
 1

A Logistic Regression/Markov Chain Model For NCAA Basketball 
 

Paul Kvam1 and Joel S. Sokol1,2 
 
 

 Abstract:  Each year, more than $3 billion is wagered on the NCAA Division I men’s 
basketball tournament.  Most of that money is wagered in pools where the object is to 
correctly predict winners of each game, with emphasis on the last four teams remaining 
(the Final Four).  In this paper, we present a combined logistic regression/Markov chain 
(LRMC) model for predicting the outcome of NCAA tournament games given only basic 
input data.  Over the past 6 years, our model has been significantly more successful than 
the other common methods such as tournament seedings, the AP and ESPN/USA Today 
polls, the RPI, and the Sagarin and Massey ratings. 

 
1. Introduction 
 
 More money is bet on the National Collegiate Athletic Association (NCAA) 
Division I men’s basketball tournament than on any other sporting event in the United 
States.  The FBI estimates that every year, more than $3 billion is wagered (legally and 
illegally) on the tournament’s outcome [1].  With so much money on the line, a model 
that predicts outcomes more effectively than standard ranking and rating systems can be 
useful, especially if it requires only basic input data.  In this paper, we present such a 
model. 
 Before describing the model, we provide a short introduction to the NCAA 
tournament for readers to whom it might not be familiar.  At the conclusion of each 
college basketball season, the NCAA holds a 64-team tournament.  The participants are 
the champions of the 31 conferences in Division I, plus the best remaining teams (as 
judged by the tournament selection committee).  In addition to choosing the teams, the 
selection committee also seeds them into four regions, each with seeds 1-16.  The four 
teams judged best by the committee are given the #1 seeds in each region, the next four 
are given the #2 seeds, etc.  Within each region, the 16 teams play a 4-round single-
elimination tournament with matchups determined by seed (1 vs. 16, 2 vs. 15, etc.); the 
winner of each region goes to the Final Four.  The Final Four teams play a 2-round 
single-elimination tournament to decide the national championship.  Throughout all 6 
rounds of the tournament, each game is played at a neutral site rather than on the home 
court of one team or the other. 
 In most NCAA tournament pools (the primary outlet for tournament wagers), 
participants predict the winner of each game.  All predictions are made before the 
tournament starts, so it is possible that the predicted winner of a late-round game might 
not even be a participant, if that team lost in an earlier round.   
 Pool participants have several sources that can help them make their predictions.  
The most common such ranking systems are the Associated Press poll of sportswriters, 
the ESPN/USA Today poll of coaches, the Ratings Percentage Index (a combination of a 
team’s winning percentage and that of the team’s opponents), the Sagarin ratings 
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published in USA Today [18], the Massey ratings [15], Las Vegas betting odds, and the 
tournament selection committee’s seedings.  Other sports ranking and rating systems 
have been developed (see Wilson [23] for an extensive bibliography), but to our 
knowledge none has been shown to dominate those listed above.   
 A separate question is, once a ranking or rating system has been selected, how to 
use the information in a pool setting.  Kaplan and Garstka [13] describe a dynamic 
programming model which, given estimated probabilities of each team beating each other 
team head-to-head in a tournment game and given point values for each game in the pool, 
suggests a prediction strategy that can be used to maximize one’s pool score.   Breiter and 
Carlin [4] obtain similar (though slower) results via a brute force algorithm.  Of course, 
the quality of the dynamic programming and brute force solutions is dependent on having 
good probability estimates.  Schwertman et al. [10,11] suggest methods for estimating 
win probabilities based on teams’ seedings in the tournament.  Carlin [7] suggests 
methods for estimating win probabilities based on the Sagarin ratings and Las Vegas 
point spreads; Breiter and Carlin [4] use those methods to illustrate their algorithm.  
Boulier and Stekler [2] fit a probit model to estimate win probabilities based on seedings 
in order to maximize the number of games predicted correctly.  Caudill [8] uses a 
maximum score estimator model that is also based on seedings and also tries to maximize 
the number of correct predictions.  Caudill and Godwin [9] use a heterogeneously-
skewed logit model for the same purpose.  Kaplan and Garstka [13] propose methods for 
estimating win probabilities from scoring rates, Sagarin ratings, and Las Vegas point 
spreads. 
 Metrick [17] and Clair and Letscher [10] discuss a third relevant question: should 
one’s prediction strategy change based on the number and relative skill of other, 
competing predictors?  They observe that sometimes differentiating one’s predictions 
from the competition yields a higher chance of having the best predictions. 

In this paper, we focus on the first question – how to accurately rank (and/or rate) 
teams using only on basic input data.  We present a new model for ranking college 
basketball teams and estimating win probabilities.  Our model uses a logistic regression 
to populate transition probabilities of a Markov chain.  We describe the underlying 
Markov chain model in Section 2, and in Section 3 we describe the logistic regression 
model.  Section 4 presents our computational results, and in Section 5 we make a 
conjecture as to why our model is significantly more successful than both standard 
ranking systems and the NCAA tournament selection committee’s seeds when used alone 
and in the dynamic programming framework.  Section 6 summarizes the paper. 
 
2. A Markov Chain Model 
 
 In this section, we describe a Markov chain model for ranking teams.  We begin 
with a model used to construct NCAA football rankings by Callaghan, Porter, and Mucha 
[5,6]; Massey [16] also discusses a similar, but slightly less flexible, model.  The 
underlying model is a Markov chain with one state for each team.  The intuition is that 
state transitions are like the behavior of a hypothetical voter in one of the two major 
polls.  The current state of the voter corresponds to the team that the voter now believes 
to be the best.  At each time step, the voter reevaluates his judgement in the following 
way:  given that he currently believes team i to be the best, he picks (at random) a game 
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played by team i against some opponent j.  With probability p, the voter moves to the 
state corresponding to the game’s winner; with probability (1 – p), the voter moves to the 
losing team’s state. 
 Suppose team i has played a total of Ni games, with the kth game (k ≤ Ni) being 
played against opponent ok.  Let Iik be an indicator equal to 1 if team i won its kth game, 
and 0 if team i lost its kth game.  Then the transition probabilities tij from state i in the 
Markov chain are defined as 
 

tij = ( ) ( )[ ]∑
=

−+−
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111 ,  for all j ≠ i,  (1a) 

tii = ( )( )[ ]∑
=

−−+
iN

k
ikik

i

pIpI
N 1

111 .     (1b) 

 
If we let Wi and Li be the number of games that team i has won and lost, and wij and lij be 
the number of games that team i has won and lost against team j specifically, then these 
transition probabilities can be rewritten in a more intuitive form: 
 

tij = ( )[ ]plpw
N ijij
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As equations (1) and (2) imply, state transitions can be defined as the toss of a fair Ni-
sided die to select a game, followed by the toss of a weighted coin to determine whether 
the next state will correspond to the selected game’s winner (with probability p) or loser 
(with probability 1 – p). 
 Given the state transition probabilities T = [tij] defined in (2a) and (2b), 
Callaghan, Porter, and Mucha use the standard equations πT = π, Σi πi = 1 to calculate the 
steady-state probabilities of each team’s node.  The teams are ranked in order of their 
steady-state probability – the team with the highest steady-state probability is ranked 
first, etc. 

