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An in-depth analysis of Dorian Shainin's variable search (VS) method is carried out. Conditions under
which the VS approach does and does not work well in comparison with traditional designs are identified.
Explicit expressions for the expected number of runs and the probability of correct screening are derived un-
der stated assumptions. The crucial roles of process knowledge and noise variation in successful application
of the VS design are established through theoretical and simulation studies.
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Introduction

ORIAN SHAININ, a well-known, but controver-
]:D sial quality consultant, developed a quality-
improvement program popularly known as the
Shainin system. The Shainin system has been re-
ported to be useful to many industries. Among sev-
eral new tools and techniques proposed by Shainin
(Steiner et al. (2008)), variable search (VS) is one
that has received quite a bit of attention from
researchers and practitioners. The VS technique
(Shainin (1986), Shainin and Shainin (1988)) can be
described as a sequential screening process used to
identify the key factors and their settings to optimize
the response of a system by making use of available
experimenter’s knowledge. Verma et al. (2004) used
some real-life numerical examples to demonstrate the
superiority of VS over more traditional methods.

It is worth mentioning that another Shainin
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method called component search (CS) has been
found to be quite popular among engineers. CS
(Shainin and Shainin (1988)) is typically used when
units can be disassembled and reassembled without
damage or change to any of the components or sub-
assemblies, with the objective of comparing families
of variation defined by the assembly operation and
individual components. CS has a stage called com-
ponent swapping, from which VS was derived. See
Steiner et al. (2008) for a detailed description of CS.

Ledolter and Swersey (1997) critically examined
the VS method and argued, via an example involv-
ing seven factors, that a fractional factorial design is
generally a better alternative compared with the VS
method. In this article, we carry out a more in-depth
analysis of Shainin’s VS procedure by (a) summariz-
ing the key properties of the VS design and investi-
gating its suitability for factor screening, (b) identi-
fying the statistical inference procedures associated
with each step of the VS design, (¢) combining the
test procedures at individual steps to obtain a gen-
eral expression for the probability of correct identifi-
cation of active factors, and (d) examining the sen-
sitivity of the VS method against correctness of en-
gineering assumptions and varying levels of noise.

The remainder of this paper is organized as fol-
lows. In the next section, we provide a stage-by-
stage description of the VS methodology. We then
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TABLE 1. Example of Variable Search Design

Run 1 2 3 4 5 6 7 y Confidence interval Remark
1+ + + o+ 4+ o+ o+ 448
2 4+ 4+ + + + + o+ 453
3 0+ 4+ o+ 4+ o+ o+ o+ 451
4 - - - - = = = 63
5 - - - - - — - 66
6 - - - = = = = 70
Swapping for factor 1
7 -+ + 4+ + + + 350 (441.2, 460.8) 1 is active
8 + - — - - - — 104 (56.2, 75.8) 1 is active
Swapping for factor 2
9 + - + + + + + 324 (441.2, 460.8) 2 is active
10 - 4+ - - = - - 249 (56.2, 75.8) 2 is active
Capping runs (factors 1 and 2)
11 + + - - - - = 392 (441.2, 460.8) Capping run unsuccessful
12 - - 4+ + + + + 106 (56.2, 75.8) Capping run unsuccessful
Swapping for Factor 3
13 + + - 4+ + + + 403 (441.2, 460.8) 3 is active
14 - - 4+ - - - = 96 (56.2, 75.8) 3 is active
Capping runs (factors 1, 2, and 3)
15 + + + - - = - 443 (441.2, 460.8) Capping run successful
16 - - - 4+ + + + 60 (56.2, 75.8) Capping run successful

discuss the salient properties of the VS design and
the statistical-inference procedures associated with
individual stages of VS and their impact on the over-
all process. We then turn to the sensitivity of the VS
method against correctness of engineering assump-
tions and varying levels of noise. Finally, concluding
remarks are presented.

An Overview of Shainin’s
Variable Search

Here we explain the VS method with a hypotheti-
cal example with seven factors (and data) presented
in Table 1. The method consists of four stages, and
assumes that the following are known: (i) the order
of importance of the factors under investigation and
(ii) the best and worst settings for each of the factors.

In stage 1, the suspect factors are ranked in de-
scending order of perceived importance. Two levels
are assigned to each factor: “best” (4) level and
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“worst” (—) level. Assume that the objective is to
maximize the response, i.e., larger values of response
are preferred. The algorithm starts with two experi-
mental runs: one with all factors at their best levels
and the other with all factors at their worst levels.
These two runs are then replicated thrice in random
order (runs 1 to 6 in Table 1). These responses are
used to test if there is a statistically significant differ-
ence between these two settings. Median and range
for the three replications for the two experiments are
computed. Denote these medians by M, and M,
and the ranges by R}, and R,,, respectively, where the
suffixes b and w indicate best and worst settings, re-
spectively. We then compute R,, = (Mp—My)/Ravg,
where Rave = (Rp + Rw)/2 denotes the average
range. Note that R,vg/ds is an unbiased estimator
of the underlying normal error standard deviation o,
where dy = 1.693 for a sample size of 3. A value of
R, greater than 1.07 (or, alternatively 1.25 as rec-
ommended by Bhote and Bhote (2000)) suggests the
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presence of at least one active factor and prompts
the experimenter to move on to the next stage of the
algorithm. In the example given in Table 1, R,y =
(5+7)/2 = 6 and M, — M,, = 451-66 = 385, so that
R, = 64.17.

