading to a high number of cases without adequate
separation. There are several reasons for this situation. Firstly, the control logic
does not allow aircraft overtaking one another to be permanently reassigned to
different altitude levels. Secondly, the control logic is limited to resolving two aircraft
conflicts, thus the resolution of any conflict involving more than one aircraft may

result in the creation of an additional conflict.

Figure 72 illustrates the average aircraft flight time deviation caused by the

135



CHAPTER 7. TESTING AND EVALUATION

AIC Update Frequency = 15s AIC Update Frequency = 30s
_Logic Execution Frequency = 15s _Logic Execution Frequency = 15s

Wind Added
Bon Mo

-250 1 [

-500 - [ ==

R ) —

Average Flight
Time Deviation (s)

-1000

ATC Update Frequency = 15s ATC Update Frequency = 30s
_Logic Execution Frequency = 30s _Logic Execution Frequency = 30s

-250 1

-500 -

Average Flight
Time Deviation (s)

-750 -

-1000

155 AC 233 AC 155 AC 233 AC
Average Aircraft Loading Average Aircraft Loading

Figure 72: Comparison of Average Flight Time Deviation

control module logic. It is interesting to note that the introduction of the control
logic decreased the average flight time between 8 and 15 minutes. This decreased
flight time is due to increased use of lower flight levels for conflict avoidance, which
allowed the aircraft to increase their velocity, see Figure 65. It is also interesting to
note that the addition of wind had a small but noticeable impact on the flight time

deviation, as can be expected.

On the other hand the differences in control module update rates and control
module stack machine execution rates appear to have had little effect on the average
flight time deviation. This insensitivity is to be expected as there was no noticeable

difference in the average aircraft separation at conflict resolution caused by these

136



CHAPTER 7. TESTING AND EVALUATION

two metrics. For instance, if the conflict resolution occurs at the same distance,
then the flight plan deviation will last for a similar period of time (whatever the
time necessary to resolve the conflict successfully), regardless of the frequency of the
updates and stack machine execution. It does appear, however, that the average
aircraft loading has a significant effect on the average flight deviation. This is also to
be expected as the number of aircraft overtaking one another in the higher aircraft
loading cases will be significantly greater than in the lower aircraft loading cases,
leading to an increase in the number of aircraft flying at lower flight levels for long
periods of time. If aircraft fly at lower flight levels, their flight time will be reduced,

increasing the flight time deviation.

7.5 Summary

Overall it appears that the simulation tool has achieved the objectives established
in Chapter 2. The three scenarios described in this chapter have demonstrated the
different capabilities of the simulation tool. The simulator has shown that it is
capable of running fast time on a standard personal computer even under a load
similar to the Simple Europe scenario. In the Simple Core Europe scenario presented
here, the simulator ran between 5 and 11 times faster than real time depending on
the case parameters. This scenario also demonstrated that the simulator has the
capability to simulate over 300 aircraft simultaneously.

The control module has demonstrated the simulator’s ability to simulate data
link messages, which include both intent broadcasts and aircraft state information.
Additionally, the simulation is capable of incorporating the wind field model. It has
also shown that the simulator is capable of implementing ATC restrictions on speed,
altitude and heading. The simulator has also demonstrated that it can achieve the
desired response time even under a heavy aircraft loading. However, the simulator
is less capable at successfully separating all aircraft conflicts, especially those which

involve more than two aircraft.

137



CHAPTER 7. TESTING AND EVALUATION

138



CHAPTER 8

Discussion

8.1 Research Objectives

The primary objective of this research has been to create a high-level, low-fidelity
simulation tool for the purpose of conducting exploratory research into radical new
approaches to enhance the airspace capacity with the following capabilities and

characteristics :

s To model airspace characteristics appropriate to the 2020 time frame

% To run on a single personal computer (PC)

g

s To run in fast time

R
o

To be open source

s To be nonproprietary

% To simulate atmospheric conditions
s To simulate data link communications

s To simulate ATC guidance

The need for a simulator was deemed necessary due to the limited flexibility
of existing commercial airspace simulators, such as RAMS and TAAM [64], and to
model innovative airspace structures and procedures, which are required to increase
airspace capacity. A search of the literature indicated that although such a simu-
lation tool did not exist, research into increasing airspace capacity is needed and is
currently being undertaken in both the U.S. and Europe. This research has sparked
the creation of several non-commercial airspace simulators by NASA, NLR and EU-

ROCONTROL. However, these simulators are high fidelity and require dedicated

139



CHAPTER 8. DISCUSSION

facilities, extensive input data and months of training. The simulation presented in
this thesis is aimed at filling a niche role created by these simulations: a low fidelity
simulation that can be run on a single PC, runs in fast-time, and is open source.
These objectives were then translated into a set of simulation requirements as listed

in Table 16.

8.2 Simulation Review

This thesis has presented a high-level low fidelity airspace simulator for the purpose
of investigating airspace capacity benefits derived from radical airspace structures.

The simulator is compromised of four modules:

2
L X4

Multiple Aircraft Performance Module (MAPM)

Y
*o*

Wind Field Module

R
L X4

Airspace Module

2
*o

Control Module

which have been discussed in detail in Chapters 3 through 6. The structure of
the simulator is illustrated in Figure 73, where the arrows indicate the direction
of data flow, (solid arrowheads represent direct links and open heads representing
data link). The top row illustrates the different input files required by each module.
The middle row illustrates how the different modules interact with each other. Note
that, although both the Pilot are Control module are contained within the ATC
module, that the Pilot portion is held within the Airspace module whereas the
Control module is not. This is because the Pilot module must share data with
the Multiple Aircraft Performance module directly. The bottom row illustrates the
output files generated by the simulation and the module which generates them. The

modules are summarised individually in Sections 8.2.1 - 8.2.4.

140



CHAPTER 8. DISCUSSION

Observed i Flight
Base of Initial N Airspace
Weather Aircraft Data | (Conditions || Plans Plan

Data

/
Airspace Module / “/l

4 v v w AIC Module

y - - - Pilot |, | Control
wind F|e|d_,, Multiple Aircraft | q— Module-(_ Module

Perf M | H y -l |

Module erformance Module *
Output Control

File Log

Figure 73: Simulation Architecture

8.2.1 Multiple Aircraft Performance Module

The multiple aircraft performance module is the heart of the simulation. It governs
the creation, movement and removal of aircraft. Individual aircraft motion is mod-
elled by the BADA v3.3 performance database. The simulation’s adherence to the
BADA database has been validated with an error of less than 0.5% over 2,000km.
The simulation assumes that all aircraft are under FMS guidance due to the eco-
nomic and navigation benefits provided by an FMS. To provide FMS guidance, the
simulation assumes a spherical earth and employs great circle navigation between
way points. The navigation and guidance algorithms have been tested and achieve
an accuracy of less than half a kilometre deviation over a 2,000km flight, which is

within the accuracy required by RNAV-1.

8.2.2 Wind Field Module

A wind field model is a key component of the airspace simulator. The wind field
enables a wind field model from publicly available observed winds aloft data. Due to
the significant impact that wind has on an aircraft’s along-track navigation accuracy,
the greater this accuracy, the greater the accuracy of conflict detection algorithms.
The wind field model itself consists of a set of gridded wind data over a series of time

and altitude levels. At each time step, the grids are interpolated to provide the wind

141



CHAPTER 8. DISCUSSION

observed by each aircraft. Observed winds aloft data was chosen over forecasted
winds aloft, which are traditionally used in airspace simulations, because of the
discrepancies detected by Rodney et al. [67]. The National (US) Oceanographic
and Atmospheric Administration’s National Profiler Network was chosen as the
wind field model data source because it was the only source of observed winds aloft
that provided a consistent set of data over a large geographic region and over a
long period of time. Additionally, it is freely available over the Internet enabling
researchers to create different wind models for a range of weather conditions. The
wind field model has been evaluated and found to have an average accuracy of

2.5m/s in magnitude and 5° in direction.

8.2.3 Airspace Module

The purpose of the airspace module is to organise the simulated aircraft to facilitate
conflict detection and data link algorithms. These algorithms require the expedi-
tious location of all aircraft within a given geographic region. The airspace module
employs an indexed point-region quadtree to accomplish this function. The point-
region style quadtree is chosen because the size of its regions and the structure of
the tree are independent of the order aircraft are inserted or removed from the tree,
which can occur asynchronously in an airspace simulation. The quadtree uses au-
thalic coordinates to maintain equal area regions, thus avoiding, without the need to
transform the coordinates from latitude and longitude, which would additional more
computations. To further reduce the computational load required by the quadtree,
the quadtree is indexed using a form of Morton ordering, which allows efficient

quadtree traversal and minimising computation time.

8.2.4 Control Module

The purpose of the control module is to monitor the simulated airspace for the

possible loss of aircraft separation, and upon detection of such a loss, to direct the

142



CHAPTER 8. DISCUSSION

aircraft involved to resolve the conflict and restore the separation. The conflict
detection and resolution logic is contained in an array of instructions which are
implemented by a stack machine. This array of instructions is compiled from a
plain-text, control logic file which is written in a pseudo code using a specialised
control vocabulary. Utilising the control vocabulary provides a wide range of control
options, and pre-compiling the instructions at initialisation maximises the runtime
efficiency of the individual control modules. The control module is implemented as
a set of independent Linux process, one per control sector. There are two distinct
types of control modules: an enroute controller and a TMA controller. Enroute
controllers are assigned to a sector of airspace, which corresponds to a quadtree
region. Although using quadtree regions to represent airspace sectors is restrictive,
it aids in the efficiency of the conflict detection and resolution algorithms. TMA
controllers are responsible for merging aircraft on approach to a specified airport.
The control module has been evaluated and is capable of resolving conflicts and
merging arrival traffic. However, its effectiveness is highly dependent upon the
control logic employed, the nature of the conflict (whether it involves more than two
aircraft) and the frequency of the aircraft position updates and stack the machine

execution.

8.3 Simulator Requirements:
Origin & Satisfaction

As this simulation is aimed at modelling aircraft and air traffic in the 2020 time
frame, it was necessary to simulate a large number of aircraft simultaneously and
in total. The projected daily peak for the busiest European airport (London’s
Heathrow) in the year 2020 is 150 aircraft an hour, so it was decided that the
simulator should be able to simultaneously simulate twice this number of aircraft,
and should be able to sustain this level of aircraft for a simulated period of 12-16
hours. Therefore, the simulation should also be able to accommodate 4,000 aircraft

in total.

143



CHAPTER 8. DISCUSSION

Table 16: Simulator Requirements

Simulator Requirements Achieved Section
Capable of running fast time Yes 7.4
Capable of running on a standard PC Yes 7.4
Handle 300 aircraft simultaneously Yes 7.4.3
Handle 4,000 aircraft total Yes 3.4.3
Allows data link simulation Yes 6.3
Allows intent broadcast Yes 6.3
Allows aircraft state broadcast Yes 6.3
Allows current wind broadcast Yes 6.3
Allows flight phase broadcast Yes 6.3
Allows data link feed back Yes 6.5
Includes wind field simulation Yes 7.4.2
Includes conflict detection and avoidance algorithms Yes 6.8

Speed and Fidelity The simulator has met the requirement to run on a standard
PC and to run in fast-time as illustrated by the results presented in Section 7.4.
These scenarios also illustrate that the simulator run time is primarily a function
of of the number of concurrently simulated aircraft and the number of airspace
sectors and airports which are modelled. It is important to note though that the
simulation run time has been shown by these scenarios to be a linear function of
the number of concurrently simulated aircraft. A linear relationship indicates that
the simulation structure and algorithms are efficiently implemented and implies that
the simulation is capable of handling larger simulations, i.e. those with a greater

number of concurrent aircraft without incurring significant time penalties.

Capacity Requirements The simulator met the requirement for simulating 300
aircraft simultaneously in the Core Europe scenario. The results are presented in
Section 7.4.3 where an average aircraft loading of 320 aircraft was achieved over a
period of 10, hours which produced a total of 1,500 aircraft. Although none of the
scenarios presented in Chapter 7 have explicitly demonstrated that the simulator
is capable of simulating a total of 4,000 aircraft, this capability was demonstrated

earlier in Chapter 3. The total number of aircraft handled by the simulation is more

144



CHAPTER 8. DISCUSSION

of an issue of storage space than of computational limitations caused by inefficient
algorithms. Table 4 on page 34 has illustrates that the storage required by the
simulator to store different amounts of aircraft depending on the average flight
duration and the recorded resolution. If it is necessary to store more data than the
default 700MB, the overall storage parameter needs to be changed to accommodate

larger output files.

Wind Field Requirement Management of aircraft in airspace which includes an
unpredictable wind field, is vital to increasing airspace capacity. Correct modelling
of the variability of winds is, therefore, critical in a viable simulation. It has been
suggested that future improvements to the airspace capacity will involve improved
wind modelling through broadcasting wind field data [35]. To insure that the simu-
lator is capable of modelling such an airspace structure, it was necessary to include
a wind field model in the simulation. This model has been developed and integrated
into the simulator as discussed in Chapter 4. Additionally the simulation is capable
of broadcasting wind data observed by the aircraft. In both the Landing at Gatwick
and the Simple Europe scenarios evaluated in Chapter 7, the effect of the wind field
model was small but noticeable.

The wind field model used in the simulator is based on observed winds aloft
data which is recorded over a section of the earth. In order to provide coverage
over the entire earth, the data is repeated in a patchwork fashion. This repetition
imposes limits on the validity of the wind field model for aircraft flying through
more than one patch, and for patches near the poles where the distance between

latitude and longitude are significantly distorted from their collection site.

Data Link Requirement In the future, data link systems will play an impor-
tant role in transmitting information between the flight deck and other aircraft and
between the flight deck and the air traffic service provider. To this end an airspace
simulation needs the ability to model data link broadcasts. Although the U.S. has
chosen a set of data link technologies to develop, the composition of the messages

has yet to be decided. Consequently, the airspace simulation should be able to easily

145



CHAPTER 8. DISCUSSION

alter the content of data link messages used by the simulator.

This simulator not only allows data link messages to be explicitly simulated
through Linux message queues, it also provides a convenient method for modifying
the content of the messages through the creation of new message types. In addition
the pilot module, enables the simulation to implement feedback from the data link
messages. The simulator’s data link capability and its ability to implement feedback
from data link messages can be seen in the Landing at Gatwick and Core Europe
scenarios evaluated in Chapter 7, where seven different message types, were used to

control aircraft.

Air Traffic Control Simulation Lastly, an airspace simulator needs to have a
means of conflict detection and resolution as well as traffic flow management. This
simulator has implemented its conflict detection and resolution algorithms in a two
part control module, as described in Chapter 6 and summarised in Section 8.2.4.
The effectiveness of the control module is dependent upon the frequency of the
ATC updates sent by the aircraft, the frequency of the stack machine execution, the
complexity of the control logic and the frequency of aircraft generation, as shown in

Chapter 7.

The most significant of these metrics is the the frequency of aircraft generation,
as it affects both the control module lag time and the probability of multiple aircraft
being in conflict with one another. Clearly the shorter the control module lag time,
the more effective the control module is likely to be. However, even without any
lag, the control module only implements its logic at the frequency specified by the
stack machine execution frequency. Furthermore, the control logic is only able to
act on the most recent information that has been sent to it, which is governed by the
ATC update frequency. These three metrics combine to form the control module
response time, which is the time between the last update sent to the control module
by an aircraft and the time any effected aircraft receives instructions back from the
control module. The response time has been shown to be consistent with that of

human controllers, between 10-50s.

146



CHAPTER 8. DISCUSSION

However, even if the control module response time is on par with human
controllers, it is only able to implement the logic which is encoded into the instruction
stack. This means that the overall effectiveness of the control module is highly
dependent on the complexity of the control logic, and the implementation of the
control logic. Currently the control logic is bound by the vocabulary provided. For
example the control logic is not capable of resolving conflicts involving multiple
aircraft, nor is it capable of implementing any strategic plans because the current
set of vocabulary does not cater for these situations. However, new vocabulary is

easily implemented and will be included in future improvements.

8.4 Suggestions for Further Work

While there is always room for improvement in any work, the Airspace Simulator
presented in this thesis is quite complete. It includes the basic concepts incorporated
into more sophisticated models and a few advanced concepts not included in those
models. There are however, some areas where further work would enhance the
simulation. This section presents a number suggestions for further improvement
of the software, for the specified modules. It also includes some discussion on the

potential computational impact of these suggestions.

Overall Simulator Future improvements to the overall airspace simulation should
simplify the scenario creation through the introduction of graphical user interfaces
for both input file creation, simulation execution, and output file investigation. The
inclusion of a database of current airports, airway boundaries, and restricted airspace
would accelerate the scenario set up process. For example it would be convenient

to enter airspace parameters via a graphical user interface.

Multiple Aircraft Performance Module In order to improve the fidelity of the
simulation a higher fidelity performance model could be implemented. At present
the model implements the performance model held in the performance table files

which is a simplification of the overall performance model held in the operations

147



CHAPTER 8. DISCUSSION

performance file and the airline procedure file. This improved model would improve
the validity of the simulation for maneuvers which do not adequately correspond to
the performance model held in the PTF. As this addition could have a significant
impact on the performance runtime of the simulator, it would be best to include it

as a parameter which can be set by the operator.

Airspace Module In order to simulate more realistic sector geometries, and pro-
posed concepts such as super sectors it is suggested that the control module sectors
should be decoupled from the quadtree structure. This decoupling would also enable
the extension of control module availability to above the 65" parallel. However, the
decoupling would require the addition of another large data structure and has the
potential to significantly increase the computation time required to find possible
aircraft conflicts. This is because with the elimination of the quadtree structure it
would be necessary to calculate the distance between each aircraft pair in a sector
and possibly all aircraft pairs across several sectors. Yet, as the calculation of great
circle distances is an efficient calculation, for sectors with small numbers of aircraft,

computing the distance between each aircraft pair may not prove unsurmountable.

Wind Module Future improvements to the wind field model should include im-
proving the interpolation schemes used to generate the gridded wind model to reduce
the error incurred by transferring the raw data into the uniform grid model. The
sensor accuracy could also be introduced to degrade the aircraft’s wind measure-
ment. This sensor degradation would enable the simulation of the wind measured
by the aircraft’s sensors and transmitted via data link as such a measurement would
not match exactly the wind experienced by the simulated aircraft. Additionally,
observed wind data from an expanded profiler network should also be incorporated.
Ideally wind data would be available for the geographic area of interest. Finally,
convective weather should be incorporated into the model parameter, and the error
associated with the repetition of the same weather model to cover large regions of

the earth should be quantified.

