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Abstract

Some voting schemes that are in principle susceptible to control are

nevertheless resistant in practice due to excessive computational costs;

others are vulnerable. We illustrate this in detail for plurality voting and

for Condorcet voting.

1 Introduction

Some voting procedures can be controlled by the authority conducting the elec-

tion (hereinafter, the chairman) to achieve strategic results. For example, it

might be possible to influence the outcome of an election by specifying the se-

quence in which alternatives will be considered, or by specifying the composition

of subcommittees that nominate candidates. We study whether the chairman

can easily or only with great difficulty determine how to control a specific elec-

tion, and conclude that voting procedures can differ significantly in the effort
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required to control them. This suggests that some voting procedures can be in-

herently resistant to abuse, while others are vulnerable. We base this distinction

on a measure that is new to voting theory—computational complexity.

Let V be the set of voters, each of whom is identified with his preference

order, which is assumed to be a transitive, complete, and strict order on the set

C of candidates. We further assume that the chairman knows the preferences of

every voter, and knows that they will vote sincerely. We emphasize that these

assumptions are not intended to be realistic, but rather to be conservative:

We shall show that even when the chairman has such strong, and possibly

unrealistic, advantages, some types of manipulation can nevertheless be difficult.

Assuming the chairman knows beforehand the voting scheme under which

the election will be held, can he fix some procedural matter so that his favorite

candidate c, otherwise a non-winner, will become the unique winner of the

election? We explore this canonical question for two types of voting procedures:

Plurality voting and “Condorcet voting”. Plurality voting selects as winner

that candidate who has more first place votes than any other; for our purposes

the Plurality winner is undefined in case of ties. By “Condorcet voting” we

mean any procedure that always elects that candidate who would defeat any

other in a pairwise election; if no such candidate exists then the Condorcet

winner is undefined. In practice both Plurality voting and Condorcet voting

are extended by some tie-breaking procedure to avoid undefined outcomes. We

ignore tie-breaking rules, however, and restrict ourselves to the “pure” form of

the voting scheme. Consequently our results are more general since they hold

independently of which particular tie-breaking scheme might be adopted.

Plurality voting and Condorcet voting as we have defined them can be

thought of as social choice functions; that is, each is a function E that, where

defined, maps each (C, V ) to a subset of C (Plott, 1976). In our model it is

the goal of the chairman to ensure that E(C, V ) = {c}, so that his favorite

candidate is the unique winner.
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2 Computational complexity

We briefly sketch some of the issues and techniques of computational complexity.

The interested reader should consult Garey and Johnson (1979) for more detail.

The theory of computational complexity is concerned with how much work is

required to solve well-defined computational problems. For complexity analysis,

a problem is a class of instances sharing a common form. This form is precisely

described in terms of the data that make up an instance and the question to be

answered.

The amount of work required to solve an instance of the problem is measured

as a function of the size of the instance (which is O(|C||V |) for an election—

the space required to list the preferences of the voters). The key distinction to

be made is the following. If a solution method requires time that grows as a

polynomial in the size of the instance, then it is considered fast; if it requires

time that grows as an exponential function, then it is considered slow. In fact,

because exponential functions grow so much more quickly than polynomials, an

exponential-time algorithm is impractical for all but small or specially struc-

tured instances of a problem. This distinction has been widely observed to be

consistent with the judgment of practical experience.

Two classes of problems are of particular interest. Class NP consists of all

“yes/no” questions for which a potential solution can be verified in polynomial

time (even though it might take exponential time to have computed the solu-

tion). Class P consists of those problems of NP for which a solution can always

be computed in polynomial time.

The key technique we employ is “polynomial transformation”. Suppose we

can recast any instance of problem p as an instance of problem q. If this trans-

formation is fast then the task of solving problem p polynomially transforms

to that of solving q. We could then conclude that if problem q can be solved

quickly, so can p. (Hereafter, since we are only concerned with polynomial

transformations, we will generally omit the word “polynomial”.)

Some pairs of problems have the property that each transforms to the other;
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such pairs are termed polynomially equivalent because a fast (that is, polynomial-

time) method for solving one of the pair implies a fast method for the other.

The NP-complete problems are a famous subclass of NP , all of whose members

are polynomially equivalent and for which no dependably fast solution method

is known. These problems include such notoriously difficult problems as integer

programming, the traveling salesman problem, determining whether a voter has

non-zero “Shapley-Shubik voting power”, and hundreds of others from a variety

of fields. It is widely accepted that, unless specially-structured or “small”, NP-

complete problems are both theoretically and practically difficult to solve. We

will show that some problems of agenda control are also NP-complete, and so

as difficult as all these famous hard problems.

It is important to note that NP-completeness is an asymptotic measure of

complexity, and so should be interpreted as an indication of how quickly the

work-to-solve increases as a function of problem size. NP-completeness does

not say whether a specific instance is difficult. In fact, any problem, the size of

whose instances is bounded in advance, is technically easy: solution by complete

enumeration requires work that is bounded by a (possibly very large) constant.

Thus it is more informative to interpret NP-completeness as indicating that any

solution method will likely require work that increases exponentially in some

aspect of the size of the data. Frequently this critical aspect is the number of

candidates in the election.

We say that a voting scheme is immune to control if it is never possible for

the chairman to change c from a non-winner to a unique winner by manipulating

procedural matters; otherwise the scheme is susceptible to control. For a voting

scheme that is susceptible to control, if it is always computationally easy to

recognize opportunities for control, then we say the voting scheme is vulnerable;

if it is hard (that is, NP-complete) to recognize opportunities for control, then

the voting scheme is resistant to control. This view explicitly accounts for the

limited computational abilities of the participants. This can be seen as another

elaboration of the idea of “bounded rationality” that has enriched so many other

economic and social models (Simon, 1972).
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The classification of voting procedures by their computational complexity

has also appeared in Bartholdi, Narasimhan, and Tovey (1990), Bartholdi,

Tovey, and Trick (1989a), and Bartholdi, Tovey, and Trick (1989b). Both this

paper and Bartholdi, Tovey, and Trick (1989b) have been influenced by Nurmi

(1984, p. 255), who suggested “. . . constructing a hierarchy reflecting the diffi-

culty of benefiting from strategic behavior”.