In stage 2, Shainin specifies confidence intervals
for the mean response corresponding to the “best”
and “worst” situations based on t-distribution with
four degrees of freedom as My, & 2.776R,.g/d2 and
My, £ 2.7T76 Rz /d2, respectively, where do = 1.693
because the sample size is three. These confidence
intervals are used in the later stages to determine
significance of factors or groups of factors. In our ex-
ample, the confidence intervals corresponding to the
“best” and “worst” settings are computed as (441.2,
460.8) and (56.2, 75.8), respectively.

Stage 3, also called swapping, is used to identify
active factors by switching levels of each factor one
at a time. Ideally, swapping should start from the
most important factor and end with the least im-
portant factor. Assume, without loss of generality,
that factor 1 is most important. Swapping of factor
1 is performed in the following way. The first run is
conducted with factor 1 at “best” level and all the
other factors at their “worst” levels. One more run is
conducted with all these factor levels reversed. Fac-
tor 1 is declared inert (or insignificant) if both the
response values are within the confidence intervals
derived in stage 2, and active (or significant) oth-
erwise. Similarly, swapping is performed with each
other factor in order of perceived importance until
two active factors are found. Once two active factors
have been identified, we move to the next stage.

Stage 4, called capping, is used to check whether
there are still more active factors to be identified
(apart from the already identified ones). Two runs
are conducted to confirm this. In the first run, all
the factors identified active are set at their “best”
levels and all the other factors at their “worst” lev-
els. In the second run, all these levels are reversed.
If the two responses from these two trials lie within
the confidence intervals computed at stage 2, it is
concluded that all the active factors have been iden-
tified successfully. Otherwise, one needs to go back to
the swapping stage and search for some more active
factors.

Swapping and capping runs are successively con-
ducted till a capping run is “successful”, which means
there are no more active factors to be identified. In
the example in Table 1, swapping of factor 1 (runs
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7-8) and factor 2 (runs 9-10) declare these two fac-
tors as active. The follow-up capping run with these
two factors (runs 11-12) is unsuccessful, which leads
to the conclusion that there are possibly more active
factors. Swapping of factor 3 (runs 13-14) declares it
as active. Finally, capping of factors (1, 2 ,3) is suc-
cessful and leads to termination of the VS process.

Properties of Variable Search Design

Ledolter and Swersey (1997) discussed some prop-
erties of the VS design and compared it with a frac-
tional factorial design using the second order model

y = Bo +z161 + 2202 + 2303 + (2122) 512
+ (z123) P13 + (2273) P23 + ¢, (1)

where € ~ N(0,02). Assuming that out of seven fac-
tors (1,2,...,7) under investigation, three (1, 2, 3)
are active through model (1), they argued that a
273 fractional factorial design of resolution IV (Wu
and Hamada (2000), Ch. 4) with defining relations
5 =123, 6 = 124, and 7 = 234 is superior to the VS
design in terms of estimation efficiency. Note that the
best possible VS design in this case with the correct
conclusion is the one shown in Table 1.

However, it can be seen that, in this case, the VS
design may have some advantages over the 2773 de-
sign in the context of early identification of active
effects, provided the experimenter’s knowledge re-
garding the relative importance of factors and their
“best” and “worst” levels is perfect. Assume that
the error variance o? is sufficiently small to ensure
that the statistical tests of hypotheses are powerful
enough to guarantee the detection of significant ef-
fects both by the VS design and the fractional fac-
torial design. Then, usual analysis of data obtained
from the 16-run 273 design will declare main effects
1,2,3 and two factor interactions (2 fi’s) 12,13 and
23 as significant. However, the 2 fi’s 12, 13 and 23 are
aliased with other 2 fi’s, i.e., 12 = 35 = 46, 13 =25
and 23 = 15 = 47. Whereas the 2 fi's 46 and 47
can be ruled out using the effect heredity principle
(Wu and Hamada (2009), Ch 5), the 2 fi’s 35, 25
and 15 cannot, as one of the parent factors of each is
significant. Thus, one would need additional orthog-
onal runs (at least 4) to disentangle these effects and
identify the true active factors.

This problem will not arise for the VS design be-
cause the swapping and capping runs permit simul-
taneous testing of main effects and interactions as-
sociated with a single factor or a group of factors
(this will be discussed in detail in the next section),
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thereby enabling the experimenter to completely rule
out the presence of main effects or interactions of
groups of effects. Therefore, in order to unambigu-
ously identify the active factors, the fractional fac-
torial may actually need more runs than the best
possible VS design. This relative advantage of the
VS design will be more predominant in this example
if the model (1) contains a three-factor interaction
(3 fi) term 123. In this case, regular analysis of the
fractional factorial will identify the main effects 1, 2,
3 and 5 as significant, which will create more confu-
sion regarding construction of orthogonal follow-up
runs. The VS design will, however, remain the same
if the sequence of runs is correct.

Now consider the case where the underlying true
model is still the same as (1), but the number of
factors under investigation is 20. Under the same as-
sumption as before, the VS design will still be able
to reach the correct conclusions in 16 runs, while a
16-run fractional factorial (220-16) clearly cannot be
constructed. One should keep in mind, though, that
the assumption of a very accurate level of process
knowledge that leads to conducting swapping runs
for the 3 active factors (out of 20) first is a very
strong one.