148



CHAPTER 8. DISCUSSION

Control Module The simplest improvement that should be made to the control
module is the expansion of the controller vocabulary to allow the control logic to
handle multiple aircraft conflict scenarios, and to facilitate strategic traffic flow
management. An enhanced vocabulary would enable a larger variety of airspace
scenarios to be simulated, and concepts such as aircraft prioritisation within sectors

to enable conflict resolution in free flight scenarios to be investigated.

Another suggestion to improve computational efficiency is to assess the feasi-
bility and efficiency of keeping a central quadtree representation of the entire airspace
in a shared memory region accessible to all control modules. It is possible by reduc-
ing the overhead associated with each control module maintaining its own quadtree,
that the simulator performance might increase significantly. However, this could
present a bottle neck with multiple control modules needing to access information

simultaneously.

A further improvement would be to improve the control module conflict res-
olution capabilities by providing the control modules with a strategic view of the
airspace they are controlling. For example if the control module knew that aircraft
flying a certain route were due to land soon, it could command them to descend
rather than climb in a conflict situation. In addition a way of including the past
commands that each aircraft has been given into the conflict resolution strategy
would also improve the module’s conflict resolution capabilities. Both of these im-
provements would also help the control module cope with conflicts involving more
than one pair of aircraft. However to fully handle multiple aircraft conflicts the
control vocabulary would need to be expanded. This expansion should include a

new command to issue permanent flight level clearances for a given sector.

An ATM issue illustrated by the simulation is the uncertainty introduced by
the use of data link communications: that the controller and the pilot know what
messages they have sent, but they may not be aware if those messages were received
correctly. To overcome this uncertainty, in this simulation the controller waits for
the pilot to respond to any commands sent to it before issuing other commands,

but the pilot cannot be certain that the controller is issuing a command based on

149



CHAPTER 8. DISCUSSION

the very latest position update that it sent. This uncertainty becomes even more
important if the controller were to issue multiple commands to an aircraft in rapid
succession. All of these commands might be issued before the pilot has a chance
to execute any of them. Should the pilot execute each command in order, or only
execute the last command received. These are real ATM issues that will need to be

addressed before data link communications can be implemented system wide.

8.5 Airspace Simulator Benefits

The airspace simulation developed in this thesis has many benefits in the core
airspace module and in the auxiliary modules. The major benefits of this simulator
in comparison with other available airspace simulations is that it is nonproprietary
and runs on a single PC. The simulation can be compiled and run under Linux
which is also both nonproprietary and open-source. This allows the simulator to be
accessible to a much larger number of researcher organisations. Additionally, both
the BADA database and the wind data are used in the simulator are also freely
available to academic research staff.

Additional beneficial aspects of this simulator are that it is a high-level, low-
fidelity, open source simulator. These aspects reduce learning curve for users of the
simulator and allow researchers to quickly prototype their ideas for new airspace
structure or data link feed back. Additionally these aspects of the simulator enable
it to run in fast time, which in turn allows results to be generated in a matter of
days instead of weeks. Consequently a much higher number of cases can be studied.

The primary benefit of the wind field model is that it is based on observed
winds aloft data instead of forecasted winds aloft, which makes it unique among the
existing airspace simulators discussed. In addition the data on which the wind field
model is based, is freely accessible and allows multiple wind models to be created
for a variety of atmospheric conditions.

While not a novel concept, the rule based control logic, as discussed in Chapter

6 does provide significant benefits over rule based control implemented by other

150



CHAPTER 8. DISCUSSION

simulators, such as RAMS, because the rule based control logic is implemented in
a more intuitive style. This airspace simulator uses a set of control vocabulary to
create a set of control logic which reads like a simplified natural language instead
of a pseudo code language. Using natural language style allows the control logic to
be created and understood by individuals with little or no knowledge of computer
programming. The ability to include stake holders, such as experienced air traffic
controllers, into the design and testing of novel new airspace structures is vital to
their success and eventual implementation. In addition it provides a greater variety

of implementable control scenarios.

151



CHAPTER 8. DISCUSSION

152



APPENDIX A

Control Vocabulary

The controller module interprets a set of commands from a text file to construct the
code for the stack machine, as outlined in Chapter 6. This text file is constructed
from a specific set of vocabulary, which are described in the following sections. The
control vocabulary consists of key words, command words, calculation words, and
two different types of variables. The variables are distinguished between those which
can be directly set in the control script, internal variables, and those which cannot
be directly set, external variables. All of the other types of words act on either
internal or external variables. The specifics of these words and their interaction is

described in the following sections.

A.1 Key Words

Key words serve two primary functions. The first is to serve as logical operators
which provide the framework around which the rest of the control script is con-
structed. The second is to serve as trigger words for the code interpretation algo-
rithm to set the different variables and issue commands. The 21 key words are listed
below along with their use. Please note that < condition > implies a logical con-
dition statement and < expression > implies a mathematical statement which can
be evaluated; a < constant > implies a numerical constant; and < time > implies

an amount of time in seconds.

IF.. THEN I[F < condition > THEN
< expression >

END

ELSE [F < condition > THEN

153



APPENDIX A. CONTROL VOCABULARY

< expression >
ELSE
< expression >

END

UNLESS UNLESS < condition > DO
< expression >

END

WHILE WHILE < condition > DO
< expression >
END
Pauses the control module until an update from the airspace module is received

to change the condition.

REPEAT REPFEAT < expression > UNTIL

< condition >

FOR FOR < time > DO
< expression >

END
WAIT < condition >
DELAY < time >

S_WHILE Does not exit from execution upon failure.
S_-WHILE < condition > DO
< expression >

END
OR Logical OR.
AND Logical AND.

STOP Stops script execution and maintains location in instruction stack.

154



APPENDIX A. CONTROL VOCABULARY

EXIT FEuzits script execution and resets location in instruction stack.
SAMPLE < INTERNAL VARIABLE >, < constant >

GET < CALCULATION WORDS >
Sets EXTERNAL VARIABLES in the background

SET < INTERNAL VARIABLE >

INCREMENT < INTERNAL VARIABLE >
FExcept Sector_ID, Conflict_Radius, Update_Rate or Stack_Overflow

COMMAND < ACTION WORDS >, < EXTERNAL VARIABLES >
Sets EXTERNAL VARIABLES in the background

A.2 Internal Variables

Variables which can be directly set in the control script are designated internal

variables. The 13 internal variables are listed below.

Conflict_Radius is the radius within which a conflict will be declared. Any pos-
sible conflicts detected with a conflict radius larger than the declared radius

are ignored by the controller.
Current_Conflict is the index of the conflict array which is currently selected.
Update_Rate is the rate at which the aircraft send updates to the controller.

Current_Init_App is the index of the initial approach array which is cur-

rently selected.
Current_Stack is the index of the stack monitor which is currently selected.
Current_Nearest is the index of the AC which is currently selected.

Current_Final App is the index of the final approach array which is currently

selected.

155



APPENDIX A. CONTROL VOCABULARY

Current_Comp is the index of the comparison array which is currently selected.
Temp_Value is the value which has been stored.
Temp_Value2 is the value which has been stored.

Nearest_Stack is the index of the stack monitor array which is nearest to a

given aircraft.

Current_Selected is the index of the stack level of either the nearest stack

or the current stack currently selected stack, which is currently selected.

Stack_Overflow is the index of the stack monitor array which is the overflow

stack for the currently selected stack monitor.

Depending on the type of controller used, different internal variables are available

to be incremented as shown below:
Controller Conflict_Radius, Current_Conflict

TMA Controller Conflict_Radius, Current_Conflict, Current _Init_App, Nearest_Stack,
Current_Selected, Stack_Overflow

A.3 External Variables

Variables which cannot be directly set in the control script are designated external
variables. These variables are set through the use of other control words externally

in the controller. The 58 external variables are described below.

Sector_ID is the control sector identifier. It corresponds to the quadtree array

index of the quadtree region within which this controller acts.
AC1, AC2 are the generation numbers designating specific aircraft.

AC1 PKT, AC2_ PKT arethe pointers to aircraft state records and tomaster

records for specific aircraft.

156



APPENDIX A. CONTROL VOCABULARY

AC1_alt, AC2_alt are the altitude in meters of AC1 and AC2.
AC1 _heading, AC2 _heading are the heading in radians of AC1 and AC2.
AC1_vel, AC2_vel are the velocity in fracms of AC1 and AC2.

AC1 next WP, AC2 next WP are the pointers to the next waypoint for AC1
and AC2.

AC1 _next_alt, AC2_next_alt are the altitude of the next flight plan segment for
AC1T and AC2.

ACAC_Dist is the distance in meters between AC1 and AC2.

AC1_Boundary_Dist, AC2_Boundary_Dist are the distance in meters between

AC1 and AC2 and the nearest control sector boundary.

Max_Vel AC1, Max Vel AC2 are the maximum velocities for AC1 and AC2. By
default they are 10% over normal velocity when climbing, 20% over normal

velocity when cruising, and 25% over normal velocity when descending.

Wake Type_AC1, Wake Type_AC2 are the wake classifications (High, Mid, Low)
for AC1 and AC2.

Max_Alt_AC1, Max_Alt_AC2 are the maximum altitude levels in meters for
AC1T and AC2.

No_Conflicts is the number of conflicts found within the conflict radius.
Scenario is the conflict scenario: overtake, acute
Density is the airspace density in fracnumberofaircraftsquaremeter

Time is the time of the last update from the simulator. angle, right angle, obtuse

angle, or head on.

No_Nearest_AC is the number of entries in nearest array 7777

157



APPENDIX A. CONTROL VOCABULARY

Nearest _AC is the generation number of the aircraft at current nearest index

of nearest array.

Nearest_AC_Phase is the phase of flight (takeoff, climb, cruise, approach, hold,

landing, ground) of the nearest AC

Nearest_AC_Hdist is the horizontal distance in meters of the nearest AC to the

designated object.

Nearest_AC_Vdist is the vertical distance in meters of the nearest AC to the

designated object.
Nearest AC_Alt is altitude in meters of the nearest AC.
Nearest_ AC_Heading is the true heading in radians of the nearest AC.
Nearest_ AC_Wake is the wake classification of the nearest AC

Nearest_Apt is the index of the nearest airport to the designated aircraft in

airport array.

Nearest_Stack is the index of the nearest stack to the designated aircraft in stack

array.
No_Init_AC is the number of aircraft in the initial approach array

INIT_AC is the generation number of the aircraft at current init app index of

the initial approach array
No_Final AC is the number of aircraft in the final approach array
No_Nearest_Stack_AC is the number of aircraft in the nearest stack

Selected _AC is the generation number of aircraft at current selected index of

the selected array

Selected _AC _Dist is the distance in meters of the aircraft selected AC from the

runway threshold.

158



APPENDIX A. CONTROL VOCABULARY

Selected_AC_Alt is the altitude in meters of the aircraft selected AC from the

runway threshold.

No_Current_Stack_AC is the number of aircraft in the stack designated current

stack.
No_Comp_AC is the number of aircraft in the comparison array designated comp _ar.

Comp_AC is the generation number of the aircraft in the comparison array at the

index current_comp.

Comp0_AC is the generation number of aircraft in the comparison array at the

index current_comp - 1.

Comp2_AC is the generation number of aircraft in the comparison array at the

index current_comp + 1.

Comp_AC _Est is the estimated time of arrival of the aircraft in the comparison

array at the index current_comp calculated by GET TIME_EST.

Comp_AC _Sep is the separation time required for the aircraft in the comparison

array at the index current_comp to follow another aircraft.

Comp_AC_Alt is the altitude in meters of the aircraft in the comparison array at

the index current_comp.

Comp_AC _Heading is the heading in radians of the aircraft in the comparison

array at the index current_comp.

Final _AC is the generation number of the aircraft in the final approach array at

the index current_final app.

Final AC_Timeout is the time aircraft in the final approach array at the index

current_final app has been in the final approach array.

Final AC_Alt is the altitude in meters of the aircraft in the final approach array

at the index current_final_app.

159



APPENDIX A. CONTROL VOCABULARY

Final AC_Heading is the heading in radians of the aircraft in the final approach

array at the index current _final_app.

Depending on the type of controller used, different external variables are available

to be incremented as shown below:

Controller

Sector_ID,

AC1, AC1_PKT, AC1_alt, AC1_heading, AC1_vel, AC1 _next WP, AC1 next_alt,
Wake_Type_AC1, Max_Alt_AC1, Max_Vel _AC1,

AC2, AC2_ PKT, AC2_alt, AC2_heading, AC2_vel, AC2 next WP, AC2 next _alt,
Wake_Type_ AC2, Max_Alt_AC2, Max_Vel AC2,

ACAC_Dist, No_Conflicts, Scenario,

Density, Time,

No_Nearest_AC, Nearest _AC, Nearest _AC_Phase, Nearest _AC_Hdist, Nearest _ AC_Vdist,
Nearest _AC_Wake, Nearest _ AC_Alt, Nearest AC_Heading

Nearest_Apt

TMA Controller

Sector_ID,

AC1, AC1_PKT, AC1 _alt, AC1 heading, AC1_vel, AC1_next WP, AC1 next _alt,
Wake _Type_ AC1, Max_Alt_AC1, Max_Vel ACI,

AC2, AC2_PKT, AC2_alt, AC2_heading, AC2_vel, AC2_next WP, AC2 next_alt,
Wake_Type_ AC2, Max_Alt_AC2, Max_Vel AC2,

ACAC_Dist, No_Conflicts, Scenario,

Density, Time,

No_Nearest_AC, Nearest _AC, Nearest _AC_Phase, Nearest _AC_Hdist, Nearest _ AC_Vdist,
Nearest_AC_Wake, Nearest_AC_Alt, Nearest_ AC_Heading

Nearest_Apt

Nearest_Stack, No_Nearest_Stack_AC, No_Current_Stack_AC,

No_Init_AC, INIT_AC, No_Final AC

Selected _AC, Selected _AC_Dist, Selected AC_Alt

160



APPENDIX A. CONTROL VOCABULARY

No_Comp_AC, Comp_AC, Comp0_AC, Comp2_AC, Comp_AC _Est, Comp_AC_Sep,
Comp_AC_Alt, Comp_AC _Heading
Final AC, Comp_AC_TimeOut, Final AC_Alt, Final AC_Heading

A.4 Setting Internal Variables

Internal Variables are set by using the key word SET in the manner shown below:
SET < INTERNAL VARIABLE >< expression >
SET CONFLICT_RADIUS 30 nmi

However there are three exceptions to this rule and they are described below:

CURRENT_STACK
SET CURRENT_STACK < STACK_ID >
SET CURRENT_STACK LARCK

NEAREST STACK
SET NEAREST STACK < STACK_ID >
SET NEAREST_STACK LARCK

STACK_OVERFLOW
SET STACK OVERFLOW < INTERNAL VAR> < STACK_ID >

SET STACK_OVERFLOW (CURRENT_STACK, NEAREST STACK), LARCK

A.5 Incrementing Internal Variables

Several Internal Variables represent indices in arrays, and as such may be incre-
mented as well as set to a specific value. Internal variables are incremented by using
the key word INCREMENT in the manner shown below:

INCREMENT < INTERNAL VARIABLE >

INCREMENT CURRENT_CONFLICT

161



APPENDIX A. CONTROL VOCABULARY

Depending on the type of controller used, different internal variables are avail-

able to be incremented as shown below:

Controller CURRENT_CONFLICT, CURRENT_NEAREST

TMA Controller CURRENT_NEAREST, CURRENT _SELECTED, NEAREST STACK,
CURRENT_INIT_APP, CURRENT_COMP, CURRENT FINAL_APP

A.6 Calculation Words

Calculation words are used in conjunction with the key word GET to call a series of
functions in the controller module to set external variables. The specific usage of

each of the 19 calculation words is listed below:

SECTOR_DENSITY
GET SECTOR.DENSITY<EXTERNAL VAR>

GET SECTOR_DENSITY SECTOR_ID; sets DENSITY

INTER_AC_DIST
GET INTERAC_DIST<EXTERNAL VAR><EXTERNAL VAR>

GET INTER_ACDIST AC1 AC2; sets ACACDIST

CONFLICTS
GET SECTOR.DENSITY<INTERNALVAR><INTERNALVAR>
GET CONFLICTS SECTOR_ID CONFLICT_RADIUS; sets NO_CONFLICTS, CURRENT_CONFLICT

and conflict array

DIST_TO_BOUNDARY
GET DIST.-TO.BOUNDARY<EXTERNAL VAR>

GET DIST_TO_BOUNDARY (AC1, AC2, AC1 PTR, AC2PTR); sets BOUNDARY DIST

NEAREST _TO_APT
GET NEAREST TO_APT<AIRPORT_ID>,<EXPRESSION>
GET NEAREST_TO_APT EGKK 30 nmi; sets NO_NEAREST_AC, CURRENT _NEAREST

and nearest array

162



APPENDIX A. CONTROL VOCABULARY

NEAREST_APT
GET NEAREST-APT<EXTERNALVAR>

GET NEAREST_APT (AC1, AC2, AC1 PTR, AC2PTR); sets NEAREST APT

NEAREST _STACK
GET NEAREST_STACK<EXTERNALVAR>

GET NEAREST STACK (AC1, AC2, AC1 PTR, AC2PTR); sets NEAREST STACK

LONGEST _ON_STACK
GET LONGEST.ON_STACK<INTERNALVAR>
GET LONGEST_ON_STACK (NEAREST_STACK, CURRENT_STACK); sets SELECTED_AC,
CURRENT _SELECTED and selected aircraft array

LOWEST _ON_STACK
GET LONGEST.ON_STACK<INTERNALVAR>
GET LONGEST_ON_STACK (NEAREST_STACK, CURRENT_STACK) ; sets SELECTED_AC,
CURRENT_SELECTED and selected aircraft array

HEAVY _IN_STACK
GET HEAVY_IN_STACK<INTERNALVAR>
GET HEAVY_IN_STACK (NEAREST_STACK, CURRENT_STACK) ; sets SELECTED_AC,
CURRENT _SELECTED and selected aircraft array

MED_IN_STACK
GET MED_IN_STACK<INTERNALVAR>
GET MED_IN STACK (NEAREST _STACK, CURRENT_STACK); sets SELECTED_AC,
CURRENT _SELECTED and selected aircraft array

LIGHT _IN_STACK
GET LIGHT-IN.STACK<INTERNALVAR>
GET LIGHT_IN_STACK (NEAREST_STACK, CURRENT_STACK) ; sets SELECTED_AC,
CURRENT _SELECTED and selected aircraft array

FIRST_AC

163



APPENDIX A. CONTROL VOCABULARY

GET FIRST_AC <CONSTANT> <CONSTANT> <CONSTANT> <CONSTANT> <
CONSTANT> <CONSTANT>
GET FIRST_AC (deg min sec (latitude), deg min sec (longitude)); places

aircraft closest to the coordinates given into comparison array and sets COMP_AC

SEP_REQUIRED
GET SEP_.REQUIRED<EXTERNALVAR> <EXTERNALVAR> <CONSTANT>
GET SEP_REQUIRED (COMP_AC, COMP2_AC, 18000 ft); determines the time
separation required for when the second aircraft follows the first at that alti-
tude. Places the answer into COMP_AC_SEP associated with the aircraft listed

second.

