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In ““bucket brigade’” manufacturing, such as recently introduced to the apparel industry, a production line has n workers moving
among m stations, where each worker independently follows a simple rule that determines what to do next. Our analysis suggests
and experiments confirm that if the workers are sequenced from slowest to fastest then, independently of the stations at which
they begin, a stable partition of work will spontaneously emerge. Furthermore, the production rate will converge to a value that,
for typical production lines, is the maximum possible among all ways of organizing the workers and stations.

Traditional means of organizing a production line,
such as a classical assembly line, are inflexible. In a
classical assembly line, workers are assigned fixed work
stations and the station with the greatest work content
determines the production rate. Realistically, there are
only two ways to change the production rate: Either
change the number of shifts or else redistribute the tasks,
tools, and parts over different stations. The first allows
only coarse adjustments and the second is expensive and
disruptive.

It is particularly important that production systems be
flexible when products have extreme seasonalities or
short life-cycles, such as in the apparel industry. To in-
crease flexibility of production in the apparel industry, a
variation of the assembly line has recently been intro-
duced in which there are fewer workers than stations and
workers walk to adjacent stations to continue work on an
item. Control of the line is decentralized: Each worker
independently follows a simple rule that determines what
to do next. This idea has been commercialized by Aisin
Seiki Co., Ltd., a subsidiary of Toyota, and named the
“Toyota Sewn Products Management System’’, or TSS.!
TSS is used in the manufacture of many types of sewn
products, including apparel, furniture, shoes, handbags,
suitcases, and fish nets.

Here ts how TSS works. Call each instance of the
product an item and consider a flow line in which each of
a set of items requires processing on the same sequence
of m workstations, as in Figure 1. A station can process
at most one item at a time, and exactly one worker is
required to accomplish the processing. All items are
identical and so each requires the same total processing
time according to some work standard, which we nor-
malize to one ‘“‘time unit.”” Let the processing require-
ment at station j be p,, a fixed percentage of the total
standard work content of the product.

A TSS line functions as a sort of “‘bucket brigade” in
which each worker carries an item from station to sta-
tion, processing it at each station, until passing it off to a
subsequent worker. This behavior can be realized by
numbering the workers from 1 to n according to their
sequence on the line (in the direction of product flow)
and requiring each worker to independently follow this
rule.

TSS Rule (forward part). Remain devoted to a single
item, and process it on successive workstations (where
at any station the worker of higher index has priority). If
your item is taken over by your successor (or if you are
the last worker and you complete processing the item),
then relinquish the item and begin to follow the back-
ward part.

TSS Rule (backward part). Walk back and take over the
item of your predecessor (or, if you are the first worker,
pick up raw materials to start a new item). Begin to
follow the forward part.

Two points are worth emphasizing about the TSS rule.
The first is that a worker can be blocked during the for-
ward phase if she? is ready to work at a station but that
station is occupied by another worker. Under the TSS
rule each worker remains busy unless blocked, in which
case she must wait for the station to become available.

The second point is that during the backward phase
each worker interrupts her predecessor to take over her
work. In effective TSS lines a great deal of effort is in-
vested to avoid introducing idle time during the ‘‘hand-
off.”” For example, the line is configured in a U-shape to
reduce walking time, workers sew standing up at waist-
high machines, and workers practice making the handoff
smoothly.
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Figure 1. A simple flow line in which each item requires processing on the same sequence of workstations.

A typical TSS line that we observed was devoted to
the production of women’s slacks. It had seven stations
and was staffed by three workers. The first worker began
sewing cut cloth; and the last worker ironed the slacks,
attached labels, folded and packaged the slacks, and put
them in a box for shipping. The total work content of the
slacks was about seven minutes, with 45-90 seconds of
work at each station. It was no more than 2-3 seconds
from the time the last worker finished a pair of slacks and
began walking back to take over from her predecessor
until the first worker began a new pair of slacks.

In fact, none of the TSS lines we have observed for-
malized a TSS “rule” nor did they follow our rule to the
letter. Instead, there have always been local improvisa-
tions to account for particulars of the product, the equip-
ment, or the team members. Moreover, the standard
implementation of TSS has changed since its introduc-
tion to the U.S. apparel industry in 1989. The TSS
““rule’” is our abstraction, which captures the essential
behavior of TSS lines.

Many questions leap to mind: How does a TSS line
behave? Is TSS effective? How does one control or even
predict the production rate? To be sure, factory manag-
ers are discovering answers to these questions on the
shop floor. Here we begin a formal analysis of a model
of TSS. Our results suggest and experiment confirms that
if TSS workers are sequenced from slowest to fastest
then, during the natural operation of the line, the work
content of the product will be spontaneously reallocated
among the workers to balance the line—without con-
scious intention by the workers and without intervention
by management. This capacity for self-organization al-
lows management to fine-tune the production rate by
simply changing the number of workers on the line,
which in turn elicits a spontaneous reallocation of work.

1. A MODEL OF TSS

It is difficult to visualize the flow of items on a TSS line
because the workers move asynchronously and are not
explicitly limited to any particular set of stations. How-
ever, we can view the line as a dynamical system
(Devaney 1989) by expressing the position of worker i
as the fraction x; of work completed on her item, as

T

illustrated in Figure 2; then the state of the system at any
time can be summarized by the vector of worker posi-
tions x = (x4, ..., X,). The phase space of the system is
a subset of the closed n-cell {(x;,..., x,): 0 <
x, € -+ € x,, < 1}, as illustrated in Figure 3. The ine-
qualities 0 < x; < -+ € x,, < 1 arise because the TSS
rule does not allow workers to pass one another.

We model each worker i by a velocity function v,(x)
that gives her instantaneous work velocity at position
x € [0, 1] (when not blocked by an occupied station).
To avoid modeling pathologies we require that

e each v, is continuous almost everywhere on [0, 1]; and
e there exist numbers b and B such that, for each
workeri, 0 < b < v,(x) < B < « forall x € [0, 1].

Roughly speaking, these restrictions say that a worker
cannot abruptly change speed at every instant; and work-
ers are neither infinitely fast nor infinitesimally slow.

