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The forward pick area of a distribution center is a cache of conveniently located products from which order pickers can quickly draw,
but which must be replenished from bulk or reserve storage. The quantities stored forward determine the amount of work required
to sustain the forward pick area. Two stocking strategies that are commonly used in industry are analyzed and compared with the
optimal stocking strategy for small parts.
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1. The forward pick area

The forward pick area of a warehouse functions as a “ware-
house within the warehouse”: many of the most popu-
lar StockKeeping Units (SKUs) are stored there in small
amounts, so that order picking can be concentrated within
a relatively small area. This reduces unproductive travel by
order pickers and enables closer supervision. The trade-off
is that the forward pick area must be replenished from a
bulk storage or reserve area elsewhere in the warehouse, as
suggested in Fig. 1. A typical forward pick area for small
parts is an aisle (or more) of carton flow rack(s) through
which runs a conveyor. Such an arrangement is common in
high-volume distribution centers in North America, espe-
cially those supporting retail sales.

Because it is relatively inexpensive to pick from a forward
pick area, that space is particularly valuable. During the
planning horizon (which, for convenience, we take to be
a year), forward space is reserved, with each SKU therein
allocated a carefully determined volume. The challenge is
to extract maximum value from that space.

The question of how much space should be allocated
to each SKU is, in practice, answered primarily by rules of
thumb. Hackman and Rosenblatt (1990) were the first to de-
scribe a mathematical model to allocate space in a forward
pick area. They used a fluid model that treats the volume
of each SKU as continuously divisible and incompressible.
We extend their results in several ways, and compare their
solution to the two standard stocking strategies commonly
used in industry.
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To our knowledge only one other paper has studied
the stocking of a forward pick area. Van der Berg et al.
(1998) adapted the Hackman–Rosenblatt model to the stor-
age of unit-loads (typically pallets), which lends the eco-
nomics of restocking a simple combinatorial nature. They
observe that, while “there are no savings possible by assign-
ing more than one unit-load of a product to the forward
area,” one can control the timing of restocks by storing
extra pallets forward. This allows restocks to be deferred
until after the period of order picking, so that there is no
interference.

The timing of restocks is not an issue in our model. Typ-
ical forward storage for small parts is flow rack, which can
picked and restocked concurrently, with no interference.

Others have explored additional issues regarding forward
pick areas, such as size (Frazelle et al., 1994; Gu, 2005),
limits on restocking (Frazelle et al., 1994; Van den Berg
et al., 1998), dynamic reallocation of space (Hun, 2003),
or avoiding restocks by replenishing directly from receiving
(Hollingsworth, 2003).

2. Estimating restocks

We assume that SKUs have already been chosen for stor-
age in the forward pick area as in Hackman and Rosen-
blatt (1990), and so the only variable cost is the labor to
restock as necessary. Assuming the units of storage are less-
than-pallet quantities, then, as in Hackman and Rosen-
blatt (1990), the number of restocks may be estimated as
follows.
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Fig. 1. The forward area concentrates picking but must be re-
stocked from a bulk or reserve area.

Assumption 1. (Fluid model for small parts.) If SKU i flows
through the warehouse at rate fi cubic feet per year then, if
vi cubic feet of SKU i is stored in the forward pick area, it
will require about

fi

vi
(1)

restocks per year.

These restocks are internal to the distribution center and
are determined by rates of flow of the SKUs and the quan-
tities stored, not by the company purchasing department.

There are some assumptions implicit in this model of re-
stocks. We assume that a pick quantity never exceeds the
full allocation of a SKU in the forward pick area. (In prac-
tice unusually large order quantities are typically filled from
bulk storage.) Also, if a pick quantity exceeds the amount
available in the forward pick area at that time, a restock is
triggered.

In addition we assume that the entire restock quantity
for a SKU can be carried in one trip. In this case the work
to restock a SKU consists of the following components.

1. Travel between the forward pick and bulk areas: The
magnitude of this cost is typically determined by the
warehouse layout and not by the locations of individual
SKUs.