TIME_EST
GET TIME.-EST<EXTERNALVAR> <CONSTANT> <CONSTANT> <CONSTANT>
<CONSTANT> <CONSTANT> <CONSTANT> <CONSTANT>
GET TIME EST (SELECTED_AC, COMP_AC, COMP2_AC, COMPO_AC) (deg min sec
(latitude), deg min sec (longitude)), (altitude); estimates the time
for the aircraft to get to the way point described by the latitude and longitude
at the altitude specified. Places the answer into the corresponding comparison

array entry.

LAST_ON_FINAL
GET FLAST ON_FINAL
GET LAST_ON_FINAL; places generation number for the newest/last aircraft on
the final array into FINAL_AC

ADDITIONAL_TIME_EST
GET ADDITIONALTIME_EST<EXTERNALVAR> <CONSTANT> <CONSTANT> <
CONSTANT> <CONSTANT> <CONSTANT> <CONSTANT> <CONSTANT>
GET ADDITIONAL TIME EST (SELECTED_AC, COMP_AC, COMP2_AC, COMPO_AC) (deg
min sec (latitude), deg min sec (longitude)), (altitude); estimate

the time for aircraft to reach the way point associated with latitude, longitude

164



APPENDIX A. CONTROL VOCABULARY

coordinates from the current latitude and longitude coordinates used in GET
TIME EST so that multiple way point paths can be estimated. Places the

answer into the corresponding comparison array entry.

ORDERED _COMP_AR
GET ORDERED_.COMP_AR
GET ORDERED_COMP_AR; orders the entries of comparison array in order of their
COMP_TIME_EST

CLEAR_COMP_AR
GET CLEARCOMP_AR <EXTERNALVAR>
GET CLEAR_COMP_AR (COMP_AR, COMPO_AR, COMP2_AR); removes the specified

entry of the comparison array

A.7 Command Words

Action words are used in conjunction with the key word COMMAND to call a series of
functions in the controller module to set external variables. The specific usage of

each of the 14 calculation words is listed below:

CLIMB
COMMAND CLIMB<EXTERNAL VAR><EXPRESSION,ALT>

COMMAND CLIMB AC1 (AC1_ALT + 1000 ft);

DESCEND

COMMAND DESCEND<EXTERNAL VAR><EXPRESSION,ALT>

COMMAND DESCEND AC1 (AC1_ALT + 1000 ft);

RESTRICT_UPPER_FL
COMMAND RESTRICT.UPPERFL<EXTERNAL VAR><EXPRESSION,ALT>,
<EXPRESSION,DURATION>

COMMAND RESTRICT_UPPER_FL AC1 (AC1_ALT - 1000 ft) 30 secs;

165



APPENDIX A. CONTROL VOCABULARY

RESTRICT _LOWER_FL
COMMAND  RESTRICT_-LOWER_FL<EXTERNAL VAR><EXPRESSION,ALT>,
<EXPRESSION,DURATION>

COMMAND RESTRICT_LOWER_FL AC1 (AC1_ALT + 1000 ft) 30 secs;

RESTRICT_SPEED
COMMAND RESTRICT_SPEED<EXTERNAL VAR><EXPRESSION,SPEED>,
<EXPRESSION,DURATION>)

COMMAND RESTRICT_SPEED AC1 200 kts 30 secs;

INCREASE_SPEED
COMMAND INCREASE_SPEED<EXTERNAL VAR><EXPRESSION,SPEED>,
<EXPRESSION,DURATION>

COMMAND INCREASE_SPEED AC1 200 kts 30 secs;

ADD_WP
COMMAND ADD.WP<EXTERNAL VAR><EXPRESSION,HEADING>,
<EXPRESSION,DISTANCE>

COMMAND ADD_WP AC1 250 degs 30 km;

REPLACE_WP
COMMAND REPLACE.WP<EXTERNAL VAR><EXPRESSION,HEADING>,
<EXPRESSION,DISTANCE>

REPLACE_WP_WP AC1 250 degs 30 km;

CLIMB_LEVEL_BY
COMMAND CLIMB_LEVEL BY<EXTERNAL VAR><EXPRESSION,ALT>,
<EXPRESSION,LAT> <EXPRESSION,LONG>

CLIMB_LEVEL_BY AC1 30000 ft 46.2 degs 5.3 degs;

DESCEND_LEVEL _BY
COMMAND DESCEND_LEVEL.BY<EXTERNAL VAR>,<EXPRESSION,ALT>,
<EXPRESSION,LAT>,<EXPRESSION,LONG>

DESCEND_LEVEL_BY AC1 25000 ft 46.2 degs 5.3 degs;

166



APPENDIX A. CONTROL VOCABULARY

DESCEND _LDG
COMMAND DESCEND_LDG<EXTERNAL VAR><EXPRESSION,ALT>,
<EXPRESSION,LAT> <EXPRESSION,LONG>

DESCEND_LDG AC1 25000 ft 46.2 degs 5.3 degs;

TO_STACK
COMMAND TO_STACK<EXTERNAL VAR>,<STACK_ID><EXPRESSION,ALT>

TO_STACK SELECTED_AC LARCK 5000 ft;

LEAVE_STACK
COMMAND LEAVE.STACK<EXTERNAL VAR><STACK_ID>

LEAVE_STACK SELECTED_AC LARCK;

DATALINK RATE
COMMAND DATALINK_RATE<EXPRESSION>

DATALINK_RATE 15 s;

167



APPENDIX A. CONTROL VOCABULARY

168



APPENDIX B

Scenario Set-up Files

Appendix B contains the initialisation file for the three scenarios discussed in Chap-
ter 7. The initialisation files are organised by scenario and then by initialisation file
type. The flight plan files include the number of flight plan segments followed by a
list of those flight plan segments. The ATC plans contain the simulation airspace
set up. They include how many sectors, airports and holding patters (stacks) are
to be simulated and a list detailing each one. The initial condition files contain the
initialisation parameters for each aircraft type for a given flight plan. The control
logic is included at the end. The control logic is pseudo code made up of the control

vocabulary outlined in Appendix A.

B.1 North Atlantic Crossing

B.1.1 North Atlantic Crossing Flight Plans

169



APPENDIX B. SCENARIO SET-UP FILES

# TEST program to fly JFK to GATWICK ;

#;

# Number of Segments;

0.800E01;

#;

# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode  Phase Altitude Heading Lat Long Time;
#;

# FINISH ;

LONG CLIMB_.  CLIMB___ CL__ 3.7000000E04 000 +044.54.08 -067.09.23 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +054.15.00 -020.00.00 00:00:00;
LONG DESC__  DESCENT_ CR__ 3.3000000E04 000 +054.00.00 -010.00.00 00:00:00;
LONG DESC__  DESCENT_ CR__ 2.7000000E04 000 +052.30.00 -005.00.00 00:00:00;
LONG DESC__  DESCENT_ CR__ 2.3000000E04 000 +052.21.24 -001.39.41 00:00:00;
LONG DESC__  DESCENT_ APP_ 1.3000000E04 000 +051.27.10 -000.52.44 00:00:00;
LONG DESC__  DESCENT_ LND_ 2.0000000E03 000 +051.31.00 -000.04.00 00:00:00;
LONG DESC__  DESCENT_ LND_ 2.0000000E03 000 +051.31.00 -000.01.00 00:00:00;
#FI,;

Figure 74: A320 JFK-EGKK Flight Plan

170



APPENDIX B. SCENARIO SET-UP FILES

# TEST program to fly JFK to GATWICK ;

#;
# Number of Segments;
0.800E01;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode  Phase Altitude Heading Lat Long Time;
#;
# FINISH ;
LONG CLIMB_.  CLIMB___ CL__ 3.7000000E04 000 +044.54.08 -067.09.23 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +054.15.00 -020.00.00 00:00:00;
LONG DESC__  DESCENT_ CR__ 3.3000000E04 000 +054.00.00 -010.00.00 00:00:00;
LONG DESC__  DESCENT_ CR__ 2.7000000E04 000 +052.30.00 -005.00.00 00:00:00;
LONG DESC__  DESCENT_ CR__ 2.3000000E04 000 +052.21.24 -001.39.41 00:00:00;
LONG DESC__  DESCENT_ APP_ 1.3000000E04 000 +051.27.10 -000.52.44 00:00:00;
LONG DESC__  DESCENT_ LND_ 2.0000000E03 000 +051.31.00 -000.04.00 00:00:00;
LONG DESC__  DESCENT_ LND_ 2.0000000E03 000 +051.31.00 -000.01.00 00:00:00;
#F1;

Figure 75: B737-300 JFK-EGKK Flight Plan
# TEST program to fly JFK to GATWICK ;
#;
# Number of Segments;
0.800E01;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode  Phase Altitude Heading Lat Long Time;
#;
# FINISH ;
LONG CLIMB_  CLIMB___ CL__ 3.7000000E04 000 +044.54.08 -067.09.23 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +054.15.00 -020.00.00 00:00:00;
LONG DESC__  DESCENT_ CR__ 3.3000000E04 000 +054.00.00 -010.00.00 00:00:00;
LONG DESC__  DESCENT_ CR__ 2.7000000E04 000 +052.30.00 -005.00.00 00:00:00;
LONG DESC__  DESCENT_ CR__ 2.3000000E04 000 +052.21.24 -001.39.41 00:00:00;
LONG DESC__  DESCENT_ APP_ 1.3000000E04 000 +051.27.10 -000.52.44 00:00:00;
LONG DESC__  DESCENT_ LND_ 2.0000000E03 000 +051.31.00 -000.04.00 00:00:00;
LONG DESC__  DESCENT_ LND_ 2.0000000E03 000 +051.31.00 -000.01.00 00:00:00;
#FI;

Figure 76: B737-800 JFK-EGKK Flight Plan

171




APPENDIX B. SCENARIO SET-UP FILES

# TEST program to fly JFK to GATWICK ;

#;
# Number of Segments;
0.800E01;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode  Phase Altitude Heading Lat Long Time;
#;
# FINISH ;
LONG CLIMB_.  CLIMB___ CL__ 3.7000000E04 000 +044.54.08 -067.09.23 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +054.15.00 -020.00.00 00:00:00;
LONG DESC__  DESCENT_ CR__ 3.3000000E04 000 +054.00.00 -010.00.00 00:00:00;
LONG DESC__  DESCENT_ CR__ 2.7000000E04 000 +052.30.00 -005.00.00 00:00:00;
LONG DESC__  DESCENT_ CR__ 2.3000000E04 000 +052.21.24 -001.39.41 00:00:00;
LONG DESC__  DESCENT_ APP_ 1.3000000E04 000 +051.27.10 -000.52.44 00:00:00;
LONG DESC__  DESCENT_ LND_ 2.0000000E03 000 +051.31.00 -000.04.00 00:00:00;
LONG DESC__  DESCENT_ LND_ 2.0000000E03 000 +051.31.00 -000.01.00 00:00:00;
#F1;

Figure 77: B747-200 JFK-EGKK Flight Plan
# TEST program to fly JFK to GATWICK ;
#;
# Number of Segments;
0.800E01;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode  Phase Altitude Heading Lat Long Time;
#;
# FINISH ;
LONG CLIMB_  CLIMB___ CL__ 3.7000000E04 000 +044.54.08 -067.09.23 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +054.15.00 -020.00.00 00:00:00;
LONG DESC__  DESCENT_ CR__ 3.3000000E04 000 +054.00.00 -010.00.00 00:00:00;
LONG DESC__  DESCENT_ CR__ 2.7000000E04 000 +052.30.00 -005.00.00 00:00:00;
LONG DESC__  DESCENT_ CR__ 2.3000000E04 000 +052.21.24 -001.39.41 00:00:00;
LONG DESC__  DESCENT_ APP_ 1.3000000E04 000 +051.27.10 -000.52.44 00:00:00;
LONG DESC__  DESCENT_ LND_ 2.0000000E03 000 +051.31.00 -000.04.00 00:00:00;
LONG DESC__  DESCENT_ LND_ 2.0000000E03 000 +051.31.00 -000.01.00 00:00:00;
#FI;

Figure 78: MD-80 JFK-EGKK Flight Plan

172




APPENDIX B. SCENARIO SET-UP FILES

B.1.2 North Atlantic Crossing ATC Plans

no_sectors 1;

no_airports 1;

no_stacks 0;

#;

# SectorID MinLat MaxLat MinLon MaxLon Neighbors (N,E,S,W) Script Logic;
#;

16 3.00000E1 9.00000E1 -9.00000E1 0.00000EO O 0 0 O "blank.scr";
#;
# AirportID Lat Lon Alt(ft) Orientation(deg) SectorID Script Logic;
#;
EGKK 051:28:39N 000:27:41E 80 90 16 blank.scr";
#;

# StackID Lat Lo AltMax(ft) AltMin(ft) Orientation(deg) AirportID Prev Stacks;
#;

#;

#FI;

no_sectors 3;
no_airports 1;
no_stacks 0;

#;
# SectorID MinLat MaxLat MinLon MaxLon Neighbors (N,E,S,W) Script Logic;
#;
64 3.00000E1 4.86000E1 -9.00000E1 -4.50000E1 66 0 0 0 "v_sep.scr";
66 4 .86000E1 9.00000E1 -9.00000E1 -4.50000E1 O 67 64 0 "v_sep.scr";
67 4 .86000E1 9.00000E1 -4.50000E1 0.00000E0 O 0 66 0 "v_sep.scr";
#;
# AirportID Lat Lon Alt(ft) Orientation(deg) SectorID Script Logic;
#;
EGKK 051:28:39N 000:27:41E 80 90 67 "blank.scr";
#;

# StackID Lat Lon AltMax(ft) AltMin(ft) Orientation(deg) AirportID Prev Stacks;

173



APPENDIX B. SCENARIO SET-UP FILES

B.1.3 North Atlantic Crossing Initial Conditions

B.1.4 TIMBA 2B

# Initial Condition File;

#;

# CONFIGURATION;
no_ac

# TIME;
time_step

start

finish

# DESTINATION;

0.500000E+01;

0.100000E+01;
0.100000E+01;
0.720000E+04;

ac_state.destination EGKK;

# A320;

# AIRCRAFT_STATE;
ac_state.lat
ac_state.long
#ac_state.lat
#ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B733;

# ATRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B738;

# ATRCRAFT_STATE;

+040.39.00;
-073.47.00;
+055.39.00;
-025.47.00;
.7T00000E+04;
.605320E+05;
.200000E+06;
.231500E+03;
.200000E+03;
.162000E+03;
.000000E+00;
.392699E+00;
.000000E+00;
.100000E+01;

O OO OO OO OO W

Q
0

—_

+040.39.00;

-073.47.00;

.7T00000E+04;
.605320E+05;
.200000E+06;
.219668E+03;
.200000E+03;
.162000E+03;
.000000E+00;
.392699E+00;
.000000E+00;
.100000E+01;

O OO OO OO OO W

Q
0

—_

ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B742;

# ATRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# MD8O0;

# ATRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#F1;

+040.39.00;

-073.47.00;

.700000E+04 ;
.605320E+05;
.200000E+06;
.234072E+03;
.200000E+03;
.162000E+03;
.000000E+00;
.392699E+00;
.000000E+00;
.100000E+01 ;

—_—

O OO OO OO OO W

Q
=%

+040.39.00;

-073.47.00;

.700000E+04;
.285320E+06;
.200000E+06;
.241000E+03;
.241000E+03;
.162000E+03;
.000000E+00;
.392699E+00;
.000000E+00;
.100000E+01;

—_—

O OO OO OO OOoO W

Q
=%

+040.39.00;
-073.47.00;
.700000E+04;
.605320E+05;
.200000E+06;
.225327E+03;
.200000E+03;
.162000E+03;
.000000E+00;
.392699E+00;
.000000E+00;
.100000E+01;
CR__ ;

O OO OO OO OOoO W

174



APPENDIX B. SCENARIO SET-UP FILES

B.1.5 North Atlantic Crossing TMA Controller Logic

set conflict_radius 10 nm
get conflicts sector_id conflict_radius
s_while ((CURRENT_CONFLICT < NO_CONFLICTS) AND (NO_CONFLICTS > 0)) do
increment current_conflict
if (ACAC_DIST < 10 nm) then
if (aci_alt { ac2_alt) then
command RESTRICT_UPPER_FL AC1 (acl_alt 1000 ft) (10nm / acl_vel)
command RESTRICT_LOWER_FL ac2 (ac2_alt + 1000 ft) (10nm / ac2_vel)
else
command RESTRICT_LOWER_FL AC1 (acl_alt + 1000 ft) (10nm / acl_vel)
command RESTRICT_UPPER_FL ac2 (ac2_alt 1000 ft) (10nm / ac2_vel)
end
else
if (scenario = 0) then ; overtake
if (ac2_vel - acl_vel > 100) then
command RESTRICT_UPPER_FL ac2 (ac2_alt - 1000 ft) (30nm / ac2_vel)
else
command increase_speed acl ((acl_vel + ac2_vel)*1.5) 900
command restrict_speed ac2 ((acl_vel + ac2_vel)*1.5) 900
end

end
if (scenario = 1) OR (scenario = 2) OR (scenario = 3) then ; acute, right, obtuse
command restrict_upper_fl acl (acl_alt - 1000 ft) (30nm / acl_vel)
end
if (scenario = 4) then ; head on
if (MAX_ALT_AC1 } MAX_ALT_AC2) then
command RESTRICT_LOWER_FL AC1 (acl_alt + 1000 ft) (30 nm / (acl_vel + ac2_vel))
command RESTRICT_UPPER_FL ac2 (ac2_alt 1000 ft) (30 nm / (acl_vel + ac2_vel))
else
command RESTRICT_LOWER_FL AC2 (ac2_alt + 1000 ft) (30 nm / (acl_vel + ac2_vel))
command RESTRICT_UPPER_FL acl (acl_alt 1000 ft) (30 nm / (aci_vel + ac2_vel))
end
end
end
end
stop

