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Abstract

\Bucket brigades" are a way of sharing work on a ow line that results in the spontaneous emer-

gence of balance and consequent high throughput. All this happens without a work-content model

or traditional assembly-line balancing technology. Here we show that bucket brigades can be e�ective

even in the presence of variability in the work content. In addition, we report con�rmation at the na-

tional distribution center of a major chain retailer, which experienced a 34% increase in productivity

after the workers began picking orders by bucket brigade.

Key words: ow line, assembly line, work-sharing, bucket brigade, self-organizing systems, dynamical

systems
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\Bucket brigades" are a way of co�ordinating workers who progressively assemble a product along a

ow line. Each worker follows this simple rule: \Carry work forward from station to station until someone

takes over your work; then go back for more". When the last worker completes a product, he walks back

upstream and takes over the work of his predecessor, who then walks back and takes over the work of his

predecessor, and so on, until the �rst worker begins a new product at the start of the line. No unattended

work-in-process (WIP) is allowed in the system.

Workers are not restricted to any subset of stations; rather each is to carry his work as far toward

completion as possible, except that workers may not pass one another. This means that, at least in

principle, a worker might catch up to his successor and be blocked; the bucket brigade rule requires that

the blocked worker remain idle until the station is available. (As we shall see, the art of implementing a

successful bucket brigade is to make such events unlikely.)

The �nal requirement of bucket brigades is that the workers be sequenced from slowest to fastest along

the direction of material ow. When these requirements are met, work is paced by the fastest worker, who

triggers each successive series of walk-backs. The result is a pure pull system.

Bucket brigades are distinguished from similar work-sharing protocols, such as the Toyota Sewing

System (TSS), by insisting on the total abolishment of any a priori work assignment or zones that might

restrict the movement of the workers; and by requiring that the workers be sequenced from slowest to

fastest along the direction of material ow.

The distinctive and valuable feature of bucket brigades is that they are self-balancing; that is, a balanced

partition of the work will emerge spontaneously, which reduces the need for traditional industrial engi-

neering technologies of time-motion studies, work-content models, and assembly-line balancing. Moreover,

under quite general conditions the emergent balance results in the maximum possible rate of production.

Finally, the simplicity of bucket brigades makes them easy to implement and so to realize these bene�ts.

Bartholdi and Eisenstein (1996) analyzed the performance of bucket brigades performing high-volume

assembly of a mature product, for which a deterministic model of work content was appropriate. Here we

extend this analysis to a stochastic model of work content and show that the dynamics and production

rate will be similar to those of the deterministic model when there is \suÆcient work" distributed among

\suÆciently many" work stations. We also report con�rmation of the practical value of this at the national

distribution center of a major chain retailer, where the products are customer orders, which are \assem-

bled" by order-pickers. Because customer orders vary in hard-to-predict ways, their work content may be
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imagined to be stochastic. After converting to bucket brigades, the order-pickers realized a 34% increase

in productivity, and similar successes have subsequently been achieved in other distribution centers.

1 Bucket Brigades

The simplest model of the dynamics of bucket brigades is based on the following assumptions.

Assumption 1 (Insigni�cant Walking Time). The total time to assemble a product is signi�cantly

greater than the time to walk the length of the ow line. Therefore all hand-o�s occur, for all practical

purposes, simultaneously, synchronized by item-completions of the last worker.

Assumption 2 (Total Ordering of Workers by Velocity). Each worker i = 1; : : : ; n is character-

ized by a distinct, constant work velocity vi.

Assumption 3 (Smoothness and Predictability of Work). The nominal work content of the prod-

uct is a constant (which we normalize to 1); and the work content is spread continuously and uniformly

along the ow line.

We call this the \Normative Model" because it represents ideal conditions suÆcient to guarantee that

bucket brigades achieve the maximum possible throughput. For the Normative Model a variation of a result

from Bartholdi and Eisenstein (1996) applies: Because of Assumption 1, Smoothness and Predictability of

Work, we can model the work content as the unit interval [0; 1]. Consider the moment at which the k-th

item is completed and worker i takes over the item being assembled by worker i � 1. Let x
(k)
i represent

the fraction of work completed for that item at that moment.

Theorem 1 (Self-balancing).

lim
k!1

x
(k)
i =

Pi�1
j=1 vjPn

j=1 vj
for 1 < i � n:

This means that when workers are sequenced from slowest to fastest worker i comes to repeatedly

execute the interval of work content "Pi�1
j=1 vjPn

j=1 vj
;

Pi

j=1 vjPn

j=1 vj

#

and the production rate of the ow line increases to
Pn

j=1 vj , the largest possible.
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Proof. At the moment of hando� coinciding with completion of the k-th item, the clock time separating

workers i and i+ 1 is

t
(k)
i =

x
(k)
i+1 � x

(k)
i

vi
;

and the next item will be completed after time

t(k)n =
1� x

(k)
n

vn
:

After completion of the (k + 1)-st item the clock-time separating adjacent workers becomes

t
(k+1)
i =

x
(k+1)
i+1 � x

(k+1)
i

vi

=

�
x
(k)
i + vit

(k)
n

�
�

�
x
(k)
i�1 + vi�1t

(k)
n

�
vi

=

�
vi�1

vi

�
t
(k)
i�1 +

�
1�

vi�1

vi

�
t(k)n :

The workers are sequenced from slowest to fastest, so we may interpret these equations as describing

a �nite state Markov Chain with transition matrix

A =

2
6666666666664

0 0 : : : 0 1

v1=v2 0 : : : 0 1� v1=v2

0 v2=v3 : : : 0 1� v2=v3

...
...