Thus, whereas the VS design has some properties
(e.g., estimation efficiency) that make it inferior to a
comparable fractional factorial design, it also has cer-
tain properties that may give it an edge in specific
situations. Apart from such plausible technical ad-
vantages, it should be noted that the VS method has
certain practical advantages. The sequential nature of
the experiments in the VS design permits the exper-
imenter to obtain partial information at each stage
of the experiment, whereas in fractional factorial or
orthogonal array designs, one needs to wait for the
experiments to be completed. The simplicity of the
VS technique is appealing to experimenters. How-
ever, the VS method has some practical drawbacks as
well. It will not be efficient if applied to a new pro-
cess or to a process with no prior information. Also,
the frequent change of settings will be expensive if
the levels of factors are hard to change. By contrast,
restricted randomization can be used in fractional
factorial designs. Note that one critical disadvantage
that may overshadow the practical benefits accrued
from the sequential nature of experiments in the VS
design (as stated earlier) is the presence of block ef-
fects in the form of uncontrollable factors drifting
over time. However, because the experiment has vari-
able block sizes, incorporating block effects into the
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analysis of VS designs appears to be quite nontriv-
ial. Therefore, in the paper, we assume no block ef-
fect and leave the analysis with block effect as future
research.

In the following subsections, we study some prop-
erties of the VS design in terms of run size and esti-
mation efficiency. The proofs of all the results stated
in this section are given in the Appendix.

Run Size of the VS Design

If we assume that each stage of the VS design
would result in correct conclusion (the probability of
which will be explored in the next section), then the
number of runs will depend on the ordering of the
factors according to perceived importance. Clearly,
the best possible scenario would be one where all the
active factors are explored first and the worst possi-
ble scenario would occur when the last factor to be
explored is an active factor. The result in (2) is use-
ful to compute the smallest possible, largest possible,
and expected run length of a VS design. Suppose that
the VS design identifies m active factors out of % fac-
tors under investigation, where 1 < m < k. Then it
is easy to see (Appendix) that the total number of
runs IV of the VS design satisfies

N =2(k + 3), ifm=1,
4m+1) <N <2(k+m)+4, ifm>1L

For example, if the VS design identifies 3 out of 7
factors under investigation as active (as in the exam-
ple given in Table 1), the minimum and maximum
number of runs of the VS design will be 16 and 24,
respectively. The following result is helpful to com-
pute the expected run size for the VS design under
the assumption of a random ordering of factors cho-
sen for swapping runs.

Result 1. Suppose p (2 < p < k) out of k factors
being investigated are actually active. Assume that

(i) Each swapping and capping run will lead to a
correct conclusion.

(ii) There is a complete lack of experimenter’s
knowledge regarding relative importance of fac-
tors, which means any permutation of (1,2, ...,
k) is equally likely to occur while investigating
the k factors one by one.

Then the total number of runs in the VS design is
a discrete random variable N that has the follow-
ing probability function: Pr{N = 4(p + 1) + 2j} =
p(k?J V/(p + j)(pf_ j) and its expectation is given by
E(N)=4(p+1)+2(k—p)p/(p+1).
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FIGURE 1. Probability Function of N for k =7, p = 3.

Using Result 1, it is seen that, in the complete
absence of knowledge about the relative importance
of factors, the expected number of runs of a VS de-
sign in the example discussed earlier with k = 7 and
p = 3 is 22. Its probability function is shown in Fig-
ure 1. A perfect knowledge of the relative importance
will reduce the number of required runs to 16. An in-
vestigation with k£ = 20 factors will need, on average,
about 42 runs if p = 3. The significant savings of runs
that can be achieved by using VS design over com-
parable fractional factorial design is therefore quite
evident.

Estimation of Main Effects from VS Design

We begin this discussion by noting that the VS
design is neither a design with a fixed number of
runs nor an orthogonal array. Assume that p out of
k factors under investigation are active and the fol-
lowing model describes their relationship with the re-
sponse y:

p
y=0+ Y Bz

=1
P
+ Z Zﬂija:ixj +...+ ,312_”1, T1Z2...2Tp T &,
i<j j=1
3)
where z; = —1 or +1 according as the worst or best

level of factor i is used, and € ~ N(0,0?). Further,

assume that the p active factors are correctly identi-
fied by the VS procedure.

Shainin recommended estimation of main effects
of active factors from the (2p + 2) X p submatrix
of the VS design that consists of two stage 1 runs
and p pairs of swapping runs for the active factors.
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TABLE 2. Model Matrix for Estimation from VS Design

Run 1 2 3 4 5 6 7 Y
1 + + + + + + + Y
2 - - - - - - = Y2
3 - 4+ + + + + + Y3
£+ - - = - - -
5 + - + + + + + Ys
6 - o+ - - - = =
7 + + - + + + 4+ y7
8 - — 4+ - - = - oy
9 + + + - 4+ + + Yo

0 - -~ -+ - - = o
11 + + + + - + +  yu
12 - - - - 4+ - = M
13 + + + + + - 4+ y3
4 - - - - -+ = oy
15 + + + + + + - s
6 - - - - - - + g

We shall denote this matrix by X, in all subse-
quent discussions. Table 2 shows matrix X7. Shainin
suggested estimating the main effect of factor ¢ for
i=1,2,...,p (defined as twice the regression coeffi-
cient 8; in model (3)) by comparing its swapping runs
to the two corresponding stage 1 runs. For example,
the regression coefficients 8, and (3, are estimated as

Br = (y1 —y2 — ys +ya)/4, (4)
da = (y1 — Y2 — ¥s + ¥6)/4. (5)