175



APPENDIX B. SCENARIO SET-UP FILES

B.2 Landing at Gatwick
B.2.1 Landing at Gatwick Flight Plans

# Number of Segments;

0.800E01;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
# GURLU-BEXIL-TIMBA-MAYFIELD-MIDHURST-GATWICK ;
LONG CRUISE CRUISE__ CR__  3.0000000E04 000 +050.28.40 +000.58.07 00:00:00;
LONG DESC__  DESCENT_ APP_  2.5000000E04 000 +050.42.32 +000.44.13 00:00:00;
LONG DESC__  DESCENT_ APP_  1.8000000E04 000 +050.56.42 +000.15.42 00:00:00;
LONG DESC__  DESCENT_. APP_  1.5900000E04 000 +051.01.02 +000.06.58 00:00:00;
LONG DESC__  DESCENT_. LND_  7.0000000E03 000 +051.03.14 -000.37.30 00:00:00;
HDG_ DESC__  DESCENT_ LND_  7.0000000E03 070 +051.08.53 -000.37.25 00:00:00;
LONG DESC__  DESCENT_ LND_  2.6000000E02 000 +051.08.53 -000.11.25 00:00:00;
LONG DESC__  DESCENT_. LND_  2.6000000E02 000 +051.08.53 -000.01.25 00:00:00;
#FI,;

Figure 79: EGKK A320 TIMBA 2B Flight Plan
# Number of Segments;
0.800E01;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
# GURLU-BEXIL-TIMBA-MAYFIELD-MIDHURST-GATWICK ;
LONG CRUISE CRUISE__ CR__  3.0000000E04 000 +050.28.40 +000.58.07 00:00:00;
LONG DESC__  DESCENT_ APP_  2.5000000E04 000 +050.42.32 +000.44.13 00:00:00;
LONG DESC__  DESCENT_. APP_  1.8000000E04 000 +050.56.42 +000.15.42 00:00:00;
LONG DESC__  DESCENT_ APP_  1.5900000E04 000 +051.01.02 +000.06.58 00:00:00;
LONG DESC__  DESCENT_ LND_  7.0000000E03 000 +051.03.14 -000.37.30 00:00:00;
HDG_ DESC__  DESCENT_ LND_  7.0000000E03 070 +051.08.53 -000.37.25 00:00:00;
LONG DESC__  DESCENT_. LND_  2.6000000E02 000 +051.08.53 -000.11.25 00:00:00;
LONG DESC__  DESCENT_. LND_  2.6000000E02 000 +051.08.53 -000.01.25 00:00:00;
#FI,;

Figure 80: EGKK B737-300 TIMBA 2B Flight Plan

176




APPENDIX B. SCENARIO SET-UP FILES

# Number of Segments;

0.800E01;

#;

# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;

# GURLU-BEXIL-TIMBA-MAYFIELD-MIDHURST-GATWICK ;

LONG CRUISE CRUISE__ CR__  3.0000000E04 000 +050.28.40 +000.58.07 00:00:00;
LONG DESC__  DESCENT_  APP_  2.5000000E04 000 +050.42.32 +000.44.13 00:00:00;
LONG DESC__  DESCENT_. APP_  1.8000000E04 000 +050.56.42 +000.15.42 00:00:00;
LONG DESC__  DESCENT_ APP_  1.5900000E04 000 +051.01.02 +000.06.58 00:00:00;
LONG DESC__  DESCENT_ LND_  7.0000000E0O3 000 +051.03.14 -000.37.30 00:00:00;
HDG_ DESC__  DESCENT_ LND_  7.0000000EO3 070 +051.08.53 -000.37.25 00:00:00;
LONG DESC__  DESCENT_. LND_  2.6000000E02 000 +051.08.53 -000.11.25 00:00:00;
LONG DESC__  DESCENT_. LND_  2.6000000E02 000 +051.08.53 -000.01.25 00:00:00;
#FI;

Figure 81: EGKK B737-800 TIMBA 2B Flight Plan

# Number of Segments;

0.800E01;

#;

# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;

# GURLU-BEXIL-TIMBA-MAYFIELD-MIDHURST-GATWICK ;

LONG CRUISE CRUISE__ CR__  3.0000000E04 000 +050.28.40 +000.58.07 00:00:00;
LONG DESC__  DESCENT_. APP_  2.5000000E04 000 +050.42.32 +000.44.13 00:00:00;
LONG DESC__  DESCENT_. APP_  1.8000000E04 000 +050.56.42 +000.15.42 00:00:00;
LONG DESC__  DESCENT_ APP_  1.5900000E04 000 +051.01.02 +000.06.58 00:00:00;
LONG DESC__  DESCENT_ LND_  7.0000000E0O3 000 +051.03.14 -000.37.30 00:00:00;
HDG_ DESC__ DESCENT_ LND_  7.0000000E03 070 +051.08.53 -000.37.25 00:00:00;
LONG DESC__  DESCENT_. LND_  2.6000000E02 000 +051.08.53 -000.11.25 00:00:00;
LONG DESC__  DESCENT_. LND_  2.6000000E02 000 +051.08.53 -000.01.25 00:00:00;
#FI;

Figure 82: EGKK B747-200 TIMBA 2B Flight Plan

177




APPENDIX B. SCENARIO SET-UP FILES

# Number of Segments;
0.800E01;

#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
# GURLU-BEXIL-TIMBA-MAYFIELD-MIDHURST-GATWICK ;
LONG CRUISE CRUISE__ CR__  3.0000000E04 000 +050.28.40 +000.58.07 00:00:00;
LONG DESC__  DESCENT_ APP_  2.5000000E04 000 +050.42.32 +000.44.13 00:00:00;
LONG DESC__  DESCENT_ APP_  1.8000000E04 000 +050.56.42 +000.15.42 00:00:00;
LONG DESC__  DESCENT_ APP_  1.5900000E04 000 +051.01.02 +000.06.58 00:00:00;
LONG DESC__  DESCENT_ LND_  7.0000000E03 000 +051.03.14 -000.37.30 00:00:00;
HDG_ DESC__  DESCENT_. LND_  7.0000000E03 070 +051.08.53 -000.37.25 00:00:00;
LONG DESC__  DESCENT_ LND_  2.6000000E02 000 +051.08.53 -000.11.25 00:00:00;
LONG DESC__ DESCENT_ LND_  2.6000000E02 000 +051.08.53 -000.01.25 00:00:00;
#F1;

Figure 83: MD-80 TIMBA 2B Flight Plan
T#;
# Number of Segments;
1.000E01;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
# FINISH ;
LONG CRUISE CRUISE__ CR__  3.1000000E04 000 +051.42.47 +001.04.58 00:00:00;
LONG DESC__ DESCENT_ APP_  3.0000000E04 000 +051.34.34 +000.42.01 00:00:00;
LONG DESC__ DESCENT_ APP_  2.5500000E04 000 +051.18.14 +000.35.50 00:00:00;
LONG DESC__ DESCENT_ APP_  1.8500000E04 000 +050.54.42 +000.26.48 00:00:00;
LONG DESC__ DESCENT_ APP_  1.8000000E04 000 +050.56.42 +000.15.42 00:00:00;
LONG DESC__ DESCENT_ APP_  1.5900000E04 000 +051.01.02 +000.06.58 00:00:00;
LONG DESC__ DESCENT_ LND_  7.0000000E03 000 +051.03.14 -000.37.30 00:00:00;
HDG_ DESC__  DESCENT_ LND_  7.0000000E03 070 +051.08.53 -000.37.25 00:00:00;
LONG DESC__ DESCENT_ LND_ 2.6000000E02 080 +051.08.53 -000.11.25 00:00:00;
LONG DESC__ DESCENT_ LND_ 2.6000000E02 000 +051.08.53 -000.01.25 00:00:00;
#FI,;

Figure 84: A320 TIMBA 1H Flight Plan

178




APPENDIX B. SCENARIO SET-UP FILES

W
# Number of Segments;
1.000E01;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
# FINISH ;
LONG CRUISE CRUISE__ CR__  3.1000000E04 000 +051.42.47 +001.04.58 00:00:00;
LONG DESC__ DESCENT_ APP_  3.0000000E0O4 000 +051.34.34 +000.42.01 00:00:00;
LONG DESC__ DESCENT_ APP_  2.5500000E04 000 +051.18.14 +000.35.50 00:00:00;
LONG DESC__  DESCENT_ APP_  1.8500000E04 000 +050.54.42 +000.26.48 00:00:00;
LONG DESC__  DESCENT_ APP_  1.8000000E04 000 +050.56.42 +000.15.42 00:00:00;
LONG DESC__ DESCENT_ APP_  1.5900000E04 000 +051.01.02 +000.06.58 00:00:00;
LONG DESC__ DESCENT_ LND_  7.0000000E0O3 000 +051.03.14 -000.37.30 00:00:00;
HDG_ DESC__ DESCENT_ LND_  7.0000000E03 070 +051.08.53 -000.37.25 00:00:00;
LONG DESC__  DESCENT_ LND_  2.6000000E02 080 +051.08.53 -000.11.25 00:00:00;
LONG DESC__  DESCENT_ LND_  2.6000000E02 000 +051.08.53 -000.01.25 00:00:00;
#FI;

Figure 85: B373-300 TIMBA 1H Flight Plan
T
# Number of Segments;
1.000E01;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
# FINISH ;
LONG CRUISE CRUISE__ CR__  3.1000000E04 000 +051.42.47 +001.04.58 00:00:00;
LONG DESC__ DESCENT_ APP_  3.0000000E0O4 000 +051.34.34 +000.42.01 00:00:00;
LONG DESC__ DESCENT_ APP_  2.5500000E04 000 +051.18.14 +000.35.50 00:00:00;
LONG DESC__  DESCENT_ APP_  1.8500000E04 000 +050.54.42 +000.26.48 00:00:00;
LONG DESC__  DESCENT_ APP_  1.8000000E04 000 +050.56.42 +000.15.42 00:00:00;
LONG DESC__  DESCENT_ APP_  1.5900000E04 000 +051.01.02 +000.06.58 00:00:00;
LONG DESC__ DESCENT_ LND_  7.0000000EO3 000 +051.03.14 -000.37.30 00:00:00;
HDG_ DESC__ DESCENT_. LND_  7.0000000E03 070 +051.08.53 -000.37.25 00:00:00;
LONG DESC__  DESCENT_ LND_  2.6000000E02 080 +051.08.53 -000.11.25 00:00:00;
LONG DESC__  DESCENT_ LND_  2.6000000E02 000 +051.08.53 -000.01.25 00:00:00;
#FI;

Figure 86: B737-800 TIMBA 1H Flight Plan

179




APPENDIX B. SCENARIO SET-UP FILES

W
# Number of Segments;
1.000E01;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
# FINISH ;
LONG CRUISE CRUISE__ CR__  3.1000000E04 000 +051.42.47 +001.04.58 00:00:00;
LONG DESC__ DESCENT_ APP_  3.0000000E0O4 000 +051.34.34 +000.42.01 00:00:00;
LONG DESC__ DESCENT_ APP_  2.5500000E04 000 +051.18.14 +000.35.50 00:00:00;
LONG DESC__ DESCENT_ APP_  1.8500000E04 000 +050.54.42 +000.26.48 00:00:00;
LONG DESC__  DESCENT_ APP_  1.8000000E04 000 +050.56.42 +000.15.42 00:00:00;
LONG DESC__ DESCENT_ APP_  1.5900000E04 000 +051.01.02 +000.06.58 00:00:00;
LONG DESC__ DESCENT_ LND_  7.0000000E0O3 000 +051.03.14 -000.37.30 00:00:00;
HDG_ DESC__ DESCENT_ LND_  7.0000000E03 070 +051.08.53 -000.37.25 00:00:00;
LONG DESC__  DESCENT_ LND_ 2.6000000E02 080 +051.08.53 -000.11.25 00:00:00;
LONG DESC__  DESCENT_ LND_ 2.6000000E02 000 +051.08.53 -000.01.25 00:00:00;
#FI,;

Figure 87: B747-200 TIMBA 1H Flight Plan
T
# Number of Segments;
1.000E01;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
# FINISH ;
LONG CRUISE CRUISE__ CR__  3.1000000E04 000 +051.42.47 +001.04.58 00:00:00;
LONG DESC__ DESCENT_ APP_  3.0000000E0O4 000 +051.34.34 +000.42.01 00:00:00;
LONG DESC__ DESCENT_ APP_  2.5500000E04 000 +051.18.14 +000.35.50 00:00:00;
LONG DESC__ DESCENT_ APP_  1.8500000E04 000 +050.54.42 +000.26.48 00:00:00;
LONG DESC__ DESCENT_ APP_  1.8000000E04 000 +050.56.42 +000.15.42 00:00:00;
LONG DESC__ DESCENT_ APP_  1.5900000E04 000 +051.01.02 +000.06.58 00:00:00;
LONG DESC__ DESCENT_ LND_  7.0000000EO3 000 +051.03.14 -000.37.30 00:00:00;
HDG_ DESC__ DESCENT_. LND_  7.0000000E03 070 +051.08.53 -000.37.25 00:00:00;
LONG DESC__ DESCENT_ LND_ 2.6000000E02 080 +051.08.53 -000.11.25 00:00:00;
LONG DESC__ DESCENT_ LND_ 2.6000000E02 000 +051.08.53 -000.01.25 00:00:00;
#FI,;

Figure 83: MD-80 TIMBA 1H Flight Plan

180




APPENDIX B. SCENARIO SET-UP FILES

B.2.2 Landing at Gatwick ATC Plan

no_sectors 4;
no_airports 1;
no_stacks 3;

#;
# SectorID MinLat MaxLat MinLon MaxLon Neighbors (N,E,S,W) Script Logic;
#;
17324 5.00000E1 5.14000E1 -2.80000E0 0.00000E0 17330 O 0 20311 "blank.scr";
20311 5.00000E1 5.14000E1 0.00000EO 2.80000E0 20317 O 0 17324 "blank.scr";
17330 5.14000E1 5.43000E1 -2.80000E0 0.00000E0 O 20317 17324 0 "blank.scr";
20317 5.14000E1 5.43000E1 0.00000EO0 2.80000E0 O 0 20311 17330 "blank.scr";
#;
# AirportID Lat Lon Alt(ft) Orientation(deg)  SectorID Script Logic;
#;
EGKK 051:08:35N 000:11:25W 16 245 17324 "EGKK_tester.scr";
#;
# StackID Lat Lon AltMax(ft) AltMin(ft) Orient(deg) AirportID St Prev Stacks;
#55
MAYFLD 051:01:02N 000:06:58E 8000 5000 90 EGKK;
TIMBA 050:56:42N 000:15:42E 23000 17000 310 EGKK 1 BEXIL EMPTY;
BEXIL 050:42:32N 000:44:13E 19000 14000 310 EGKK 2;
#;
#F1;

181



APPENDIX B. SCENARIO SET-UP FILES

B.2.3 Landing at Gatwick Initial Conditions

TIMBA 2B

# Initial Condition File;

#;

# CONFIGURATION;
no_ac

# TIME;
time_step

start

finish

# DESTINATION;

0.500000E+01;

0.100000E+01;
0.100000E+01;
0.108000E+05;

ac_state.destination EGKK;

# A320;

# ATRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B733;

# ATRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B738;

# ATRCRAFT_STATE;
ac_state.lat

+050.10.00;
+001.30.00;
.000000E+04;
.136687E+06;
.200000E+06;
.450000E+03;
.400000E+03;
.400000E+03;
.000000E+00;
.582782E+00;
.000000E+00;
.100000E+01;
CR__ ;

O O 01 OO O O OO W

+050.10.00;
+001.30.00;
.000000E+04;
.136687E+06;
.200000E+06;
.450000E+03;
.400000E+03;
.400000E+03;
.000000E+00;
.582782E+00;
.000000E+00;
.100000E+01;
CR__ ;

O O 01 OO O O OO W

+050.10.00;

ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B742;

# AIRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# MD8O0;

# AIRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#F1;

+001.30.00;
.000000E+04;
.136687E+06;
.200000E+06;
.450000E+03;
.400000E+03;
.400000E+03;
.000000E+00;
.582782E+00;
.000000E+00;
.100000E+01;
CR ;

O O U1 OO OO OOoOW

—_

+050.10.00;
+001.30.00;
.000000E+04;
.629023E+06;
.200000E+06;
.450000E+03;
.400000E+03;
.400000E+03;
.000000E+00;
.582782E+00;
.000000E+00;
.100000E+01;
CR ;

O O U1 OO OO OOoOW

_

+050.10.00;

+001.30.00;

.000000E+04;
.136687E+06;
.200000E+06;
.450000E+03;
.400000E+03;
.400000E+03;
.000000E+00;
.582782E+00;
.000000E+00;
.100000E+01;
CR__ ;

O O U1 OO OO OOoOW

-

182



APPENDIX B. SCENARIO SET-UP FILES

TIMBA 1H

# Initial Condition File;

#;

# CONFIGURATION;
no_ac

# TIME;
time_step

start

finish

# DESTINATION;

0.500000E+01;

0.100000E+01;
0.100000E+01;
0.108000E+05;

ac_state.destination EGKK;

# A320;

# ATRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B733;

# ATIRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B738;

# ATIRCRAFT_STATE;
ac_state.lat
ac_state.long

+052.04.47;

+001.50.58;

.100000E+04;
.136687E+06;
.200000E+06;
.450000E+03;
.400000E+03;
.400000E+03;
.000000E+00;
.582782E+00;
.000000E+00;
.100000E+01;
CR__ ;