3 Procedural control

The types of control we formalize can involve adding to, deleting from, or par-

titioning either the set of candidates or the set of voters. Most typical voting

schemes are in principle susceptible to these types of control. However, as we

shall show, voting schemes can differ greatly in susceptibility: some are compu-

tationally vulnerable while others are computationally resistant to control. We

illustrate these differences for Plurality voting and Condorcet voting.

A note about the proofs: Transformation arguments can be intricate and

highly formal. Furthermore, since the polynomially-equivalent problem might

not bear any obvious intuitive relation to the voting problem, the proof might

establish computational difficulty without seeming to explain its source. In this

sense, the conclusion is more important than the argument. Accordingly, we

consign all but one of the proofs to an appendix.

3.1 Agenda Control of Candidates

3.1.1 Adding candidates

One type of control is for the chairman to add “spoiler” candidates to the slate

in hopes of diluting the support of those who might otherwise defeat c.

Some voting procedures are immune to control by adding candidates because

they satisfy the Weak Axiom of Revealed Preference (WARP), which requires

that the winner among a set of candidates be the winner among every subset

of candidates to which he belongs (Plott, 1976). (This is also known as prop-
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erty α (Kelly, 1988)). Thus, for a voting procedure satisfying WARP, if c can

be made the winner in an augmented election, then c must have been a win-

ner in the original election. For voting procedures that are susceptible to this

kind of control, we can still distinguish between computational resistance and

computational vulnerability.

Plurality voting does not satisfy WARP (Nurmi, 1983). However, we show

that it can be computationally difficult to recognize when a plurality election

fails to satisfy WARP, so it is difficult for a chairman to take advantage of this

fact.

We follow the conventions of computational complexity in which problems

are formalized by giving the data required for an instance and the question that

must be answered. For technical reasons, this question is phrased as a “yes or

no” question.

Control by Adding Candidates

GIVEN: A set C of qualified candidates and a distinguished candidate c ∈ C, a

set B of possible spoiler candidates, and a set V of voters with preferences over

C ∪B.

QUESTION: Is there a choice of candidates from B whose entry into the election

would assure victory for c?

To a certain extent the exact formalization of a problem is a matter of taste.

For example, while we have formalized this question to be whether there is some

subset of B whose entry would result in the election of c, we could equally well

have formalized it to be whether there are K or fewer candidates to be added

from B. The first formalization emphasizes recognizing whether WARP holds.

The second formalization corresponds to the minimization problem of finding

the smallest number of candidates the chairman must add to elect c. This

emphasizes agenda control, for the chairman would need to make the agenda

changes as innocuous as possible. Context determines which formalization is

the more natural. It does not much matter for the problems we discuss, since

both versions are of the same complexity.
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We now state and prove the result. For clarity, we give full details and also

include an example of the transformation; subsequent proofs are briefer and

relegated to an appendix.

Theorem 1. Plurality voting is computationally resistant to control by adding

candidates.

Proof. We show that the problem is NP-hard by reformulating the following

NP-complete problem as a control problem:

Hitting Set (Garey and Johnson, 1979, p. 222)

GIVEN: Finite set B = {b1, . . . , bm}, a collection S = {S1, . . . , Sn} of subsets

of B and a positive integer K ≤ m.

QUESTION: Is there a subset B′ ⊆ B with |B′| ≤ K such that B′ contains at

least one element from each subset in S?

For example, we might have n = 9,K = 2,m = 5, and, denoting bi as i for

convenience,

S = {(1, 3, 5), (1, 2, 4), (3, 4, 5), (2, 3, 4), (1, 4, 5), (2, 3, 5), (1, 2, 3), (2, 4, 5), (1, 2, 5)}

For this instance the answer is “yes”; the solution happens to be unique: B′ =

{b2, b5}. Intuitively, this problem is hard because one has to check all the

possible K-subsets to see which if any works.

Now we show how an instance of Hitting Set can be transformed to an

instance of Control by Adding Candidates to a Plurality Election. From an

arbitrary instance of Hitting Set, contrive an election with qualified candidates

c, c′, and d, and unqualified candidates corresponding to the bi. The idea of the

proof is to create an electorate whose preferences are such that c′ will win the

election and c will finish second if no control is exercised by the chairman, who

wishes c to win. Furthermore, the voter preferences are such that adding new

candidates help c gain votes relative to c′, but also unavoidably helps d gain on

c. If the chairman adds too many candidates d will beat c, so he must find a

set of candidates to add that is small enough to prevent d winning but large

enough to enable c to overtake c′.
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The voter preferences of the contrived election are as follows. Let there be

2n − m voters who prefer c to all other candidates; let there be 2n − m − 1

voters who prefer c′ to all other candidates; let there be 2n−K − 1 voters who

most prefer d. Let there be n voters corresponding to the elements of S, where

the voter Sj most prefers (in any order) those candidates bi ∈ Sj ; next prefers

c′, followed (in any order) by the other candidates. (Notice that the voter’s

preferences lower than the first qualified one (that is, c, c′, d) are irrelevant.)

Finally, for i = 1, . . . ,m let there be 1 voter who most prefers bi, and next

prefers c; and one voter who most prefers bi, and next prefers c′. We call these

last 2m voters “single voters.”