2. Travel within the bulk area to locate stock: This is vari-
able but unpredictable because of “random storage” in
the bulk area. It is reasonable to assume an average value
here. (We will relax this assumption later.)

3. Travel within the forward pick area to the location(s)
to be restocked: This is a small component of the cost
because a forward pick area is a relatively small part of
the warehouse.

4. Handling storage units: This cost is is determined by
the total volume of product sold and is fixed with re-
spect to the decision of how much to store forward. For
example, if a SKU sells 100 cartons annually from the
forward pick area, then all 100 cartons must be handled,
independently of the quantity stored forward.

Because these cost components are either small or fixed
with respect to the decision of quantity to store, we take the
number of restocks as a measure of the cost of maintaining
the forward pick area.

3. Optimally allocating space

Let the physical volume of available storage be normalized
to unity and let fi be scaled accordingly. Let vi represent
the fraction of space allocated to SKU i. Then, following
Hackman and Rosenblatt (1990), the problem of allocating
space among n SKUs to minimize annual restocks may be
expressed as

min
n∑

i=1

fi/vi, (2)

n∑
i=1

vi ≤ 1, (3)

vi > 0, i = 1, . . . , n. (4)

An economic order quantity-like solution to problem (2)–
(4) follows by induction on the number of SKUs.

Theorem 1. (Hackman and Rosenblatt (1990), Equation
(5)). To minimize the total restocks over all SKUs j =
1, . . . , n, each SKU i should be stored in the amount:

v∗
i =

√
fi∑n

j=1

√
fj

. (5)

We refer to the volumes of Equation (5) as the Optimal
allocation.

First we record some previously unremarked properties
of the Optimal allocations.

Theorem 2. Under Optimal allocations each unit of storage
space is restocked at the same frequency.

Proof. Under Optimal allocations, the restocks per unit of
space are

fi/v
∗
i

v∗
i

=
( n∑ √

fj

)2

,

which is constant and identical for all SKUs i. �
This means that restocks should be distributed uniformly

throughout the volume of the forward pick area. Roughly
speaking, the restockers should visit each section of shelv-
ing at about the same frequency. This provides a useful way
to benchmark a forward pick area without any measure-
ments whatsoever. Simply ask restockers whether they tend
to visit some parts of the forward pick area more often than
others; if so, then the storage policy is out of balance and
there is excessive restocking.

We have just seen that Optimal allocations call for SKU
i to receive a fraction of the available space equal to√

fi/(
∑

j

√
fj). A similar result holds for allocation of re-

stocking effort.
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Lemma 1. Under Optimal allocations, SKU i incurs a fraction
of the total restocks equal to

√
fi/(

∑
j

√
fj).

4. Two common storage strategies

The Optimal storage policy of Equation (5) is generally un-
known to industry. To learn industry practice, we have asked
hundreds of people in the warehousing industry about how
they stock a forward pick area. All answers have been one
of the two following (which were also observed by Van den
Berg et al. (1998) to be typical).

1. Allocate the same amount of space to each SKU. We call
this the Equal Space strategy (EQS) and model it by
vi = 1/n, from which it follows that SKU i is restocked
n fi times a year.

2. Store an equal time supply of each SKU. We call this the
Equal Time strategy (EQT). It requires that vi/fi = vj/fj
for any two SKUs. Substituting this in the expression∑

i vi = 1 yields vi = fi/
∑

j fj, from which it follows that
each SKU i is restocked at the common rate of

∑
j fj

times a year.

Our idealizations of these two stocking strategies are also
fluid models. This simplicity enables us to compare the three
strategies in some detail. Of course the fluid models ignore
the geometries of the SKUs and of storage and so the rec-
ommended allocations of space might not be precisely real-
izable in practice. However, when SKUs are relatively small,
such as for pharmaceuticals, office supplies and cosmetics,
then the values can be rounded off to match the sizes of the
available storage containers (cartons, bins, etc.).