It is easy to see that the above estimators are unbi-
ased, have a pairwise correlation of 0.5, and have the
same standard error of 0.5¢0. Ledolter and Swersey
(1997) are particularly critical about this estima-
tion procedure, owing to its large standard error (the
standard error of ﬂAz estimated from a 16-run facto-
rial design would be 0.250) and correctly argue that
a least-squares estimator would be a better choice, as
it is statistically more efficient, although, still less ef-
ficient than a comparable fractional factorial design.
For example, for p = 7, we find that the standard
error of the least-squares estimator ﬁz is 0.330, and
each pair of estimated effects ﬁz,ﬁj has a correla-
tion of approximately —0.14. We shall now see that
the least-squares estimators obtained this way have
some interesting properties that are summarized in
result 2.
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Result 2. Assume that y, the (2p + 2) x 1 vector of
responses, depends on the p active factors through
model (3), and let Bmain = (B1,-.-,0p)"-

(i) Then the least squares estimator of Bmain, given
by
ﬂAmain = (X;)Xp)_lx;:;y’ (6)
satisfies the following:
E(Bmain) = ,Bmain

if all three and higher order interactions in
model (3) are absent.
2 p2 —4dp+7 4

.. = = fi ':17--~7 )
(11) Op 8(p2 —3p+4)0 or ¢ p (7)
p—3 . S g
= dpyy rRI=hp i)

(8)

where ag and p, denote the variance and pair-
wise correlation of estimated main effects when
there are p active factors.

From Equations (7) and (8), we have that o2 =
0.12502 for p = 3 and 02 — 0.12502 as p — oo.
Also, pp = 0 for p = 3 and p, — 0 as p — oc.
Figure 2 shows plots of Uf, (dotted curve in the left
panel) and py, (right panel) for o = 1. From the above
observations and Figure 2, the results in Equations
(9)—(10) can easily be established. The variance a;‘;
and the correlation coefficient p,, satisfy the following

inequalities:

0.10710” < 02 < 0.125002, (9)
~ | B
S | pee 1
o VS design
a 2
8 5
%
£ o
g O
E &
v
2
Esgl o
% ©
o
9 3 o
H o DFPB design
> 8% a]
(<] 0 p o
0O g o
8
(=]

T T T T
10 20 30 40 50

No. of active effects

—0.167 < p, < 0. (10)

The lower and upper bounds in Equations (9) and
(10) are attained for p = 5 and p = 3, respectively.

The findings from result 2 and Equations (9)—(10)
can be summarized as follows:

1. Least-squares estimators of main effects of ac-
tive factors obtained from stage 1 and swapping
runs are unbiased and uncorrelated with esti-
mators of 2 fi’s under the assumption of negli-
gible three-factor interactions.

2. The standard error of these estimators remains
almost invariant (varying from +/.107lc =
0.330 to v.1250 = 0.350) with respect to the
number of active factors.

3. The estimators are uncorrelated only if p = 3.
For p > 3, they have a small negative correla-
tion, which has the largest magnitude (—0.167)
for p = 5.

Comparison of Efficiency with Folded-Over
Plackett—Burman-Type Screening Designs

A large class of two-level orthogonal array designs
with run size N = 4n (where n is a positive integer)
given by Plackett and Burman (1946) have been used
as screening designs. Box and Hunter (1961) demon-
strated that resolution I'V designs can be obtained by
folding over such designs. Miller and Sitter (2001)
further studied these designs for N = 12 and pro-
posed an analysis strategy.

[«
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g 2
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No. of active effects

FIGURE 2. Plots of 02 (Left Panef) and p, (Right Panel) for o = 1.
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Note that, when the number of factors p satisfies
p+ 1 = 4n, a folded-over version of the Plackett-
Burman (FPB) design is of order (2p+2) x p and is
therefore comparable with the VS design matrix X,,.
The variance of §; estimated from the FPB design
with p factors is &2 = 02/(2p + 2). Comparing this
with Equation (7), the relative efficiency of the FPB
design with respect to that of the VS design can be
obtained as

B 52 1 p—17
ep_%—z(p_p2—3p+4>' )
From Equation (11), we find that e, = 1 when p =3,
i.e., both the designs are equally efficient with respect
to estimation of main effects. However, for p = 7, we
have e, = 7/4, which means that the VS design is
almost half as efficient as the FPB design. Further,
ep — 00 as p — oo. A comparison of variance of B
obtained from the FPB and VS designs is shown in
the left panel of Figure 2 for different values of p.

Although the above discussion clearly establishes
the superiority of FPB designs over VS designs with
respect to estimation efficiency, two important points
should be kept in mind. First, the FPB design exists
only when p = 4k — 1. For example, when p = 4,5,
or 6, an orthogonal design comparable with the VS
design does not exist. Second, and more important,
the FPB design would usually include all of the k(>
p) factors under investigation, whereas the VS design
matrix X, corresponds only to the p factors that
are screened out as active. Thus, the above efficiency
comparison may not always be meaningful. Further,
when the number of factors under investigation is
large, the VS method will have a clear-cut advantage
in terms of run size as described earlier.

Estimation of Interaction Effects

So far we have discussed only the estimation of
main effects. In the VS design, the 2 fi’s are aliased
with one another, and as observed by Ledolter and
Swersey (1997), the swapping runs for factor 4 per-
mit estimation of the sum of the 2 fi’s associated
with that factor (more discussion on this in the next
section). We now discuss some properties of the VS
design, summarized in the following two results (3
and 4), that helps us to devise a strategy to obtain
unconfounded estimates of 2 fi's (and higher order
interaction effects, if they exist) when the number
of active factors does not exceed 4. It is well known
that good screening designs should have projection
properties, for which Box and Tyssedal (1996) gave
the following definition.