In an election among the three qualified candidates, c′ must win, with 3n−1

votes to only 2n votes for c and 2n−K−1 for d. However, introducing candidate

bi into the election will cause the voters corresponding to Sj containing bi to

switch their votes from c′ to bi. It will also cause both c and c′ (but not d) to lose

one vote from the single voters. Now if there exists a hitting set B′ of cardinality

|B′| ≤ K, then introducing the bi of the hitting set as candidates will induce

each of the n voters Sj to switch his vote from c′ to one of the bi ∈ Sj . Also, c

and c′ will each lose |B′| ≤ K votes due to single voter defections to members

of B′. This leaves c with 2n−|B′| votes; c′ with 3n−1−|B′|−n = 2n−|B′|−1

votes; d still with 2n−K − 1 ≤ 2n− |B′| − 1 votes; and no bi in B′ with more

than n + 2 votes. Candidate c is the winner.

We have established that if the answer to the Hitting Set instance is “yes”,

then the answer to the agenda control instance is also “yes”. To prove the

converse, assume that introducing the candidates of B′ into the election will

cause c to win. Then at least n more voters must have defected from c′ than

from c. But single voters defect from c and c′ in equal numbers, so these n could

only have been the voters corresponding to the Sj . Furthermore, each Sj must

have found a new candidate corresponding to one of the bi ∈ Sj . Thus the new

candidates B′ must form a hitting set with respect to the Sj .

If c will win, c must defeat d as well as c′. Candidate d will get 2n −

K − 1 votes, while c will get 2n − |B′| votes. Therefore |B′| ≤ K. Thus the
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transformation is correct for the answer to the agenda control instance is “yes”

if-and-only-if the answer to the instance of Hitting Set is “yes”.

To complete the proof, observe that the transformation requires only poly-

nomial time.

As an illustration of the transformation, the example of Hitting Set above

is transformed to: C = {c, c′, d}, C ′ = {b1, b2, b3, b4, b5}; V = {13 of (c, . . .);

12 of (c′, . . .); 16 of (d, . . .); the Sj voters (b1, b3, b5, c
′, . . .), (b1, b2, b4, c

′, . . .),

. . . , (b1, b2, b5, c
′, . . .)}. The only way to make c win is to qualify b2 and b5.

Thus one must solve the embedded hitting set problem to determine which

candidates to qualify.

Unlike plurality elections, Condorcet elections are immune to control by

adding candidates for the obvious reason that if c can be defeated by some

other candidate, this fact is unchanged when additional candidates are added

to the election. Adding candidates might change the Condorcet winner to one

of the new candidates, but can never make c Condorcet.

Theorem 2. Condorcet voting is immune to control by adding candidates.

3.1.2 Deleting candidates

Another way in which the chairman might try to influence the election is by

disqualifying some candidates, whose supporters might then rally to c.

Control by Deleting Candidates

GIVEN: A set C of candidates, a distinguished candidate c ∈ C, a set V of

voters, and a positive integer K ≤ |C|.

QUESTION: Are there K or fewer candidates whose disqualification would as-

sure the election of c?

In a plurality election it can be hard to know which candidates to disqualify.

The supporters of a disqualified candidate will switch to other candidates, but

it can be difficult to judge the overall effect of the switching.
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Theorem 3. Plurality voting is computationally resistant to control by deleting

candidates.

On the other hand, it is easy to judge the effect of deleting candidates from

a Condorcet election:

Theorem 4. Condorcet voting is computationally vulnerable to control by delet-

ing candidates.

3.1.3 Partitioning candidates

Consider an election that takes place in two stages, based on a partition of the

candidates into subsets C1 and C2 so that C1 ∪C2 = C and C1 ∩C2 = ∅. First

the entire electorate votes on the candidates from C1; then the winner of that

election goes on to face the candidates of C2. Can the chairman influence the

election by his choice of the partition C1, C2? We formalize this question as

follows.

Control by Partition of Candidates

GIVEN: A set C of candidates, a distinguished candidate c ∈ C, and a set V of

voters.

QUESTION: Is there a partition of the candidates into C1, C2 so that c is the

unique winner in sequential elections? (That is, so that {c} = E(V,E(V,C1) ∪

C2).)

A voting scheme satisfies path-independence if, for any V,C, E(V,C) =

E(V,E(V,C1) ∪ C2) for any C1, C2 for which C1 ∪ C2 = C and C1 ∩ C2 = ∅

(Plott, 1973; Plott, 1976). Control by Partition of Candidates exploits possible

path-dependence in an election, and can thus be interpreted as asking whether

a particular election violates path-independence.

Neither plurality voting nor Condorcet voting are path-independent (Nurmi,

1983). However, to recognize violations of path-independence can be compu-

tationally difficult in a plurality election, but is always easy in a Condorcet

election:
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Theorem 5. Plurality voting is computationally resistant to control by partition

of candidates.

Theorem 6. Condorcet voting is computationally vulnerable to control by par-

tition of candidates.

A special case of partitioning candidates occurs in sequential pairwise voting,

in which the current incumbent is matched against a sequence of individual chal-

lengers in successive two-candidate elections, with winners decided by majority

vote. (Both plurality and Condorcet voting are identical to majority voting

when there are only two candidates.) The ultimate winner is the candidate who

emerges victorious from the final election.

It is well known that the ultimate winner of such a process can sometimes be

determined entirely by the sequence of comparisons (see, for example, Banks,

1985; Harary and Moser, 1966; MIller, 1980). In fact, the chairman can deter-

mine a sequence resulting in victory for c, or conclude that none exists, within

a polynomial number of computational steps. To see this, construct the tourna-

ment G of all pairwise comparisons between candidates, where an arc is directed

from candidate i to candidate j if i defeats j. (This requires O(|C|2|V |) steps.)

Now use breadth-first search (Sedgewick, 1988) to determine whether there ex-

ists a tree rooted at c that spans all the candidates. (This requires O(|C|) steps.)

If so, then c will emerge victorious from the sequence in which candidates ap-

pear in non-increasing order of their distance from c in G. On the other hand,

if no tree rooted at c is spanning, then some candidate not in the maximal tree

rooted at c must ultimately win the election.

An alternate way to utilize a partition of the candidates is for the electorate

to vote separately on the candidates from C1 and C2; then the winners of the

two elections face each other in a “run-off” election. For such a structure we

formalize the chairman’s control problem as follows.