It seems obvious to most people that Equal Space is
not the best storage strategy because it ignores all differ-
ences in SKU popularity and size. In our surveys, people in
the warehousing industry unanimously expressed the be-
lief that Equal Time allocations reduce restocks because
a more popular SKU will be allocated more space. (In-
deed, two respondents said they had, at some cost, revised
their warehouse management systems to store Equal Time
rather than Equal Space allocations, believing this to be
an improvement.) This observation is folk wisdom in the
industry; but it is wrong.

Theorem 3. For a given set of SKUs, Equal Time alloca-
tions require the same total restocks, n

∑
j fj, as Equal Space

allocations.

Proof. Simple algebra gives the counts of Table 1. �

This also reveals an interesting duality between Equal
Space and Equal Time allocations.

Corollary 1. The space and the labor consumed by SKU i in
the forward pick area under each of the two storage strategies
are as listed in Table 2.

Table 1. Comparison of the Equal Space and Equal Time
Allocations

Equal space Equal time

Allocation vi for SKU i 1/n fi/
∑

j fj

Restocks for SKU i = fi/vi n fi
∑

j fj

Total restocks over all SKUs n
∑

i fi n
∑

j fj

For comparison, under the Optimal strategy SKU i gets
the fraction

√
fi/(

∑
j

√
fj) of the space and incurs the same

fraction of restocks.

5. Comparison with the Optimal strategy

5.1. Total restocks

Frazelle suggests “an arbitrary allocation of space. . . or
space for a quantity sufficient to satisfy the expected weekly
or monthly demand” (Tompkins and Harmelink, 1994).
About three-quarters of the distribution centers we sur-
veyed store Equal Time amounts in the forward pick area.
Needless to say, an “arbitrary allocation of space” is subop-
timal; and, as we have shown, an Equal Time allocation is
no better than an Equal Space allocation, both of which are
suboptimal. Suboptimal allocations give too much space to
some SKUs and too little to others. Any SKU that is al-
located too little space must be restocked too often and so
generates extra work. Any SKU that is allocated too much
space leaves too little space for the other SKUs. When the
excessive work is accumulated over tens of thousands of
SKUs, the total can be significant when compared to the
optimal storage amounts.

The Equal Space and Equal Time allocations incur more
restocks than necessary; but how severe is the waste? We
answer this by studying the ratio of the number of restocks
under the Equal Space (EQS) or Equal Time allocations
(EQT) to the number incurred under the Optimal alloca-
tions (OPT).

We have computed the value of EQT/OPT for several
warehouses and found that EQT/OPT ≈ 1.45 for 6000 fast-
moving SKUs of a major drug store chain. This suggests
that this particular warehouse, which had 20 restockers,
may have needed only 14. Similarly, for 4000 SKUs of a
telecommunications company we computed a ratio of 2.44,
which means that storing SKUs in Equal Time allocations
incurred more than twice as many restocks as necessary.

It is difficult to make a general statement about the mag-
nitude of EQT/OPT except in some special cases, such as
the following.

Table 2. Comparison of the Equal Space and Equal Time
allocations

Equal space Equal time

Fraction of space to SKU i 1/n fi/
∑

j fj

Fraction of restocks to SKU i fi/
∑

j fj 1/n
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Theorem 4. If the values of the
√

fi are drawn independently
from a distribution with well-defined mean and variance (and
coefficient of variation CV), then:

EQT
OPT

≈ 1 + CV2.

This suggests that, the more diverse the rates of flow of the
SKUs, the more important it is to allocate space optimally,
rather than by Equal Space or Equal Time strategies.

Proof. From Theorems 1 and 3:

EQT
OPT

= n
∑

fi( ∑ √
fi
)2 =

∑
fi/n( ∑ √
fi/n

)2 .