Our model of worker skills includes one used by the
apparel industry, wherein each worker has a documented
skill profile giving her velocities at different tasks as a
percentage of work standards. This corresponds to a v;
that is a step function.

The TSS lines we have seen required no more than a
few seconds for any worker to walk back and take over
the work of her predecessor. Therefore, we make the
modeling assumption that, while the workers move for-
ward with finite velocities, they move backward with
effectively infinite velocity, so that when the last worker
finishes an item, then—at the same instant—worker n
takes over from worker n — 1, who takes over from
worker n — 2, ..., who takes over from worker 1, who
introduces a new item into the system. We say that the
line resets at such an instant. This simplification frees us
from worry about the details of the continuous-time evo-
lution of the TSS line; instead, we can restrict our atten-
tion to the sequence {x@, x, x@, ... 5 x@¥, ..} of
worker positions at those instants immediately after the
line resets.> Note that x{» = 0 and for convenience we
define x), = 1.

In the terminology of dynamical systems, x*) is the ¢th
iterate of the TSS system and the sequence of worker
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Figure 2. The standard work content of the product is represented as a line segment normalized to length 1, which is
partitioned into intervals corresponding to the work stations. The position of worker i is given by x,, the
cumulative fraction of work content completed on her item.
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Figure 3. The phase space of a TSS line with two work-
ers, whose positions are given by (x,, x,), is
that portion of the upper triangle outlined in
bold. The feasible region is above the dotted
line because worker 1 can never pass worker
2. The tick marks on the axes correspond to
the partition of work among the stations and
the saw-toothed edge of the phase space arises
because no more than one worker can use a
station at a time.

positions is the orbit beginning at x©. Let f be the func-
tion, defined implicitly by the TSS rule, that maps the vec-
tor of worker positions after one reset to that after the
subsequent reset, so that xX**? = f(x). Now we can
study the behavior of a TSS line by studying its orbits,
where each orbit {x) = f/(x(?)}_, is determined by the
initial positions x? of the workers.

2. BALANCE

A TSS production line is ““balanced”’ if each worker re-
peats the same interval of work content on successive
items. A balanced line produces at a steady rate; and
each worker can concentrate on a subset of the work
content. Because the TSS rule imposes no apparent re-
strictions on where a worker might move, it is not clear
whether a line can maintain balance or indeed whether
balance can be achieved at all.

Our first result shows that balance is always at least
theoretically possible; that is, there exist worker posi-
tions such that, if the workers begin at these positions,
then, after completion of each item, they will reset to
exactly these same positions to begin work on the subse-
quent item.

1
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Theorem 1. For any TSS line, there exists a fixed point
x* = f(x*); that is, there exist worker positions x* such
that if the workers start at positions x*, then they will
always reset to x*.

Proof. See the Appendix, Section A.1.

One of the main concerns of this paper will be to de-
termine how a TSS line can be designed to operate at or
near its point of balance (that is, its fixed point) so that
the workers repeat the same portions of work.

3. SELF-BALANCE

We say that worker j is faster than worker i if she is
discernably faster at every portion of work content:

(Vi(x)
sup —) <1;
xef0,1] \Vi (%)

and we write v; < v; to indicate this.*

We first observe that, if the TSS workers are se-
quenced from slowest to fastest, then the fixed point is
unique. In contrast, when workers are not sequenced
from slowest to fastest, then there can be multiple fixed
points.

(1)

Lemma 1. If the workers are sequenced from slowest to
fastest, then the fixed point of the TSS line is unique.

Proof. See the Appendix, Section A.3.

Our main result is that, if the workers are sequenced
from slowest to fastest, then there exists a unique fixed
point to which all orbits converge, so that the behavior of
the line is independent of the starting positions of the
workers. In addition, if there is no blocking, then each
worker invests the same clock time in each item
produced.

It makes sense to put slower workers before faster
ones to avoid blocking (a local phenomenon); what may
be surprising is that this is sufficient to elicit global orga-
nization: the spontaneous emergence of balance.

Theorem 2. For any 1TSS line, if the workers are se-
quenced from slowest to fastest, then any orbit of worker
positions {x) = f{(xD)} converges to the unique fixed
point.

Proof. See the Appendix, Section A.4.

An interesting special case of our model illustrates the
essential analysis (and probably provides an adequate
description of most real TSS lines). Assume that each
worker i has a velocity that is constant over the entire
unit of work, so that v,(x) = v,. Since all velocities are
constant, there are no advantages to specialization of
labor and so the largest possible production rate under
any organization of the workers is >}, v, items per unit
time. If in addition no episode of blocking is ““too long”—
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such as when p,._, is sufficiently small—then the dynamics
of the TSS line become linear and the following stronger
results hold.

Theorem 3. If worker velocities are constant with v,
< <+ < v, and if workers are never blocked, then the
TSS line converges exponentially fast to a unique fixed
point at which:

1. Worker i repeatedly executes the interval of work
content

2;;} v, 2}=1 VJ]
Siavi 2pv,)

2. The production rate is 3]_, v;, the largest possible.

Proof. Because no episode of blocking is appreciably
long, the worker positions change from one iteration to
the next as follows.

x{tD =0; and
1-xB .
xD =x[0 + v,-_1(v—x") i=2,...,n,
from which it follows by simple algebra that for i =
2, ..., n,
1 —x,(,‘))

xt(f'—-fil) _xl(t-i'l) =xt(t) _xt(t—)l + (Vi - Vj—l)( v
n

xfiD = x D X —xfy + (1 _ Vi—1)(1 -x
Vi Vi Vi Vn

D - xftD (x,m —x,@l) (v,_l)
Vi Vi-1

Letting

t+1 t+1

(£+1) xl(+1 ) _xl( )
a; = s
v,

which may be interpreted as the clock time separating
workers i and i + 1 at the start of iteration ¢ + 1, we can
summarize the dynamics of the line as follows.

aft*V=a$; and

v, - Vi- .
alt+) = (;_l)a;gl + (1 - ;—})a,gt) fori=2,...,n.

i i

Rewriting these equations as a linear system
al*l = Ta®,

we observe that this sequence of iterates converges be-
cause T is the transition matrix of a finite state Markov
chain that is irreducible and aperiodic (Resnick 1992).
After solving for the limiting “probabilities” m, =
v,/ 2k Vi, We get that the ith component of the limit point
a*isaj =3 ma® = 1/3; v;. The other claims follow
by simple algebra.