A nice characteristic of Callaghan, Porter, and Mucha’s Markov chain model is 
that it can be implemented simply, without much data.  Specifically, daily on-line 
scoreboards such as [24] provide all the necessary data for the model; no additional team 
or individual statistics are required.  When extending their model to college basketball, 
one of our goals was to preserve this basic simplicity.  Therefore, our model also requires 
no more data than daily scoreboards provide. 
 
2.1. Alternative Transition Probabilities 
 

The transition parameter p can be interpreted in a very intuitive way: the value of 
p is the model’s answer to the question “Given that team A beat team B, what is the 
probability that A is a better team than B?”  Daily scoreboards give additional useful 
information that can refine these probability estimates.  It is well-known in many of the 
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major team sports, including baseball, basketball, soccer, football, and ice hockey, that 
teams playing at home have an advantage.  Another factor that is often considered when 
evaluating teams is “margin of victory,” defined as the difference between the winning 
and losing teams’ scores.  A team that wins its games by wide margins is generally 
thought to be better than a team that wins its games by narrow margins.   

In the context of this model, we would like to find transition probabilities that 
answer the question, “Given that Team A beat Team B by x points at home (or on the 
road), what is the probability that A is a better team than B?”   

Let x(g) be the difference between the home team’s score and the visiting (road) 
team’s score in game g.  We define H

xr  to be the probability that a team that outscores its 
opponent by x points at home is better than its opponent, and R

xr = H
xr−1 to be the 

probability that a team that is outscored on the road by x points is better than its 
opponent.  (Note that x can be negative to indicate that the home team lost the game.)  If 
we denote each game by an ordered pair (i,j) of teams with the visiting team listed first, 
then we can write the state transition probabilities for each team i as 

tij = ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
−+−∑ ∑

= =j)(i,g ijg

H
x(g)

R
x(g)

i

rr
N ),(

111 ,  for all j ≠ i, (3a) 

tii = ⎥
⎦

⎤
⎢
⎣

⎡
+∑ ∑∑ ∑

== j (j,i)g

H
x(g)

j (i,j)g

R
x(g)

i

rr
N
1 .     (3b) 

 
Wins, losses, locations, and margins of victory are easy to observe; the difficulty 

with using this model is in estimating values of H
xr and R

xr for each x.  In Section 3, we 
present a logistic regression model that exploits the basketball schedule’s structure to 
answer this question. 
 
2.2. Relation to Standard Methods 
 

Standard methods that are used to evaluate college basketball teams (RPI, 
Sagarin, Massey, etc.) take into account a team’s record of winning games and its 
strength of schedule (i.e., the quality of the teams it played against when compiling that 
record).  In fact, the pre-2005 RPI formula considered these factors explicitly: it took the 
weighted average a team’s winning percentage and its opponents’ winning percentage.  
In this section, we show how the Markov chain steady-state probabilities can be viewed 
as a combination of these same two factors. 

The steady-state probability πi of being in the state of team i can be expressed as 
the product of two terms, the expected time to leave a state and the expected number of 
entries to that state, divided by an appropriate time constant.  The expected time Ti to 
leave state i satisfies the equation Ti = 1 + tiiTi, so  
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Similarly, the expected number of entries Ei to state i is  
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Notice that in (4), Ti is a function only of team i’s performance in the games it played.  In 
(5), Ei is a function of team i’s performance against each team j, weighted by πj, which is 
our measure of team j’s strength.  Therefore, we can see that our method is fundamentally 
similar to the RPI and to Sagarin and Massey’s methods (as well as most others) in that it 
combines a team’s performance with the strength of its opponents.  The team’s 
performance dictates how long the system remains in the team’s state each time it enters, 
and the team’s strength-of-schedule (and its performance against that schedule) dictates 
how often the system enters the team’s state. 
 
3. A Logistic Regression Model for Calculating Transition Probabilities 
 

In this section, we describe a method for estimating the values of H
xr , the 

probability that a team with a margin of victory of x points at home is better than its 
opponent. (Note that we need only determine H

xr since R
xr = H

xr−1 .)  Estimating H
xr is 

difficult because, while the input (margin of victory x) is easily observable, the response 
– whether one team is better than another – is hard to determine.  (In fact, if we knew that 
information a priori or were able to directly observe it, there would be no need for the 
predictive model presented in this paper.) 

To estimate H
xr , we exploit the structure of NCAA basketball schedules.  Almost 

every one of the approximately 330 Division I teams is a member of a basketball 
conference.  Conferences each play a home-and-home round robin schedule in which 
members i and j of a conference play each other twice each year, once on i’s home court 
and once on j’s home court.  Smaller conferences play full home-and-home round robin 
schedules, where each pair of teams in the conference plays twice.  However, some 
conferences are too large; scheduling restrictions make it impossible for them to play 
enough games to fulfill the full home-and-home requirements.  These conferences play a 
partial home-and-home round robin, in which most teams play each other twice while a 
few pairs of teams play each other only once. 

We focus on pairs of teams (from both smaller and larger conferences) that play 
each other twice per season as part of either a full or a partial home-and-home round 
robin schedule.  Our method consists of two steps: 

 
1. Using home-and-home conference data, estimate an answer to the following 

question: “Given that Team A had a margin of victory of x points at home 
against Team B, what is the probability that Team A beat Team B in their 
other game, on the road?” 

2. Given these road-win probabilities, deduce H
xr , the probability that the home 

team is the better team, i.e., “Given that Team A had a margin of victory of x 
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points at home against Team B, what is the probability H
xr that Team A is 

better than Team B, i.e., that Team A would beat Team B on a neutral court?” 
 
We used four years of NCAA data (the 1999-2000 through 2002-2003 seasons) to 

estimate these probabilities.  In those four seasons, we found all matched pairs of teams 
that had played once on each of their home courts.  For each of those games we recorded 
the home team, the visiting team, and the point differential at the end of regulation time3.  
We note that on very rare occasions, conference games might be played on a neutral 
court; this data was not available, and we do not believe its inclusion would significantly 
impact our results. 
   
 

 
Figure 1.  Number of home-and-home games by home team victory margin 

 
 Figure 1 displays the number of games in which the home team won by various 
margins.  As one might expect, the frequency decreases as the absolute value of the point 
spread increases; there are very few games decided by 50 or 60 points. 
 Figure 2 shows the observed win probabilities H

xs , where H
xs answers the following 

question: “Given that Team A beat Team B by x points on A’s home court, what is the 
probability that A beat B on B’s home court?”  (Notice that this is not quite the question 
we would like to answer; in Section 3.1 we discuss how to deduce H

xr from H
xs .)   