Estimate the sample mean µ, sample second moment and
sample variance σ 2 of the values

√
fi as (

∑ √
fi)/n, (

∑
fi)/n

and
∑

(
√

fi − µ)2/(n − 1), respectively; then because n is
large (in the thousands for a typical large North American
distribution center) the following is a good approximation:

EQT
OPT

≈ µ2 + σ 2

µ2
. �

We examined actual values of the
√

fi from several ware-
houses and all the distributions are similar in displaying
broad dynamic range and in being highly skewed, with a
very few SKUs having large values of flow and many others
having much smaller values, as illustrated in Fig. 2. There
are many distributions sharing these general properties, but
a power law seems a likely possibility. If the

√
fi are described

by a power law p(x) = Cx−α with power α > 3 then follow-
ing the analysis of Newman (2005) we have that:

EQT/OPT ≈ (α − 2)2

(α − 1)(α − 3)
. (6)

When α ≤ 3 the variance is undefined and we cannot es-
timate EQT/OPT. For the values in Fig. 2, a maximum
likelihood estimate of α is 3.19 (Newman, 2005), for which
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Fig. 2. The distribution of the square roots of flows of 3051 SKUs,
ranked from largest to smallest.

EQT/OPT = 3.39. Alternatively, if the
√

fi follow an expo-
nential distribution, the coefficient of variation is unity and
so EQT/OPT ≈ 2. These several pieces of evidence all sug-
gest that it is reasonable to expect a significant reduction in
restocking when moving to the Optimal stocking strategy.

5.2. Manageability

Equal Space and Equal Time allocations each offer a kind
of uniformity that can simplify warehouse management.
Under Equal Space allocations all storage slots are the same
size and so a newly arrived SKU will fit in any available
space in the forward pick area. Under Equal Time alloca-
tions each SKU is restocked at the same frequency and so
it may be easier to manage the process.

How manageable are the Optimal allocations? We will
show that Optimal allocations share space among SKUs
more evenly than Equal Time allocations and share restocks
more evenly than Equal Space allocations, and so is, by
these measures, an intermediate solution.

Figure 3 shows histograms of allocation sizes and of re-
stocking frequencies based on data from a major chain re-
tailer in the US. In each case the distributions of Optimal
allocations (foreground) have significantly less variability.

Figure 4 provides another way of looking at this point.
It was constructed by ranking the same set of SKUs from
largest to smallest value of flow fi (which means they are also
ranked by size of allocation for each of the allocation strate-
gies) and then plotting the cumulative space consumed by
the top fraction of SKUs. The curve corresponding to Equal
Time allocations is everywhere above that of the Optimal
allocations, which in turn is everywhere above the Equal
Space allocations. For example, the 20% of SKUs with the
most space fill almost 80% of the forward pick area under
Equal Time allocations, 50% under Optimal allocations and
20% under Equal Space allocations.

As we shall show, this behavior holds in general. Assume
that the fi have been labeled so that f1 ≥ f2 ≥ · · · ≥ fn.

Lemma 2. The k largest of the Optimal allocations never
consume more space than they would under Equal Time
allocations:

k∑
i=1

√
fi∑n

j=1

√
fj

≤
k∑

i=1

fi∑n
j=1 fj

, k = 1, 2, . . . , n. (7)

Proof. Because the flows have been labeled in decreasing
order, (

√
fk+1)(

√
fi) ≤ fi for all i ≤ k. Summing both sides

over i:

√
fk+1

( k∑ √
fi

)
≤

k∑
fi for all k,

fk+1

( k∑ √
fi

)
≤

√
fk+1

( k∑
fi

)
.
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Fig. 3. Optimal allocations (foreground) have less variability in the allocated volume than Equal Time allocations (left) and less
variability in number of restocks than Equal Space allocations (right).

Adding (
∑k fi)(

∑k √
fi) to each side and then factoring

gives:( k∑ √
fi

)( k∑
fi + fk+1

)
≤

( k∑
fi

)( k∑ √
fi +

√
fk+1

)
,

( k∑ √
fi

)( k+1∑
fi

)
≤

( k∑
fi

)( k+1∑ √
fi

)
,

∑k √
fi∑k fi

≤
∑k+1 √

fi∑k+1 fi
.

Since the last statement holds for all k, it follows that:∑k √
fi∑k fi

≤
∑n √

fi∑n fi
,

∑k √
fi∑n √
fi

≤
∑k fi∑n fi

,

and the result follows. �

Interestingly, if we were to plot a companion to Fig. 4 but
showing the distribution of relative restock rates, the plot
would look exactly the same, except for interchanging the
labels “Equal Time” and “Equal Space”. This follows from
the sort of duality observed in Corollary 1, Theorem 3 and
Lemma 1.