This may be interpreted as showing that, to configure a
bucket brigade from well to fire, one should put the fast-
est people close to the fire; then the people will, without
intention, space themselves to convey the greatest possi-
ble flow of water upon the fire. The system optimizes
itself.

The details of this proof illustrate the general ideas of
the full argument. The main trick is to simplify analysis
by looking, not directly at the positions of the workers,
but at the clock time a{) required for each worker i to
reach the position of her successor. We refer to this time
as the allocation of work suggested by the partition x(*).
(Allocations are defined for the general model in the
Appendix, Section A.2.) When workers are sequenced
from slowest to fastest, the largest allocation—which
would be the cycle time of the line if the allocations
suggested by the current x) were fixed—converges from
above and is guaranteed to have decreased after each
completion of n items. Thus, the production rate in-
creases to a limit whose value is independent of the start-
ing positions of the workers.

Figures 4 and 5 show the convergence of a system
from two complementary points of view. Figure 4 shows
an example of how the movement of the workers stabi-
lizes, with the faster workers eventually allocated more
work; and Figure 5 shows the convergence of the system
within the state space of worker positions. These simula-
tions were generated by three workers of constant veloc-
ities v = (1, 2, 3).

4. IMBALANCE

In computational experiments with workers sequenced
other than from slowest to fastest, (our model of) a TSS
line can fail to balance itself. By Theorem 1 there always
exists a balance point at which workers always reset to
the same position; the trouble is that the fixed point can
be a repeller, so that if the system ever deviates, how-
ever slightly, from that point, then the system must inex-
orably diverge from it (Devaney). Typically, the line
becomes trapped in periodic behavior: It ‘‘sputters,”
producing erratically and at a suboptimal production
rate.

Figure 6 shows a simulation, generated by workers of
constant velocities v = (3, 1, 2), in which the fixed point
is a repeller and any orbit that strays must eventually be
trapped by a limit cycle with a production rate less than
that at the fixed point. In the limit cycle a faster worker
is repeatedly blocked by a slower worker, with a conse-
quent waste of productive capacity. In other simulations
we have found instances of quite large cycles, some at
the limits of the numerical resolution of our computer
and of the patience of the observers. Our model is also
capable of ‘“‘quasiperiodic’® behavior, which means that
it is predictable but not periodic. For example, with con-
stant velocities v = (2, 1, 2), all orbits converge to the
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Eventual partition of work

time

cycle time

0

1

Figure 4. A time-expanded view of a TSS production line with three workers sequenced from slowest to fastest. The
solid horizontal line represents the total work content of the product and the solid circles represent the initial
positions of the workers. The zigzag vertical lines show how these positions change over time and the
rightmost spikes correspond to completed items. The system quickly stabilized so that each worker repeatedly
executes the same portion of work content of the product.

periphery of an ellipse, the center of which is a fixed
point-but worker positions never repeat.

For a fixed set and sequence of workers our simula-
tions have shown such phenomena as multiple fixed
points, both attractors and repellers, multiple limit cy-
cles, and long-term behavior that depends on the starting
positions of the workers. This suggests that, if workers
are not sequenced from slowest to fastest, there can be a
structural tendency toward persistent imbalance in a TSS
line. This could be a practical problem if the imbalance is
significant. (In a companion paper we have catalogued all
possible asymptotic behavior of 2- and 3-worker lines

and interpreted its significance for practice (Bartholdi,
Bunimovich and Eisenstein 1995a).)

More troubling than complicated behavior is anoma-
lous behavior. The simplest manifestation of this is that
adding a worker to the line can decrease the production
rate if the slowest-to-fastest sequence is not respected.
For example, consider an m station line with processing
times p = (1/m, ..., 1/m) staffed by a single worker
of velocity k, where 1 < k < m. The production rate of
this line will plummet from & items per time unit to only a
little more than two items per time unit if a worker of
velocity 1 is added to the end of the line, where she
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Figure 5. The positions of the workers on the production
line at successive instants when it resets.
(Since the position of the first worker is always
0 when the line resets, only (x,, x3), the posi-
tions of the second and third workers, are plot-
ted here.) From any initial position the system
converges to the fixed point (1/6, 1/2). The pro-
duction rate also converges to a unique val-
ue—in this instance, 6, the maximum
possible—that is independent of where the
workers start on the line.

repeatedly blocks the faster worker. Thus, one can in-
duce an arbitrarily large gap between production capac-
ity and realized production rate.

It is less obvious that increasing the velocity of a
worker can decrease the production rate. For example,
consider a TSS line with processing times p = (1/2, 1/4,
1/4). On this line workers of constant velocity v = (2, 1,
1) will achieve a production rate of four items per unit
time; but if worker 3 doubles her velocity, the first
worker will always be blocked and the production rate
will decrease from 4 to 8/3. Therefore, increasing produc-
tion capacity by 25% causes a 33% decrease in realized
production rate!

We emphasize that system behavior can be neither
complicated nor anomalous when workers are sequenced
from slowest to fastest.

Theorem 4. If workers on a TSS line are maintained in
sequence from slowest to fastest, then adding or speed-

ing up a worker will never decrease the production rate.

Proof. See the Appendix, Section A.3.

1

5. THE PRODUCTION RATE OF TSS LINES

Here we demonstrate that the logic of TSS cannot by
itself guarantee the best production rate if there is a
pathological mismatch between the sequence of workers
and the assignment of work content to stations. Never-
theless, a TSS line in which workers are sequenced from
slowest to fastest will always achieve a production rate
that is good in the following sense: Other sequences can
perform much worse but not too much better.