O O U1 OO OO OO W

-

+052.04.47;
+001.50.58;
.100000E+04 ;
.136687E+06;
.200000E+06;
.450000E+03;
.400000E+03;
.400000E+03;
.000000E+00;
.582782E+00;
.000000E+00;
.100000E+01;
CR__ ;

O O U1 OO OO OO W

+052.04.47;
+001.50.58;

ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B742;

# ATRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# MD8O;

# ATRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#F1;

.100000E+04;
.136687E+06;
.200000E+06;
.450000E+03;
.400000E+03;
.400000E+03;
.000000E+00;
.582782E+00;
.000000E+00;
.100000E+01;
CR ;

O O U1 OO OO OO W

—_—

+052.04.47;

+001.50.58;

.100000E+04;
.629023E+06;
.200000E+06;
.450000E+03;
.400000E+03;
.400000E+03;
.000000E+00;
.582782E+00;
.000000E+00;
.100000E+01;
CR__ ;

O O U1 OO OO OO W

1

+052.04.47;
+001.50.58;
.100000E+04;
.136687E+06;
.200000E+06;
.450000E+03;
.400000E+03;
.400000E+03;
.000000E+00;
.582782E+00;
.000000E+00;
.100000E+01;
CR__ ;

O O U1 OO OO OO W

183



APPENDIX B. SCENARIO SET-UP FILES

B.2.4 TMA Controller Logic: EGKK tester

; get the first ac with wp DETLING put it in comp_ar
GET FIRST_AC 51 18 14 0 35 50;
jmm = get the estimated time of arrival----—————-
SET CURRENT_COMP 1
if COMP_AC } O then
GET TIME_EST COMP_AC 50 56 42 0 15 42 18000 ft
INCREMENT CURRENT_COMP
end
; get the first ac with wp BEXIL put it in comp_ar
GET FIRST_AC 50 42 32 0 44 13;

if COMP_AC } O then

GET TIME_EST COMP_AC 50 56 42 0 15 42 18000 ft

INCREMENT CURRENT_COMP
end ;-—————————— what to do if there are 2 ac to be compared
with---- if (NO_COMP_AC > 1) THEN ;---compile the time estimates--
SET CURRENT_COMP 1

if NO_CURRENT_STACK_AC = O then
get ordered_comp_ar

set TEMP_VALUE COMP_AC_EST

SET CURRENT_COMP 2

GET SEP_REQUIRED COMPO_AC COMP_AC 18000 ft

if (COMP_AC_SEP > ((COMP_AC_EST - TEMP_VALUE)-72)) then
SET CURRENT_STACK TIMBA
COMMAND TO_STACK COMP_AC CURRENT_STACK 16000 ft
GET CLEAR_COMP_AR COMPO_AC

else
GET CLEAR_COMP_AR COMPO_AC
end
P what to do if there are ac in the stack.......
else

GET LONGEST_ON_STACK CURRENT_STACK

GET TIME_EST SELECTED_AC 50 56 42 0 15 42 18000 ft

; should automatically create another entry in comp_ar
GET LAST_ON_FINAL

; put’s last on final in FINAL_AC

;check if the stack ac can be cleared
SET CURRENT_COMP 3
if FINAL_AC { O then
SET CURRENT_STACK TIMBA
COMMAND LEAVE_STACK SELECTED_AC CURRENT_STACK
GET CLEAR_COMP_AR COMP_AC
else
GET SEP_REQUIRED FINAL_AC COMP_AC 18000 ft
if (0 { (FINAL_AC_TIMEOUT + COMP_AC_EST - TIME - COMP_AC_SEP - 0)) then
COMMAND LEAVE_STACK SELECTED_AC CURRENT_STACK

184



APPENDIX B. SCENARIO SET-UP FILES

;set temporary value to the est time for the stack ac
set TEMP_VALUE COMP_AC_EST
;check to see if any of the other two can be cleared
SET CURRENT_COMP 2
GET SEP_REQUIRED COMP2_AC COMPO_AC 18000 ft
GET SEP_REQUIRED COMP2_AC COMP_AC 18000 ft
; clear away the ac that was in the stack and order
GET CLEAR_COMP_AR COMP2_AC
GET ordered_comp_ar
; get the sep required for the trailing ac
SET CURRENT_COMP 2
GET SEP_REQUIRED COMPO_AC COMP_AC 18000 ft
; now all of the seps are in order
SET CURRENT_COMP 1
if ( COMP_AC_SEP < (TEMP_VALUE - COMP_AC_EST)) then
; clear it
SET TEMP_VALUE2 COMP_AC_EST
GET CLEAR_COMP_AR COMP_AC
GET ordered_comp_ar
if ( COMP_AC_SEP < (TEMP_VALUE2 - COMP_AC_EST)) then
; clear it
GET CLEAR_COMP_AR COMP_AC
else
COMMAND TO_STACK COMP_AC CURRENT_STACK 16000 ft
end
else
COMMAND TO_STACK COMP_AC CURRENT_STACK 16000 ft
GET ordered_comp_ar
if (COMP_AC_SEP < (TEMP_VALUE - COMP_AC_EST)) then
; clear it
GET CLEAR_COMP_AR COMP_AC
else
COMMAND TO_STACK COMP_AC CURRENT_STACK 16000 ft
end
end
else
;ac in stack could not be used
;check to see if any of the other two can be cleared
SET CURRENT_COMP 3
; clear away the ac that was in the stack and order
GET CLEAR_COMP_AR COMP_AC
GET ordered_comp_ar
; get the sep required for the leading ac
SET CURRENT_COMP 1
GET SEP_REQUIRED FINAL_AC COMP_AC 18000 ft
; get the sep required for the trailing ac
SET CURRENT_COMP 2
GET SEP_REQUIRED COMPO_AC COMP_AC 18000 ft
; now all of the seps are in order
SET CURRENT_COMP 1
if (COMP_AC_SEP < (FINAL_AC_TIMEOUT + COMP_AC_EST - TIME)) then
; clear it
SET TEMP_VALUE2 COMP_AC_EST

185



APPENDIX B. SCENARIO SET-UP FILES

GET CLEAR_COMP_AR COMP_AC

GET ordered_comp_ar

if (COMP_AC_SEP < (TEMP_VALUE2 + COMP_AC_EST - TIME)) then
; clear it
GET CLEAR_COMP_AR COMP_AC

else
COMMAND TO_STACK COMP_AC CURRENT_STACK 16000 ft

end

else

COMMAND TO_STACK COMP_AC CURRENT_STACK 16000 ft

INCREMENT CURRENT_COMP

GET SEP_REQUIRED FINAL_AC COMP_AC 18000 ft

if (COMP_AC_SEP < (FINAL_AC_TIMEQUT + COMP_AC_EST - TIME)) then

; clear it
GET CLEAR_COMP_AR COMP_AC
else
COMMAND TO_STACK COMP_AC CURRENT_STACK 16000 ft
end
end
end
end
end
P end of what to do if there are ac in the stack.......
e what to do if there is only one ac in the comp_ar.......
else

SET CURRENT_STACK TIMBA

if (NO_COMP_AC = 0) and (NO_CURRENT_STACK_AC > 0) THEN
GET LONGEST_ON_STACK CURRENT_STACK
GET TIME_EST SELECTED_AC 50 56 42 0 15 42 18000 ft
; should automatically create another entry in comp_ar
GET LAST_ON_FINAL
; put’s last on final in FINAL_AC

;check if the stack ac can be cleared
SET CURRENT_COMP 3
if FINAL_AC < O then
SET CURRENT_STACK TIMBA
COMMAND LEAVE_STACK SELECTED_AC CURRENT_STACK
GET CLEAR_COMP_AR COMP_AC
else
GET SEP_REQUIRED FINAL_AC COMP_AC 18000 ft
if (0 { (FINAL_AC_TIMEOUT + COMP_AC_EST - TIME - COMP_AC_SEP - 0))
; and ( 120 }(COMP_AC_EST - TIME - COMP_AC_SEP))
then
COMMAND LEAVE_STACK SELECTED_AC CURRENT_STACK
GET CLEAR_COMP_AR COMP_AC
end
end
end
end stop

186



APPENDIX B. SCENARIO SET-UP FILES

B.3 Core Europe
B.3.1 Flight Plans

Frankfurt, Germany - Amsterdam, The Netherlands

# Number of Segments;

6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF 3.1000000E04 000 +051.20.00 +007.11.00 00:00:00;
ALT_ CLIMB_ CLIMB___ CL__ 3.7000000E04 000 +051.20.00 +007.11.00 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +051.20.00 +007.11.00 00:00:00;
LONG DESC__  DESCENT_ APP 3.6400000E02 000 +052.18.31 +004.45.50 00:00:00;
LONG DESC__  DESCENT_ LND 3.6400000E02 000 +052.18.31 +004.45.50 00:00:00;
LAT_ DESC__  DESCENT_ LND 3.6400000E02 000 +052.19.31 +004.45.50 00:00:00;
#FI,;

Figure 89: A320 Flight Plan
# Number of Segments;
6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +051.20.00 +007.11.00 00:00:00;
ALT_ CLIMB_ CLIMB___ CL__ 3.7000000E04 000 +051.20.00 +007.11.00 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +051.20.00 +007.11.00 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +052.18.31 +004.45.50 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +052.18.31 +004.45.50 00:00:00;
LAT_ DESC__  DESCENT_ LND_ 3.6400000E02 000 +052.19.31 +004.45.50 00:00:00;
#FI,;

Figure 90: B737-300 Flight Plan

187




APPENDIX B. SCENARIO SET-UP FILES

# Number of Segments;

6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +051.20.00 +007.11.00 00:00:00;
ALT_ CLIMB_. CLIMB___ CL__ 3.7000000E04 000 +051.20.00 +007.11.00 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +051.20.00 +007.11.00 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +052.18.31 +004.45.50 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +052.18.31 +004.45.50 00:00:00;
LAT_ DESC__  DESCENT_ LND_ 3.6400000E02 000 +052.19.31 +004.45.50 00:00:00;
#FI,;

Figure 91: B737-800 Flight Plan
# Number of Segments;
6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +051.20.00 +007.11.00 00:00:00;
ALT_ CLIMB_. CLIMB___ CL__ 3.7000000E04 000 +051.20.00 +007.11.00 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +051.20.00 +007.11.00 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +052.18.31 +004.45.50 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +052.18.31 +004.45.50 00:00:00;
LAT_ DESC__  DESCENT_ LND_ 3.6400000E02 000 +052.19.31 +004.45.50 00:00:00;
#F1;

Figure 92: B747-200 Flight Plan
# Number of Segments;
6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +051.20.00 +007.11.00 00:00:00;
ALT_ CLIMB_. CLIMB___ CL__ 3.7000000E04 000 +051.20.00 +007.11.00 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +051.20.00 +007.11.00 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +052.18.31 +004.45.50 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +052.18.31 +004.45.50 00:00:00;
LAT_ DESC__  DESCENT_ LND_ 3.6400000E02 000 +052.19.31 +004.45.50 00:00:00;
#FI,;

Figure 93: MD-80 Flight Plan

188




APPENDIX B. SCENARIO SET-UP FILES

Hamburg, Germany -

Paris, France

# Number of Segments;
6.000E00;

#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +050.00.00 +003.00.00 00:00:00;
ALT_ CLIMB_.  CLIMB___ CL__ 3.7000000E04 000 +050.00.00 +003.00.00 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +050.00.00 +003.00.00 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +049.00.46 +002.32.60 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +049.00.46 +002.32.60 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +049.00.46 +002.33.15 00:00:00;
#FI,;

Figure 94: A320 Flight Plan
# Number of Segments;
6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +050.00.00 +003.00.00 00:00:00;
ALT_ CLIMB_.  CLIMB___ CL__ 3.7000000E04 000 +050.00.00 +003.00.00 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +050.00.00 +003.00.00 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +049.00.46 +002.32.60 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +049.00.46 +002.32.60 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +049.00.46 +002.33.15 00:00:00;
#FI,;

Figure 95: B737-300 Flight Plan

189




APPENDIX B. SCENARIO SET-UP FILES

# Number of Segments;

6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF 3.1000000E04 000 +050.00.00 +003.00.00 00:00:00;
ALT_ CLIMB_.  CLIMB___ CL__ 3.7000000E04 000 +050.00.00 +003.00.00 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +050.00.00 +003.00.00 00:00:00;
LONG DESC__  DESCENT_ APP 3.6400000E02 000 +049.00.46 +002.32.60 00:00:00;
LONG DESC__  DESCENT_ LND 3.6400000E02 000 +049.00.46 +002.32.60 00:00:00;
LONG DESC__  DESCENT_ LND 3.6400000E02 000 +049.00.46 +002.33.15 00:00:00;
#F1;

Figure 96: B737-800 Flight Plan
# Number of Segments;
6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +050.00.00 +003.00.00 00:00:00;
ALT_ CLIMB_ CLIMB___ CL__ 3.7000000E04 000 +050.00.00 +003.00.00 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +050.00.00 +003.00.00 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +049.00.46 +002.32.60 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +049.00.46 +002.32.60 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +049.00.46 +002.33.15 00:00:00;
#FI,;

Figure 97: B747-200 Flight Plan
# Number of Segments;
6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +050.00.00 +003.00.00 00:00:00;
ALT_ CLIMB_. CLIMB___ CL__ 3.7000000E04 000 +050.00.00 +003.00.00 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +050.00.00 +003.00.00 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +049.00.46 +002.32.60 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +049.00.46 +002.32.60 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +049.00.46 +002.33.15 00:00:00;
#FI,;

Figure 98: MD-80 Flight Plan

190




APPENDIX B. SCENARIO SET-UP FILES

Munich, Germany - London, United Kingdom

# Number of Segments;

6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +050.28.40 +000.58.07 00:00:00;
ALT_ CLIMB_.  CLIMB___ CL__ 3.7000000E04 000 +050.28.40 +000.58.07 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +050.28.40 +000.58.07 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +051.08.53 -000.11.25 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +051.08.53 -000.11.25 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +051.08.53 -000.12.25 00:00:00;
#FI,;
Figure 99: A320 Flight Plan

# Number of Segments;
6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +050.28.40 +000.58.07 00:00:00;
ALT_ CLIMB_.  CLIMB___ CL__ 3.7000000E04 000 +050.28.40 +000.58.07 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +050.28.40 +000.58.07 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +051.08.53 -000.11.25 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +051.08.53 -000.11.25 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +051.08.53 -000.12.25 00:00:00;
#FI,;

Figure 100: B737-300 Flight Plan

191




APPENDIX B. SCENARIO SET-UP FILES

# Number of Segments;

6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +050.28.40 +000.58.07 00:00:00;
ALT_ CLIMB_. CLIMB___ CL__ 3.7000000E04 000 +050.28.40 +000.58.07 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +050.28.40 +000.58.07 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +051.08.53 -000.11.25 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +051.08.53 -000.11.25 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +051.08.53 -000.12.25 00:00:00;
#FI,;

Figure 101: B737-800 Flight Plan
# Number of Segments;
6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +050.28.40 +000.58.07 00:00:00;
ALT_ CLIMB_. CLIMB___ CL__ 3.7000000E04 000 +050.28.40 +000.58.07 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +050.28.40 +000.58.07 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +051.08.53 -000.11.25 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +051.08.53 -000.11.25 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +051.08.53 -000.12.25 00:00:00;
#F1;

Figure 102: B747-200 Flight Plan
# Number of Segments;
6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +050.28.40 +000.58.07 00:00:00;
ALT_ CLIMB_ CLIMB___ CL__ 3.7000000E04 000 +050.28.40 +000.58.07 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +050.28.40 +000.58.07 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +051.08.53 -000.11.25 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +051.08.53 -000.11.25 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +051.08.53 -000.12.25 00:00:00;
#FI,;

Figure 103: MD-80 Flight Plan

192




APPENDIX B. SCENARIO SET-UP FILES

London, United Kingdom -

Zurich, Switzerland

# Number of Segments;

6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +048.28.40 +007.58.07 00:00:00;
ALT_ CLIMB_.  CLIMB___ CL__ 3.7000000E04 000 +048.28.40 +007.58.07 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +048.28.40 +007.58.07 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +047.27.53 +008.32.57 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +047.27.53 +008.32.57 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +047.26.53 +008.33.57 00:00:00;
#FI,;
Figure 104: A320 Flight Plan

# Number of Segments;
6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +048.28.40 +007.58.07 00:00:00;
ALT_ CLIMB_.  CLIMB___ CL__ 3.7000000E04 000 +048.28.40 +007.58.07 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +048.28.40 +007.58.07 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +047.27.53 +008.32.57 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +047.27.53 +008.32.57 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +047.26.53 +008.33.57 00:00:00;
#FI,;

Figure 105: B737-300 Flight Plan

193




APPENDIX B. SCENARIO SET-UP FILES

# Number of Segments;

6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +048.28.40 +007.58.07 00:00:00;
ALT_ CLIMB_ CLIMB___ CL__ 3.7000000E04 000 +048.28.40 +007.58.07 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +048.28.40 +007.58.07 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +047.27.53 +008.32.57 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +047.27.53 +008.32.57 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +047.26.53 +008.33.57 00:00:00;
#FI,;

Figure 106: B737-800 Flight Plan
# Number of Segments;
6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +048.28.40 +007.58.07 00:00:00;
ALT_ CLIMB_. CLIMB___ CL__ 3.7000000E04 000 +048.28.40 +007.58.07 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +048.28.40 +007.58.07 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +047.27.53 +008.32.57 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +047.27.53 +008.32.57 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +047.26.53 +008.33.57 00:00:00;
#F1;

Figure 107: B747-200 Flight Plan
# Number of Segments;
6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +048.28.40 +007.58.07 00:00:00;
ALT_ CLIMB_ CLIMB___ CL__ 3.7000000E04 000 +048.28.40 +007.58.07 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +048.28.40 +007.58.07 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +047.27.53 +008.32.57 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +047.27.53 +008.32.57 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +047.26.53 +008.33.57 00:00:00;
#FI,;

Figure 108: MD-80 Flight Plan

194




APPENDIX B. SCENARIO SET-UP FILES

Amsterdam, The Netherlands - Madrid, Spain

# Number of Segments;

6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +041.30.00 -002.00.00 00:00:00;
ALT_ CLIMB_. CLIMB___ CL__ 3.7000000E04 000 +041.30.00 -002.00.00 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +041.30.00 -002.00.00 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +040.28.20 +003.33.39 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +040.28.20 +003.33.39 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +049.01.00 +002.34.15 00:00:00;
#FI,;
Figure 109: A320 Flight Plan