For each margin of victory (or loss) by a home team i against an opponent j, 
Figure 2 shows the fraction of times that team i beat the same opponent j on j’s home 
court.  For example, 50% of teams that lost by 36 points on their home court beat that 
same opponent on the opponent’s home court.  Although this seems improbable, Figure 1 
shows the reason: the sample size is only two games.  Similar improbable results caused 
by small sample sizes can be found at the other extreme.  For example, 0% of teams that 

                                                 
3 We treat overtime games as having a zero-point differential; because overtime periods are relatively short, 
they are played with different strategies that might give a different distribution of point spreads. 
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won by 54 points at home also won the road matchup; in this case, there was only one 
observation of a 54-point win. 
 To obtain a better, smoother estimate of win probability, we use a logistic 
regression model to find a good fit.  The logistic regression helps linearize the nonlinear 

function by estimating parameters a and b to fit bax
s

s
ln H

x

H
x +=

−1
.  Rearranging terms 

yields an expression for the probability that a team with an x-point margin at home will 

win the road matchup: )(

)(

1 bax

bax
H
x e

es +

+

+
= . 

 
Figure 2.  Observed probability of a home team winning its road game against the same opponent, 

given margin of victory in the home game. 
 
 The best-fit parameters using the matched-pair games from the 1999-2000 
through 2002-2003 seasons are (a,b) = (.0292,-0.6228) with standard errors 
(.0017,0.0231).  Figure 3 shows the logistic regression estimate of H

xs superimposed on 
the observed probability chart. 
 

 
Figure 3.  Observed values and logistic regression estimates for H

xs  
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3.1. Deducing Neutral-Court Probabilities 
 

The logistic regression model presented in Section 3 estimates H
xs , the probability 

that Team A will beat Team B on B’s court given that A beat B by x points on A’s court.  
However, in order to populate the transition matrix for our Markov chain model, we need 
an estimate of H

xr , the probability that Team A will beat Team B on a neutral site given 
that A beat B by x points on A’s court.  In this section, we describe how we 
deduce H

xr from H
xs . 

The key to finding H
xr is to consider the case in which the game on B’s home court 

is an even matchup ( H
xs = 0.5).  We make one significant assumption, that the effect of 

home court advantage is additive.  In other words, we assume that playing at home 
increases a team’s expected point spread by h > 0; in such a model (also implicitly used 
by [18] and others), h is called the home-court advantage. 

Given that home teams have some expected advantage h, we also assume that a 
game between A and B on B’s home court is an even matchup when the expected point 
spread between the two teams is zero4.  If the expected point spread on B’s home court is 
zero, then the home-court advantage h must exactly cancel A’s inherent advantage over 
B; the two have equal magnitude.  Therefore, we expect that the game between A and B 
on A’s home court would be decided by 2h, since A would have both its inherent 
advantage and the home-court advantage. 

In the case of a neutral-court game, a team that wins by x points at home would be 
expected to win by x – h at the neutral site (due to losing their home-court advantage).  
Since H

xs denotes the probability of winning when the expected point spread is x – 2h, we 
can deduce that the probability of winning when the expected point spread is x – h must 
be H

xr = H
hxs + . 

 
3.2. Team vs. Team Win Probabilities 
 

The probabilities H
xr  can be used to seed the Markov chain transition matrix, as 

described in Section 2.  The resulting steady-state probabilities π give a natural ranking 
of teams: the team with the highest steady-state probability is highest-ranked, the team 
with the second-highest steady-state probability is ranked second, etc.  These rankings 
can be used to predict tournament outcomes, under the assumption that it is best to 
always pick the higher-ranked team to win a game. 

As Breiter and Carlin [4] and Kaplan and Garstka [13] pointed out, picking the 
highest-ranked available team might not always be the best strategy.  Their models 
require estimates of team-vs.-team win probabilities in order to find a pool strategy.  

                                                 
4 One can imagine scenarios where this is not true, e.g., where one team has a 90% chance of winning by a 
single point, while the other team has a 10% chance of winning by nine points; however, the distribution of 
observed point spreads shown in Figure 1 suggests that our simple model is a reasonable approximation of 
reality. 
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Therefore, we would like to use our logistic regression/Markov chain model to determine 
estimates for these team-vs.-team win probabilities. 

Carlin [7], Breiter and Carlin [4], and Kaplan and Garstka [13] use a simple 
method for determining team-vs.-team win probabilities.  Given an estimated point 
difference x between the two teams (i.e., given that team i is expected to score x more 
points than team j in a head-to-head matchup) and a standard error σ of the difference in 
score, they estimate the probability of i beating j as pij = Φ(x/σ).  This probability 
estimate can be used with any model that predicts a head-to-head scoring difference, such 
as Sagarin ratings [4,7,13], Poisson scoring-rate models [13], and Las Vegas betting lines 
[7,13]; therefore, all we require is a way to estimate scoring difference from our steady-
state probabilities π. 

Surprisingly, the scoring difference between two teams appears to be fairly well-
estimated by a simple linear function of the difference in steady-state probabilities.  
Specifically, using 1999-2003 regular-season data we find a good estimate to be  

 
xij = 9180(πi – πj).     (6) 

 
 Adding nonlinear (including logarithmic) factors does not improve the fit of the 
model; even simply allowing for different coefficients of πi and πj does not yield an 
improvement – the two coefficients are nearly identical (modulo their signs), and each is 
well within the standard error of the other.  Overall, the simple one-parameter model in 
equation (6) has a standard error of 10.9 points; by comparison, Breiter and Carlin [4] use 
a standard error of 11 points when dealing with Las Vegas betting lines and Sagarin 
ratings.  The standard error of the coefficient 9180 in our model is 71.5. 
 We also attempt to predict team-vs.-team win probabilities directly from steady-
state probabilities (i.e., without using scoring difference as an intermediate step).  A 
logistic regression model is appropriate, since the outcomes are binary (wins and losses).  
Figure 4 shows the relative frequency of steady-state-probability differences between 
teams that played each other. 
 

 
Figure 4. Number of games by steady-state probability differences x10-4 

 
Figure 5 shows the observed probability that the home team wins a game with a 

certain steady-state probability difference. 
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Figure 5. Observed win probability by steady state difference x 10-4 

  
 The best-fit logistic regression model (obtained using Minitab) is   
 

ijp̂ = 1 – 6716.0)(72.1834

6716.0)(72.1834

1 −−−

−−−

+ ji

ji

e
e

ππ

ππ

.  (5) 

 
However, this data implicitly includes a home court advantage.  The constant term 0.6716 
in the exponential can be thought of as the home-court effect; on a neutral court, the 
probabilities translate to 
 

     pij = 1 – )(72.1834

)(72.1834

1 ji

ji

e
e

ππ

ππ

−−

−−

+
.   (6) 

 
4. Computational Results 
 

To test the models developed in Section 3, we analyze their predictions of NCAA 
Tournament games.  The NCAA tournament schedules all of its games on neutral courts, 
thus eliminating home-court advantage.  Consequently, our transition probabilities, each 
of which estimates the probability of one team being better than another, are valid for 
attempting to predict the winners of neutral-court NCAA Tournament games. 

We test our model in two different ways: as a stand-alone predictor (where the 
better team is always predicted to win) and as the source of probability estimates for 
Kaplan and Garstka’s [13] dynamic programming model.  By comparing our model’s 
success with the success of other ranking and rating systems, we hope to determine both 
how good a ranking system it is compared to other common methods, as well as its 
compatibility (again, compared to other methods) with the dynamic programming 
framework. 
 