The following example shows that a sequence other
than slowest to fastest can be arbitrarily less produc-
tive than the slowest-to-fastest sequence of workers. Con-
sider a TSS line with p = (¢, 1 — €) and two workers, one
of constant velocity e and the other of constant velocity
1 — e. In this sequence the workers achieve a production
rate of one item per time unit; but reversing the sequence
gives a production rate of /(1 —~ ¢) items per time unit,
which can be made arbitrarily small. Thus, the worst-case
ratio of production rates is unbounded above.

On the other hand, a sequence of workers other than
slowest-to-fastest cannot achieve a production rate that
is ““too much”’ better than that of the slowest-to-fastest

1

z3

0 z2

Figure 6. The positions of the workers on the production
line at successive instants when it resets. In
this instance the fixed-point (1/2, 2/3), indi-
cated by », achieves the largest possible rate of
production, but is a repeller, and any orbit that
strays from it will be trapped by the attracting
but suboptimal limit cycle consisting of the
points (3/15, 7/15), (7/15, 7/15), (11/15, 11/15),
and (2/5, 13/15), indicated by e’s. As the sys-
tem is trapped by the limit cycle, the cycle
time of the line oscillates and the average pro-
duction rate converges to 60/11, which is less
than the optimum value of 6.
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sequence. More specifically, when the fastest worker
is last, the production rate of a TSS line at its fixed point is
always within a factor n of the best achievable by any
other sequence of the workers. This follows because the
fastest, last worker is never blocked. One can construct
examples that achieve this bound asymptotically.

We emphasize that, although this worst-case behavior
is possible within our model, it is not a practical problem
because neither persistent blocking nor pathological mis-
match of workers to stations will be found. First, persis-
tent blocking is not tolerated. If some station is
recognized as a bottleneck, then either workers are re-
moved from the line or else the station is duplicated (and
all of our results can be shown to hold for a line with
parallel stations). Second, a pathological mismatch of
workers to stations is generally not possible where, as in
the apparel industry, most tasks are variations of a single
skill such as simple dexterity. Theorem 3 therefore sug-
gests that real TSS lines will achieve a (nearly) maximum
rate of production if the workers are sequenced from
slowest to fastest.

6. VALIDATING THE MODEL

The details of our model are confirmed by evidence, both
anecdotal and experimental, and by industry practice.
More importantly, the predictions of our model are con-
firmed by the operation of real lines, in both the labora-
tory and at commercial sites.

Here are the distinctive features of our model and its
predictions.

6.1. Deterministic Processing Times

We timed several workers over hundreds of task execu-
tions on the shop floor at a commercial site. Figure 7
shows the distribution of actual times for a specific
worker to complete a specific task. It is representative of
all the workers we timed and it is consistent with mea-
surements by factory personnel.

In analyzing actual processing times measured on the
shop floor, we discerned two sources of variance in the
execution of a given task by a given worker. The first
source was the inevitable small ““noise.”” This was

0.25
0.20
0.15 1
% of observations
0.10
0.05
0 5 10 15 20 25 30 35 40

seconds

Figure 7. The distribution of actual processing times for
a single worker at a TSS station. The small
bump to the right is due to regular pauses to
position raw materials.

BARTHOLDI AND EISENSTEIN / 27

generally because small variations in the cut cloth re-
sulted in small variations in the time to position the cloth
under the needle. While this component of task time
seems properly described as “random,” its variance was
insignificant. (It is reflected in the first, major peak in the
distribution of task times in Figure 7.)

The second source of variance was that due to occa-
sional interruptions to which sewing is subject (and
which form the second, small peak in Figure 7). Most of
the long delays were not randomly occurring: Instead,
these were the regular pauses to position new bundles of
raw materials. Significant ““random”” interruptions, such
as a dropped garment, a quality problem, or a thread
break, occurred much less frequently.

We judged the first type of variance to be insignificant
because, ignoring documented pauses to position raw
materials, the coefficient of variation of the processing
time was less than 10% for an average worker and task.
This is to be expected because the workers perform the
same set of tasks several hundred times each day and so
become quite consistent at it. Accordingly we modeled
processing times as deterministic. Interruptions are not
intrinsic to our model; instead, we consider them to be
extraneous shocks to the system. Our model explains
how the dynamics compensate for such shocks to re-
establish balance.

(We have found contexts in which a stochastic model
seems appropriate. For example, Bartholdi, Bunimovitch
and Eisenstein (1995b) analyze TSS-style picking from a
flowrack in a warehouse supporting retail operations. In
this case, the composition of orders to be picked can
vary significantly and seems best modeled as a random
variable. Suffice it to say here that under mild assump-
tions the vector of worker positions converges to a ran-
dom variable, the distribution of which is independent of
the starting positions of the workers.)

6.2. Distinguishable Workers

Workers vary significantly in speed, as shown in
Figure 8, which gives the average velocities of sixty-one

o
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0.5 0.6 0.7 0.8 09 1.0 1.1 1.2 1.3 1.4 15 1.6

velocity as a fraction of work standard

Figure 8. Distribution of average velocities of sixty-one
workers.
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apparel workers at a commercial site. Furthermore, this
large variation in worker speeds persists because the
turnover rate among employees in the U.S. apparel in-
dustry is over 40% per year, with many new employees
entering the workforce (‘‘Apparel Plant Wages Survey,”
Human Resources Committee of the American Apparel
Manufacturers Association, 1993).

6.3. Well-Defined Ranking

The usefulness of our results depends on whether work-
ers can be ranked by velocity. All the people we inter-
viewed, both managers and workers, said this could be
done. Furthermore, they suggested that people who had
worked together would generally agree on the ranking.
We tested this at the Apparel Manufacturing Technology
Center of the Southern College of Technology. We asked
three experienced workers (A, B, and C) and a fellow-
worker to rank each of A, B, and C by speed. These
rankings were gathered by secret ballot and are:

A<B<(C
A<B<C
A=B<C
B=sC=A,

where the last ballot was cast by A. The near unanimity
of the rankings supports our assumption that workers
can in fact be sequenced from slowest to fastest. (This
probably reflects the fact that work in the apparel indus-
try involves mostly variations on a single skill, sewing.
Such agreement may be less likely on production lines
that require a mix of quite different skills.)