...
...

...

0 0 : : : vn�1=vn 1� vn�1=vn

3
7777777777775

with t(k+1) = At(k) = Ak+1t(0). This Markov Chain is irreducible and, because vi�1 < vi for all i,

aperiodic. Therefore, by basic results about Markov chains, Ak converges to a matrix, each row of which

is  
v1P
j vj

;
v2P
j vj

; : : : ;
vnP
j vj

!
:

The convergence of the t
(k)
i and x

(k)
i and the speci�c claims follow by simple algebra.

Assumption 1, Insigni�cant Walking Time, seems uncontroversial. (We use its extreme form, instan-

taneous walk-backs, for convenience.) Assumption 2, Total Ordering of Workers by Velocity, holds for

unskilled work or whenever workers have similar training (Bartholdi and Eisenstein, 1996). Assumption 3,

Smoothness and Predictability of Work, tends to hold for mature technologies because management and
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engineering continually strive to remove variation from work and to eliminate bottlenecks. However, in

some important economic contexts, such as order-picking in a warehouse, this last assumption is unreliable.

Therefore, the object of this paper is to explore the behavior of bucket brigade lines when this assumption

is modi�ed to allow randomness in the amount and location of work.

Under the Normative Model bucket brigades achieve the maximum possible throughput; furthermore,

in real life bucket brigades have performed with remarkable eÆciency in a range of commercial applica-

tions, many of which are described on our web page at www.isye.gatech.edu/faculty/John_Bartholdi/

bucket-brigades. Why is it that bucket brigades perform well even when the strong assumptions about

the nature of work content do not hold? Here we prove that the conclusions of Theorem 1 continue to

apply in a useful sense even when there is randomness in the work content.

2 A stochastic model of work

Consider the behavior of bucket brigades in which Assumption 3 (Smoothness and Predictability of Work)

is replaced by the following stochastic model.

Assumption 30 (iid, exponentially distributed work.) Let the work to assemble a product consist

of m discrete task primitives at m successive work stations. The nominal work-content at each station is

independent and follows an exponential distribution with common mean normalized to 1.

This means that the time required for the i-th worker to complete a task follows an exponential

distribution with mean 1=vi. We will prove that, as the number of stations increases, the moment-to-

moment behavior of the stochastic line will increasingly resemble that of the Normative Model. Moreover,

this resemblance will assert itself with great uniformity.

Increasing the number of stations may also be taken to model the partition of tasks into subtasks.

One may interpret our conclusion in the following way: Imagine a video of workers operating according

to the Normative Model and another video of the same workers operating under the Stochastic Model (with

work rescaled to be comparable). The two copies of the workers begin at the same starting positions relative

to the total (expected) work content. Then our claim is that the two videos will become indistinguishable as

the number of stations increases in the stochastic model; and so all measurements of the two lines, including

the instants at which each successive item is completed, become similar. Therefore the stochastic line ever
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more resembles the deterministic line, which Theorem 1 has shown to achieve the maximum production

rate. Furthermore, as we show by both simulation and by case study, this similarity asserts itself for few

enough stations to be of practical bene�t.

Our analysis is conservative in assuming work that is exponentially distributed. This means that there

will be greater variance at each work station than one would expect to �nd in practice. (It is hard to

imagine an economically viable production process in which a partially-completed task had no memory

of the work invested in it!) This unrealistically large variance reduces the throughput of bucket brigades

because it increases the chances of blocking.

To compare the stochastic and deterministic models, we will build and analyze a more detailed model

of the deterministic system. Where Theorem 1 considered a series of \snapshots" of the workers taken

immediately after walkback, our new model, the uid model, is more like a video in that it captures not

just the system state after walkbacks, but the dynamics of the bucket brigade in continuous time.