# Number of Segments;
6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +041.30.00 -002.00.00 00:00:00;
ALT_ CLIMB_.  CLIMB___ CL__ 3.7000000E04 000 +041.30.00 -002.00.00 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +041.30.00 -002.00.00 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +040.28.20 +003.33.39 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +040.28.20 +003.33.39 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +049.01.00 +002.34.15 00:00:00;
#FI,;

Figure 110: B737-300 Flight Plan

195




APPENDIX B. SCENARIO SET-UP FILES

# Number of Segments;
6.000E00;

#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +041.30.00 -002.00.00 00:00:00;
ALT_ CLIMB_. CLIMB___ CL__ 3.7000000E04 000 +041.30.00 -002.00.00 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +041.30.00 -002.00.00 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +040.28.20 +003.33.39 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +040.28.20 +003.33.39 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +049.01.00 +002.34.15 00:00:00;
#FI,;

Figure 111: B737-800 Flight Plan
# Number of Segments;
6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +041.30.00 -002.00.00 00:00:00;
ALT_ CLIMB_. CLIMB___ CL__ 3.7000000E04 000 +041.30.00 -002.00.00 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +041.30.00 -002.00.00 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +040.28.20 +003.33.39 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +040.28.20 +003.33.39 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +049.01.00 +002.34.15 00:00:00;
#F1;

Figure 112: B747-200 Flight Plan
# Number of Segments;
6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +041.30.00 -002.00.00 00:00:00;
ALT_ CLIMB_.  CLIMB___ CL__ 3.7000000E04 000 +041.30.00 -002.00.00 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +041.30.00 -002.00.00 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +040.28.20 +003.33.39 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +040.28.20 +003.33.39 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +049.01.00 +002.34.15 00:00:00;
#FI,;

Figure 113: MD-80 Flight Plan

196




APPENDIX B. SCENARIO SET-UP FILES

Paris, France - Rome, Italy

# Number of Segments;

6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +043.30.00 +010.00.00 00:00:00;
ALT_ CLIMB_. CLIMB___ CL__ 3.7000000E04 000 +043.30.00 +010.00.00 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +043.30.00 +010.00.00 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +041.47.58 +012.35.42 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +041.47.58 +012.35.42 00:00:00;
LAT_ DESC__  DESCENT_ LND_ 3.6400000E02 000 +041.46.58 +012.35.42 00:00:00;
#FI,;
Figure 114: A320 Flight Plan

# Number of Segments;
6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +043.30.00 +010.00.00 00:00:00;
ALT_ CLIMB_.  CLIMB___ CL__ 3.7000000E04 000 +043.30.00 +010.00.00 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +043.30.00 +010.00.00 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +041.47.58 +012.35.42 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +041.47.58 +012.35.42 00:00:00;
LAT_ DESC__  DESCENT_ LND_ 3.6400000E02 000 +041.46.58 +012.35.42 00:00:00;
#FI,;

Figure 115: B737-300 Flight Plan

197




APPENDIX B. SCENARIO SET-UP FILES

# Number of Segments;

6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +043.30.00 +010.00.00 00:00:00;
ALT_ CLIMB_. CLIMB___ CL__ 3.7000000E04 000 +043.30.00 +010.00.00 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +043.30.00 +010.00.00 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +041.47.58 +012.35.42 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +041.47.58 +012.35.42 00:00:00;
LAT_ DESC__  DESCENT_ LND_ 3.6400000E02 000 +041.46.58 +012.35.42 00:00:00;
#FI,;

Figure 116: B737-800 Flight Plan
# Number of Segments;
6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +043.30.00 +010.00.00 00:00:00;
ALT_ CLIMB_. CLIMB___ CL__ 3.7000000E04 000 +043.30.00 +010.00.00 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +043.30.00 +010.00.00 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +041.47.58 +012.35.42 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +041.47.58 +012.35.42 00:00:00;
LAT_ DESC__  DESCENT_ LND_ 3.6400000E02 000 +041.46.58 +012.35.42 00:00:00;
#F1;

Figure 117: B747-200 Flight Plan
# Number of Segments;
6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +043.30.00 +010.00.00 00:00:00;
ALT_ CLIMB_ CLIMB___ CL__ 3.7000000E04 000 +043.30.00 +010.00.00 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +043.30.00 +010.00.00 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +041.47.58 +012.35.42 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +041.47.58 +012.35.42 00:00:00;
LAT_ DESC__  DESCENT_ LND_ 3.6400000E02 000 +041.46.58 +012.35.42 00:00:00;
#FI,;

Figure 118: MD-80 Flight Plan

198




APPENDIX B. SCENARIO SET-UP FILES

Rome, Italy - Frankfurt, Germany

# Number of Segments;

6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +049.20.00 +010.15.00 00:00:00;
ALT_ CLIMB_. CLIMB___ CL__ 3.7000000E04 000 +049.20.00 +010.15.00 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +049.20.00 +010.15.00 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +050.01.35 +008.32.35 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +050.01.35 +008.32.35 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +050.01.35 +008.31.35 00:00:00;
#FI,;
Figure 119: A320 Flight Plan

# Number of Segments;
6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +049.20.00 +010.15.00 00:00:00;
ALT_ CLIMB_.  CLIMB___ CL__ 3.7000000E04 000 +049.20.00 +010.15.00 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +049.20.00 +010.15.00 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +050.01.35 +008.32.35 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +050.01.35 +008.32.35 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +050.01.35 +008.31.35 00:00:00;
#FI,;

Figure 120: B737-300 Flight Plan

199




APPENDIX B. SCENARIO SET-UP FILES

# Number of Segments;

6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +049.20.00 +010.15.00 00:00:00;
ALT_ CLIMB_. CLIMB___ CL__ 3.7000000E04 000 +049.20.00 +010.15.00 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +049.20.00 +010.15.00 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +050.01.35 +008.32.35 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +050.01.35 +008.32.35 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +050.01.35 +008.31.35 00:00:00;
#FI,;

Figure 121: B737-800 Flight Plan
# Number of Segments;
6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +049.20.00 +010.15.00 00:00:00;
ALT_ CLIMB_. CLIMB___ CL__ 3.7000000E04 000 +049.20.00 +010.15.00 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +049.20.00 +010.15.00 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +050.01.35 +008.32.35 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +050.01.35 +008.32.35 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +050.01.35 +008.31.35 00:00:00;
#F1;

Figure 122: B747-200 Flight Plan
# Number of Segments;
6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +049.20.00 +010.15.00 00:00:00;
ALT_ CLIMB_. CLIMB___ CL__ 3.7000000E04 000 +049.20.00 +010.15.00 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +049.20.00 +010.15.00 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +050.01.35 +008.32.35 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +050.01.35 +008.32.35 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +050.01.35 +008.31.35 00:00:00;
#FI,;

Figure 123: MD-80 Flight Plan

200




APPENDIX B. SCENARIO SET-UP FILES

Madrid, Spain - Munich, Germany

# Number of Segments;
6.000E00;

#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +047.30.00 +010.30.00 00:00:00;
ALT_ CLIMB_. CLIMB___ CL__ 3.7000000E04 000 +047.30.00 +010.30.00 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +047.30.00 +010.30.00 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +048.21.14 +011.47.10 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +048.21.14 +011.47.10 00:00:00;
LAT_ DESC__  DESCENT_ LND_ 3.6400000E02 000 +048.21.14 +011.48.10 00:00:00;
#FI,;

Figure 124: A320 Flight Plan
# Number of Segments;
6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +047.30.00 +010.30.00 00:00:00;
ALT_ CLIMB_ CLIMB___ CL__ 3.7000000E04 000 +047.30.00 +010.30.00 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +047.30.00 +010.30.00 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +048.21.14 +011.47.10 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +048.21.14 +011.47.10 00:00:00;
LAT_ DESC__  DESCENT_ LND_ 3.6400000E02 000 +048.21.14 +011.48.10 00:00:00;
#FI,;

Figure 125: B737-300 Flight Plan

201




APPENDIX B. SCENARIO SET-UP FILES

# Number of Segments;

6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +047.30.00 +010.30.00 00:00:00;
ALT_ CLIMB_. CLIMB___ CL__ 3.7000000E04 000 +047.30.00 +010.30.00 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +047.30.00 +010.30.00 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +048.21.14 +011.47.10 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +048.21.14 +011.47.10 00:00:00;
LAT_ DESC__  DESCENT_ LND_ 3.6400000E02 000 +048.21.14 +011.48.10 00:00:00;
#FI,;

Figure 126: B737-800 Flight Plan
# Number of Segments;
6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +047.30.00 +010.30.00 00:00:00;
ALT_ CLIMB_. CLIMB___ CL__ 3.7000000E04 000 +047.30.00 +010.30.00 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +047.30.00 +010.30.00 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +048.21.14 +011.47.10 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +048.21.14 +011.47.10 00:00:00;
LAT_ DESC__  DESCENT_ LND_ 3.6400000E02 000 +048.21.14 +011.48.10 00:00:00;
#F1;

Figure 127: B747-200 Flight Plan
# Number of Segments;
6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +047.30.00 +010.30.00 00:00:00;
ALT_ CLIMB_. CLIMB___ CL__ 3.7000000E04 000 +047.30.00 +010.30.00 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +047.30.00 +010.30.00 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +048.21.14 +011.47.10 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +048.21.14 +011.47.10 00:00:00;
LAT_ DESC__  DESCENT_ LND_ 3.6400000E02 000 +048.21.14 +011.48.10 00:00:00;
#FI,;

Figure 128: MD-80 Flight Plan

202




APPENDIX B. SCENARIO SET-UP FILES

Zurich, Switzerland - Hamburg, Germany

# Number of Segments;

6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +052.14.00 +009.58.00 00:00:00;
ALT_ CLIMB_.  CLIMB___ CL__ 3.7000000E04 000 +052.14.00 +009.58.00 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +052.14.00 +009.58.00 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +053.37.49 +009.59.18 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +053.37.49 +009.59.18 00:00:00;
LAT_ DESC__  DESCENT_ LND_ 3.6400000E02 000 +053.38.00 +009.59.58 00:00:00;
#FI,;
Figure 129: A320 Flight Plan

# Number of Segments;
6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +052.14.00 +009.58.00 00:00:00;
ALT_ CLIMB_.  CLIMB___ CL__ 3.7000000E04 000 +052.14.00 +009.58.00 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +052.14.00 +009.58.00 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +0563.37.49 +009.59.18 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +053.37.49 +009.59.18 00:00:00;
LAT_ DESC__  DESCENT_ LND_ 3.6400000E02 000 +053.38.00 +009.59.58 00:00:00;
#FI,;

Figure 130: B737-300 Flight Plan

203




APPENDIX B. SCENARIO SET-UP FILES

# Number of Segments;

6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +052.14.00 +009.58.00 00:00:00;
ALT_ CLIMB_ CLIMB___ CL__ 3.7000000E04 000 +052.14.00 +009.58.00 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +052.14.00 +009.58.00 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +053.37.49 +009.59.18 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +053.37.49 +009.59.18 00:00:00;
LAT_ DESC__  DESCENT_ LND_ 3.6400000E02 000 +053.38.00 +009.59.58 00:00:00;
#FI,;

Figure 131: B737-800 Flight Plan
# Number of Segments;
6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +052.14.00 +009.58.00 00:00:00;
ALT_ CLIMB_. CLIMB___ CL__ 3.7000000E04 000 +052.14.00 +009.58.00 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +052.14.00 +009.58.00 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +053.37.49 +009.59.18 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +0563.37.49 +009.59.18 00:00:00;
LAT_ DESC__  DESCENT_ LND_ 3.6400000E02 000 +0563.38.00 +009.59.58 00:00:00;
#FI,;

Figure 132: B747-200 Flight Plan
# Number of Segments;
6.000EQ0;
#;
# PROCEDURE THRUST Waypoint Coords Elapsed;
# Switch Mode Mode Phase Altitude Heading Lat Long Time;
#;
ALT_ CLIMB_  TAKEOFF_ TOF_ 3.1000000E04 000 +052.14.00 +009.58.00 00:00:00;
ALT_ CLIMB_.  CLIMB___ CL__ 3.7000000E04 000 +052.14.00 +009.58.00 00:00:00;
LONG CRUISE  CRUISE__ CR__ 3.7000000E04 000 +052.14.00 +009.58.00 00:00:00;
LONG DESC__  DESCENT_ APP_ 3.6400000E02 000 +0563.37.49 +009.59.18 00:00:00;
LONG DESC__  DESCENT_ LND_ 3.6400000E02 000 +053.37.49 +009.59.18 00:00:00;
LAT_ DESC__  DESCENT_ LND_ 3.6400000E02 000 +053.38.00 +009.59.58 00:00:00;
#FI,;

Figure 133: MD-80 Flight Plan

204




APPENDIX B. SCENARIO SET-UP FILES

B.3.2 Initial Conditions

Frankfurt, Germany - Amsterdam, The Netherlands

# Initial Condition File;

#;

# CONFIGURATION;
no_ac

# TIME;
time_step

start

finish

# DESTINATION;

0.500000E+01;

0.100000E+01;
0.100000E+01;
2.160000E+04;

ac_state.destination EHAM;

# A320;

# AIRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B733;

# AIRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B738;

# AIRCRAFT_STATE;
ac_state.lat

+050.01.35;
+008.32.35;
.364000E+03;
.136687E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.236000E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O O U1 OO OO O O Oo

+050.01.35;
+008.32.35;
.364000E+03;
.119050E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.236000E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O O U1 OO OO O O Oo

+050.01.35;

ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B742;

# ATRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# MD8O0;

# ATRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#F1,;

+008.32.35;
.364000E+03;
.136907E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.236000E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O O U1 OO OO O oo

+050.01.35;
+008.32.35;
.364000E+03;
.617294E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.236000E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O O U1 OO O OO OO

+050.01.35;
+008.32.35;
.364000E+03;
.134923E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.236000E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O O U1 OO O OO oo

205



APPENDIX B. SCENARIO SET-UP FILES

Hamburg, Germany - Paris, France

# Initial Condition File;

#;

# CONFIGURATION;
no_ac

# TIME;
time_step

start

finish

# DESTINATION;

0.500000E+01;

0.100000E+01;
0.100000E+01;
2.160000E+04;

ac_state.destination LFPG;

# A320;

# ATRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B733;

# ATRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B738;

# ATRCRAFT_STATE;
ac_state.lat

+053.37.49;
+009.59.18;
.300000E+01;
.136687E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.926990E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O O WO OO O OO Wm

+053.37.49;
+009.59.18;
.300000E+01;
.119050E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.926990E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O O WO OO O OoOOoOwLm

+053.37.49;

ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B742;

# AIRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# MD80;

# AIRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#FI1,;

+009.59.18;
.300000E+01;
.136907E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.926990E+00;
.000000E+00;
.100000E+01;
TOF_ ;

OO WOOoOOoOOoOOoOooOowm

+053.37.49;
+009.59.18;
.300000E+01;
.617294E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.926990E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O O WO O OO OoOOoOw!m

+053.37.49;
+009.59.18;
.300000E+01;
.134923E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.926990E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O O WO OoOOoOOoOOoOoOowm

206



APPENDIX B. SCENARIO SET-UP FILES

Munich, Germany - London, United Kingdom

# Initial Condition File;

#;

# CONFIGURATION;
no_ac

# TIME;
time_step

start

finish

# DESTINATION;

0.500000E+01;

0.100000E+01;
0.100000E+01;
2.160000E+04;

ac_state.destination EGKK;

# A320;

# ATRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B733;

# ATRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B738;

# ATRCRAFT_STATE;
ac_state.lat

+048.21.14;
+011.47.10;
.148700E+04;
.136687E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.236000E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O O 01 OO O O O O O

+048.21.14;
+011.47.10;
.148700E+04;
.119050E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.236000E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O O 01 OO O O O O o

+048.21.14;

ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B742;

# AIRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# MD8O0;

# AIRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#F1;

+011.47.10;
.148700E+04;
.136907E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.236000E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O O U1 OO OO O oo

+048.21.14;
+011.47.10;
.148700E+04;
.617294E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.236000E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O O U1 OO OO O oo

+048.21.14;
+011.47.10;
.148700E+04;
.134923E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.236000E+00;
.000000E+00;
.100000E+01;
TOF_

O O U1 OO OO O oo

207



APPENDIX B. SCENARIO SET-UP FILES

London, United Kingdom - Zurich, Switzerland

# Initial Condition File;

#;

# CONFIGURATION;
no_ac

# TIME;
time_step

start

finish

# DESTINATION;

ac_state.destination

# A320;

# ATRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B733;

# ATRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B738;

# ATRCRAFT_STATE;
ac_state.lat

0.500000E+01;

0.100000E+01;
0.100000E+01;
2.160000E+04;

LSZH;

+051.08.53;
-000.11.25;
.196000E+03;
.136687E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.618000E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O ON OO OO O O O

+051.08.53;
-000.11.25;
.196000E+03;
.119050E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.618000E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O ONOOO O O OO

+051.08.53;

ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B742;

# AIRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# MD8O0;

# AIRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#F1;

-000.11.25;
.196000E+03;
.136907E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.618000E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O ON OO OO O OO

+051.08.53;
-000.11.25;
.196000E+03;
.617294E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.618000E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O ONOOO OO OO

+051.08.53;
-000.11.25;
.196000E+03;
.134923E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.618000E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O ON OO OO O OO

208



APPENDIX B. SCENARIO SET-UP FILES

Amsterdam, The Netherlands - Madrid, Spain

# Initial Condition File;

#;

# CONFIGURATION;
no_ac

# TIME;
time_step

start

finish

# DESTINATION;

ac_state.destination

# A320;

# ATRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B733;

# ATRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B738;

# ATRCRAFT_STATE;
ac_state.lat

0.500000E+01;

0.100000E+01;
0.100000E+01;
2.160000E+04;

LEMD;

+052.18.31;
+004.45.50;
.000000E+00;
.136687E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.926990E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O O WO OO O O oo

+052.18.31;
+004.45.50;
.000000E+00;
.119050E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.926990E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O O WO OO O O oo

+052.18.31;

ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B742;

# AIRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# MD8O0;

# AIRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#F1;

+004.45.50;
.000000E+00;
.136907E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.926990E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O O WO OO OoOOoOoOo