In further support of our model, an employment test
that is widely used in the apparel industry is based ex-
actly on our hypothesis: That workers can be ranked
according to a single measure that will predict their pro-
ductivity (Trego 1981, 1989). Furthermore, this test is
required by federal statute to be statistically significant at
the 0.05 level (Volume 29 of the Code of Federal Regula-
tions (7-1-93 Edition), Chapter XIV, ‘“Equal Opportunity
Employment Commission,” §1607.14.B, “‘Uniform
Guidelines on Employee Selection Procedures; Techni-
cal Standards for Validity Studies’’). Therefore, either
our model is correct that workers can be ranked or else
many factory managers are in potential violation of the
law.

6.4. Predictions of the Model

The most important confirmation of our model was pro-
vided by comparing its predictions to observed behavior.
We ran a TSS line with workers A and C from subsection
6.3. The line manufactured two batches of six items
each, with both workers beginning each run at position
(0, 0) (the beginning of the line). As shown in Figure 9,
when the workers were sequenced from slower to faster
the clocktime contributed by the last worker to succes-
sive items appeared to be converging. Furthermore, it is
evident that the contribution of the last worker was, on
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Figure 9. Clocktime invested in each item by the last
worker for each of two production runs. When
two workers were sequenced from slower to
faster (marked by ®), the contribution of the
last worker was apparently converging as pre-
dicted by our model. When the workers were
sequenced from faster to slower (marked by
©), no convergence was evident and the pro-
duction rate slowed perceptibly.

average, smaller when the workers were sequenced from
slower to faster; and because this contribution is also the
time between completions of successive items, one can
see that the slower-to-faster line had a higher average
rate of production.

The correctness of our model was further confirmed by
visits to industrial sites. Each site we visited had given
some thought to sequencing the workers. Though none
sequenced workers from slowest to fastest, two sites had
nearly reached that conclusion by trial and error. At one
site, management initially put the oldest, slowest work-
ers at the last position in each line, thinking the work
there would be less strenuous because it was mostly in-
specting and packaging finished items. When this re-
sulted in a substandard rate of production, management
reversed their initial policy and began placing the fastest
worker at the end of the line and observed an immediate
and significant increase in production rate.

At another site, management initially assigned any
new, slow worker to the middle of the line, thinking that,
with a faster worker on either side, the new worker
would be forced to improve quickly. This idea was sub-
sequently abandoned in favor of assigning new workers




to the first position to avoid blocking more experienced,
faster workers.

Sometimes we found that workers were sequenced by
criteria other than speed. For example, on one unusual
TSS line there was a station that required special skills
and the single qualified worker had to be assigned to that
station. We also found, to our consternation and delight,
a line in which the workers were organized according to
the principle tallest-to-shortest! This came about by spe-
cial circumstance. The team included both a very tall
worker and a very short worker; and the heights of the
tables at which they usually sewed were set accordingly.
Management wanted to avoid a short person trying to
sew at a high table.

7. RELATED WORK

The first paper on TSS was apparently that of Schroer,
Wang and Ziemke (1991), who built a simulation model
of a particular TSS line they observed at a trade show.
Because the point of their work was to demonstrate ca-
pabilities in object-oriented simulation, they gathered
statistics on the single instance they simulated but did
not pursue analysis of the TSS system and reached no
general conclusions about TSS lines.

Unfortunately, their paper contains some inaccuracies
that have mislead subsequent researchers. In particular,
it is mistaken in its description of a TSS line (private
communication, Len Egan, President, Americas 21st,
Inc.). Contrary to the description of Schroer, Wang and
Ziemke there are no buffers for work-in-process inven-
tory. It is the firm opinion of TSS practitioners that this
is disadvantageous.

Our model of TSS is different from others in two main
respects. Most have followed Schroer, Wang and Ziemke
in assuming that all workers are identical but that task
times are random (Bischak 1993, Zavadlav, McClain and
Thomas 1994). The assumption of identical workers fails
to hold in our experience, as described in subsection 6.2.
The assumption of stochastic processing times may be a
plausible modeling decision, but in our experience the
variance of task times was small, certainly much smaller
than the variance of velocities among workers.

Assuming deterministic processing times is not only
arguable from real data as explained in subsection 6.1 but
it also confers a clarity to the model. Complex modes of
behavior, such as very long limit cycles, become more
readily apparent, whereas in a stochastic model they may
be hidden by the randomness. For example, by assuming
deterministic processing times we can gain new insight
into the models of Schroer, Wang and Ziemke (1991),
Bischak (1993), and Zavadlav, McClain and Thomas
(1994). First we observe that when all workers are iden-
tical a TSS line is indistinguishable from one in which
each worker circles back upon completion of an item to
start a new item; and so the line is equivalent to a cyclic
queue (Bischak). Choosing dimensions so that all v, = 1,
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one can show that in a line with n workers the produc-
tion rate converges to the maximum possible, min{n,
1/p max} items per time unit (Bartholdi et al. 1995). In this
case, the line does balance itself, but only on the aver-
age, in the sense of Zavadlav, McClain and Thomas.
Workers will, in general, be required to perform different
tasks on successive items so the assignment of work will
not be stable. The problem is that the system converges
to a region with an infinite number of n-cycles, each
achieving the same (optimal) production rate, and
each neutral (neither attracting nor repelling). Further-
more, the eventual limit cycle is determined by the start-
ing positions of the workers. If processing times are
allowed to be stochastic, then the system simply jumps
among limit cycles randomly, which is why it is hard to
see the structure of behavior in a simulated line with
identical workers and random processing times.

To avoid confusion it is worth pointing out that our
definition of balance is stricter than that of Ostolaza,
McClain and Thomas (1991) and Zavadlav, McClain and
Thomas. For us a line is balanced when a stable partition
of work has emerged, so that each worker performs the
same portion of work content from item to item. In con-
trast, the balance of Zavadlav, McClain and Thomas,
and Ostolaza, McClain and Thomas shares work only on
average over all items. This distinction can matter in
practice because a line that is balanced only on average
can require the workers to move all about, with no per-
sistent assignment of work. This means the workers must
be trained at more or all stations and are therefore likely
to have lower velocity. The net effect is a lower realized
production rate than if workers were able to sustain a
stable sharing of work.