3 The uid model

Here we model the evolution of the bucket brigade in continuous time. Assume there are n workers

located on the unit interval [0; 1). Worker i moves to the right with speed 0 < vi < 1 unless blocked by

worker i + 1. When worker n reaches the end of the unit interval, a part is completed, and the workers

instantaneously reset (walk back to get more work). Let �X : [0;1) ! E be the function which gives

the location of the n workers at any arbitrary time t � 0. In particular, �Xi(t) denotes the location of

worker i at time t. Note that at reset times �X is not well-de�ned because the workers instantaneously

move from one location to another. To avoid this ambiguity, we select �X so that it is right-continuous

at all t 2 [0;1) and has limits from the left at all t 2 (0;1). Thus, none of the workers are ever at

one, and �X(t) 2 E where E � f(`1; : : : ; `n)j0 � `1 � `2 � � � � � `n < 1g. Let E� denote the closure

of E; thus, E� � f(`1; : : : ; `n)j0 � `1 � `2 � � � � � `n � 1g. De�ne �R : E� n E ! E to be the

reset function such that �R(x(t�)) = x(t) where x(t�) = lims"t x(s). In particular, if x(t�) 2 E� n E,

then x(t�) is of the form (x1(t�); : : : ; xi(t�); 1; : : : ; 1) for some i < n with xi(t�) < 1. In this case,

�R(x(t�)) = (0; : : : ; 0; x1(t�); : : : ; xi(t�)) and m� i parts were �nished at time t.

At this point, it will be convenient to de�ne several classes of functions. Let DE [0;1) be the space

of all E-valued functions on [0;1) that are right-continuous with limits from the left (RCLL). Thus,
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�X 2 DE [0;1). Similarly, we let DRn
+
[0;1) denote the space of RCLL Rn+ -valued functions, and CRn+[0;1)

the space of continuous, Rn+ -valued functions on [0;1).

The following result gives the equations describing the uid model of the system, where �Xi(t) represents

the location of the worker i at time t, �Ti(t) represents the amount of time that worker i was productive

during the interval [0; t], �Ii(t) the amount of time worker i was idle (blocked by worker i+1) in [0; t], and

�Si(t) represents the total distance walked back (instantaneously) by worker i during the interval [0; t].

Lemma 1. Given a starting position x 2 E and vector of speeds v, there exists a unique triple ( �X; �T ; �S)

where �X 2 DE [0;1), �T 2 CRn
+
[0;1), and �S is a pure jump process in DRn

+
[0;1) that satisfy for i =

1; : : : ; n and t > 0:

�Xi(t) = xi + vi �Ti(t)� �Si(t) (1)

�X(t) 2 E (2)

�Ti(0) = 0 and �Ti(t) is non-decreasing in t (3)

�Ii(t) = t� �Ti(t) (4)Z 1

0

1
�
�Xi+1(t) > �Xi(t)

�
d�Ii(t) = 0 (5)

�Si(t) =

Z t

0

1
�
�Xn(s�) = 1

�
( �Xi(s�)� �Ri( �X(s�))d �N(s) (6)

where 1 (A) is the indicator function of A, �N is counting measure, and �Xn+1(t) � 1 so �In(t) = 0.

Proof. See Appendix.

4 Stochastic dynamics

Assume m stations labeled 0 through m� 1, with the nominal length of time to process a job at station

j being exponentially distributed with mean one. Worker i works at velocity vi; so the time for worker i

at each station is exponentially distributed with rate vi. For each of the n workers let Xm
i (t) denote the

location of worker i at time t, and Xm(t) be the column vector of these locations. We explicitly carry the

number of stations m as part of the notation since in the next section we allow the number of stations

to vary. One di�erence between our stochastic and deterministic models is that in the stochastic model a

slower worker may catch up to a faster worker and be at the same station. If there are several workers at

a station, only the highest numbered among them will be allowed to work, while the others must remain

idle.
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Because the durations of work are independent, identically distributed exponential random variables,

the number of movements of the ith worker behaves like a Poisson process with rate vi unless the worker

is blocked. Let N(t) be a vector of independent Poisson processes with rates (v1; : : : ; vn). Let Tm be

the vector of the amounts of time that each worker is productive during the interval [0; t]; let Imi (t) be

the amounts of time that worker i is idle (blocked) during [0; t], and let Sm
i (t) be the total distance that

worker i has walked during resets. Then the following set of equations, which hold for i = 1; : : : ; n and

t > 0, uniquely de�ne these processes:

Xm
i (t) = Xm

i (0) +Ni(T
m
i (t))� Sm

i (t) (7)

Xm(t) 2 Em (8)

Tm
i (0) = 0 and Tm

i (t) is non-decreasing (9)

Imi (t) = t� Tm
i (t) (10)Z 1

0

1
�
Xm
i+1(t) > Xm

i (t)
�
dImi (t) = 0 (11)

Sm
i (t) =

Z t

0

1 (Xm
n (s�) = m� 1)Dm

i (X
m(s�))dNn(s) (12)

where Em = fi 2 Zn
+j0 � i1 � i2 � � � in � m� 1g, Xn+1(t) � m,

Dm(X(s�)) = X(s�)�Rm(X(s�); (13)

Rm(X(s�)) = (0; X1(s�); : : : ; Xn�1(s�)); (14)

and the stochastic integral in Expression (11) is a sample path integral; cf. Chapter 6 of Wong and Hajek

(1985).