Control by Run-Off Partition of Candidates

GIVEN: A set C of candidates, a distinguished candidate c ∈ C, and a set V of

voters.

11



QUESTION: Is there a partition of the candidates into C1, C2 so that c is the

unique winner in runoff elections? (That is, so that {c} = E(V,E(V,C1) ∪

E(V,C2)).)

Neither plurality voting nor Condorcet voting is immune to this type of

agenda control. As with candidate partition, plurality voting is computationally

resistant while Condorcet voting is computationally vulnerable.

Theorem 7. Plurality voting is computationally resistant to control by run-off

partition of candidates.

Theorem 8. Condorcet voting is computationally vulnerable to control by run-

off partition of candidates.

3.2 Manipulating voters

3.2.1 Adding voters

Another strategy to control an election is to register new voters to aid the

cause of c. Since we assume that all voters remain sincere in their preferences,

the chairman must decide which of a fixed set of additional voters he should

encourage to vote. Presumably the chairman would prefer to accomplish his goal

by registering a small number of additional voters. Accordingly, we formalize

his problem as one of minimizing the number of new voters that ensure victory

for c.

Control by Adding Voters

GIVEN: A set C of candidates and a distinguished candidate c ∈ C; a set V

of registered voters and an additional set V ′ of voters who are unregistered but

could still register in time for the election; a positive integer K ≤ |V ′|.

QUESTION: Are there K voters from V ′ whose registration would assure the

election of c?

This is different from the problem of strategic voting, which asks whether

there is a preference order that can be assumed by a voter to ensure victory
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for c (Bartholdi, Tovey, and Trick, 1989b). In strategic voting the voter is free

to profess whatever preferences he wishes, while for control by adding voters,

preferences can be added only from among those of a fixed known set.

It is easy to decide which voters to add to a plurality election because plural-

ity voting incorporates only information about each voter’s favorite candidate.

On the other hand it can be hard to decide which voters to add to a Condorcet

election since the entire preference order of each voter affects the election.

Theorem 9. Plurality voting is computationally vulnerable to control by adding

voters.

Theorem 10. Condorcet voting is computationally resistant to control by adding

voters.

3.2.2 Deleting voters

A dual strategy is to disenfranchise voters to the detriment of any candidate

who would otherwise defeat c.

Control by Deleting Voters

GIVEN: A set C of candidates and a distinguished candidate c ∈ C; a set V of

voters; and a positive integer K ≤ |V |.

QUESTION: Are there K or fewer voters whose disenfranchisement would as-

sure the election of c?

Again, it is easy to identify which voters to delete from a plurality election

because the voting scheme considers only first-place votes, but it is hard to tell

which voters to delete from a Condorcet election because each voter affects every

pairwise contest.

Theorem 11. Plurality voting is computationally vulnerable to control by delet-

ing voters.

Theorem 12. Condorcet voting is computationally resistant to control by delet-

ing voters.
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3.2.3 Partitioning voters

Consider an election in which the voters are divided into two “committees”,

each of which holds an independent election to select a nominee; then the entire

electorate votes on the two nominees to select a final winner. In such an election

the chairman might be able to influence the final outcome by his selection of

the committees:

Control by Partition of Voters

GIVEN: A set C of candidates and a distinguished candidate c ∈ C; a set V of

voters.

QUESTION: Is there a partition of the voters into V1, V2 so that hierarchical

elections assure the victory of c? (That is, so that {c} = E(V,E(V1, C) ∪

E(V2, C)))

A voting scheme is immune to this type of control if it possesses what

might be called strong consistency : for any partition of V into V1 and V2,

E(V,E(V1, C)∪E(V2, C)) = E(V,C), so that the winner of the election is inde-

pendent of the nominating subcommittees. As suggested by the name, strong

consistency is an extension of a more commonly-studied property, consistency,

which requires that, for any partition of V into V1 and V2, E(V1, C)∩E(V2, C) ⊆

E(V,C); that is, any candidate nominated by both committees must be a win-

ner. Both plurality voting and Condorcet voting are consistent. However, nei-

ther is strongly consistent, and so both can in principle be controlled by choosing

the subcommittees.

Theorem 13. Plurality voting is computationally vulnerable to control by par-

tition of voters.

This can be interpreted as establishing that it is easy to check for violations

of strong consistency in a plurality election. In contrast, the following theorem

shows that it can be hard to recognize such violations in Condorcet voting.

Theorem 14. Condorcet voting is computationally resistant to control by par-

tition of voters.
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Control by . . . Plurality Condorcet

adding candidates resistant immune

deleting candidates resistant vulnerable

partitioning candidates resistant vulnerable

adding voters vulnerable resistant

deleting voters vulnerable resistant

partitioning voters vulnerable resistant

Table 1: The computational difficulty of control by the chairman.

4 Conclusions

Table 1 summarizes the difficulties of controlling plurality voting and Condorcet

voting. We chose these two voting procedures to illustrate how resistance the

susceptibility to control can differ significantly among procedures.

In general, plurality voting resists control of candidates, while Condorcet

voting resists control of voters. We can explain this intuitively.

Plurality voting, voter control For a fixed slate of candidates plurality vot-

ing is simple to control because each voter is sure to vote for exactly one

candidate. If we consider adding two voters, v1 and v2, the effect of v1

(a single vote for his candidate) is the same whether v2 is added or not.

The control issues involve simply counting “good” and “bad” voters to

determine victory and so tend to be easy.

Plurality voting, candidate control When the slate of candidates can be

changed, the choice of a voter depends on exactly which candidates are

added. If we consider adding two candidates, c1 and c2, the effect of c1

may be different if c2 is added also. Voters (or candidates) are no longer

simply “good” or “bad”: instead their effect depends on other choices.