4.1. Predictive Models Used  
 

We compare our logistic regression/Markov chain (LRMC) model to the most 
commonly-used NCAA basketball ranking, rating, and measurement systems.  These 
include expert polls (the Associated Press poll of sportswriters (AP) and the ESPN/USA 
Today poll of coaches (ESPN)), mathematical models (the Ratings Percentage Index 
(RPI), the Sagarin ratings (Sagarin) [18], the Massey ratings (Massey) [14], and Massey’s 

Accepted for publication in Naval Research Logistics 53 (2006)



 11

win probabilities (MasseyProb) [14]), predictions from Las Vegas oddsmakers 
(Sheridan’s odds against winning (Sheridan), game-by-game Vegas point spreads from 
Statfox (Vegas), and Kaplan and Garstka’s [13] method (KG) for deriving team ratings 
from first-round point spreads and over-unders), and the actual NCAA tournament seeds 
(Seed) assigned by the tournament selection committee. 

For each of the models except for game-by-game Vegas point spreads, we use the 
final pre-tournament ranking of teams.  We obtained ranking data from the pre-
tournament polls5, RPI, seedings, Sheridan’s odds against winning, and Sagarin’s overall 
ratings from USA Today [22].  Massey’s ratings and win probabilities were taken from 
his web pages [15].   

First-round point spreads and over-unders were compiled from [12], and 
converted to ratings using the method of Kaplan and Garstka [13].  Given the Las Vegas 
line that team i is a fij-point favorite over team j and the over-under (the expected number 
of points scored in the game) is gij, Kaplan and Garstka [13] deduce an implicit rating λi 
and λj for each of the two teams: (λi + λj) = gij and (λi – λj) = fij, so λi = (fij + gij)/2 and λj 
= (gij – fij)/2.   

Game-by-game Vegas point spreads were compiled from Statfox [21] game logs.  
For consistency with Vegas pre-tournament rankings, we tried to use Sheridan’s better-
known predictions for game-by-game point spreads.  However, because USA Today does 
not publish on weekends (and because Sheridan’s spreads are not archived) the spreads 
on many games were unavailable. In fact, Statfox was the only readily available source of 
archived Vegas point spreads for each NCAA tournament game from 1999-2000 through 
2004-2005.  Although different Las Vegas oddsmakers will publish slightly different 
point spreads, the team favored to win rarely differs.  Moreover, we found that Statfox 
made slightly more correct predictions than Sheridan in a sample of over 100 tournament 
games where data from both were available. 

For the 2004-2005 season, the NCAA changed the mathematical formula for RPI; 
the 2004-2005 predictions using the new formula were almost exactly the same as using 
the old formula, so we report only the old RPI formula here.  We obtained this RPI data 
from [11].   

For the LRMC model, we used all of the game data (home team, visiting team, 
margin of victory) from the beginning of the season until just before the start of the 
tournament; we obtained this data, as well as tournament results, on line from Yahoo! 
daily scoreboards [24].  We note that neutral-site non-tournament games were unknown 
in our data set; the team listed as “home” on the scoreboard was considered the home 
team in our data. 

In all cases, we naively deduced rankings from ratings-based systems (Sagarin, 
Massey, RPI, KG, Sheridan, and LRMC) simply by assigning higher-rated teams a higher 
ranking.  In cases where two teams had the same rating, they were assigned identical 
(tied) rankings.  
  
 
4.2. Best-team-wins Results 
                                                 
5 Only the top 30-40 teams generally get votes in the polls, so all unranked teams were given equal pre-
tournament poll rankings.  It is rare that two such teams lasted long enough in the tournament to face each 
other; those instances were considered tossups when evaluating the polls’ predictions. 
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Based on the pre-tournament rankings from each source, we evaluated each based 

on its ability to predict outcomes of tournament games.  We first tested naive “best team 
wins” predictions, and counted (1) the number of games for which the method’s pre-
tournament rankings predicted the correct winner, (2) the number of games in which the 
higher-ranked team won.  These two counts were different because of the possibility of 
multiple upsets.  For example, if two second-round opponents were both upset winners in 
the first round, then metric (1) would give a score of zero but metric (2) could give a 
score of 1 if the second-round winner was the higher-ranked of the two upset-winners.  
We report the results of both metrics because they both give information regarding the 
quality of the ranking system.  Note that because Vegas point spreads are generated 
game-by-game, they do not give full pre-tournament predictions (metric (1)), but would 
be expected to have a predictive advantage under metric (2) because they have more 
games of input data.    
 Table 1 shows the performance of the various prediction methods according to the 
two metrics, based on their performance over six seasons: 1999-2000 through 2004-2005.  
The LRMC model was more successful at picking the winners of tournament games than 
any of the other rankings.  Note that fractional results indicate the presence of ties in the 
ranking (for example, when two #1 seeds play each other each is considered to be ½ of 
the predicted seeding-method winner). 
 

 Polls  Mathematical Models Las Vegas Predictions  
 AP ESPN Seed RPI Massey Sagarin KG Sheridan Vegas LRMC 
Games won 
by predicted 
winner 

236 235½ 235¼ 229 242 229 231½ 244½ n/a 248 

Games won 
by higher-
ranked team 

266 266½ 265 262 268 264 260 268½ 273½ 277 

Table 1.  Performance of models on two metrics of prediction quality, 1999-2000 through 2004-2005 
seasons (378 total games). 

 
 Table 2 shows the one-tailed significance test results when comparing the LRMC 
model with each of the others with regard to game-by-game predictions (row 2 of Table 
1).  We used a one-tailed version of McNemar’s test (essentially a binomial test that takes 
into account only those games where the two methods’ predictions differ).  The tests 
indicate that LRMC is better than AP, ESPN, RPI, Seed, Sagarin, KG, and Sheridan at 
the 0.05 level of significance or better.  Only Massey (0.13) and Vegas (0.31) had 
significance levels worse than 0.05.  Note that the difference between the number of 
games predicted correctly by LRMC and by the other methods is, in some cases, slightly 
different between Tables 1 and 2.  The reason is that games predicted by one method or 
the other as “even” (i.e., a zero-point spread, equal team rankings, or equal team ratings) 
are given a value of ½ in Table 1 (i.e., ½ of a correct prediction) whereas those games are 
thrown out of the comparison in McNemar’s test. 
 It is not surprising that our method is not significantly better than game-by-game 
Las Vegas odds.  Oddsmakers use additional information: player unavailability (due to 
injury, suspension, ineligibility, and illness), matchups (either player-vs.-player or team-
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vs.-team), motivation, recent level of play, and performance in earlier-round tournament 
games.  Any method that effectively utilizes such information can, by definition, be at 
least as good as a similar method that does not. 
 

Prediction 
method  
(x) 

LRMC correct, 
x not 

(# of games) 

x correct, 
LRMC not 

(# of games) 

One-tailed 
significance 

AP 30 17 0.04 
ESPN 29 16 0.04 
Seed 32 19 0.05 
RPI 37 22 0.03 
Massey 30 21 0.13 
Sagarin 24 11 0.02 
KG 32 16 0.01 
Sheridan 27 15 0.04 
Vegas 20 16 0.31 

Table 2.  Significance of LRMC’s performance against other game-by-game prediction methods, 1999-
2000 through 2004-2005 seasons (378 total games). 