5 Convergence of the stochastic model to the uid model

We would like to compare the behavior of the stochastic model and the continuous deterministic model, but

their state spaces are quite di�erent: f0; : : : ;m�1g vs. [0; 1) and their time scales are quite di�erent: one

worker working with velocity 1 takes 1 unit of time to produce an item in the deterministic model, but the

expected time in the stochastic model is m units of time. However, we can directly compare the two in a

reasonable way by rescaling the stochastic model, in e�ect speeding up time while reducing resolution by a

factor of m. De�ne ~Xm(t) � Xm(mt)=m, and ~Xm
� f ~Xm(t); t � 0g. Then rewriting Expressions (7){(12)
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under this rescaling, we obtain ~Sm
i (t) = Sm

i (mt)=m, ~Imi (t) = Imi (mt)=m, ~Tm
i (t) = Tm

i (mt)=m and

~Xm
i (t) = ~Xm(0) +Ni( ~T

m
i (mt))=m� ~Sm

i (t) (15)

~Xm(t) 2 E (16)

~Tm
i (0) = 0 and ~Tm

i (t) is non-decreasing (17)

~Imi (t) = t� ~Tm
i (t) (18)Z 1

0

1
�
~Xm
i+1(t) >

~Xm
i (t)

�
d~Ii(t) = 0 (19)

~Sm
i (t) =

Z t

0

1
�
~Xm
n (s�) = (m� 1)=m

�
Dm
i (X

m(s�))dNn(ms); (20)

where Dm( ~Xm(s�)) = ~Xm(s�)�Rm( ~Xm(s�)).

We show that the rescaled stochastic model converges in a certain sense to the deterministic uid

model as the number of stations m increases. The following limits hold almost surely as m!1. We use

X
u:o:c:
�! Y orX(t)

u:o:c:
�! Y (t) to denote uniform convergence over compact sets (u.o.c.); that is, X(t)! Y (t)

uniformly for t restricted to compact sets. It is well known that N(mt)=m
u:o:c:
�! vt. Unfortunately our

rescaled model ~Xm does not converge u.o.c. to �X because the two processes may reset at slightly di�erent

times. Consequently we must resort to a weaker metric that considers the two processes to be close if they

jump approximately the same distance at approximately the same time. Let X
J1
�! Y denote convergence

in the Skorohod J1 topology (Skorohod, 1956).

Theorem 2. If 0 < v1 � v2 � � � � � vn <1 and the rescaled starting positions of the workers ~Xm(0)!

x = (x1; : : : ; xn) with 0 � x1 < x2 < � � � < xn < 1 then ~Xm J1
�! �X and ~Tm(t)

u:o:c:
�! �T (t) � et where e is

the n-dimensional vector of one's.

Proof. See Appendix.

6 The e�ectiveness of bucket brigades in practice

6.1 Order-picking in a distribution warehouse

In the stores of chain retailers, space for inventory is expensive, so the distribution centers (DC's) support-

ing them replenish stock-keeping units (sku's) frequently and in small, less-than-caseload amounts. This

means that a typical store orders many sku's, but small numbers of each, so that picking these orders is

labor intensive. Often a DC employs hundreds of order-pickers.
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Figure 1: A team picking from an aisle of ow rack to a conveyor (from \Warehouse Modernization and

Layout Planning Guide", Department of the Navy, Naval Supply Systems Command, NAVSUP Publication

529, March 1985, p 8-17). The \passive" conveyor (closer to the pickers) holds partially completed orders.

The powered \take-away" conveyor transports completed orders to the shipping department.

Under these circumstances, the fast-moving sku's are generally picked from ow rack, as illustrated in

Figure 1. Flow rack is arranged in aisles, through which runs a unidirectional conveyor. The racks are

divided into bays, and within each bay are tilted shelves with rollers to slide the cases forward.

An order is a list of sku's for a single customer together with quantities to be picked. Workers assemble

each order progressively along the aisle, putting the sku's into totes (cartons), which travel together.

Workers keep the orders in sequence so they arrive at the shipping dock in reverse order of delivery.

Because broken-case order-picking is so labor-intensive, managers naturally want to keep all pickers

busy. Standard practice is to adopt an assembly-line model, partitioning the bays into contiguous sections

called zones and then restricting each picker to work within her1 zone. The picker in the �rst zone begins

a new order by opening a tote and sliding it along the passive lane of the conveyor while picking the sku's

for that order. On reaching the end of her zone, she leaves the order for the next worker and returns to the

beginning of her zone for more work. Each worker remains in her zone, moving totes forward while picking,

and possibly standing idle if there is no work in her zone. The last picker pushes the totes of a completed

1In our experience most pickers are female.
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order onto a powered conveyor, which takes them to the shipping department. The idea, like that of an

assembly line, is that all workers will presumably remain busy if their zones have approximately the same

total work. This style of order-picking is called sequential zone-picking. (For more about order-picking

protocols, see \The warehouse manager's guide to e�ective order picking", Monograph M-8, Tompkins

Associates, Inc., Raleigh, NC.)

Under zone-picking each assembly-line must be balanced one or more times a day. To support this the

DC must maintain a model of work content on which to base the zones. But the work-content model will

always be wrong, despite the e�ort invested in it, because of issues like the following.