Because so many interdependencies must be accounted for, the control

problems tend to be hard.
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Condorcet voting, candidate control When the set of voters is fixed, the

tournament graph of all pairwise election outcomes is fixed. All that

changes is the subset of vertices under consideration. If we consider adding

two candidates (i.e. vertices) c1 and c2, the edges added to the graph for

c1 are the same whether or not c2 is added (except for the single edge to

c1). Therefore adding candidates does not have cross-effects, and thus the

control problems tend to be easy.

Condorcet voting, voter control If the set of voters can be changed, com-

plicated interactions can occur. A single voter can tip the balance in

several pairwise elections; another voter can help tip the balance of the

same elections in a different pattern. The effects of multiple voters will

partially cancel and partially reinforce each other in complicated ways,

and so the control problems tend to be hard.

5 Practical implications

Computational complexity can help make finer distinctions than have heretofore

been made concerning the susceptibility of voting schemes to control. Previ-

ously, the logical possibility of control has been determined; our goal has been

to measure its practicality and one measure of practicality is computational re-

quirements. We hope to identify difficulty that is intrinsic to the voting scheme

and so provides worst-case protection.

Our results suggest that some voting schemes might resist control even by a

chairman armed with a large computer and perfect information. This suggestion

is based on the fact that NP-hard problems are both theoretically and practically

difficult to solve. However, we cannot conclude that “typical” elections will be

hard to control, because we do not know what a typical election is. Also, while

NP-completeness is taken as strong circumstantial evidence of inherent and

pervasive difficulty, strictly speaking it does not prove that. The difficulty is

that NP-completeness is an asymptotic worst-case measure of difficulty, and so,
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strictly speaking, we can conclude only that, for “large enough” elections, some

instances can be difficult to control. This deserves further discussion. First,

what is “large enough”? This is an empirical question that must be resolved

by computational test. One apparent implication of NP-completeness is that

any solution procedure must require time that increases exponentially in the

size of the problem (Garey and Johnson, 1979, p. 14, 121–122). Thus, because

of the explosive growth of exponentiality, the time budget of any computing

device, however fast the device, must eventually be overwhelmed; but exactly

when this occurs depends on both the problem and the device. For example, if

the computing device is a person with pencil and paper, then control of even a

small election is likely to require excessive computation time, so our results can

have practical implications even for committee elections.

The second concern with NP-completeness is that it is a worst-case mea-

sure of difficulty and so, strictly speaking, says nothing about the frequency

with which hard instances will be encountered. Of course we would prefer the

stronger guarantee that a “typical” election is difficult to control. Unfortu-

nately, such a result seems beyond current complexity theory. Thus our work

complements, but does not supersede, the usual approach to measuring suscep-

tibility to control, which is to count the instances in which control is logically

possible. Unfortunately, this approach has weaknesses too. For example, in the

standard approach it is impossible to justify the distribution from which election

instances are drawn. Frequently it is quite unrealistic and is chosen simply for

convenience of analysis.

In any event, we can make some conclusions about the relative difficulty

of control problems. First, because NP-complete problems apparently require

exponential-time solution procedures, it is harder to manipulate voters than

candidates in a Condorcet election. The conclusions are not so clear under

a Plurality election: It is NP-complete to manipulate candidates, but there

are generally many fewer candidates than voters. Therefore, even if the work

to manipulate candidates increases exponentially in the number of voters and

the work to manipulate voters increases only polynomially in the number of
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voters, the relative efforts could be comparable. We can only say that if there

are “sufficiently many” candidates in the Plurality election, manipulation of

candidates will likely be impractical.

Despite the fact that NP-completeness is a worst-case measure of difficulty,

it might still provide practical assurances of difficulty, if not guarantees. In-

deed, throughout computer science, engineering, and operations research, NP-

hardness is taken as strong theoretical evidence of the impracticality of solving

large problems. It has continued to be the experience of many people in many

disciplines that all but small or specially-structured NP-complete problems are

inordinately time-consuming to solve. In fact, there is sufficient confidence in

the inherent difficulty of NP-complete problems that cryptographic schemes

have been based on it (Diffie and Hellman, 1976)—and all NP-complete prob-

lems are equally difficult, at least in a formal sense.

Even though NP-completeness cannot provide absolute guarantees of dif-

ficulty, it does have immediate practical implications for the behavior of the

chairman. For example, when a problem is NP-complete, there is apparently

no solution procedure that is significantly better than brute-force enumeration

over a potentially very large set of possibilities. There can be no direct and fast

method, no rule or recipe, to recognize opportunities for control; instead one

is forced to sift through exponentially many possibilities (compare Theorems 1

and 2). Thus our results explain how a manipulative chairman is constrained

to plan his strategy when the problem of control is NP-complete.

Finally, we suggest that computational complexity be one of the criteria by

which voting schemes are routinely evaluated. How much effort is required to

determine a winner? How much effort is required to control? We have shown

that there can be qualitative differences in the answers to such questions; it

might be that these qualitative differences are also practical differences. Such

issues will become more important as our social choice processes are imple-

mented increasingly often on computers.
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A Proofs

A.1 Manipulating candidates

Theorem 2. Condorcet voting is invulnerable to control by adding candidates.
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Proof. If c is currently a Condorcet winner, then he can be maintained so by

adding no additional candidates. If c is not currently a Condorcet winner, he

cannot be made so by adding any candidates.

Theorem 3. Plurality voting is computationally resistant to control by deleting

candidates.

Proof. We show that the problem is NP-hard by transformation from the fol-

lowing problem that is known to be NP-hard (Garey and Johnson, 1979, p.

221).

Exact Cover by 3-Sets (X3C)

GIVEN: A set B = {b1, . . . , bm}, where m is evenly divisible by 3, and a collec-

tion S = {S1, S2, . . . , Sn} of 3-element subsets of B.

QUESTION: Does S contain an exact cover for B—that is, a subcollection

S′ ⊆ S such that every element of B occurs in exactly one member of S′?