Vol. 43, No. 4, October 2011

Definition. An N x k design D with N runs and &
factors each at 2 levels is said to be of projectivity
P if every subset of P factors out of the possible k&
contains a complete 27 full factorial design, possibly
with some points replicated. The resulting design will
then be called a (N, k, P) screen.

The above definition refers to designs that are or-
thogonal arrays. However, extending the definition of
(N, k, P) screen to all N x k designs that are not nec-
essarily orthogonal arrays, the following results can
eagily be established for a VS design.

Result 3. Consider an N X m submatrix D of a
VS design matrix that consists of the columns cor-
responding to m (> 3) factors identified as active.
Then

(i) submatrix D is a (IV, k, 3) screen, i.e., has pro-
jectivity 3.

Further, when m = 4 with four active factors
A, B,C, and D identified by VS, "

(ii) submatrix D contains a 2%;} fractional factorial
design in these four factors with the defining
relation I = —ABCD.

(ili) The above fractional factorial design is the
largest orthogonal array that is contained in the
submatrix D.

(iv) It is possible to construct a 2* design in 4, B, C,
and D by addition of just four more runs, (4 —
+_)’ (+ - _+)’ (_ + +_)a and (_ + _+)7 to
the VS design.

From result 3, it follows that, for p = 3, the VS
design permits unbiased and independent estimation
of all factorial effects from the 23 design that it con-
tains. Note that the design matrix is precisely the one
discussed earlier in the context of least-squares esti-
mation of main effects, which consists of two stage 1
and the swapping runs. Any regression coefficient in
model (3) estimated in this way from the VS design
will have a standard error of ¢/4/8 = 0.350. When
p = 4, the VS design still permits independent es-
timation of the four main effects and three aliased
sets of 2 fi's from the 8-run fractional factorial de-
sign identified in result 3(ii) with a standard error of
0.350. The standard error of each main-effect esti-
mate can be slightly reduced to 0.33¢ by using least-
squares estimation with the upper left 10 x 4 sub-
matrix of the design matrix in Table 2; however, this
will result in correlated estimates. A better strategy
may be to conduct four additional runs as suggested
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in result 3(iv) and estimate each factorial effect of
every possible order with a standard error of 0.125¢.

Statistical Inference at Different
Stages of VS

The objective of this section is to understand the
mechanism of hypothesis testing associated with the
VS design, compute the probabilities of obtaining
correct conclusions at different stages of the VS de-
sign (Equations (14), (17), and (22)), and eventually
utilize these results to compute the probability of
correct screening of active factors if the order of in-
vestigation of factors is fixed. Readers who wish to
skip the technical details may skip the derivations in
the first subsection and move on to the next subsec-
tion, which is of more practical importance.

Assume that VS is being performed to identify
the active factors from a pool of k potential factors
Z1,...,Zk. The best and worst levels of each factor
are known and represented by +1 and —1, respec-
tively. The objective is to maximize the response y,
which is related to the experimental factors through
the following second-order model:

k k
y="0 +Zﬁz‘wi +ZZ,6ijxi$j +g  (12)
i=1 i<j j=1

where ; = —1 or +1 according as the worst or best
level of factor i is used, and e ~ N(0,0?). Note that
correct knowledge of the best and worst levels of each
factor implies that 8; > 0 for i = 1,..., % in model
(12). Next, we introduce the following notation:

e y; (y;): Observed response when factor z; is
at ‘+’ (‘=) level and the remaining k—1 factors
are at ‘—’ (‘+’) level.

e Let F C {1,2,...,k} be a set with cardinal-
ity ¢. Define y£ (y7) as the observed response
when all the ¢ factors x;,7 € F are at ‘+’ (‘=)
level and the remaining k — g factors are at ‘-’
(‘+") level.

e y* (y~): Observed response when all the k fac-
tors are at ‘+’ (‘") level.

In the following subsections, we describe the sta-
tistical tests of hypothesis associated with different
stages of the VS design. To keep our computations
tractable, we shall (i) use the large-sample approxi-
mation for sample median, although the sample size
in the VS design is only 3, and (ii) use sample
standard deviation instead of sample range to esti-
mate o.

Journal of Quality Technology

Power of Statistical Hypotheses Tested at
Different Stages of VS and Probability of
Correct Screening

Stage 1

As described before, the median M,, of three real-
izations of yT are compared with the median My, of
three realizations of y—.

It is easy to verify (see Appendix for a detailed
argument) the following:

e As observed by Ledolter and Swersey (1997),
stage 1 of VS with respect to model (12)
is equivalent to testing the hypothesis Hy :
Zle B; = 0 against Hy : 3; # 0 for at least

one i =1, 2, ..., k. An appropriate rejection
rule will be the following: reject Hy at level «
if
IMb - MW|
—_— >t . 13
G/7/3 tafd (13)

e The power (i.e., ability to detect presence of at
least one active factor) of the test is given by

PI =1- Fg(t47a/2) + F&(_t4,a/2)v (14)

where Fj(-) denotes the cumulative distribution
function of a noncentral ¢ distribution with 4
degrees of freedom and noncentrality parameter

§= (255, 8:)/(a+/7]3).

Clearly, Pr is a monotonically increasing function
of (Zle B:;)/o through the parameter 6. Figure 3
shows a plot of the power function. It is seen that the
power is approximately 95% if (Ele Bi)/o =~ 2.52

0.9 1.0
1

0.8

Power
0.7

0.6

04
1

0.3

T T T
1 2 3 4 5

Tplo

FIGURE 3. Power of Stage 1 Test as a Function of

Zﬂ;/a.
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and 99% if (Zle Bi)/o =~ 3.07. In other words, the
power of the stage 1 test is 95% and 99% if the sum
of main effects Zle B; is, respectively, equal to 2.5
times and 3 times the error standard deviation o.