Another possible source of confusion is that both
Zavadlav, McClain and Thomas and the advertising liter-
ature for TSS use the term ““‘self-balance’” to mean local
adjustments between adjacent workers. However, they
produce no guarantee that such local adjustments cumu-
latively lead to global balance among all the workers of
the line. It is exactly this guarantee that is our concern
here: The spontaneous emergence of global organization
from local interaction.

8. CONCLUSIONS

When a production line is laid out, tasks are first as-
signed to stations, which results in a partition of work
among stations that is static, unchanging, and generally
imperfect. Then if workers, sequenced from slowest to
fastest, follow the TSS rule, a second partition of work
emerges, this time among the workers. This second allo-
cation arises spontaneously and, because it is self-
adjusting, it can, without management intervention,
smooth over imperfections in the underlying static parti-
tion. Furthermore, the partition can adapt; for example,
when a worker takes a break, the work content will be
spontaneously reallocated among the remaining workers.
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Our model suggests that a TSS line is easy to manage.
The production rate can be fine-tuned by adjusting the
number of workers; and because the line does not exhibit
anomalous behavior, adding workers never reduces the
production rate and removing workers never increases it.
In addition, the line is parsimonious in its data require-
ments, which are only the relative speeds of the workers
(not even their values); and it does not require knowl-
edge of task times, and thus might reduce the expense of
time-motion studies.

The main weakness of our model is that it treats work-
ers simplistically in describing each as merely a velocity
function v;(x). This fails to capture one of the key fea-
tures of TSS, which is the emphasis on teamwork.’> For
example, skilled TSS workers may accelerate in spurts to
smooth the production rate when required. Nevertheless,
we believe that our model correctly describes the quali-
tative behavior of real TSS lines even if it might not
predict the exact positions of the workers over time.

Finally, we observe that TSS may be seen as part of a
more general approach that we call ““bucket brigade
manufacturing.”” As in many types of work cells, there
are fewer workers than stations; but the distinctive fea-
ture of the bucket-brigade is that the workers maintain
their sequence on the line while sharing stations. It
would be interesting to explore this style of manufactur-
ing in other environments.

APPENDIX A
Technical Details

Because of excessive length many of the proofs have
been summarized or omitted. However, all of the proofs
were refereed and are available from the authors in their
entirety.

A.1. Existence of a Fixed Point

Proof Sketch. Extend f so that its domain is the entire
closed n-cell defined 0 < x; < ++- < x, < 1. (The TSS
rule does this implicitly by implying that, if more than
one worker is at a station, then that worker closest to
completion has priority and the others must wait.) One
can now show that the extended TSS function g is con-
tinuous on its domain and therefore, by Brouwer’s Fixed
Point Theorem, has a fixed point {Bollobds 1990). Fur-
thermore, this fixed point must lie within the natural do-
main of f because, by the logic of the TSS rule, no point
in the extended domain can remain fixed under g. There-
fore, since f agrees with g on the domain of f, the fixed
point with respect to g must also be fixed with respect

to f.
A.2. Technical Preliminaries

In the same way that some physics problems become
simpler under a suitable change of coordinates, it is eas-
ier to analyze the behavior of a TSS line if we introduce a
new coordinate system to keep track not just of the

positions of the workers but also of their relative posi-
tions. Before formalizing this, we must introduce some
notation.

Define p, = 0, and let P, = 3}, p; be the cumulative
amount of work invested in an item when it has just
completed processing at station k. The work at station k
corresponds to the open interval (P;_;, Py); and, be-
cause workers cannot use the same station at the same
time, no two x;’s can assume values within the same inter-
val (Py_1, Pr)-

Sometimes we will need to know the endpoints of the
station (interval) containing position x; accordingly, we
define

x =Py ifx €[Pry, Pi)s
and
f=Pk ifXE(Pk-l,Pk].

Define 7,(x, x') to be the time it would take for worker
i, if not blocked, to travel from position x to position x’,
where 0 < x < x’ < 1. By the properties of v,, the
function 7,(x, x') is well defined and may be expressed
as

'

» 4

i(x, x') = j dz

vi(z)~

Note that 7,(x, x') is strictly increasing in x’,
decreasing in x, and continuous in both.

Now we can introduce our new coordinate system.
The vector x* can be interpreted as suggesting a parti-
tion of the work, with the interval [x?, x{?,] assigned to
worker i during iteration ¢. The allocation a” is the
clock time that would be required for worker i to com-
plete her suggested share of work, including both work
time and possible delays due to blocking. More pre-
cisely,

strictly

a=1,(x¥, 1); else

af? = 7,(x{", xfh)

+ max{0, 741 (xfth, x xfh) = mi(xf?, xf9) x; 1)} (2)

The preceding expression consists of two terms: The first
is the travel time required for worker i to reach the start-
ing position x{%; of her successor; and the second term
is the delay if worker i is blocked en route, in which case
i reaches i + 1°s station at time 7,(x{, x,), buti + 1

does not finish at that station until time 7, ,(x%;, xfﬁ)l)
We distinguish between two types of allocations:

e a is a simple allocation if a{ = 7,(x®, x{&,), so that
the allocation is pure work time;
e a? is a delay allocation if a{” = 7(x{8;, x{:) +
7,01(x%1, x{1), so that the allocation includes both
work time and idle time spent waiting for an occupied
station.
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Note that all the time of a simple allocation is produc-
tive while a delay allocation includes time during which
the worker is blocked and therefore idle.

Finally, we state without proof some simple results
about allocations.

1. Allocation a* is continuous in x*’ and continuous in
x{), everywhere except possibly at P, (k = 1, ...,
m — 1).

2. When workers are ordered from slowest to fastest,
then a{ is nonincreasing in x{*) and strictly increasing
in x1%,.

3. The allocation a") of the last worker is always a sim-
ple allocation, and it represents the time between
completions of the 7th and (¢ + 1)st items.