Let b1
i , b2

i , and b3
i denote the elements of Si. For an arbitrary instance of

X3C, create an election with the following candidates:

c : the intended winner;

w : the current winner;

si, i = 1, . . . , n : corresponding to the Si;

bj , j = 1, . . . ,m : corresponding to the elements of B;

ak, k = 1, . . . ,m/3 : additional candidates

There are several groups of voters, as follows (where, in the preference orders,

entries below the last one specified are in arbitrary order). First, for each i there

is 1 voter with preferences si > c > a1 > . . . > am/3 > . . .. These first voters

are important because each ranks c highly. Each of the remaining voters ranks

c below at least (m/3) + 1 other candidates.

Next, for each i there is 1 voter with preferences si > b1
i > a1 > . . . >

am/3 > . . ., 1 voter with preferences si > b2
i > a1 > . . . > am/3 > . . ., and 1

voter with preferences si > b3
i > a1 > . . . > am/3 > . . ..
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The remaining voters form blocks of votes, the largest of which consists

of (m/3) − 1 voters all with the preferences w > a1 > . . . > am/3 > . . ..

In addition, for every j there are (m/3) − 2 voters all with the preferences

bj > a1 > . . . > am/3 > . . ..

We claim that the instance of X3C has a solution if and only if one can

remove no more than m/3 candidates from this election so that c wins.

Suppose there exists an exact 3-cover; then delete those candidates si cor-

responding to the Si in the cover. Then, since an exact 3-cover has cardinality

exactly m/3, c receives m/3 votes; each bj gains 1 vote for a total of (m/3)− 1

votes; votes for w are unchanged at (m/3)− 1. All other candidates receive less

than (m/3)− 1 votes, so c is the winner.

Now suppose that there exists a subset of no more than m/3 candidates

whose deletion leaves c the victor. In this transformed election, c can hope to

get votes only from the voters si > c > . . . > am/3, because the position of c in

all other preferences is lower than m/3. Thus all deletions must be of candidates

si, and c can get no more than m/3 votes. Furthermore, c must receive at least

m/3 votes since the block of (m/3) − 1 voters who favor w will always vote

as a group for some candidate other than c. Therefore, c must receive exactly

m/3 votes, and this can be accomplished only by deleting exactly m/3 of the

candidates si. But if the corresponding Si do not form a cover, then some bj

receives 2 additional votes and c does not defeat him. Thus the corresponding

Si must comprise an exact 3-cover.

Theorem 4. Condorcet voting is computationally vulnerable to control by

deleting candidates.

Proof. If the number of candidates who defeat c in pairwise contests is less

than or equal to K, then these can be deleted to make c a Condorcet winner;

otherwise c cannot be made a Condorcet winner.

The number of candidates who defeat c in pairwise contests can be deter-

mined in O(|C|2|V |) time.
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Theorem 5. Plurality voting is computationally resistant to control by parti-

tion of candidates.

The proof for this theorem is a modification of the proof that plurality voting

is computationally resistant to control by Runoff Partition of the candidates.

Hence, the proof for this theorem follows the proof of theorem 7.

Theorem 6. Condorcet voting is computationally vulnerable to control by

partition of candidates

Proof. If c is a Condorcet winner against the set of all candidates, then any

partition will do. Notice that if a candidate d ∈ C1 wins, that is d ∈ E(V,C2 ∪

E(V,C1)) then d must be a Condorcet winner against the set of all candidates.

Therefore, if c is not such a Condorcet winner, c can only win if c ∈ C2. This

can happen only if, for some y ∈ C, c beats y in a pairwise election, and for all

other candidates x, either c beats x or y beats x (or both). For each y, these

properties are easy to check. If such a y is found, we put y and all candidates

y defeats into C1; c and all remaining candidates (which by the properties are

defeated by c) are put into C2.

Theorem 7. Plurality voting is computationally resistant to control by runoff

partition of candidates

Proof. We show this problem is NP-hard by transformation from the problem

of Manipulation by Deleting Candidates for Plurality, shown to be NP-hard in

Theorem 3.

Given an instance of Control by Deleting Candidates, with voters V , can-

didates C, goal winner c′, and integer k′ (the number that can be deleted), we

construct an instance of Manipulation by Runoff Partition as follows:

Let |V | = n, |C| = m, and k = k′ + 1. Assume (as we can from the

transformation in Theorem 3) that k′ < n/2 and m is even.

The candidates in our new election will be the original candidates, denoted

c1, C2, . . . , cm, f , x, and a large (but polynomial) number of filler candidates
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yi, zi, and wi, each of which will appear near the top of a voter profile exactly

once. Let C∗ = C − c′.

There are three types of voters as follows (all unspecified candidates follow

the last given candidate arbitrarily):

TYPE 1 voters: for each voter in the Deleting Candidates instance, create

m− k′ voters with x most preferred, then the original preferences, then f , and

then the rest of the candidates arbitrarily.

TYPE 2 voters: create nk′/2 pairs of voters with preferences yi, zi, C
∗, c′, f, x

and yi, zi, C
∗, c′, x, f .

TYPE 3 voters: create n copies of the following types of voters (each row is

a voter):

c1, f, wi, C
∗, x, c′

c2, f, wi, C
∗, x, c′

...

c′, f, wi, C
∗

...

cm, f, wi, C
∗, x, c′

The total number of voters is 2mn.

We claim that c′ wins under runoff partition of the candidates if and only if

c′ wins the original election with fewer than k candidates deleted.

(⇐) Assume c′ wins the original election with fewer than k candidates

deleted. Place the deleted candidates in C2 along with f , x, and all the zi.

Now c′ wins in C1 because it wins each subelection of Type 1 voters, each Type

2 voter votes for a unique yi, and the Type 3 voters divide evenly among C.

Candidate f wins in C2, for only x can possibly beat him, but his score is lower.

Finally, c′ beats f in the runoff.

(⇒) If c′ is to win, the following sequence of claims must be true. (Assume

c′ is in C1.)

Claim: f wins in C2. Reason: c′ beats only f in the final runoff.