Swapping

The objective of the swapping stage it to iden-
tify active factors. Here, with reference to the exper-
iments in stage 1, the level of one particular factor
is switched, and the difference in the response is ob-
served. If this change is significant, then that factor is
declared as active. Details of the hypothesis test as-
sociated with the swapping of factor z; are described
in the Appendix. The power of the test can be ob-
tained as

Psiwap =1- {F5+ (t4,a/2) - F5+(_t4,a/2)}
x {Fs-(ta,a72) — Fs-(—taa2)}, (15)
where Fs+(-) and Fj-(-) denote the cumulative dis-

tribution function of a noncentral ¢ distribution with
4 degrees of freedom and noncentrality parameters

07 = (26i + 232, 8i;)/(1.230) and 6~ = (26; —
237,52 Bis)/ (1.230?, respectively.

Thus, the power of the swapping phase is a func-
tion of §;/0 and Zf 23 Bij /o. Figure 4 shows a con-
tour plot of the power against 3;/a and Z? 23 Bij /o.
The darker regions represent low powers. As ex-
pected, the power of the test is small when both 8; /o

and |Zf¢1 Bij|/o are small.
Remarks

1. The type 1 error of the test described above

Bilo

FIGURE 4. Power of Swapping to Detect Active Factor
x; as a Function of (3;/0 and 37, 8j/0.
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will be 1 — (1 — @)?. To ensure that the test
has a prespecified type 1 error «, the levels of
significance associated with the events A1 and
A~ should be adjusted.

2. Note that each pair of swapping runs for an
active factor z; leads to estimation of the main
effect 3; and sum of all interactions ) ot Bi;
that involve z;. Define u; = (st (z;)+s™(x;))/4
and v; = (s (z;) — s (2;))/4. Then unbiased
estimators of 3; and 3, B;; are given by

/Bi = U, (16)
ZBU = Ui, (17)
J#i
for ¢ = 1,...,p. The variance of B is given by

(1/8)(1 + 7/6)c? or 0.1902. Note that this es-
timation procedure is the same as the one rec-
ommended by Shainin and discussed earlier, ex-
cept for the fact that six stage 1 runs are used
instead of two. This reduces the variance of the
estimates, but inflates the correlation between
B; and §;.

3. Thus, in a nutshell, swapping allows combined
testing of all effects involving a single factor
and hence is a useful tool to detect whether a
single factor is “active” by conducting only two
additional runs.

Capping

The objective of the capping stage is to confirm
whether all the active factors have been identified.
Assume that g out of the k factors have been de-
clared active in the swapping stage. Let F represent
the set of indices of factors that have been declared
active. Details of the hypothesis test associated with
the capping of the factors in F is described in the
Appendix. The power of the test can be obtained as

PL,=1—{Fs(taas2) — Fs+(—ta,a/)}
X {Fs5- (tg,a72) — F5- (—tsa/2)},  (18)

where Fj+(-) and Fs-(-) denote the cumulative dis-
tribution function of a noncentral ¢-distribution with
4 degrees of freedom and noncentrality parameters
5t = (2 Zigg}" Bi + 2 Ziq_t]-‘ Eje}' Bi;)/(1.230) and
6~ = (2 zz¢}- ﬂz -2 21&]_— EjE}- ﬁu)/(1230), re-
spectively. Similar to the swapping phase, the power
of the capping test is small when both Eie 7B and

Y i¢rF 2jer Bij are small.
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Overall Probability of Correct Screening

We shall now use the power functions developed
in the previous three subsections to obtain the prob-
ability of correct screening of p (< k) active fac-
tors under model (12) for a specific order in which
the &k factors are investigated, assuming that the
best and worst levels of each factor are correctly
identified. Without loss of generality, let z1,...,2p
represent the p active factors and zp(1,...,2x the
k — p inactive factors. Consider the following two
extreme situations: (i) the p active factors are in-
vestigated first (assume that VS investigates k fac-
tors in the sequence 1, ..., Zp, Tpt+1, - .-, Tx) and (ii)
the k — p inert factors are investigated first (as-
sume that VS investigates k factors in the sequence
Zky ...y Lpt1yTp, - - -, T1). Then the probability of cor-
rectly identifying {z;,...,zp} as the only active fac-
tors is given by

( PI(]' - a)l( ?:1 Psfwap)
x([12; Py

x(1— Pc];f, , for situation (i)

Per = S Py(1 —a)e-?
X( f:llpszwap)
X( 5:):2 P(%P

\ X(l—cha’;,),

for situation (ii),

(19)

where 7; = {1,2,...,i},G; = {p,p—1,...,p—i+1}
and Py, Piyap, P, arc defined by Equations (14),
(15), and (18), respectively.

Note that this probability will depend on the order
in which the active factors are investigated if their
impacts on the response are different. Consider an
example where seven factors {z1, ... 27} are being in-
vestigated to identify three active factors {z1, 22, z3}
that affect the response through the following model:

y=0.82, +0.Tx3 + 0.8z3 + 0.4z, 22
+ 0.3z9z3 + 0.4z123 + €, (20)

where z; = —1 or +1 according as the worst or best
level of factor i is used and € ~ N(0,02). Note that
we do not include an intercept term in this model be-
cause the tests described in the previous subsection
are independent of the intercept term By in model
(12). The powers associated with each individual hy-
pothesis test at different stages are computed using
Equations (14), (15), and (18) with o = 0.20. As-
suming a 5% level of significance for each test, the
probability of detecting x1,z2, and z3 as active and
Z4,...,Z7 as inert can be computed for situations (i)
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and (ii) using Equation (19) as 0.8737 and 0.5818,
respectively.