� Work-content models ignore speeds of the workers because their identities will not be known until

work begins. Instead, work-content models are based on the notion of a mythical \standard worker".

However, it is common, in our experience, for people to di�er in work velocity by a factor of three

or four, in part because of the use of temporary labor to match large seasonalities in business.

Consequently, the rigid zones of an assembly line underutilize the faster workers, while frustrating

the slower workers, who, under pressure to keep up, may introduce errors.

� The work-content model attempts to balance only the total work accomplished, but fails to maintain

balance from order to order.

� There are more factors that determine work content than can be economically modeled: In addition

to the number and locations of the sku's to be picked, work content is also determined by heights of

the locations (at waist level or inconveniently high?), weight and shape of the sku's (heavy? hard

to handle?), and so on. Moreover, such models cannot account for inevitable disruptions such as

disposing of an empty case, opening a new case, sealing a full tote, pulling stalled cases to the front

of the ow rack, and so on.

Because of these inaccuracies, the work-content model will be wrong and so the assembly-line will not

be balanced. This is why zone-picking requires constant supervision | but is imbalanced nonetheless. The

cost is reduced pick rates due to underutilized pickers. Furthermore, imbalances cause congestion because

the length of the conveyor strictly limits the work-in-process; and congestion further reduces the e�ective

pick rate by making it harder to put product in the right totes.

Bucket brigades seem to be an ideal solution to this problem because they restrict WIP and dynamically

balance themselves to achieve high production rates, all without the need of a work-content model.
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Figure 2: Production rate eÆciency decreased with increasing di�erence in worker velocities for zoned

lines; but bucket brigades remained highly productive. The maximum possible value of production rate

eÆciency is 1, which is achieved by bucket brigades under the deterministic model of work content.

6.2 Bucket brigades vs. zone picking

Our Stochastic Model provides a good description of order-picking in a distribution warehouse. In partic-

ular:

1. Walking time in a high volume DC is at least an order of magnitude less than picking time.

2. Workers proceed at di�erent velocities and may be ranked from slowest to fastest because the same

skill pertains all along the line. Indeed, many DC's track the individual pick rate of workers and

base part of their pay on this; and, in any event, everyone on the oor knows who is faster and who

slower.

3. The work at a \station" (storage location) varies from order to order, which suggests a stochastic

model of work.

Finally, because the number of stations (storage locations) is much greater than the number of workers

(by several orders of magnitude), Theorems 1 and 2 suggest that bucket brigades can be very e�ective in

co�ordinating work among order-pickers.

We tested this in both simulations and in a commercial distribution center. Figure 2 shows typical

simulation results comparing a bucket brigade, with workers sequenced from slowest to fastest, to zone-
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picking that allows up to 0, 1, 2, or 3 units of WIP to build between adjacent zones. Each line has 5 workers

and 20 work stations, with work at each station independently following an exponential distribution. The

velocities of the team are spread uniformly with the ratio of the velocity of the fastest to slowest worker

varying along the x-axis from 1 (all workers identical) to 4 (the last worker is 4 times the velocity of the

�rst), which are representative of our observations in practice. To make the comparison meaningful, we

imposed a constraint that the sum of the velocities of all worker remain constant, so that each team had

the same inherent productive capacity.

As is common in industry, we balanced zones based on a common work standard. Then the workers

were sequenced as closely as possible to adhere to the \bowl" phenomenon (Hillier and Boling, 1979). In

addition, we granted a special advantage exclusively to the simulated zone-picking by not penalizing it for

accumulation of WIP, which in real life slows throughput by creating opportunities to put product in the

wrong tote.

In this family of simulations we measured production rate eÆciency, the realized production rate divided

by the maximum possible rate, which is the sum of the velocities of the workers. The largest possible value

of production rate eÆciency is 1 and this is achieved by bucket brigades under the deterministic model (cf.

Theorem 1). When all workers were identical (which, of course, is never the case in the real world)

the production rate eÆciency of the simulated bucket brigade was similar to that of zone picking that

allows WIP between stations. But as the velocities of the workers were allowed to become distinct, as

one invariably �nds in the real world, then bucket brigades were more productive. This is because bucket

brigades spontaneously and continually adjust to account for variances in the system, including variances

in the velocities of workers and in the amount and location of work.

6.3 Experience at Revco Drug Stores, Inc.

The strongest proof of the e�ectiveness of bucket brigades when work varies comes from practice.

We implemented order-picking by bucket brigade at the national distribution center of Revco Drugs,

Inc., which supports over two thousand retail outlets. A key advantage of bucket brigades is simplicity,

so that implementation required less than an hour, with no special equipment and no changes to the

warehouse management system or related operations. This made it easy to experiment one morning on a

single aisle that had previously been using sequential zone-picking. We described the idea to the workers

in �fteen minutes, sequenced them from slowest to fastest, and watched them work.
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Figure 3: Average pick rate as a fraction of the work-standard. Zone-picking was replaced by bucket

brigade in week 12. (The solid lines represent best �ts to weekly average pick rates before and after

introduction of the bucket brigade protocol.)