 
 In addition to counting statistics, we also tracked the rankings of the eventual 
Final Four teams.  The six seasons’ Final Four teams had very different characteristics. 
There were three “surprise” teams in 1999-2000, including two (Wisconsin and North 
Carolina) that did not get even one vote in the coaches’ poll.  On the other hand, in 2000-
2001 and 2001-2002, three of the four teams were considered favorites to reach the Final 
Four.   

Table 3 shows each method’s rankings of each season’s Final Four teams.  In five 
of the six test seasons, the LRMC model had the Final Four teams collectively ranked 
higher than any of the other ranking systems.  Of the 24 teams, 16 were ranked in the top 
five by the LRMC model, and 21 were ranked in the top 10.  Collectively, the 24 Final 
Four teams had a LRMC total ranking of 152, much better than the total for Sagarin 
(198), Sheridan (203-224), Massey (217), AP (≥ 236), ESPN (≥ 242), and RPI (264).  
The Seeding total ranged from 192 to 264, spanning the range of Sagarin, Sheridan, 
Massey, AP, ESPN, and RPI, but still clearly worse than LRMC.  The KG model finished 
last, with a total of 296 (though it did have one notable success, ranking North Carolina 
as #8 in 2000).  The Vegas method is not applicable here, as it does not provide pre-
tournament predictions.   

Table 4 shows the rankings of the same Final Four teams, but within each team’s 
respective region.  (For example, a ranking of “1” in Table 4 indicates that the team was 
that method’s highest-ranked team within its tournament region, but not necessarily the 
top-ranked team overall.)  Again, the LRMC model has a better total than any of the other 
methods.  Table 5 shows the results of one-tailed McNemar’s significance tests on the 
contents of Table 4.  The tests indicate that LRMC is better than AP, Seed, RPI, Massey, 
Sagarin, KG, and Sheridan at a significance level of 0.07 or better; all but AP and Massey 
are at the 0.02 or better significance level.  Only the comparison with ESPN (0.15) has a 
worse significance level than 0.07.  Most striking is the comparison with the NCAA 
tournament seeding committee; LRMC outperforms the seeds at a 0.01 significance level.
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 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 
 

M
ichigan State 

Florida 

W
isconsin 

N
orth C

arolina 

D
uke 

M
ichigan State 

A
rizona 

M
aryland 

K
ansas 

O
klahom

a 

M
aryland 

Indiana 

Texas 

K
ansas 

M
arquette 

Syracuse 

O
klahom

a State 

D
uke 

C
onnecticut 

G
eorgia Tech 

Illinois 

Louisville 

N
orth C

arolina 

M
ichigan State 

Totals 

AP 2 13 37 * 1 3 5 11 2 3 4 26 5 6 9 13 4 6 7 14 1 4 2 15 ≥ 236 

ESPN 2 11 * * 1 3 4 11 2 3 4 27 5 6 11 12 3 6 7 15 1 4 3 15 ≥ 242 

Seed6 1-
4 

17-
20 

29-
32 

29-
32 

1-
4 

1-
4 

5-
8 

9-
12 

1-4 5-8 1-4 17-
20 

1-4 5-8 9-
12 

9-12 5-8 1-4 5-8 9-12 1-4 13-
16 

1-4 17-
20 

192-
264 

RPI 13 18 32 41 1 3 8 22 1 5 3 20 4 6 10 9 6 1 5 16 2 11 5 22 264 

Massey 4 17 26 31 1 3 6 14 3 5 4 26 6 5 13 7 6 1 9 10 1 4 2 10 217 

Sagarin 4 10 25 31 1 3 4 10 3 4 5 21 5 4 14 12 5 1 7 8 1 7 2 11 198 

KG 11 19 38 8 1 7 2 10 3 11 2 49 1 16 25 14 15 2 13 16 5 6 1 21 296 

Sheridan 1-
2 

6-9 31 27 1 3 5-
6 

7 2-3 5-6 2-3 18-
20 

6-7 4-5 17 15-
16 

6-7 1-2 3-4 10-
12 

1-2 13-
14 

1-2 18 203-
224 

LRMC 3 5 19 26 1 5 4 3 3 5 2 10 7 1 19 10 5 1 2 4 2 6 1 8 152 

Table 3.  Final Four teams’ rankings.  * denotes that a team was unranked; both polls had 42 ranked teams just before the 1999-2000 NCAA Tournament, so 
these teams were ranked no higher than 43rd. 
 
 

 
                                                 
6 Four teams (one from each tournament region) are assigned each seed.  Therefore, the four #1 seeds are ranked 1-4, the four #2 seeds are ranked 5-8, etc., 
without specification. 
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 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 
 

M
ichigan State 

Florida 

W
isconsin 

N
orth C

arolina 

D
uke 

M
ichigan State 

A
rizona 

M
aryland 

K
ansas 

O
klahom

a 

M
aryland 

Indiana 

Texas 

K
ansas 

M
arquette 

Syracuse 

O
klahom

a State 

D
uke 

C
onnecticut 

G
eorgia Tech 

Illinois 

Louisville 

N
orth C

arolina 

M
ichigan State 

Totals 

AP 1 3 9 10+ 1 1 2 3 1 1 1 6 1 2 3 3 1 1 2 3 1 1 1 4 ≥ 62 

ESPN 1 3 11+ 12+ 1 1 1 3 1 1 1 6 1 2 3 3 1 1 2 4 1 1 1 4 ≥ 66 

Seed 1 5 8 8 1 1 2 3 1 2 1 5 1 2 3 3 2 1 2 3 1 4 1 5 66 

RPI 3 4 9 10 1 1 3 5 1 2 1 5 1 2 3 3 2 1 1 4 1 3 2 6 74 

Massey 1 4 7 9 1 1 2 3 1 2 1 7 1 2 3 2 2 1 2 3 1 1 1 2 60 

Sagarin 1 4 7 7 1 1 1 2 1 2 1 5 1 2 3 4 2 1 2 3 1 3 1 4 60 

KG 3-4 4 9 4-5 1 1-2 1 3 1 2 1 10-11 1 7 4 4 3 1 3-4 5 1 3 1 6 79-84 

Sheridan 1 3 8 7 1 1-2 1-2 2 1 2-3 1 5 2 2 3 4-5 2 1 1-2 2-3 1 3 1 5 60-66 

LRMC 1 2 6 6 1 1 1 2 1 2 1 2 2 1 4 2 2 1 1 1 1 2 1 2 46 

Table 4.  Final Four teams’ rankings within their respective regions.  n+ denotes that a team was unranked in the poll, and that  n-1 teams in the region were 
ranked; therefore, the team ranks nth at best. 
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Prediction 
method  
(x) 

LRMC rank 
higher than x 
(# of teams) 

x rank higher 
than LRMC 
(# of teams) 

One-tailed 
significance 

AP 12 4 0.04 
ESPN 10 5 0.15 
Seed 12 2 0.01 
RPI 13 2 0.004 
Massey 9 3 0.07 
Sagarin 10 2 0.02 
KG 12 2 0.01 
Sheridan 9 1 0.01 

Table 5.  Significance of LRMC’s performance against other pre-tournament within-region prediction 
methods, 1999-2000 through 2004-2005 seasons (24 total regions). 