Inference in the Presence of Three-Factor
Interactions

In the previous subsections, we have analyzed the
VS technique where three-factor interaction effects
were ignored. We now extend this to situations with
three-factor interaction effects. Consider the follow-
ing third-order model:

k k
y= 0o+ Zﬁiﬂii + Z Z Bijziz;

i=1 i<g j=1
k
+ Z Z Zﬂiﬂ.’ril‘j.’ﬂl + e. (21)
i<j,l i<l I=1

Due to the presence of three-factor interactions,
the test statistic for testing hypotheses at different
stages of the VS approach have slightly different sam-
pling distributions, as described in the Appendix.
The test procedures, however, are identical to those
derived earlier. It is worth noting that, under model
(21), negative values of three-factor interactions (3
fi's) are likely to reduce the power of the tests at dif-
ferent stages. However, positive values of 3 fi's asso-
ciated with a particular effect will increase the power
of its detection as an active factor.

Robustness of VS with Respect to
Noise Variation and Accuracy of
Experimenter’s Knowledge

In the earlier sections, we have seen that, for a
given model, the performance of the VS design (with
respect to the probability of correct screening) de-
pends on the level of inherent noise variation ¢ and
the degree of correctness of the experimenter’s knowl-
edge. We shall now examine the effects of these vari-
ables (here we refrain from using the term “factors”
to avoid mix-up with the original experimental fac-
tors to be screened by VS) and their interactions on
the overall probability of correct screening using the
results derived in the previous section. In this study,
we consider seven factors 1,2,...,7 to be investi-
gated, out of which three factors 1,2,3 are actually
active. The response y depends on these three factors
through the second-order model given in Equation
(20). We consider the following three input variables
that are known to affect the performance of VS:

1. A: Incorrect engineering assumption about set-
ting of a particular factor (in this case we con-
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TABLE 3. Design Matrix and Percentage of
Correct Screening

Setting of Order of 100
Run factor 3 (A) investigation (B) o (C) xPcr

1 Correct 1-2-3-4-5-6-7 0.10 90.25
2 Correct 1-2-3-4-5-6-7 0.30 49.14
3 Correct 7-6-5-4-3-2-1 0.10 59.87
4 Correct 7-6-5-4-3-2-1 0.30 33.96
5 Incorrect 1-2-3-4-5-6-7 0.10 90.23

6 Incorrect 1-2-3-4-5-6-7 0.30 20.24

7 Incorrect 7-6-5-4-3-2-1 0.10 59.86

8 Incorrect 7-6-5-4-3-2-1 0.30 9.63

sider factor 3 without loss of generality). This
variable has two levels: the + (—) level cor-
responds to a correct (incorrect) assumption,
which means that the coefficients of x3, 33 and
Z13 in model (20) are 0.8 (-0.8), 0.3(-0.3), and
0.4(-0.4), respectively.

2. B: Incorrect engineering assumption about rel-
ative importance of factors 1-7. Again we con-
sider two levels of this variable: the — level cor-
responds to the correct order 1-2-3-4-5-6-7 and
+ level corresponds to the completely reverse
(and incorrect) order 7-6-5-4-3-2-1.

3. C: The standard deviation o of the error term
€ in model (20). The two levels of this variable
are chosen as o = 0.10 and o = 0.30.

A full factorial experiment was designed with
these three input variables, and for each combina-
tion, the percentage of correct screening (100 x Pcy)
was computed using Equation (19). The results are
summarized in Table 3.

The data from Table 3 are summarized in the form
of significant main effects and interaction plots (see
Figure 5). All the three variables A, B, and C are
seen to affect the performance. As expected, the per-
formance is poor with incorrect settings, wrong or-
dering, or high error variance. In particular, a three-
times increase in error variance is seen to have a
strong effect on the performance. Two interactions,
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Bx(C and A x C, are also seen to affect Pgy. Clearly,
higher noise level worsens the effect of lack of exper-
imenter’s knowledge on the performance. Also, the
fact that a combination of incorrect setting, incor-
rect ordering, and high noise (run 8 in Table 3) leads
to a very low (9.63) percentage of correct screening
is indicative of the presence of a three-factor interac-
tion A x B x C.

Concluding Remarks

We have investigated Shainin’s variable search
(VS) method with the objective of understanding it
better and also identifying the type of settings under
which it does and doesn’t work well. The results in
the previous three sections have established that VS
is a useful method for screening of factors if (a) the
engineering assumptions about the directions of the
factor effects on the response and the relative order
of importance are correct and (b) the error variance
is not very high relative to the main effects and sum
of 2 fi’s involving each factor. The VS design permits
unbiased estimation of the main effects under the as-
sumption that interactions of order 3 and above are
negligible. Further, it has some projection properties
that permit independent estimation of main effects
and 2 fi’s for a maximum of four active factors.