The most striking bene�t of order-picking by bucket brigade was the increase in pick rates, which

reached sustained levels of 34% greater than the previous historical averages under zone-picking, while

simultaneously reducing management intervention (Figure 3). This was achieved at essentially no cost,

and in particular, with no change to the product layout, equipment, or control system (except to render

parts of the latter unnecessary).

Picking by bucket brigade produced additional bene�ts, including the following.

� Spontaneous (re)balance of the work has freed management time. Previously each aisle was monitored

by a manager who adjusted zones within the aisle to correct the inevitable intermittent imbalances

and the resulting congestion or starvation. This level of supervision is no longer necessary because

adjustments are spontaneous and continual.

Furthermore, di�erences in work rates are now visible and so it has become easier to recognize

problems. For example, at Revco each bay contains comparable amounts of work for each order and

so, under the bucket brigade protocol, each worker tends to visit a length of aisle proportional to her

pick rate. In one case, an unusually slow worker at the �rst position was repeatedly \pushed back"

by her faster teammates: She was unable to pick quickly enough ever to leave the �rst bay of ow

rack and so her teammates asked that she be removed. It was apparent to all that they could pick as

fast without her and they preferred to split the incentive pay n� 1 ways. Under zone-picking such

imbalances were harder to recognize because they could be hidden by work-in-process.
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� The synchronization of multiple aisles has become easier. A manager can now monitor the progress

of an aisle by simply checking what order any worker is picking. Under zone-picking it was diÆcult

to know the status of an aisle because of the considerable and variable work-in-process.

It has also become easier to move workers to maintain the balance among aisles. Under zone-picking,

when one picker was moved, work was interrupted while management rede�ned the zones in each

aisle; but under bucket brigades, the pickers in each aisle spontaneously adjust to account for the

new con�guration.

� A bucket brigade is extensible. For example, at Revco there was a worker picking from carousels

immediately upstream from one aisle; and she occasionally got ahead of the workers in that aisle.

Under zone-picking she had to cease working until the congestion was cleared. Now she simply joins

the bucket brigade to help them pick. After they have caught up, she returns to the carousels at the

next walkback.

� Reduced levels of work-in-process increased the accuracy of order-picking. Because the number of

totes on the conveyor is strictly controlled, there is no congestion and workers rarely put sku's in the

wrong totes.

� The pickers claim to be more satis�ed because they prefer working in teams, with clear instructions

about where to go and when. Furthermore, the simpli�ed and regularized movements mean that

temporary workers can become productive more quickly.

� The expense and inaccuracy of a work-content model can be avoided. Revco had calculated zones

several times a day based on a sophisticated, computer-hosted model of work content and advance

knowledge of all 100,000 pieces to be picked that day. With bucket brigades, Revco can abandon its

detailed work-content model and get better balance and higher productivity nonetheless.

Revco has subsequently implemented bucket brigades in all its regional warehouses, involving hundreds

of order-pickers, all of whom had previously picked by zone. As of this writing they have been successfully

using bucket brigades for over four years.
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7 Extensions and open problems

In the statement and proof of Lemma 1 we have followed the Normative Model, in which the velocity of

worker i is a constant, vi, unless blocked by the worker immediately downstream. However, the queueing

equivalence used in our proof allows extending the result to more general models in which the velocity of

each worker may be either state dependent (dependent on the locations of the workers, as in Bartholdi

and Eisenstein, 1996), or time dependent. (Discussions of state- and/or time-dependent dynamic comple-

mentarity may be found in Appendices 2 and 3 of Pats, 1995).

A result similar to Theorem 2 holds when workers are sequenced other than slowest to fastest. However,

the Skorohod J1 topology does not allow several jumps accumulating at the same point in time, which

could occur if vi > vi+1 or if vi = vi+1 and xi = xi+1 (in which case the conditions at the end of the proof

fail, with �m
k =m and �m

k+1=m both converging to the same time �j). Therefore, to show a similar result

for any sequence of workers (not just slowest to fastest), we would need to use an even weaker topology

than the Skorohod J1. However, the model with instantaneous movement and v1 � v2 � � � � � vn is the

most interesting, so we have presented the analysis for this case only.

Other researchers have considered stochastic models of work-sharing on a ow line; but all assume that

the workers are identical in velocity (Bischak, 1996; Zavadlav, McClain, and Thomas, 1996). We believe

that it is unrealistic to assume that workers proceed at identical speeds when the workers are humans.

However, assuming the workers are identical can be useful: In particular, it gives a case in which the

throughput is easily computed and should be a lower bound on achievable throughput for heterogeneous

workers. If the n workers have identical velocities, then the columns of the generator also sum to zero.