+052.18.31;
+004.45.50;
.000000E+00;
.617294E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.926990E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O O WO OOOoOOoOoOo

+052.18.31;
+004.45.50;
.000000E+00;
.134923E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.926990E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O O WO OO OoOOoOoOo

209



APPENDIX B. SCENARIO SET-UP FILES

Paris, France - Rome, Italy

# Initial Condition File;

#;

# CONFIGURATION;
no_ac

# TIME;
time_step

start

finish

# DESTINATION;

0.500000E+01;

0.100000E+01;
0.100000E+01;
2.160000E+04;

ac_state.destination EDDM;

# A320;

# ATRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B733;

# ATRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B738;

# ATRCRAFT_STATE;
ac_state.lat

+040.28.20;
-003.33.39;
.200000E+04 ;
.136687E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.523600E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O OO O OO O O o o

+040.28.20;
-003.33.39;
.200000E+04 ;
.119050E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.523600E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O OO O OO O O oo

+040.28.20;

ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B742;

# AIRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# MD8O0;

# AIRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#F1;

-003.33.39;
.200000E+04;
.136907E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.523600E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O OO OO OO OoOoOOo

+040.28.20;
-003.33.39;
.200000E+04;
.617294E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.523600E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O OO OO OO OoOoOOo

+040.28.20;
-003.33.39;
.200000E+04;
.134923E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.523600E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O OO OO OO OoOoOOo

210



APPENDIX B. SCENARIO SET-UP FILES

Rome, Italy - Frankfurt, Germany

# Initial Condition File;

#;

# CONFIGURATION;
no_ac

# TIME;
time_step

start

finish

# DESTINATION;

0.500000E+01;

0.100000E+01;
0.100000E+01;
2.160000E+04;

ac_state.destination EDDF;

# A320;

# ATRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B733;

# ATRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B738;

# ATRCRAFT_STATE;
ac_state.lat

+041.47.58;
+012.35.42;
.427000E+03;
.136687E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.936000E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O O 01 OO O O O O o

+041.47.58;
+012.35.42;
.427000E+03;
.119050E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.936000E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O O 01 OO O O O O o

+041.47.58;

ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B742;

# AIRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# MD8O0;

# AIRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#F1;

+012.35.42;
.427000E+03;
.136907E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.936000E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O O U1 OO OO O oo

+041.47.58;
+012.35.42;
.427000E+03;
.617294E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.936000E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O O U1 OO OO O oo

+041.47.58;
+012.35.42;
.427000E+03;
.134923E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.936000E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O O U1 OO OO O oo

211



APPENDIX B. SCENARIO SET-UP FILES

Madrid, Spain - Munich, Germany

# Initial Condition File;

#;

# CONFIGURATION;
no_ac

# TIME;
time_step

start

finish

# DESTINATION;

0.500000E+01;

0.100000E+01;
0.100000E+01;
2.160000E+04;

ac_state.destination EDDM;

# A320;

# ATRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B733;

# ATRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B738;

# ATRCRAFT_STATE;
ac_state.lat

+040.28.20;
-003.33.39;
.200000E+04 ;
.136687E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.523600E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O OO O OO O O o o

+040.28.20;
-003.33.39;
.200000E+04 ;
.119050E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.523600E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O OO O OO O O oo

+040.28.20;

ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B742;

# AIRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# MD8O0;

# AIRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#F1;

-003.33.39;
.200000E+04;
.136907E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.523600E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O OO OO OO OoOoOOo

+040.28.20;
-003.33.39;
.200000E+04;
.617294E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.523600E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O OO OO OO OoOoOOo

+040.28.20;
-003.33.39;
.200000E+04;
.134923E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.523600E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O OO OO OO OoOoOo

212



APPENDIX B. SCENARIO SET-UP FILES

Zurich, Switzerland - Hamburg, Germany

# Initial Condition File;

#;

# CONFIGURATION;
no_ac

# TIME;
time_step

start

finish

# DESTINATION;

0.500000E+01;

0.100000E+01;
0.100000E+01;
2.160000E+04;

ac_state.destination EDDH;

# A320;

# ATRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B733;

# ATRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B738;

# ATRCRAFT_STATE;
ac_state.lat

+047.27.53;
+008.32.57;
.141600E+04;
.136687E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.174500E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O OO O OO O O oo

+047.27.53;
+008.32.57;
.141600E+04;
.119050E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.174500E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O OO O OO O O oo

+047.27.53;

ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# B742;

# AIRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#;

# MD8O0;

# AIRCRAFT_STATE;
ac_state.lat
ac_state.long
ac_state.alt
ac_state.mass
ac_state.thrust
ac_state.V_TAS
ac_state.V_CAS
ac_state.V_G.N
ac_state.V_G.E
ac_state.heading
ac_state.ROCD
ac_state.fp_seg
ac_state.phase
#F1;

+008.32.57;
.141600E+04;
.136907E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.174500E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O OO OO OO OoOoOOo

+047.27.53;
+008.32.57;
.141600E+04;
.617294E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.174500E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O OO OO OO OoOoOOo

+047.27.53;
+008.32.57;
.141600E+04;
.134923E+06;
.200000E+06;
.150000E+03;
.150000E+03;
.750000E+02;
.750000E+02;
.174500E+00;
.000000E+00;
.100000E+01;
TOF_ ;

O OO OO OO OoOoOOo

213



APPENDIX B. SCENARIO SET-UP FILES

B.3.3 Core Europe ATC Plan

no_sectors 8;

no_airports 9;

no_stacks 0;

#;

# SectorID MinLat MaxLat MinLon MaxLon Neighbors (N,E,S,W) Script Logic;

#;

1098 4.86000E1 5.43000E1 -1.12500E1 0.00000EO 0O 1269 1076 0O "v_sep_core.scr";

1076 4.34000E1 4.86000E1 -1.12500E1 0.0000OEO 1098 1247 1074 0 "v_sep_core.scr";

1074 3.84000E1 4.34000E1 -1.12500E1 0.00000E0 1076 1245 0 0 "v_sep_core.scr'";

1269 4.86000E1 5.43000E1 0.00000EO0 1.12500E1 O 1270 1247 1098 "v_sep_core.scr';

1247 4.34000E1 4.86000E1 0.00000EO0 1.12500E1 1269 1248 1245 1076 "v_sep_core.scr";

1245 3.84000E1 4.34000E1 0.00000EO0 1.12500E1 1247 1246 O 1074 "v_sep_core.scr";

1248 4.34000E1 4.86000E1 1.12500E1 2.25000E1 O 0 1246 1247 "v_sep_core.scr";

1246 3.84000E1 4.34000E1 1.12500E1 2.25000E1 1248 0 0 1245 "v_sep_core.scr';

#;

# AirportID Lat Lon Alt(ft) Orientation(deg)  SectorID;

#;
LSZH 047:27:53N 008:32:57E 1416 245 1247 "blank.scr";
EDDH 053.37.49N 009.59.18E 53 50 1269 "blank.scr";
EHAM 052.18.31N 004.45.50E 0 10 1269 "blank.scr";
LFPG 049.00.46N 002.32.60E 392 90 1269 "blank.scr";
EDDF 050.01.35N 008.32.35E 364 70 1269 "blank.scr";
LIRA 041.47.58N 012.35.42E 427 160 1246 "blank.scr";
EGKK 051.08.53N 000.11.25W 196 260 1098 "blank.scr";
EDDM 048.21.14N 011.47.10E 1487 80 1248 "blank.scr";
LEMD 040.28.20N 003.33.39W 2000 150 1074 "blank.scr";

#;

# StackID Lat Lon AltMax(ft) AltMin(ft) Orientation(deg) AirportID;

#;

#;

#FI

214



APPENDIX B. SCENARIO SET-UP FILES

B.3.4 TMA Controller Logic: v sep core

set conflict_radius 30 nm
get conflicts sector_id conflict_radius
s_while ((CURRENT_CONFLICT < NO_CONFLICTS) AND (NO_CONFLICTS > 0)) do
increment current_conflict
if (ACAC_DIST < 10 nm) then
if (aci_alt { ac2_alt) then
if (max_alt_ac2 } (ac2_alt + 1000 ft)) then
command RESTRICT_UPPER_FL AC1 (acl_alt - 1000 ft) (10nm / acl_vel)
command RESTRICT_LOWER_FL ac2 (ac2_alt + 1000 ft) (10nm / ac2_vel)
else
command RESTRICT_UPPER_FL AC1 (acl_alt - 1000 ft) (10nm / acl_vel)
end
else
if (max_alt_acl } (acl_alt + 1000 ft)) then
command RESTRICT_LOWER_FL AC1 (acl_alt + 1000 ft) (10nm / acl_vel)
command RESTRICT_UPPER_FL ac2 (ac2_alt - 1000 ft) (10nm / ac2_vel)
else
command RESTRICT_UPPER_FL ac2 (ac2_alt - 1000 ft) (10nm / ac2_vel)
end
end
else
if (scenario = 0) then ; overtake
if (ac2_vel - acl_vel > 100) then
command RESTRICT_UPPER_FL ac2 (ac2_alt - 1000 ft) (30nm / ac2_vel)
else
command increase_speed acl ((acl_vel + ac2_vel)*0.5) 900
command restrict_speed ac2 ((acl_vel + ac2_vel)*0.5) 900
end
end
if (scenario = 1) OR (scenario = 2) OR (scenario = 3) then ; acute, right, obtuse
command restrict_upper_fl acl (acl_alt - 1000 ft) (30mm / acl_vel)
end
if (scenario = 4) then ; head on
if (MAX_ALT_AC1 } MAX_ALT_AC2) AND (MAX_ALT_AC1 > acl_alt) then
command RESTRICT_LOWER_FL AC1 (acl_alt + 1000 ft) (30 nm / (acl_vel + ac2_vel))
command RESTRICT_UPPER_FL ac2 (ac2_alt - 1000 ft) (30 nm / (aci_vel + ac2_vel))
else
command RESTRICT_LOWER_FL AC2 (ac2_alt + 1000 ft) (30 nm / (acl_vel + ac2_vel))
command RESTRICT_UPPER_FL acl (acl_alt - 1000 ft) (30 nm / (acl_vel + ac2_vel))
end
end
end
end
stop

215



APPENDIX B. SCENARIO SET-UP FILES

216



Glossary

ACARS Airborne Communications Addressing and Reporting System
ADS Automatic Dependent Surveillance

ADS-B Automatic Dependent Surveillance Broadcast
AFAS Aircraft in the Future ATM System

AFTN Aeronautical Fized Telecommunications Network
AGL Above Ground Level

AOC Airline Operational Centers

APF Airline Procedure File

ATC Air Traffic Control

ATM Air Traffic Management

ATMOS Atmospheric Weather Model

ATN Aeronautical Telecommunications Network

ATS Air Traffic Services

ATSP Air Traffic Service Provider

B Byte

BADA Base of Aircraft Data

BOC Bottom of Climb

CNS Communication, Navigation and Surveillance

CPDLC Controller-Pilot Data Link Communications

217



GLOSSARY

CTAS Center-TRACON Automation System
DAG-TM Distributed Air-Ground Traffic Management
DME Distance Measuring Equipment

DoF Degrees of Freedom

EEC FUROCONTROL Ezperimental Center

FAA Federal Aviation Administration (U.S.A.)
fast-time Simulating one second in less than on second of real time
FFPI Free Flight Phase I

FFSIM Free Flight Simulation

FMS Flight Management System

GPM Garden’s Point Modula-2

GPS Global Positioning System

HF High Frequency

ICAQO International Civil Aviation Organisation

IFR Instrument Flight Rules

IMC Instrument Meteorological Conditions

knots nautical miles per hour

MB Megabyte

METAF Terminal Aerodrome Forecasts

METAR Meteorological Airfield Report

MSL Mean Sea Level

218



GLOSSARY

NARSIM NLR’s Air Traffic Control Research Simulator

NLR National Aerospace Laboratory (The Netherlands)

NOAA National Atmospheric and Oceanographic Agency (The United States)
NPN NOAA Profiler Network

OPF Operations Performance File

PHARE Program for Harmonised Air Transport Management Research
PTF Performance Table File

RAMS Reorganised ATC Mathematical Simulator

RNP Required Navigation Performance

ROCD Rate of climb or descent

RTA Required Time of Arrival

RTCA Radio Technical Commission for Aeronautics

SID Standard Instrument Departure

SIGMET Significant Meteorological Information

SITA Société Internationale de Telecommunications

SSR Secondary Surveillance Radar utilises a variety of modes, A, C, and S
STAR Standard Terminal Arrival Route

SUA Special Use Airspace

TAAM Total Airspace € Airport Modeler

TACAN Tactical Air Navigation

TAS True Air Speed

219



GLOSSARY

TOD Top of Descent

TRACON Terminal Area Controller

UHF Ultra-high Frequency

UREA User Request Fvaluation Tool
URET User Request Evaluation Tool j/gdf;,
VFR Visual Flight Rules

VHF Very-high Frequency

VMC Visual Meteorological Conditions

VOR VHF Omnidirectional Range

220



BIBLIOGRAPHY

1]

2]

3]

Nolan, M. S. Fundamentals of Air Traffic Control. Wadsworth Publishing
Company, Belmont, CA, 1990.

(ATAG), A. T. A. G. European Air Traffic Forecasts. Web Page, 2000. Loca-
tion: http://www.atag.org/ETF /index.htm, was accessed on 14 March, 2000.

Schroter, H.  PHARE Project Overview. Web Page, 1998. Location:
http://www.eurocontrol.int /phare/documentation /overview /overview.htm,
was accessed on 14 March, 1998.

Zeghal, K., and Hoffman, E. ICAS 2000 Congress. In Delegation of Separa-
tion Assurance to Aircraft: Towards a Framework for Analysing the Different
Concepts and Underlying Principles, 2000. August, 2000-30 September, 2000.
Harrogate, UK.

Donohue, G. L., and Laska, W. D. Air Transportation Systems Engineering.
In Donohue, G. L., and Zellweger, A. G., editors, United States and European
Airport Capacity Assessment Using the GMU Macroscopic Capacity Model,
volume 193 of Progress in Astronautics and Aeronautics, pages 27-47. ATAA,
Reston, VA, 2001.

Liang, D., Marnane, W., and Bradford, S. Air Transportation Systems Engi-
neering. In Comparison of U.S. and European Airports and Airspace to Support
Concept Validation, volume 193 of Progress in Astronautics and Aeronautics,
pages 27-47. ATAA, Reston, VA, 2001.

Kayton, M., and Fried, W. R. Awvionics Navigation Systems. John Wiley &
Sons Inc., New York, NY, 2nd edition, 1997.

Hoekstra, J. M., Ruigrok, R. C. J., and van Gent R. N. H. W. Air Transporta-
tion Systems Engineering. In Donohue, G. L., and Zellweger, A. G., editors,

Free Flight in a Crowded Airspace, volume 193 of Progress In Astronautics
and Aeronautics, pages 533-545. ATAA, Reston, VA, 2001.

Williams, D. H., and Green, S. M. Flight Evaluation of Center-TRACON Au-
tomation System Trajectory Prediction Process. Nasa/tp-1998-208439, NASA,
1998.

Wickens, Christopher D. andMavor, A. S. a. R., and McGee, J. P. The Future
of Air Traffic Control: Human Operators and Automation. National Academy
Press, Washington, D.C., 1998.

Abbott, T. S. Flight Assessment of a Data-Link Based Navigation -Guidance
Concept. Tm - 84493, NASA Langley, 1983.

221



BIBLIOGRAPHY

[12]

[14]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

Green, S. M., Davis, T. J., and Erzberger, H. AIAA Guidance, Navigation and
Control Conference. In A Piloted Simulator Evaluation of a Ground -Based
4D Descent Advisor Algorithm, ATAA 87-2522, pages 11731180, Reston, VA,
1987. ATAA. 17 August, 1987-19 August, 1987. Monterey, California.

Erzberger, H., Davis, T. J., and Green, S. M. Machine Intelligence in Air Traf-
fic Management. In Design of Center-TRACON Automation System, AGARD
CP-538, pages 11.1-11.11. NATO, 1993. 11 May, 1993-14 May, 1993. Berlin,
Germany.

Brudnicki, D. J., and McFarland, A. L. 1st USA/Europe ATM R&D Seminar.
In User Request Evaluation Tool (URET) Conflict Probe Performance and
Benefits Assessment, Bretingy-sur-Orge, 1997. EUROCONTROL. June, 1997.

Saclay, France.

Administration, F. A. FAA Free Flight Technology Used Daily
at Kansas City Center. Electronic  Citation, 2001. Location

http://www.faa.gov/apa/pr/pr.cfm?id=1467v was accessed on 10 February,
2002.

Lee, H. Q., Neuman, F., and Hardy, G. H. 4D Area Navigation System
Description and Flight Test Results. Nasa tn d - 7874, Washington D.C.,
1975.

F., N., and Kreindler, E. Minimum-Fuel, Three-Dimensional Flight Path
Guidance of Transport Jets. Nasa tp - 2326, Washington D.C., 1984.

Tobias, L., Alcabin, M., Erzberger, H., and O’Brien, P. J. Simulation Studies
of Time-Control Procedures for the Advanced Air Traffic Control System.
Nasa tp - 2493, NASA Ames, 1985.

Parker, J. F. J., and Dufty, J. W. A Flight Investigation of Simulated Data-
Link Communications during Single Pilot IFR Flight: Volume II — Flight
Evaluations. Nasa cr - 3653, NASA Langley, 1982.

Knox, C. E., and Scanlon, C. H. Flight Tests with a Data Link used for Air
Traffic Control Information. Nasa tp - 3135, NASA Langley, 1991.

Gustavsson, N. AIAA/IEEE Digital Avionics Systems Conference. In VDL
Mode 4 / STDMA - a CNS Data Link, pages 111-116, Reston, VA, 1996.
ATAA. 27 October, 1996-31 October, 1996. Atlanta, GA, 15th Proceedings.

Nilim, A., Ghaoui, L. E., Hansen, M., and Duong, V. 4th USA/Europe ATM
R&D Seminar. In Trajectory-based Air Traffic Management (TB-ATM) under
Weather Uncertainty, Internet, 2001. FAA/EUROCONTROL. 3 December,
2001-7 December, 2001. Sante Fe, NM.