4. At a fixed point a*, a} < a,, with strict inequality
only if worker i + 1 is blocked at the beginning of the
iteration.

Now we can study the evolution of a TSS line given
either by its orbit {x©@, xV), .. .} of worker positions or by
its orbit {a¥, a®, ..} of corresponding allocations.

A.3. Uniqueness of Fixed Point and Freedom
From Anomalies

This section is based on the definitions and notation of
subsection A.2. We will need the following result, which
says that when workers are sequenced from slowest to
fastest, then a slower team of workers cannot sustain a
faster production rate.

Lemma 2. Letv, < .- <v,and v < --+ < v] be two
teams of workers for a given TSS line, with v, < v|. Let
a and a’ be vectors of allocations that are fixed points for
the respective teams. Then a,, = a,,.

Proof. Assume the opposite, that a,, < a,,, so that x, >
x,. We claim this implies that x; > x} for all i, which
yields the contradiction that 0 = x4 > x5 = 0.

If, given the hypothesis, there exists a TSS line and
two teams for which x, > x; fails, let j be the largest
index for which x; < x; < x},, < x;,,. Worker j + 1 of
the faster team must be blocked at the beginning of each
iteration because a; < a; < a, < a,,. Therefore, it must
be that x;,; = P,_, for some station k and some worker
Jj + c has position P,_; < x;,. < P,. Consequently,
worker j + ¢ of the faster team is never blocked at the
start of an iteration and so a;, .| = a,.

I x/,. <x, thenx, <x/,. 4y <x,,. <X, and
soa,,..1 <a; <a, <a,, which contradicts a;,._, =
a,. Assume, on the other hand, x;.. 2 x;.,; then
a,.._y is strictly smaller than the time required for
worker j + ¢ — 1 of the faster team to travel from P, _,
to P, which is no larger than a;. But thenaj,._, < a, <

a, < a,, which again contradicts a,,._, = a

!
ne

Now we can prove Lemma 1, which claims uniqueness
of the fixed point.
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Proof. Assume there exist two distinct fixed points x and
x' and corresponding allocations a and a’. By Lemma 2 it
must be that a,, = a,,. Let j be the first index for which
x; = x; and assume without loss of generality that x; <
x,. Now the argument proceeds as in Lemma 2: Because
allocation is strictly increasing in its second argument
a, 1 < a;_y < a, and so for the fixed point x’ worker j
must be blocked at the beginning of each iteration.
Therefore, it must be that x; = P,_, for some station &
and some worker j + ¢ has position P,_; < x/,. < P;.
Consequently, worker j + ¢ is never blocked at the start
of an iteration and so a/,._; = a,.

If x;,. <xj, then x;_; < xj,._y <Xx;,. <X; and so
a,ic—1 < a,_, < a,, which contradicts a,._; = a,.
Assume, on the other hand, x;,._; 2 x;; thenaj,._, is
strictly smaller than the time required for worker j +
¢ — 1 to travel from P, _, to P,, which is no larger than
a,_;. Butthena,,._, < a;_; < a,, which again contra-
dictsa;,._; = a,,.

Similarly, we can show Theorem 4, which claims free-
dom from anomalies.

Proof. Let a be the fixed point for the original team. If
the velocities of some workers are increased, then by the
preceding lemma a,, cannot increase and so the produc-
tion rate 1/a, cannot decrease. If a worker is added to
the line, then we may compare the new team with the
former team augmented by a worker of zero velocity.
The latter has the fixed point (0, a,, ..., @,) and so has
the same production rate as the original team; and by
Lemma 2 this cannot exceed the production rate of the
new team.

A.4. Convergence to Fixed Point

This section is based on the definitions and notation of
subsection A.2. Our main result is to establish Theorem
2, that when workers are ordered from slowest to fastest,
then there exists a fixed point x* to which all orbits
{x®};, converge. Our proof of convergence is a greatly
elaborated version of that establishing Theorem 3. What
complicates the argument is that no more than one
worker can use a station at one time.
An outline of the argument is as follows.

1. Observe that each successive allocation for worker i
is a mixture of allocations from the previous iteration.

2. Model this mixing as the action of a finite Markov
chain for which the transition probabilities are not sta-
tionary, but have special structure.

3. Use the Markov chain to show convergence of
{a)r=0-

4. Show convergence of the {x};,.

A.4.1. Evolution of the Allocations

Let {x)}_, be any orbit of worker positions and let
{a®}7_, be the corresponding orbit of allocations.
Define
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p = max sup {_V_Ui]

i xe€[0,1] Yitl (x)
Recall that p < 1 because the workers are sequenced
from slowest to fastest. As will be seen, the value of p
will determine the rate at which the line achieves
balance.

First we show that the line cannot become more imbal-
anced over time: More specifically, the largest allocation
a®). = max{a®} is nonincreasing. This will follow from
the next two lemmata.

Lemma 3. If a{**V is a simple allocation
1. and x < x¥*Y, then a{**V < a{¥).
2. and x® > xt*Y, then al'*V < al?,.
Proof. If x < x{*1), then
af V) = 7,(xf0, xf3D) < 7, (xf), xf4) < 0.
If, on the other hand, x{*" < x{¥), then
@D = 1,Geff*), x0) + 7, (el xH5Y)
< 7, (xf*, xf0) +a)
< i (D, xf) + aff)
= at( t—)l,
and so the claim holds.

If a**Y is a delay allocation, then there must exist k
such that
Py = xfi) < xfi) <xffiD = Pi;

and for this station k.

Lemma 4. If a**V is a delay allocation
1. and x® < P,_,
a. and x$, < x{'4D, then al’*V < a®.
b. and x%, > x¢5Y, then al*V) < pal) +
(1 - p)a?.
2. Otherwise a’*V < pa®, + (1 — p)al.
Proof Sketch. The argument here is similar to that of

Lemma 3 with the added complexity of handling delay
allocations.

In addition, we have the following, more explicit
bound on a¥*} which follows since worker n is never
delayed (proof omitted).

Lemma 5. If x¥ > x{*V, then there exists a A € (0, p]
such that

alf*™V=ra + (1 - r)af.