Claim: x is in C2. Reason: c′ loses to x in C1.
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Claim: From any valid partition, we can create a valid new partition by

placing all the wi and zi in C1 and all the yi in C2. Reason: None of this

movement can do anything other than give one vote to a w, y or z (who can not

win with one vote) and/or reduce the vote of a losing candidate (that is, not c′

or f). Hence the partition is still valid.

Claim: Fewer than k of the C candidates are in A2. Reason: The score of

x is at least (m − k)n. If k∗ of the C candidates are in A2 then the score of f

score is (m− k∗)n. For f to beat x, it must be that k∗ < k.

Claim: c′ wins the original election after the candidates have been deleted.

Reason: if c′ does not uniquely win, then some other c′′ ∈ C does. But c′′

otherwise dominates c′ and so would win in C1.

Taking the last two claims together implies that a valid partition has em-

bedded within in it a solution to the original problem that deletes fewer than k

candidates.

Now, if we take the above construction and add new filler candidates vi in

second place for the Type 3 voters, then for c′ to win by partition of candidates

(in the sense of Theorem 5), x still must be eliminated in the original election.

Only f can do this. When f is added to the remaining candidates, the vi prevent

f from winning the final election. Therefore, due to the argument above, c′ will

win only if the deletion problem is solved. This proves Theorem 5.

Theorem 8. Condorcet voting is computationally vulnerable to control by

runoff partition of candidates.

Proof. We show how, in polynomial time, one can construct a partition (C1, C2)

of the candidates that will result in victory for c, or else conclude that none ex-

ists. First, without loss of generality, place c in C1. The algorithm to construct

the partition tries each remaining candidate as the winner in C2: Pick a can-

didate and place him in C2 as the intended winner there. For the control to

be successful, the winner from C2 must be defeated by c in pairwise contest.

Therefore, if the intended winner from C2 can defeat c, replace him with an-
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other, previously unconsidered candidate from C−{c}. Let the intended winner

in C2 be c′. Now test whether the candidates in C − {c, c′} can be assigned to

C1 or C2 while maintaining our intended winners. For each candidate, if he can

be defeated by c, place him in C1; otherwise, if he can be defeated by c′, place

him in C2; if he defeats both c and c′, then it is not possible for c to win in

one half of the partition and c′ to win in the other half. Choose a previously

unconsidered candidate from C − {c} and try again.

Since it takes O(|C|) time to try whether a candidate can be the winner from

C2, and there are O(|C|) candidates to be tried, the algorithm requires O(|C|2)

time.

A.2 Manipulating voters

Theorem 9. Plurality voting is computationally vulnerable to control by adding

voters.

Proof. Evaluate the current election. If c is currently defeated by more than

K votes, he cannot be made a plurality winner. If c is currently defeated by

k ≤ K votes, simply scan the voters of V ′: If there are k voters who prefer c

to all other candidates, adding those voters will make c a winner; otherwise c

cannot be made a winner. This can be determined in O(|V |+ |V ′|) time.

Theorem 10. Condorcet voting is computationally resistant to control by

adding voters.

Proof. We show that the problem is NP-hard by transformation from X3C.

For any instance of X3C create an election with candidates c and bi (i =

1, . . . ,m). Let V consist of (m/3) − 3 voters, all with the preference order

b1 > . . . > bm > c. Thus b1 is the current Condorcet winner, and every

candidate bi beats c by (m/3)− 3 votes.

Let V ′ contain an unregistered voter corresponding to each of the Sj ∈ S,

with preference order b1
j > b2

j > b3
j > c > . . ., where the first three entries

correspond to the bi ∈ Sj , and where entries after c are in arbitrary order. We
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claim that there is a solution to X3C if and only if m/3 or fewer voters from V ′

can be added to V so that c becomes a Condorcet winner.

First assume that there exists an exact 3-cover. Including the corresponding

voters in the election has the following effects: it increases the score of each

bi against c by exactly 1 vote, for a total score of (m/3) − 2; and it increases

the score of c against each bi by exactly (m/3) − 1 votes. Thus c becomes the

Condorcet winner.

Now assume that c can be made the Condorcet winner by adding m/3 or

fewer voters. There cannot be more than 1 added voter who prefers bi to c,

since then bi would gain 2 or more votes for a total score against c of at least

(m/3)−1; and c would gain no more than (m/3)−2 votes, and so would lose to

bi. Thus each bi is preferred to c by either 0 or 1 added voters. If bi is preferred

by 1 added voter, then for c to win he must be preferred by (m/3) − 1 added

voters; and since some voter must be added, there must be exactly m/3 added

voters.

If there are no added voters who prefer bi to c, then since the preferences

of the m/3 added voters each include 3 positions above c, by the pigeon-hole

principle there must be some other bi′ that is ranked above c by more than 1

voter. This contradicts the requirement that no more than 1 added voter prefer

any other candidate to c. Therefore each bi is preferred to c by exactly 1 of the

m/3 added voters. Thus the added voters correspond to an exact 3-cover of the

bi.

Theorem 11. Plurality voting is computationally vulnerable to control by

deleting voters.

Proof. Evaluate the current election and let the candidates who score no lower

than c be {ci}, where the score of ci exceeds that of c by ni ≥ 0 votes. Now

if
∑

(ni + 1) > K, then c cannot be made the unique plurality winner. If, on

the other hand,
∑

(ni + 1) ≤ K, then–if c received any votes at all–deleting for

each i ni + 1 voters who voted for ci leaves c the unique plurality winner. This

can be determined in O(|V |) time.
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Theorem 12. Condorcet voting is computationally resistant to control by

deleting voters.

Proof. We show that the problem is NP-hard by transformation from X3C.

For any instance of X3C create an election with candidates c and bi (i =

1, . . . ,m). Let V consist of the following. To each Sj there corresponds a voter

sj who prefers candidates bj
1, b

j
2, b

j
3 to all others, and is otherwise indifferent.