McDonald, J. A., and Zhao, Y. Time Benefits of Free-Flight for Commercial
Aircraft. http://www.aem.umn.edu/research/atc/download/ATAANote.pdf.

222



BIBLIOGRAPHY

[24]

[32]

33]

[34]

[35]

Isaacson, D. R., and Erzberger, H. ATAA /TEEE Digital Avionics Systems Con-
ference. In Design of a Conflict Detection Algorithm for The Center/TRACON
Automation System, 2, pages 9.3/1-9.3/9, NJ, 1997. IEEE. 26 October, 1997-
30 October, 1997. Irvine, CA.

Eby, M. S. A Self-Organizational Approach for resolving Air Traffic Conflicts.
The Lincoln Laboratory Journal, 7(2):239-253, 1994.

Paielli, R. A., and Erzberger, H. Conflict Probability Estimation for Free
Flight. Journal of Guidance Control and Dynamics; 35th Aerospace Sciences
Meeting and Ezhibit, 20(ATAA 97-0001):588-596, 1997.

RTCA, I. Final Report of the RTCA Task Force 3, Free Flight Implementation.
Technical report, Washington D.C., 1995.

Jardin, M. R. Proceedings of the American Control Conference. In Ideal Free
Flight through Multiple Aircraft Neighboring Optimal Control, pages 2879—
2855. American Automatic Control Council, 2000. June, 2000. Chicago, IL.

Ratcliffe, S. Free-Flight in Europe, Problems and Solutions. The Journal of
Navigation, 54(2):213-221, 2001.

Warren, A. W., and Schwab, R. W. A Methodology and Initial Results Speci-
fying Requirements for Free Flight Transitions. Air Traffic Control Quarterly,
5(3):133-156, 1997.

Magill, S. A. N. Air Transportation Systems Engineering. In Donohue, G. L.,
and Zellweger, A. G., editors, Effect of Direct Routing on Air Traffic Control
Capacity, volume 193 of Progress in Astronautics and Aeronautics, pages 385—
396. ATAA, Reston, VA, 2001.

Andrews, J. W., and Welch, J. D. USA /Europe ATM R&D Seminar. In Work-
load Implications of Free Flight Concepts, 1997. June, 1997. Saclay, France.

Hoekstra, J. M., van Gent, R. N. H. W., and Rugrok, R. C. J. ATAA Guidance,
Navigation and Control Conference. In Conceptual Design of Free Flight with
Airborne Separation Assurance, pages 807-817, Reston, VA, 1998. ATAA. 10
August, 1998-10 August, 1998. Boston, MA.

Wilson, I. A. B. PHARE: Definition and Use of Tubes. Doc 96-70-18, Brussells,
1996.

Wichman, K. D., Carlsson, G., and Lindberg, L. G. V. IEEE Digital Avionics
Systems Conference. In Flight Trials: ”Runway-To-Runway” Required Time
of Arrival Fvaluations for Time-Based ATM Environment, NJ, 2001. IEEE.
14 October, 2001-18 October, 2001.

223



BIBLIOGRAPHY

[36]

[37]

[38]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Ballin, M. G., Wing, D. J., Huges, M. F., and Conway, S. R. AIAA Guid-
ance, Navigation and Control Conference. In Separation Assurance and Traf-
fic Management: Research of Concepts and Technology, ATAA 99-3989, pages
313-324, Reston, VA, 1999. ATAA. 6 August, 1999-9 August, 1999. Portland,
OR.

FAA. About Free Flight Phase 1. Web Page. Location:
http://fipl.faa.gov/about/about_ffpl.asp, was accessed on 14 March, 2002.

Post, J., and Knorr, D. 5th USA /Europe ATM R&D Seminarb5th USA /Europe
ATM R&D Seminar. In Free Flight Program Update, Bretigny, France, 2003.
Eurocontrol. 23 June, 2003-27 June, 2003. Budapest, Hungary.

Williams, A., Mondoloni, S., Liang, D., Bradford, S., and Jehlen, R. 5th
USA /Europe ATM R&D Seminar. In The Big Iron, Bretigny, France, 2003.
Eurocontrol. 23 June, 2003-27 June, 2003. Budapest, Hungary.

Haraldsdottir, A., Schoemig, E. G., Schwab, R. W., Singleton, M. K., Sipe,
A. H., and van Tulder, P. A. 5th USA/Europe ATM R&D Seminar. In
BOEFING Capacity Increasing ATM Concept for 2020, Bretigny, France, 2003.
Eurocontrol. 23 June, 2003-27 June, 2003. Budapest, Hungary.

Hu, X., Wu, S.-F.,; and Jiang, J. AIAA Guidance, Navigation and Control
Conference. In Genetic Algorithm Based On-Line Real-Time Optimization of
Commercial Aircraft’s Flight Path for a Free Flight Strategy, ATAA 2001-4234,
pages 1153-1163, Reston, VA, 2001. ATAA. 6 August, 2001-9 August, 2001.
Montreal, Canada.

Mykoniatis, G., and Martin, P. Study of the Acqusition of Data from Air-
craft Operators to Aid Trajctory Prediction Calculation. Eec note no. 18/98,
Bretigny-sur-Orge, France, 1998.

ARINC. AviNet Data Communications Services. Web Page. Location:
http://www.arinc.com/products/voice_data_comm/avinet/, was accessed on
924 April, 2002,

Leighton, S. J., McGregor, A. E., Lowe, D., et al. GNSS Guidance for All
Phases of Flight: Practical Results. 54(1):1-13, 2001.

FAA. Guidelines for Design Approval of Aircraft Data Communications Sys-
tems. Statute, 1999. AC 20-140.

Week, A. Special Issue of Air Travel in Crisis. Aviation Week, 151(17), 1999.

Ochieng, W. Y., Sauer, K., Cross, P. A.| et al. Potential Performance Levels
of a Combined Galileo/GPS Navigation System. The Journal of Navigation,
54(2):185-197, 2001.

224



BIBLIOGRAPHY

[48]

[49]

[53]

[54]

[55]

[56]

FAA. Frequently Asked Questions: What is the role of current ground-based
navigation aids (ILS, VOR/DME, NDB, LORAN, etc.) in the future successful
implementation of GPS technology? Web Page.

Trotter-Cox, A. Required Navigation Performance (RNP) Another Step To-
wards Global Implementation of CNS/ATM. Electronic Citation, 1999. Loca-
tion http://www.aviationmanuals.com/articles/article3.html was accessed on
12 February, 2002.

Scardina, J. Overview of the FAA ADS-B Link Decision. Technical report,
Washington, D.C., 2002.

Scardina, J. The Approach and Basis for the FAA ADS-B Link Decision.
Technical report, Washington, D.C., 2002.

Sigmore, T. L., and Hong, Y. IEEE Digital Avionics Systems Conference. In
Party-line Communications in a Data Link Enviornment, pages 2E4-1-2E4/8,
Piscataway, NJ, 2000. IEEE. 7 October, 2000-13 October, 2000. Philadelphia,
PA 19th Proceedings.

Dieudonne, J., Joseph, M., and Cardosi, K. IEEE Digital Avionics Systems
Conference. In Is the Proposed Design of the Aeronautical Data Link Sys-
tem likely to Reduce the Miscommunications Error Rate and Controller/Flight
Crew Input Errors, pages bE3-1-5E3/9, Piscataway, NJ, 2000. IEEE. 2000.
Philadelphia, PA, 19th Proceedings.

Fan, T. P., and Kuchar, J. K. IEEE Digital Avionics Systems Conference. In
Fvaluation of Interfaces for Pilot-Air Traffic Control Data Link Communica-
tions, pages 4A5-1-4A5/8, Piscataway, NJ, 2000. IEEE. 2000. Philadelphia,
PA, 19th Proceedings.

Lozito, S., Verma, S., Martin, L., Dunbar, M., and McGann, A. 5th
USA /Europe ATM R&D Seminar. In The Impact of Voice, Data Link and
Mized Air Traffic Control Environments on Flight Deck Procedures, Bretigny,
France, 2003. Eurocontrol. 23 June, 2003-27 June, 2003. Budapest, Hungary.

Project, M. A M. TAAM: Total Airspace &  Air-
port Modeller. Web Page, 1996. Location:
http://web.mit.edu/aeroastro/www/labs/AATT /reviews/taam.html, was
accessed on 10 October, 2002.

Software, I. RAMS Plus 3.0 User’s Manual. Technical report, 2000.

Project, M. A. M. RAMS: Reorganized ATC
Mathematical Simulator. Web Page. Location:
http://web.mit.edu/aeroastro/www/labs/AATT /reviews/rams.html, was
accessed on 10 October, 2002.

225



BIBLIOGRAPHY

[59]

[60]

[61]

[63]

[64]

[65]

[66]

[69]

Funabiki, K., Muraoka, K., and Tanaka, K. AIAA Flight Simulation and
Technology Conference. In A Flight Simulation for Human Error Study, ATAA
95-3410, pages 171-178, Reston, VA, 1995. ATAA. August 7-10. Baltimore,
MD.

Alliot, J. M., Bosc, J. F., Durand, N., and Maugis, L. ATAA/IEEE Digital
Avionics Systems Conference. In CATS: A Complete Air Traffic Simulator,
Piscataway, NJ, 1997. IEEE. 1997. Irvine, CA.

Miles, E. S., C., D. P., and Wing, D. J. AIAA Modeling and Simulation
Technologies Conference. In Development of a Free Flight Simulation Infras-
tructure, ATAA 99-4193, pages 307-316, Reston, VA, 1999. ATAA. 9 August,
1999-11 August, 1999. Portland, OR.

Schleicher, D. R., Davis, P. C., Wallace, D. E., Shah, S., D. S., Mueller, T.,
Jones, E., Krozel, J., Couluris, G. J., and Dow, D. Free Flight Simulation
Infrastructure. C175.21, Ames, CA, 2002.

NLR. NARSIM Home Page. Web  Page. Location:
http://www.nlr.nl/public/narsim2/, was accessed on 13 August, 2003.

Green, S. M., and Vivona, R. A. AIAA Guidance, Navigation and Control
Conference. In Local Traffic Flow Management Concept for Constrained En
Route Airspace Problems, AIAA 2001-4115, pages 578-588, Reston, VA, 2001.
ATAA. 6 August, 2001-9 August, 2001. Montreal, Canada.

Mueller, K. T., and Krozel, J. ATAA Guidance, Navigation and Control Con-
ference. In Aircraft ADS-B Intent Verification Based on a Kalman Tracking
Filter, pages 523-533, Reston, VA, 2000. ATAA. 14 August, 2000-17 August,
2000. Denver, CO.

Coppenbarger, R. A., Kanning, G., and Salcido, R. 4th USA/Europe
ATM R&D Seminar. In Real-Time Data Link of Aircraft Parame-
ters to the Center-TRACON Automation System (CTAS), Internet, 2001.
FAA/EUROCONTROL. 3 December, 2001-7 December, 2001. Sante Fe, NM.

Cole, R. E., Green, S. M., Jardin, M. R., Schwartz, B. E., and Benjamin,
S. G. 3rd USA /Europe ATM R&D Seminar. In Wind Prediction Accuracy for
Air Traffic Management Decision Support Tools, page A3, Bretigny-sur-Orge,
France, 2000. EUROCONTROL. 13 June, 2000-16 June, 2000. Napoli, Italy.

Warren, A. W. 3rd USA /Europe ATM R&D Seminar. In Trajectory Prediction
Concepts for Next Generation Air Traffic Management, page E1, Bretigny-sur-
Orge, France, 2000. EUROCONTROL. 13 June, 2000-16 June, 2000. Napoli,
Italy.

Hoffman, E. Contribution to Aircraft Performance Modeling for ATC. Aur
Traffic Control Quarterly, 2(2):103-130, 1994.

226



BIBLIOGRAPHY

[70]

[71]

[80]

[81]

[82]

[83]

Renteux, J.-L. Aircraft Modelling Standards for future ATC Systems. Doc.
872003, Brussells, Belgium, 1987.

Green, S. M., Grace, M. P., and Williams, D. H. 3rd USA /Europe ATM R&D
Seminar. In Flight Test Results: CTAS and FMS Cruise/Descent Trajectory
Prediction Accuracy, page E1, Brussels, 2000. EUROCONTROL. 13 June,
2000-16 June, 2000. Napoli, Italy.

Nuic, A. User Manual for the Base of Aircraft Data (BADA). Eec note no.
20/00, Bretigny-sur-Orge, France, 2000.

Gill, B., and Maddock, B. Prediction of Optimal 4D Trajectories in the Pres-
ence of Time and Alitutde Constraints. Doc 97-70-09, Brussels, 1997.

Sheehan, C. Coverage of 2000 European Air Traffic for the Base of Aircraft
Data. Eec note no. 18/01, Bretigny-sur-Orge, 2001.

Alliot, J.-M., Durrand, N., and Granger, G. USA/Europe ATM R&D Semi-
nar. In FACES: A Free-flight Autonomous and Coordinated Embarked Solver,
http://atm-seminar-98.eurocontrol.fr/finalpapers/track2/alliot1.pdf, 1998. 1
December, 1998-4 December, 1998. Orlando, FL.

Weidner, T. J., and Green, S. M. 3rd USA/Europe ATM R&D Seminar. In
Modeling ATM Automation Metering Conformance Benefits, page D3, sur-
Orge, France, 2000. EUROCONTROL. 12 June, 2000. Napoli, Italy.

Warren, A. W., Schwab, R. W., Geels, T. J., and Shakarian, A. Conflict Probe
Concepts Analysis in Support of Free Flight. Nasa cr 201623, Hampton, VA,
1997.

Software, I. ATMOS Weather Model 1.0 Users Manual. Technical report,
2000.

Daniels, G. E.; and Smith, O. E. Scalar and Component Wind Correlations
between Altitude Levels for Cape Kennedy, Florida, and Santa Monica, Cali-
fornia. Nasa tn d - 3815, Washington D.C., 1968.

Vaughan, W. W. Interlevel and Intralevel Correlations of Wind Components
for Six Geographical Locations. Nasa tn d - 561, Washington D.C., 1960.

Oceanographic, N., and Agency, A. About NOAA Profiler Sites. Web Page,
2002. Location: http://www.profiler.noaa.gov/jsp/aboutNpnProfilers.jsp, was
accessed on 4 June, 2002.

NOAA. NPN Data Text Format. Web Page. Location:
http://www.profiler.noaa.gov/test/servlet/TextDump, was accessed on
25 August, 2003.

Benjamin, L. NPN accuracy? Electronic Mail. Sent to Margot Ackley and
Karen Feigh on 30 May, 2002.

227



BIBLIOGRAPHY

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[96]

[97]

Sandwell, D. T. Biharmonic Spline Interpolation of GEOS-3 and SEASAT
Altimeter Data. Geophysical Research Letters, (2):139-142, 1987.

Palmen, E., and Newton, C. W. Atmospheric Circulation Systems. Interna-
tional Geophysics. Academic Press, 1 edition, 1969.

CAASD, M. Controller Pilot Data Link Communi-
cation —  Capabilities. Web  Page, 2001. Location:
http://www.mitrecaasd.org/proj/cpdlc/capabilities.html,  was  accessed
on 12 October, 2001.

Nolan, M. S. Fundamentals of Aiwr Traffic Control. Wadsworth Publishing
Company, Pacific Grove, CA, 1999.

Fiornio, F. Controller-Pilot Data Link Goes Live in Miami. Aviation Week &
Space Technology, 157(16):40-41, 2002.

Yuchnovicz, D. E., Novacek, P. F., Burgess, M. A., Heck, M. L., and Stokes,
A. F. Use of a Data-LinkedWeather Information Display and Effects on Pilot

Navigation Decision Making in a Piloted Simulation Study. Nasa/cr-2001-
211047, Langley, VA, 2001.

EUROCONTROL, F. . 1090 MHz Extended Squitter Assessment Report.
1090-wp-12-05, Washington, D.C., 2002.

Zwillinger, D. E. CRC Standard Mathematical Tables and Formulae. CRC
Press LLC, New York, NY, 2000.

Oosterom, P. J. M. V. Reactive Data Structures For Geographic Informa-
tion Systems. In Ouwerview of Spatial Data Structures, pages 25-48. Leiden
University, 1990, Netherlands.

Samet, H. Design and Analysis of Spacial Data Structures. Samet, Hanan,
College Park, Maryland, 2002.

Tobler, W., and Zi-tan, C. A Quadtree for Global Information Storage. Geo-
graphical Analysis, 18(4):360-371, 1986.

Samet, H., and Webber, R. E. Heirarchical Data Structures and Algorithms for
Computer Graphics. IEEE Computer Graphics & Applications, pages 48-68,
1988.

Samet, H. Neighbor Finding Techniques for Images Represented by Quadtrees.
Computer Graphics and Image Processing, 18(1):37-57, 1982.

Galotti Jr., V. P. The Future of Air Navigation System (FANS). Ashgate
Publishing company, Cambridge, UK, 1998.

228



BIBLIOGRAPHY

[98]

[99]

[100]

[101]

Nickum, J. D. Air Transport Avionics Cost Estimation Related to Future
Communication Transitions: Coorination Draft. Wn00w0000026, McLean,

VA, 2000.

Grimaud, I., Hoffman, E., and Zeghal, K. SAE/ATAA World Aviation
Congress. In Evaluation of Delegation of Sequencing Operations to the Flight
Crew from a Controller Perspective — Preliminary Results, 2000-01-5566. SAE
International, 2000. October, 2000. San Diego, CA.

Vormer, F. J., Mulder, M., van Paassen, R. M., and Mulder, B. J. A. ATIAA
Guidance, Navigation and Control Conference. In Design and Preliminary
FEvaluation of a Segment-based Routing Methodology, Reston, VA, 2002. ATAA.
5 August, 2002-8 August, 2002. Monterey, CA.

Stones, R., and Matthew, N. Linux Programming. Wrox Press Ltd, Birming-
ham, 2nd edition, 2001.

229



	Beginning
	Chapter 1: Introduction and Motivation
	Chapter 2: Airspace Simulator Requirements
	Chapter 3: Aircraft Performance Module
	Chapter 4: Atmospheric Environment
	Chapter 5: Airspace Module
	Chapter 6: Air Traffic Control Module
	Chapter 7: Testing and Evaluation
	Chapter 8: Discussion
	Appendix A: Control Vocabulary
	Appendix B: Scenario Set-up Files
	Glossary
	Bibliography