A.4.2. The Corresponding Markov Chain

For any orbit {a®}2, we will define a specially-
structured Markov chain for which the transition

probabilities are not stationary. First augment each a®
by prepending the dummy allocation a§’ = 0. Now we
define a Markov chain on states 0, 1, ..., n, where
state i at step ¢ corresponds to the allocation of worker i
at a certain iteration (to be explained shortly). By this
correspondence, we may speak of state i at iteration ¢ as
being simple or delay according to whether a®) is a sim-
ple or a delay allocation.

The transition probabilities of this chain model how
the values of the allocations change from iteration to
iteration. We define T¢*") to be the matrix of transition
probabilities such that a®*1 = T¢*1a®,

There are many cases but only a few simple patterns of
transitions for each T¢* Y, which are as follows.

o From state 0, transit only back to state 0 (so that state
0 is an absorbing state).

From state i transit to state n or to state 0.

From state { transit to state i — 1 or to state 0.

From state i transit back to state i or to state n or to
state 0.

From state i transit to state i — 1 or to state n or to
state 0.

From state n transit to state n — 1 or back to state n.

The values for each T¢* 1) are taken from the details of
the previous three lemmata. We omit the details because
our main result depends only on the patterns and relative
sizes of the transition probabilities, not on their exact
values; however, we provide the following example:

o Ifstatei = 1, ..., n — 1 is a simple state and x{) <
x¢*V | then from part 1 of Lemma 3 we transit to state
n with probability a¢*Y/a{) and to state 0 with the
complementary probability.

Now, from Lemmata 3, 4, and 5, we have the
following.

Lemma 6. The matrix TU*V of transition probabilities is
well defined, stochastic, and satisfies

a(:+1) = T(t+l)a(t) = T(t+1)T(t) o T(l)a(‘”.

Note that the Markov chain actually makes its transi-
tions in opposite order from TSS iterations; for example,
the Markov chain makes its first transition according to
matrix T¢*1), the second according to T%), and so on.
Consequently, we relabel the transition matrices so that

a(t+1) =A(I)A(Z) .. -A(t+1)a(0),

and therefore, the Markov chain makes its #th transition
according to matrix 4.

A.4.3. Convergence of a?

Lemma 7. For any random process in state i at step t the
probability of transition to state n or absorption by state
0 within the next i transitions is at least (1 — p)'.

Proof Sketch. This follows from the details of the con-
struction of transition matrices 4.

o sl s snnd AL .
Copyright©2001 Al RightsReserved



The next lemma shows that the time between succes-
sive product completions converges to a constant.

Lemma 8. The sequence {a{};_, converges to a positive
constant.

Proof Sketch. Assume the sequence fails to converge.
Then there exists some 8 > 0 for which 26 < |a{) —
a{")| for an infinite number of nonoverlapping intervals of
indices [, ¢']. Because the sequence {a{")};, is bounded
above and below, it must be that § < a{? - a{” for
infinitely many nonoverlapping subsequences of indices
[, ¢'] (which will in general lie between the aforemen-
tioned intervals). We collapse each of these latter transi-
tions into one, from a) directly to a*” via the transition
matrix 7¢") ... T¢+*2TE+D and reindex the steps so that
¢t' becomes ¢ + 1. Now, if the sequence {a{"}7>., fails to
converge, there must exist some § > 0 for which § <
a) — a{*"Y for an infinite number of steps ¢. For each
such step let € = max{l — &/,(0, 1), 1 — p}. Then for
each step 7:

e if § < al™V — 4!, then the probability of transition
from state n to state 0 is at least 1 — € (because € =
1 - 68/1,(0, 1) = aP/al!~V); otherwise,

o the probability of transition from state n back to state
n is at least 1 — p or the transition from state n to
state 0 is at least 1 — ¢ (by Lemma 5 and part 1 of
Lemma 3).

Consider a step g at which § < a?™1 — al?; there
must be probability of at least 1 — € of transition from
state n to 0. From Lemma 7 it follows that a process in
any state at step g — n has probability at least (1 — €)(1
— p)*” of being absorbed by state 0 by step q. Because
there are infinitely many such g, all processes must
eventually be absorbed by state 0, and so
AMAD .. 4 must converge to the zero matrix (with a
column of ones for the absorbing state), so that

lima® =1lim AV4®@ .. 4©a©® =9,
t—>c0 t—o

This, however, is a contradiction because ¥ a” = 7,(0,
1) = 1/B > 0. Therefore the allocation for worker n
must converge to some constant; and this constant must
be positive because the long-term average production
rate is bounded above by nB.

A.4.4. Convergence of {x{')},

We have established that lim,_,., 2’ = a? exists and so
the TSS line eventually produces metronomically. Now
we show that the positions of the workers converge.

Theorem 5. Foreachi = 1, ..., n lim,_ x exists.
Proof Sketch. First, lim,_,, x{” exists because the se-

quence {a{};>, converges. Then by induction lim,_, ,, x{’
exists fori = 3, ..., n.
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Having established that lim,_,, x*) = x* we can con-
clude that, because the TSS dynamics function f is
continuous,

fix*) = f(lim x¥) = lim Ax©) =lim x¢*D = x*,
—® —>00 t—®

Therefore the limit point x* is the fixed point of f.

NOTES

1. TSS is a registered trademark of Aisin Seiki Co., Ltd.
TSS is marketed in the western hemisphere by
Americas 21st, Inc.

2. Nearly all the TSS workers we have seen are female.
This reflects the demographics of the apparel
industry.

3. Such a subset of the phase space is called a Poincaré
section. Restricting the phase space in this manner is
a standard technique for analyzing dynamical systems
(Morrison 1991).

4. This condition is slightly stronger than the simpler
requirement that v,(x) < v;(x) but is necessary to
avoid technical pathologies in which the velocity of
one worker approaches that of the other in the limit.

5. We have also ignored other issues that are important
to the effectiveness of actual implementations, such as
the assignment of work content to stations, the de-
tailed choreography of worker movement, and the
strategic training and motivation of workers.
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