Hence, the stationary distribution has all states equally likely, as when the transition matrix of a Markov

chain is doubly stochastic. The throughput is simply the proportion of states with worker n at the last

machine times the velocity of a single worker. If we scale the velocities vi = m=n, then the system

throughput would be one if there were no blocking. The actual system throughput is simply

�
n+m�2
n�1

�
�
n+m�1

n

�m
n

=
m

n+m� 1
: (21)

This expression appears in Bischak (1996) except that the velocities of the workers are � instead of

m=n. Bischak derived the result by showing an equivalence between bucket brigades and cyclic queues

when worker's velocities are equal.

Note that the throughput achieves the maximum possible rate of 1 when there is n = 1 worker. Also

16



note that throughput increases with the number of machines m, but decreases with the number of workers

n. Of course, this is under the assumption that increasing the number of workers does not increase their

combined work rate m, but simply splits it evenly over more workers. Thus, the result implies that it is

better to have fewer workers with the same combined speed than many. As the lower bound suggests, we

would not expect bucket brigades to work particularly well when there is a small number of machines and

a relatively large number of workers. For example, if there are two workers and three machines, the lower

bound guarantees a throughput of only 3/4. Of course, it is even worse if there are three workers and two

machines since at least one of the workers is always blocked and the lower bound drops to 1/2. However,

if m is large relative to n, bucket brigades should function well, as they have in practice.

Expresion 21 also gives an upper bound on the fraction of production rate lost due to blocking:

1�
m

n+m� 1
=

n� 1

m+ n� 1
(22)

The preceding discussion alludes to two interesting open problems for the Stochastic Model. The

�rst problem is which arrangement of workers is optimal in the bucket brigade? The intuitively obvious

answer is slowest to fastest, but this is unproven. The second problem is whether assuming workers are

homogeneous (that is, their combined speed is divided evenly among the workers) provides a lower bound

on the production rate of the workers arranged slowest to fastest. Again the intuitively obvious answer

is yes, but this result is also unproven. These two results together with the simple expression (21) would

combine to give a useful lower bound on throughput of any bucket brigade with m machines and n workers

sequenced slowest to fastest.

When work-content is \suÆciently variable", bucket brigades could, in principle, be out-performed by

a policy that allowed instantaneous resequencing of the workers. For example, if at some instant worker 1

was far behind worker 2, and worker n � 1 was close to worker n, it would be better to swap workers 1

and n � 1 to decrease the likelihood of blocking in the near future. It is an interesting control problem

to determine which sequence of workers is optimal at each instant; however, it is unlikely that an optimal

policy for this model would be worth implementing in most real world situations.

8 Conclusions

The main bene�ts of bucket brigades are increased production rate, reduced dependence of work-content

models, and simpli�ed management. These bene�ts were so substantial at Revco that other, initial con-
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cerns, such as whether brigade members might shirk or free-ride, were dismissed as second order e�ects at

best.

Bucket brigades can be more productive than traditional assembly lines for a number of reasons: First,

bucket brigades constantly and spontaneously seek balance; and second, balance is based on the actual,

realized work content, and the particular workers | and not mere estimates of work content based on

standardized workers. Furthermore, bucket brigades can achieve high production rate without resorting

to high work-in-process because they absorb variance in the work by moving the workers where the work

is. Of course the strongest \proof" of the e�ectiveness of bucket brigades is experience across a range

of commercial applications, one of which we have reported here. Others may be found at our web site

www.isye.gatech.edu/faculty/John_Bartholdi/bucket-brigades.

Our work may be seen to lie within two current streams of thought. Most immediately, it is a special

case of dynamic line-balancing, wherein an intelligent controller adjusts the allocation of work in real

time (for example, Ostolaza, Thomas, and McClain, 1990). For bucket brigades the allocation occurs

spontaneously, which has the considerable advantage of requiring no controller at all. Furthermore, as of

this writing, bucket brigades are unique in that local adjustments (worker movement) have been proved

to lead to global balance.

The second stream of thought into which our work �ts is the hosting of computational processes on

analog devices. In our case the assembly-line is the computer of its own allocation of work. It might be

said that we program this computer by sequencing the workers from slowest to fastest. There is no need

to measure and input data because the work content is read directly by the doing of it. The output is the

balance.
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A Proof of Lemma 1

Proof. To solve the set of equations we �rst consider a related problem in which the workers are not

constrained to [0; 1), but instead are allowed to continue moving to the right on [0;1) without ever

resetting. This process (X̂; T̂ ) will be the solution to the following set of equations, which hold for

i = 1; : : : ; n and t > 0:

X̂i(t) = xi + viT̂i(t) (23)

X̂(t) 2 Ê (24)

T̂i(0) = 0 and T̂i(t) is non-decreasing (25)

Îi(t) = t� T̂i(t) (26)Z
1

0

1
�
X̂i+1(t) > X̂i(t)

�
dÎi(t) = 0 (27)

where Ê � f(`1; : : : ; `n)j0 � `1 � `2 � � � � � `n <1g.