In addition, to each bi there is a set of identical voters who prefer all other

candidates to bi, and are otherwise indifferent. For each bi the number of such

voters is equal to the number of Sj in which bi appears. Thus in a pairwise

election between c and any bi–say bk–bk is preferred by only those voters sj for

which bk ∈ Sj ; but this vote is exactly offset by the equal number of bk voters

who prefer c to bk. Thus c ties every other candidate, and so is not a Condorcet

winner.

Suppose that c be made the Condorcet winner by deleting m/3 or fewer

voters. To have become the Condorcet winner, c must have gained at least m

votes in total to defeat the m candidates who previously tied him. Since deleting

a bi voter gains only 1 vote for c, while deleting an sj voter gains 3 votes for

c, all all of the deleted voters must be sj voters. Furthermore, each candidate

bi must be favored by at least one of the deleted sj voters, since otherwise the

candidate bi would continue to tie c. Moreover, no candidate can be favored by

more than one of the deleted voters, since then some other candidate must fail

to be favored by any of the deleted voters. Thus the Sj corresponding to the

deleted voters must form an exact 3-cover of the bi’s.

Similarly, if there exists an exact 3-cover, then deleting the voters corre-

sponding to the Sj of the cover reduces the vote for each bi against c by 1,

enabling c to defeat each bi in pairwise election. Thus c can be made a Con-

dorcet winner.

Theorem 13. Plurality voting is computationally vulnerable to control by par-

tition of voters.

Proof. We show how, in O(|C||V |) time, to either construct a partition of V
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into (V1, V2) that will result in victory for c, or else to conclude that no such

partition exists.

To avoid the ambiguity of ties, we require that each subcommittee elect a

single candidate to proceed to the larger election. Let ni be the number of

voters whose first choice is candidate i. Then the following two conditions are

necessary and sufficient for control by partitioning candidates:

1. There exists at least one candidate beatable by c in a pairwise election

(that is, there exists some candidate i for which ni < nc);

2. Let c′ be the strongest candidate of those beatable by c (that is, c′ is a

candidate for which nc′ is maximum among all candidates with ni < nc).

Then, for every candidate i, ni ≤ nc + nc′ − 2.

These conditions are sufficient since they enable us to construct the subcom-

mittees as follows. Let V1 initially contain all voters whose first choice is c, and

let V2 initially contain all voters whose first choice is c′. Then V1 contains nc

votes for c, and V2 contains nc′ votes for c′. Now for each remaining candidate

i, divide the ni voters for i between V1 and V2 so that V1 receives no more than

nc−1 voters who prefer i, and V2 receives no more than nc′−1 voters who prefer

i. This preserves the fact that c will be elected by V1 and c′ will be elected by

V2 (after which c will defeat c′ in the large election).

The first condition is necessary, since otherwise c would lose the large elec-

tion, whoever his competitor. The second condition is necessary since, if there

exists some candidate j with nj > nc + nc′ − 2, then–since we are disallowing

ties–j must defeat c in either the subcommittee election or in the final election,

depending on how the supporters of j are divided between the subcommittees.

The bottleneck in checking these conditions is the identification of c′, which

requires evaluating O(|C|) elections, each of which requires O(|V |) work.

Theorem 14. Condorcet voting is computationally resistant to control by par-

tition of voters.
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Proof. We show that the problem is NP-hard by transformation from X3C,

where without loss of generality we assume that each bj appears in at least 3 of

the Si.

From an arbitrary instance of X3C, create an election with set of candidates

B ∪ {x, y, c}, and voters as follows.

1. There are 2 voters with preference order c > B, x, y; that is, they prefer

c, and are indifferent among the remaining candidates.

2. There are n + 1−m/3 voters with preference order x > y > B, c.

3. To each Si there corresponds a voter with preference order {b1
i , b

2
i , b

3
i } =

Si > c, y,B − Si > x.

Now if there exists an exact 3-cover, construct a partition of V by letting V1

contain the two voters who prefer c together with all the voters that correspond

to an Si in the cover. The remaining voters comprise V2.

The Condorcet winner in V1 is c: c defeats each candidate bj since c gets 2

votes from the voters who prefer c to all others, while each bj gets only 1 vote

from all the remaining voters in V1 (since each bj is in exactly one Sj in the

3-cover). In addition, c defeats both x and y.

The Condorcet winner in V2 is x: From voters with preferences x > y > B, c,

x gets n+1−m/3 votes against each other candidate, while votes for any other

candidate total no more than n −m/3 (since an exact 3-cover has cardinality

m/3).

In the subsequent election among the full set of voters V , c is preferred to

x by 2 + n voters while only n + 1 − m/3 voters prefer x, so that c wins the

election. Thus, if there exists an exact 3-cover, then there exists a partition of

the voters that result in victory for c.

Now we show that if there exists a partition that results in victory for c,

then there must exist an exact 3-cover. Suppose that there exist V1, V2 and z

such that V1 ∪ V2 = V , V1 ∩ V2 = ∅, E(V1, C) = {c}, E(V2, C) = {z}, and
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E(V, {c, z}) = {c}. Then z must in fact be x, since each of the other candidates

would defeat c in the final election.

We can assume that V1 contains both of the voters who prefer c to all others,

since altering V1 and V2 to enforce this can only help c in the election among

the voters of V1, and can only help x in the election among the voters of V2.

Similarly, we can assume that V2 contains all the voters who prefer x.

Now consider how the voters corresponding to the Si are distributed. No

two Si containing the same bj can be in V1 since then bj would get 2 votes

against c, and c would not be a (strict) Condorcet winner among the voters of

V1. However, in V2 there are n + 1 − m/3 voters who prefer x, so V2 cannot

contain more than n−m/3 voters who prefer another candidate to x. Thus V1

must contain m/3 disjoint Si, which comprise an exact 3-cover.

Finally, we note that all of the problems shown in this paper to be NP-

hard, are also members of the problem class NP, and so are, more specifically,

NP-complete.
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