 
 

 Conventional wisdom is that there have been “surprise” teams in the Final Four 
every year, but there is no standard definition of “surprise”.  If we define a surprise team 
to be one outside the top two teams in the region, Table 4 demonstrates that there have 
been only 3 teams to surprise our model in the past 6 years, including two in one season.  
By contrast, Massey has been surprised 7 times, Sheridan 8-10 times, Sagarin, AP, and 
ESPN 9 times each, the tournament selection committee (Seed) 10 times, RPI 12 times, 
and KG 14 times. 
 
4.3. Dynamic-programming-based Ranking Results 
 
 In addition to testing the ranking systems assuming that the best team would 
always win, we also tested the effectiveness of the ranking systems in the framework of 
Kaplan and Garstka’s [13] dynamic programming model. 
 Kaplan and Garstka’s [13] dynamic program requires team-vs.-team win 
probabilities for each possible tournament matchup.  There are several methods for 
translating rankings to probabilities suggested in the literature.  As before, let pij be the 
probability that team i will beat team j on a neutral court.  Schwertman, McCready, and 

Howard [19] suggest the ratio of rankings 
ji

j
ij yy

y
p

+
= , where yi and yj are the rankings 

of teams i and j.  (They initially suggested this calculation for use with tournament seeds, 
but it is easily extendable to other ranking systems.)  Bouler and Stekler [2] suggest a 
probit model that they fit for tournament seeds only. 

Schwertman, McCready, and Howard [19] and Schwertman, Schenk, and 
Holbrook [20] suggest probabilities based on the assumption that teams’ strength is 
normally distributed.  Both sets of researchers propose probabilities of the form pij = α0 + 
α1(S(yi) – S(yj)), where S(yi) is the inverse normal cumulative distribution function of 
team i’s ranking relative to the total.  For example, if there were 325 teams and team i 
was ranked yi = 21st, then S(yi) would be the inverse normal CDF of (325-21)/325.  The 
parameters α0 and α1 are fit based on regular-season data.  In [19], they define α0 = 0.5 
(so that teams of equal strength are assigned a 50% chance of beating each other) and fit 
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α1; in [20] they also consider fitting both α0 and α1.  Since this second model might yield 
pij + pji ≠ 1, we define pji = 1 – pij whenever i is a higher-ranked team than j.  We also 
truncate meaningless values of pij; negative values are assigned 0, and values greater than 
1 are reduced to 1.  Schwertman, Schenk, and Holbrook [20] suggest similar one- and 
two-parameter fits based on an exponential probability function: 

))()((101
1

ji ySySij e
p −++

= ββ .  In the one-parameter fit, β0 = 0 ensures that teams of equal 

strength are assigned a 50% chance of beating each other; in the two-parameter fit, we 
handle out-of-range probabilities and pij + pji ≠ 1 in the same way as before. 

The final ranking-based probability system we test is from Carlin [7].  He 
suggests using a two-parameter fit to calculate an expected point difference 

2
10 )(ˆ ijij yyx −+= γγ  and then estimating the probability ijp  from the cumulative 

normal distribution, i.e., ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ=

σ
ij

ij

x
p

ˆ
.  We use σ  = 11, as suggested by [7]. 

Kaplan and Garstka’s [13] dynamic programming model is designed for use with 
tournament pools.  There are many different pool scoring systems; we tested ours on 
three common systems, each of which emphasizes additional solution features.   

The first type of pool we tested awards one point per correctly-predicted game, 
regardless of which round the game is in.  This type of pool makes the first and second 
round prediction quality more important than later rounds, simply because more than ¾ 
of all tournament games occur in those first two rounds. 

The second type of pool we tested awards an exponentially-increasing number of 
points per correct prediction, based on the round that the game occurs.  Specifically, we 
tested a system where each correct prediction earns 2round-1 points (i.e., 1 point per first-
round game, 2 points per second-round game, 4 points per third-round game, etc.).  This 
type of pool makes later-round predictions more important than early predictions; 
however, later-round predictions are more difficult, because they require the predicted 
winner to win not just that game, but all of its previous tournament games as well. 

The third type of pool we tested follows the exponential increase system, but 
rewards correct upset predictions.  Specifically, base the number of points for each game 
remains the same (2round-1), but is multiplied by the seed of the predicted winning team.  
For example, in a first-round game between a #2 seed and a #15 seed, the base point 
value of the game is 21-1 = 1 point.  Correctly predicting the #2 seed to win earns 2×1 = 2 
points, while correctly predicting an upset (the #15 seed winning) earns 15×1 = 15 points.  
This method rewards not only correct long-term predictions, but also better insight into 
which lower-seeded teams will be successful. 

Before testing any of the dynamic-programming-based predictions, we tested the 
best-team-wins method on each of the three pool types.  The previous section’s results, 
which suggested that the LRMC method picked more winners and was significantly 
superior at selecting later-round winners (especially those that might be lower-seeded), 
led us to expect that LRMC would increase its superiority in exponentially-weighted 
pools and upset-bonus pools. 

In fact, as Table 6 shows, this is exactly what happened.  For the one-point-per-
game pool, LRMC was 1.5% better than the second-best ranking method, and 5% better 
than the average of the other eight methods.  For the exponentially-weighted pool, 
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LRMC’s advantage increased to 11% over the second-best method, and 18% over the 
average of the other eight methods.  When the upset bonus was included, LRMC’s 
advantage was even greater, 14% over the second-best method and 19% over the average. 

Pool Type AP ESPN Seed RPI Massey Sagarin KG Sheridan LRMC
One point 
per game 

236 235½   235¼ 229 242 229 231½  244½ 248 

2round-1 
points 

541 531½ 495 465 534 520 519 565 632 

seed×2round-1 
points 

1194½ 1192½ 1115 1104 1232 1155 1188½  1247 1454 

Table 6.  Total pool score of models using best-team-wins prediction method, 1999-2000 through 2004-
2005 seasons. 

 
 In addition to the results reported in Table 6, we also tested the maximum score 
estimator model of Caudill [8], another deterministic method.  Based on seedings, it uses 
historical data to predict outcomes (so, for example, if 14th seeds beat 3rd seeds more 
often than vice versa, it will make this prediction instead).  Its performance was worse 
than that of just selecting the higher seeds (Seed). 
 Tables 7, 8, and 9 compare the dynamic programming-based predictions using 
each ranking method and each ranking-to-probability formula; the final row of each table 
show the best-team-wins method for purposes of comparison.  Again, the results are 
clear.  Regardless of which method is used to derive probabilities from the rankings, the 
LRMC results are superior.  In fact, in every case, even the worst LRMC result (without 
dynamic programming) is superior to the best result obtained from any of the other 
rankings, using any of the probability models, with or without dynamic programming.  
Thus, we can conclude that for the scoring systems we tested, although selecting a good 
probability model and using dynamic programming both can improve the results, it is 
more important to begin with a good ranking system.  The dynamic program added to 
LRMC is especially effective in the most complex pool scoring model we tested, where 
upset incentives are more likely to make picking the better team a suboptimal strategy. 