In a sense, Equal Time allocations are more extreme than
Optimal allocations. This is useful to know when, for ex-
ample, planning bin sizes to hold the SKUs of a forward
pick area.

Corollary 2. The largest of the Optimal allocations is never
larger than that of the Equal Time allocations. Similarly, the
smallest of the the Optimal allocations is never smaller than
that of the Equal Time allocations.
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Fig. 4. Along the horizontal axis 3051 SKUs are ranked from largest to smallest flow (f1 ≥ · · · fn) The curves display the cumulative
fraction of space consumed by each allocation strategy.
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However, we can say more: Optimal allocations share
space more evenly than Equal Time allocations and share
labor (restocking) more evenly than Equal Space alloca-
tions.

Theorem 5. For any given set of SKUs:

1. The sizes of the Optimal allocations have a sample vari-
ance that does not exceed that of the Equal Time alloca-
tions.

2. The rates of restocking the Optimal allocations have a
sample variance that does not exceed that of the Equal
Space allocations.

Proof. Lemma 2 is equivalent to saying that the Optimal al-
locations are majorized by the Equal Time allocations: See,
for example, Marshall and Olkin (1979) , wherein Dalton is
credited with establishing that when one vector is majorized
by another, the sample variance of the one cannot exceed
that of the other.

Corollary 1 to Theorem 3 shows that the frequencies of
restocking Optimal allocations are majorized by the fre-
quencies incurred by Equal Space allocations and so the
second claim holds. �

As described by Marshall and Olkin (1979), Dalton
showed that, in addition to sample variance, several other
measures φ of dispersal respect the sense of majorization in
that if vector v is majorized by vector w then φ(v) ≤ φ(w).
This is illustrated in the data of Fig. 4, where Equal Time al-
locations display about ten times the variance displayed by
Optimal allocations. Furthermore, the largest Equal Time
allocation is about six times that of the Optimal allocations;
and the smallest is about one-tenth that of the Optimal
allocations.

All these measures of dispersion tell the same story: Op-
timal allocations share the space more evenly amongst the
SKUs than do Equal Time allocations; and Optimal allo-
cations share the work more evenly amongst SKUs than
do Equal Space allocations. Equal Space/Time allocations
sacrifice one type of manageability for another; Optimal
allocations balance the two—and reduce labor.

6. A case study: Exchanging time for space, saving both

In storing Optimal allocations one may claim a saving in
the form of space instead of labor. For example, Theorem 4
suggests that one might squeeze SKUs into half the space
occupied by Equal Time or Space allocations without in-
creasing the labor to sustain the forward pick area. In ef-
fect, the capacity of the forward pick area will have been
increased by half.

We made such a trade-off of labor for space at the na-
tional distribution center of Revco Drugstores (now part
of CVS Drugstores) in Knoxville, Tennessee, USA. They
stored 3 weeks supply of each of about 6000 SKUs in 325
bays of carton flow rack that served as a forward pick area
for the most popular products. A steady expansion in the

Table 3. The total cost of restocking

EQS EQT OPT

n
∑

i cifi (
∑

i ci)(
∑

i fi) (
∑

i

√
cifi)2

number of SKUs had filled all available space and Revco
was considering expansion into a nearby warehouse.

We projected that if the 325 bays were stocked optimally
then the required restocks would drop by 40%. In addition
by squeezing the SKUs into 285 bays of rack, 40 bays were
left empty for growth and the restocks were still reduced by
20%. In this way we both reduced labor and created space
for Revco simply by storing SKUs in optimal amounts.

7. Extensions

7.1. Differing costs per restock

Sometimes the cost of restocking a SKU depends signif-
icantly on the identity of the SKU, as would be the case
if some overstock were held in an outlying warehouse or
if bulk storage was zoned. This can be modeled by charg-
ing a cost ci per restock of SKU i. Following Hackman
and Rosenblatt (1990), simply replace any appearance of
fi with the weighted flow f̂i = cifi and our results describ-
ing the Optimal allocations still follow. In contrast, Equal
Space/Time allocations ignore differences in the costs of
restocking.