If we de�ne Qi(t) � X̂i+1(t)�X̂i(t), we can view (Q1(t); : : : ; Qn�1(t)) as the vector of amounts of uid

in a deterministic uid queueing system consisting of n� 1 servers in tandem. Fluid arrives continuously
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to the last queue, Qn�1(t), at rate vn. The i-th queue pumps uid to the (i � 1)-st queue at rate vi

as long as uid is present. Fluid pumped out of the �rst queue is lost from the system. Rewriting

equations (23){(27) in terms of (Q1(t); : : : ; Qn�1(t)) yields a special case of the dynamic complementarity

problem (DCP) discussed in Dai (1995), Pats (1995), and Harrison and Reiman (1981). From Theorem 1

in Harrison and Reiman (1981), there exists a unique solution to these rewritten equations even when they

are restricted to t 2 [0;M ] for any positive M; hence, there exists a unique solution (X̂; T̂ ; Ŝ) to (23){(27).

Let �1 � infft � 0jX̂n(t) = 1g, which will be the �rst reset time. Thus, for t 2 [0; �1), we must have

�X(t) = X̂(t), �T (t) = T̂ (t) and �S(t) = 0.

Now assume that ( �X; �T ; �S) is uniquely de�ned for t 2 [0; �k). Rede�ne and reconstruct (X̂; T̂ ), except

use R( �X(�k�)) as the starting position of the workers. This must be the starting point due to (1) and (6).

De�ne �k+1 = �k + infft � 0jX̂n(t) = 1g. Note that R( �X(�k�)) 2 E and �k+1 > �k. For t 2 [�k; �k+1),

de�ne �X(t) = X̂(t), �T (t) = T̂ (t) + �T (�k), and �S(t) = �X(�k�) � R( �X(�k�)) + �S(�k). Note that �k is

not necessarily the k-th reset time because more than one reset may occur (more than one item may be

produced) at �k. Continuing in this fashion, we will have constructed ( �X; �T ; �S) which is the only solution

to (1){(6) provided �k !1. However, this follows since the number of items produced in any interval of

length t is bounded above by n+ t=(v1 + � � �+ vn).

B Proof of Theorem 2

Proof. Let �m
1 be the �rst reset time in the stochastic model, and let 	m be the �rst time that that one

of the workers is blocked in the stochastic model. In the rescaled model, the �rst reset time is �m
1 =m

and the �rst time blocking occurs is at 	m=m. During the interval [0;min[�m
1 =m;	

m=m]), we have

~Xm(t) = ~Xm(0) +N((mt))=m. Since N(mt)=m
u:o:c:
�! vt and Xm(0)! x, we have

~Xm(t)! x+ vt uniformly for 0 � t < min[M; lim
m!1

min[�m
1 =m;	

m=m]]; (28)

where M is any positive �nite constant. Under the assumptions that xi < xi+1 and vi � vi+1, the ith and

i+1st coordinates of x+ vt di�er by at least xi+1�xi for all t � 0. Hence, Pr f�m
1 =m < 	m=mg ! 1 and

�m
1 =m ! �1, where �1 is the �rst reset time of the uid model as used in the proof of Lemma 1. To see

that Pr f�m
1 =m < 	m=mg ! 1, note that if 	m=m � �m

1 =m, then two workers are at the same location,

i.e., have zero separation, at time 	m=m. If Pr f�m
1 =m < 	m=mg ! 1 � � with � > 0, then (28) would
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not hold. Thus, ~Tm(t)! et for t 2 [0; �1) and ~Xm(�m
1 =m�)!

�X(�1�); hence,

~Xm(�m
1 =m) = (0; ~Xm

1 (�m
1 =m�); : : : ;

~Xm
n�1(�

m
1 =m�))!

�X(�) = R( �X(�1�)):

Furthermore, �X(�1) has the property that 0 � �X1(�1) < �X2(�1) < � � � < �Xn(�1) < 1. Hence, we can repeat

the argument on the next interval of time [�1; �2). Since �k < �k+1 and since for any time t, the number

of resets is at most n+ t=(v1+ � � �+ vn), we can see that ~Xm(t)! �X(t) for t 62 f�1; �2; : : : g, �
m
k =m! �k,

~Tm(t)! et, ~Xm(�m
k =m�)!

�X(�k�), and ~Xm(�m
k =m)! �X(�k).

To show ~Xm J1
�! �X, we use Proposition 6.5 in Chapter 3 of Ethier and Kurtz (1986). In our case, it

suÆces to show that whenever ftmg � [0;1), t � 0, and tm ! t the following conditions hold, where r is

the sup norm:

� min(r( ~Xm(tm); �X(t)); r( ~Xm(tm); �X(t�))! 0.

� If r( ~Xm(tm); �X(t))! 0, sm � tm for each m, and sm ! t, then r( ~Xm(sm); �X(t))! 0.

� If r( ~Xm(tm); �X(t�))! 0, 0 � sm � tm for each m, and sm ! t, then r( ~Xm(sm); �X(t))! 0.

These conditions are easy to show after noticing that there exists � > 0 such that �k+1 � �k � � for

k = 1; 2; : : : :
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