 AP ESPN Seed RPI Massey Sagarin KG Sheridan LRMC
Ratio of rankings 
[19] 

242 240 241 235 242 238 236 247 250 

Linear, α0 = 0.5 
[19] 

243 238 241 235 238 240 236 246 251 

Linear, α0 and α1 
fit  [20] 

242 238 241 236 241 240 235 246 249 

Exponential, β0 = 
0 [20] 

243 240 241 236 231 241 237 244 254 

Exponential, β0 
and β1 fit [20] 

241 238 241 236 241 240 237 247 251 

Normal CDF [7] 239 241 241 232 240 237 238 245 253 
Seed probit [2] --- --- 240 --- --- --- --- --- --- 
Best-team-wins 236 235½ 235¼ 229 242 229 231½  244½ 248 

Table 7.  Total one-point-per-game pool score of models using ranking-based dynamic programming 
prediction methods and best-team-wins, 1999-2000 through 2004-2005 seasons. 
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 AP ESPN Seed RPI Massey Sagarin KG Sheridan LRMC
Ratio of rankings 
[19] 

546 534 520 470 534 523 531 579 625 

Linear, α0 = 0.5 [19] 548 528 520 470 518 543 531 583 633 
Linear, α0 and α1 fit  
[20] 

546 528 520 472 530 541 529 583 623 

Exponential, β0 = 0 
[20] 

541 530 520 472 524 545 535 582 651 

Exponential, β0 and 
β1 fit [20] 

538 528 520 472 530 543 535 587 633 

Normal CDF [7] 538 580 520 420 518 521 557 575 661 
Seed probit [2] --- --- 519 --- --- --- --- --- --- 
Best-team-wins 541 531½ 495 465 534 520 519 565 632 

Table 8.  Total 2round-1-points-per-game pool score of models using ranking-based dynamic programming 
prediction methods and best-team-wins, 1999-2000 through 2004-2005 seasons. 

 
 AP ESPN Seed RPI Massey Sagarin KG Sheridan LRMC
Ratio of 
rankings 
[19] 

1300 1262 1139 1072 1228 1213 1205 1342 1654 

Linear, α0 = 
0.5 [19] 

1294 1280 1094 990 1339 1210 1147 1219 1806 

Linear, α0 
and α1 fit  
[20] 

1208 1249 1120 1031 1369 1175 1203 1351 1832 

Exponential, 
β0 = 0 [20] 

1226 1186 1026 1069 1344 1146 1180 1352 1838 

Exponential, 
β0 and β1 fit 
[20] 

1242 1229 1006 1053 1292 1192 1208 1400 1843 

Normal CDF 
[7] 

1210 1260 1139 1023 1161 1224 1149 1277 1611 

Seed probit 
[2] 

--- --- 1174 --- --- --- --- --- --- 

Best-team-
wins 

1194½ 1192½ 1115 1104 1232 1155 1188½  1247 1454 

Table 9.  Total seed×2round-1-points-per-game pool score of models using ranking-based dynamic 
programming prediction methods and best-team-wins, 1999-2000 through 2004-2005 seasons. 

 
4.4. Dynamic-programming-based Rating Results 
 

Four of the ranking methods we have tested, Massey, Sagarin, KG, and LRMC, 
actually give more data than just the relative ranks of teams.  All three assign a rating to a 
team; the Sagarin and KG ratings are meant to be directly translated to point differentials 
between teams, while in Section 3.2 we have described how to translate LRMC ratings to 
estimated point differentials.  Carlin [7] and Kaplan and Garstka [13] have discussed 
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ways of using estimated point differentials λi – λj to estimate team-vs.-team win 
probabilities pij.  Specifically, Carlin [7] suggests a Normal model using pij = Φ((λi – 
λj)/σ), where σ is conservatively estimated to be approximately 11.  Kaplan and Garstka 

[13] use a Poisson model to refine the estimate of σ, suggesting pij = ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

−
Φ

ji

ji

λλ

λλ
.  

These models can be used either with Sagarin ratings or with Kaplan and Garstka’s [13] 
Vegas-based ratings.  Carlin [7] also gives a refined probability estimate for Sagarin 
ratings, noting that teams’ observed point difference tends to be slightly underestimated 
by the Sagarin method.  He fits a linear model and obtains the estimate pij = Φ(1.165(λi – 
λj)/σ) for use with Sagarin ratings.  In Section 3.2, we describe two possible methods for 
translating LRMC ratings to win probabilities, one based on point differences and one 
directly fitting a logistic regression model.  Massey’s rating pages [15] provide 
probability estimates based on his ratings; his estimates are directly calculated using his 
formulas. 

Tables 10, 11, and 12 show the performance of each model in the three pool 
scoring systems.  Again, just as with ranking-based methods, LRMC even without 
probability models or dynamic programming outscores all of the other methods in any 
form on the 1999-2005 data.  We note, though, that while using ratings instead of 
rankings helps the Sagarin, KG, and Massey methods, the best LRMC results are 
obtained from rankings.  This suggests that, although the LRMC model appears to give 
better predictions, we do not yet have a good method for deriving probability estimates 
from LRMC ratings.  For now, even using slightly unreliable probability estimates is 
sufficient to outperform the other methods; however, we also point out that this 
opportunity for future research might yield a method that gives even better results. 

 Sagarin KG MasseyProb LRMC 
Normal [7] 240 239 --- --- 
Poisson [13] 240 239 --- --- 
Sagarin fit [7] 240 --- --- --- 
Massey probabilities [15] --- --- 235 --- 
LRMC points --- --- --- 252 
LRMC direct --- --- --- 252 
Best-team-wins 229 231½ 242 248 

Table 10.  Total one-point-per-game pool score of models using rating-based dynamic programming 
prediction methods and best-team-wins, 1999-2000 through 2004-2005 seasons. 

 
 Sagarin KG MasseyProb LRMC 
Normal [7] 560 548 --- --- 
Poisson [13] 560 548 --- --- 
Sagarin fit [7] 560 --- --- --- 
Massey probabilities [15] --- --- 564 --- 
LRMC points --- --- --- 635 
LRMC direct --- --- --- 635 
Best-team-wins 520 519 534 632 

Table 11.  Total 2round-1-points-per-game pool score of models using rating-based dynamic programming 
prediction methods and best-team-wins, 1999-2000 through 2004-2005 seasons. 
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 Sagarin KG MasseyProb LRMC 
Normal [7] 1362 1366 --- --- 
Poisson [13] 1247 1322 --- --- 
Sagarin fit [7] 1292 --- --- --- 
Massey probabilities [15] --- --- 1347 --- 
LRMC points --- --- --- 1600 
LRMC direct --- --- --- 1705 
Best-team-wins 1155 1188½ 1232 1454 

Table 12.  Total seed×2round-1-points-per-game pool score of models using rating-based dynamic 
programming prediction methods and best-team-wins, 1999-2000 through 2004-2005 seasons. 