Simple algebra yields the total cost of restocking under
each of the three strategies listed in Table 3.

The total cost of Optimal allocations is, of course, still
the smallest, as may be confirmed by the Cauchy–Schwarz
inequality:

( ∑
i

aibi

)2

≤
( ∑

i

a2
i

)( ∑
i

b2
i

)
.

Letting ai = 1 and bi = √
cifi shows that OPT ≤ EQS; and

letting ai = √
ci, bi = √

fi shows that OPT ≤ EQT.
If the cost ci to restock SKU i depends on where in bulk

storage or where in the forward area SKU i is stored, then
both Optimal and Equal Space allocations can take advan-
tage of that by storing SKUs with large flows fi in conve-
nient locations (small ci). No such savings are possible un-
der Equal Time allocations because every SKU is restocked
at the same frequency and so there are no savings possible
by careful placement of SKUs. A restocker must visit the
least convenient locations in bulk storage about as often as
the most convenient.

7.2. Reorder points and safety stock

Optimal allocations can easily be adapted to account for
reorder points and safety stock levels. To guard against
stockout in the forward pick area each SKU must be stored
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in sufficient quantity to cover the mean lead time demand li.
We can enforce this by revising the statement of Problem 2
to include constraints:

vi ≥ li. (8)

This extended model can be solved efficiently by an algo-
rithm of Luss and Gupta (1975) that repeatedly allocates
space according to Equation (5), identifies SKUs that re-
ceived less than their minimum required space li and in-
creases their allocation to li, then reallocates the remaining
space among the remaining SKUs.

In addition, if the allocation of each SKU i is to include
safety stock si (which we assume has been exogenously de-
termined), then a total volume of S = ∑

i si within the for-
ward pick area must be devoted to safety stock, leaving the
remaining 1 − S to hold cycle stock and this is the space
that is allocated to minimize total restock costs.

In contrast, it can be problematical to adapt Equal
Space or Equal Time allocations to account for lead
time demand and safety stock. For example, Equal Space
allocations must include the safety stock as part of the
allocation (otherwise allocations are unlikely to be equal).
If the mean lead time demand li plus safety stock si of
SKU i were to exceed its allocation vi = 1/n under Equal
Space, then presumably SKU i would have to be excluded
from the forward pick area. Under Optimal allocations,
space is reallocated from other SKUs and so the decision
of which SKUs to include remains more clearly separated
from the allocation decision.

8. Critique of model

We have analyzed a continuous model that ignores geome-
tries of SKUs and storage medium. That the continuous
model is relevant is guaranteed by the fact that it is the
ideal toward which all warehouse managers strive, by siz-
ing shelves and packaging SKUs to reduce the space wasted
by imperfect fit. In any event all three stocking strate-
gies must eventually be converted to discrete allocations—
specifications of exactly how many cartons of each SKU
and how they are arranged. Currently, warehouses approx-
imate Equal Time and Equal Space allocations, and the
same can be easily done for Optimal allocations. These ap-
proximations will be accurate to the extent that the storage
containers are small with respect to the shelves, as might be
expected in warehouses distributing service parts, cosmet-
ics, pharmaceuticals or office supplies.

The predictions of the continuous model were confirmed
when we slotted the 3051 SKUs of Fig. 4 using a discrete
model that reflected the geometry of shelving and cartons
(a topic for a future paper). The discrete allocations spec-
ified exactly how many cartons were to be placed on each
shelf, in what orientation, stack height and how many lanes.
The discrete approximations to the Optimal allocations re-
quired less than half the restocking labor of the discrete
approximations to the Equal Space allocations.

A further word is necessary regarding Equal Time alloca-
tions. Our model has omitted the possibility that one might
schedule Equal Time allocations to even out restocking,
and so level the labor requirement, or else concentrate re-
stocking to create opportunities for batching restocks (that
is, retrieving in one trip multiple products to be restocked).
Might one of these strategies enable Equal Time allocations
to reduce the cost per restock so that total cost of restock-
ing is comparable with Optimal allocations? Perhaps, but it
is difficult to say.