 
4.5. Progressive Predictions 
 

In the preceding computational results, we have used all of the pre-NCAA-
tournament games to construct our transition matrix.  In this section, we consider the 
question “how much data is enough?”.  Specifically, we test the quality of LRMC’s 
tournament predictions given only the first d days of each season’s data, for various 
values of d. 

The NCAA basketball season usually begins in mid-November, and the NCAA 
tournament does not begin until mid-March; therefore, four months of data are available.  
However, early in the season we cannot use the LRMC prediction method; the method is 
only viable once full connectivity is reached.  If, on some day d, there are two sets of 
teams S and S΄ such that no team in S has yet played a team in S΄, then the Markov chain 
equations will not have a unique solution.  

For the 1999-2000 through 2004-2005 seasons, our limiting factor was the first 
season, in which full connectivity was not reached until January 2.  At the other extreme, 
the earliest final date of the pre-tournament season was March 13.  Therefore, we tested 
the quality of LRMC’s predictions based on data from the beginning of the season until 
day d, for d ∈ {January 2, …, March 13}. 
 Figure 6 shows the progression of the LRMC predictions.  We tested two 
measures: the number of correct bracket predictions and the number of games in which 
the higher-ranked team won.  Both measures are scaled relative to the full-season’s data 
set; a value of 1 indicates that the number of correct predictions was equal to that using 
the full season’s data, values less than 1 are worse than predictions made from the full 
season’s data, etc. 
 As Figure 6 demonstrates, the quality of predictions increased from early January 
(87% for bracket predictions, 94% for higher-ranked teams) through mid-February, but 
additional data after mid-February did not seem to improve the prediction quality (and 
possibly made predictions a bit worse, though not significantly).  We hypothesize that by 
mid-February, enough data has been collected to reduce the effects of noise.  It is also 
possible that games in March might be slightly less representative of some teams’ quality 
due to varying motivation.  Some teams are clearly “out of the running” or have locked 
up an NCAA tournament bid based on the quality of their November-February 
performance, while other teams (known as “bubble teams”) will have their bid status 
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decided by their final few games; such bubble teams might have more motivation and 
consequently might temporarily play better relative to less-motivated opponents. 

Interestingly, using the previous year’s final rankings to predict the next year’s 
NCAA tournament results achieved a ratio of 81% (for bracket predictions) and 92% (for 
higher-ranked teams).  Although both ratios are lower than even the January 2 results, it 
does still indicate a reasonable measure of consistency in relative team quality from one 
year to the next. 
 

 
Figure 6.  Progression of daily prediction quality relative to final prediction quality. 

 
5. Close Games and Ranking Systems 
 

The logistic regression model described in Section 3.1 and the analysis done in 
Section 3.2 give rise to an interesting observation about close games.  Conventional 
wisdom, repeated by sportscasters, sportswriters, and fans alike, is that “good teams find 
a way to win close games.”  In other words, better teams are frequently able to find some 
physical or psychological reserves when the outcome of the game is on the line. 
 Boynton [3] has already shown this idea to be untrue in Major League Baseball.  
A baseball team’s record in close games has less correlation with its overall winning 
percentage; a more accurate statement is that good teams are more likely to win games 
that are not close.  This result is not surprising, given that opposing teams’ run-scoring 
processes are almost entirely independent.  If one team is better than another (its offense 
is likely to score more runs against the other’s pitching/defense than vice versa), then it is 
more likely to win a non-close game than a close one. 
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 On the other hand, opposing teams’ point-scoring processes are less independent 
in basketball.  A good defense can stimulate offensive production by providing turnover-
induced fast-break opportunities in which the probability of scoring is much higher than 
on a normal possession.  On the other hand, a good offense can help defensively as well, 
especially when the team plays a pressing style of defense that is much easier to 
implement after the team has just scored.  Therefore, one might wonder whether the 
adage “good teams find a way to win close games” could hold true in basketball even 
though Boynton [3] has shown it to be untrue in baseball. 
 However, our results do not support the validity of the conventional wisdom in 
college basketball.  The data from 1999-2003 shows that of all 791 teams that won a 
close home matchup (defined as a spread between 1 and 3 points, or at most one basket), 
approximately 35% won the road matchup against the same opponent.  Of the 713 that 
lost a close home matchup, approximately 33% won the road matchup.  If the better team 
really is able to win close games more frequently, one would expect the difference in 
road success to be much larger.  Better teams (the ones who, presumably, had won the 
close games) would be expected to have a comparatively higher road win rate compared 
to worse teams (who, presumably, had lost the close games).  The logistic regression 
estimate gives similar results; it predicts road win rates of 36% and 33%.   

Therefore, rather than good teams winning close games, teams that win several 
close games (perhaps due more to luck than other factors) might tend to be overrated by 
fans and the sports media, and teams that lose several close games tend to be underrated.   
This occurs because an event that might really be a 50/50 (or 35/65) coin flip is translated 
into a binary win/loss result.  In fact, this might explain why our combined logistic 
regression/Markov chain model is more successful than others in selecting potential Final 
Four participants.  Very good teams that lost a few “extra” close games will tend to be 
ranked lower than they deserve by the polls, RPI, and other methods that treat wins and 
losses as binary events; our more-continuous model tends to evaluate those teams more 
accurately. 
 
6. Summary 
 
 The annual NCAA Division I basketball tournament is the largest sports gambling 
event in the United States.  With over $3 billion wagered each year on the outcome of the 
tournament, bettors turn to expert rankings of teams for help with predictions.  The most 
prevalent ranking systems are the two major polls (the Associated Press poll of 
sportswriters and the ESPN/USA Today poll of coaches), the Ratings Percentage Index, 
the Sagarin ratings, the Massey ratings, and the tournament selection committee’s 
seedings; we also tested rankings and ratings derived from Las Vegas odds and betting 
lines.   

In this paper, we describe a logistic regression/Markov chain (LRMC) model for 
predicting the outcome of NCAA Division I basketball tournament games.  It uses only 
basic input data, and appears to able to predict individual game outcomes more accurately 
than the standard ranking systems.  Moreover, it is better than other rankings at predicting 
potential Final Four teams.  It also appears to be superior to the NCAA tournament 
selection committee’s seedings.  When tested on three common but diverse NCAA 
tournament pool scoring systems, even the simplest LRMC approach (selecting the 
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higher-ranked team to win each game) outscores the other methods over the past 6 years, 
even when those methods are supplemented by other researchers’ probability and 
dynamic programming models.  When those models are also used with LRMC, the 
performance of LRMC is even better, especially for more-complex pool scoring systems. 
 We conjecture that part of the reason for the comparative success of our model is 
that the other models (and perhaps the minds of the NCAA tournament selection 
committee) treat the outcome of games as binary events, wins and losses.  In contrast, our 
model estimates the probability of the winning team being better than the losing team 
based on the location of the game and the margin of victory and is therefore able to more-
accurately assess the outcome of a close game. 
 The success of our model in predicting the outcome of NCAA tournament games 
suggests that it gives good rankings of teams, and therefore that those rankings might be 
valid for predicting the outcome of regular-season games as well.  For example, one 
might use data from all games prior to a certain date to predict the outcome of that date’s 
games.  
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