To be preferred, the total savings from batching restocks
under Equal Time allocations must compensate for the ad-
ditional restocks incurred, which, from Theorem 4 and the
discussion following, might easily be two to three times as
many as under Optimal allocations. Thus, for Equal Time
allocations to be competitive, two or three SKUs must be
carried together from bulk storage during each trip to re-
stock. However, this reduces only one component of the
work to restock: travel between the forward pick area and
bulk storage. Because multiple locations must be visited
within bulk storage and again within the forward pick area,
the travel in these areas per trip must increase, and batch-
ing k restocks delivers less than k times the efficiency. This
means that Equal Time allocations must enable batching of
more than two or three SKUs per restock to be competitive
with Optimal allocations. If batching of restocks is allowed
for Optimal allocations, Equal Time allocations then would
have to batch even more SKUs, perhaps five or six or more,
to be competitive. This begins to seem impractical if these
must all fit on a pallet that is not shrink-wrapped, and in
quantities each sufficient to fill a lane of carton flow rack
that might be 8 to 12 feet deep. Can such a load be conveyed
without toppling?

There is also the question of whether, under Equal Time
allocations, there are sufficient SKUs that require restock-
ing at the same time to allow significant batching. The tim-
ing of restocks is driven by customer orders, over which
warehouse management has little control. The flow of a
SKU can be predicted with much greater accuracy over a
year than over a day, and so our model predicts the total
number of restocks much more accurately than their timing.
Consequently one should not expect all SKUs with Equal
Time allocations to require restocking simultaneously. It
seems reasonable to expect more opportunities to batch re-
stocks under Equal Time allocations, but unless there is
little variability in daily order quantities, the actual oppor-
tunities for batching restocks might not be much greater
than under Optimal allocations.

Of course there are occasions in which Equal Time al-
locations make sense, such as for products with a very
short, common life cycle, in which case the forward pick
area might be stocked with just enough of each SKU to
carry through the selling season. However, we believe that
Equal Time is used most often in the simple, mistaken
belief that it reduces restocks compared to Equal Space
allocations.



Allocating space in a forward pick area 1053

9. Conclusions

Almost everyone in industry stocks their forward pick areas
with what we believe to be insufficient regard to the labor
to maintain them. This may be due to an understandable
focus on reducing the work at the front-end (order picking),
which typically consumes more labor than any other ware-
house process. However, simply by storing product in the
right quantities, one can reduce the work to maintain the
forward pick area without affecting any other operation.
Furthermore, this can be done incrementally by adjusting
quantities whenever a SKU is restocked.

Each of the strategies for stocking a forward pick area
has advantages and disadvantages. Equal Space and Equal
Time allocations require the same work to maintain a for-
ward pick area, while Optimal allocations may be expected
to require significantly less work. Equal Space allocations
have the advantage of requiring no knowledge of the size or
popularity of the SKUs; and the uniformity of storage may
make it easier to manage SKUs with short life cycles, such
as apparel or cosmetics. To use either Optimal or Equal
Time allocations one must forecast the flow of each SKU
over the planning period. This requires knowing the physi-
cal dimensions of the product, which is common in indus-
trialized countries but far from universal. In addition, one
must forecast demand and these forecasts are more likely
to be most reliable for mature commodity products.

Finally, there may be second order benefits from chang-
ing from Equal Space/Time allocations to Optimal allo-
cations. If safety stock is a non-decreasing function of the
total number of restocks during the year, as would be the
case if, for example, the workforce devoted to restocking is
of fixed size, then there is a virtuous cycle in which reducing
restocks reduces the required lead time, which reduces both
mean lead time demand and required safety stock. This, in
turn, frees up more space to be used for cycle stock, which
further reduces required restocks, completing the virtuous
cycle. The virtuous cycle suggests that it might be worth re-
computing mean lead time demands and safety stocks and
then re-allocating space, perhaps even a few times. Com-
putational experiments suggest that, taken together, these
echoing improvements can generate an additional 3 to 6%
reduction in restocks.
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