Thus, the VS method is likely to be particularly
useful for screening active factors if the number of
factors under investigation is large, e.g., & > 15,
where it can lead to a significant saving of runs in
comparison with a comparable fractional factorial
design, particularly if higher order interactions are
actually present in the model or cannot be ruled out.
In contrast, if the number of factors is not very large,
e.g., k < 10, the experimenter’s knowledge about the
relative importance of factors is limited, and higher
order interactions can be assumed away, fractional
factorial designs or screening designs like Plackett—
Burman designs will be a much better choice. Fur-
ther, incorrect process knowledge and high error vari-
ance can result in poor performance of VS, both in
terms of correctness of factor screening and run size.
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Appendix
Proof of Equation (2)

If VS identifies only one factor as active, it does
not involve any capping run (a minimum of two ac-
tive factors is necessary to conduct a capping run).
However, each of the k factors undergoes swapping,
which results in a total of 2k runs. Adding the 6 stage
1 runs to this, we have N = 2(k + 3). For m > 2,
the total number of capping runs will be 2(m — 1),
and the total number of swapping terms will range
from 2m to 2k depending on the order of swapping.
Again, the result follows by adding the six stage 1
runs to the number of swapping and capping runs.

Proof of Result 1

From assumption (i), it follows that the total num-
ber of active factors identified by VS will be exactly
p. By Equation (2), V can take integer values ranging
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from 4(p + 1) to 2(k + p) + 4. Clearly, N varies only
due to the number of extra swapping runs, which
equals 2; if j inactive factors are examined, j =
0,1,...,(k—p). Therefore, N can take only even inte-
ger values 4(p+1),4(p+1)+2,...,4(p+1)+2(k—p).

The total number of mutually exclusive, exhaus-
tive, and equally likely ways in which & factors can be
examined is k!. The event A; = {N = 4(p+1) 425}
would occur if the search contains j extra swaps, i.e.,
4 inactive factors have to be explored before the pth
active factor. This will happen if the (p + j)th factor
examined is active and there are j inactive factors
among the first (p + j — 1) factors examined. The
total possible number of such arrangements is given

T =00
x (p— 1!t (k—p—)

Because each of the above arrangements are mutually
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exclusive, exhaustive and equally likely, by classical
definition of probability, it follows that

Pr(4;) = M)

O T - D)5k - p - 5)!
B k! ’

which, after some algebraic manipulations, can be
written in a more convenient form,

prca) =o(* 7)o+, )

The expectation of N is given by

X

—P

E(N)=) (4p+1)+2j)Pr(4;)

.
Il
<}

k—p
Ap+1)+2) jPr(A))

(because E?;g Pr(A4;)=1)

kz'«j p_(557)
=4p+1)+23 jL-d

=PI ()

P
—4(p+1)+2—"—(k -
(p+1)+ p+1( P)

after some algebraic manipulations.

Proof of Result 2

(i) Let Z, denote the (2p+2) x (}) matrix obtained
by taking the pairwise product of the p columns of
the X, matrix. It is easy to see that each column
of X, is orthogonal to each column of Z, and hence
X3Z, = 0. Also, let Binr denote the (’2’) x 1 vector
of coefficients f;;'s defined in model (3). Assuming
absence of 3 fi’s and higher order interactions, from
model (3), we can write E(y) = Bolap+2+XpBmain+
Z,BinT, where 1 denotes the N x 1 vector of 1’s.
Now, by definition of Bmain,

E(Bmain) = E[(X;X;) 7" X}y]
= E[(X;Xp)_l(x;ﬁ012p+2 + X;Xp,@main
+ X, Z,8NT) |
= Bmain

because X} 12,12 = 0 and X,Z,, = 0.

(i1) The variance—covariance matrix of Brmain 18
21 _ ! : :
o’D,t, where D, = (X,X,). It is easy to verify
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that
ap by bp bp
D,= |’ % b k) )
by by by - ap

where a, = 2p + 2 and b, = 2p — 6 are functions of
p. The determinant of D, can be obtained as

det Dy, = [ap + (p — 1)bp] (ap — bp)P 1. (23)

Let D;, denote the r x r principal submatrix of D,
forr=1,...,p. Then

det D7 = [ap + (r — 1)bp] (ap — by) (24)

Clearly, all the diagonal elements of D, ! will be
the same and, when multiplied by ¢2, will represent
var(3;) for i = 1,...,p. In particular, the (1,1)th
element of D, ! will be equal to the adjugate of the
(1, 1)th element of Dy, divided by det D,. Because the
adjugate of the (1,1)th element of D, is det D21, it
follows that
»y  gdetDP!
var(fg;) = o det D,

2 lap + (p — 2)bp)

[ap + (- 1)bp] (ap = bp)’
by (23) and (24)

— 2 pP—dp+T
8(p? —3p+4)
Proceeding in the same way, it can be shown that
any off-diagonal element of D, ! can be written as
(det Cp—_1)/(det Dy), where

by by by - by
by ap b, - by
Co=1|b, by ap -+ by
bp bp bp -+ ap

and a, and b, are defined as before. Because
det Cp_1 = —bp(ap — b,)P~2 = —8°72(2p — 6),
we have

p—3 o2
8?2 —3p+4)

by substituting the values of a, and b,.

COV(ﬁAi, Bj) = -

Proof of Result 3
Part (i)

Consider any three columns of D that correspond
to factors i, j, and k identified as active. Then the
rows corresponding to stage 1 runs are (+,+,+) and
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(—,—,—). It is straightforward to verify that the
swapping runs for factors ¢, j, and k will generate
the six remaining combinations of a 23 design.

Parts (ii)—(iv)

It is easy to see that the 8 swapping runs for
any 4 factors A, B,C, and D generate a 27! de-
sign with the defining relation I = —ABCD. Note
that, if an additional column is introduced, six rows
of that column will have the same symbol (— or +)
as in one of the four columns. Hence, the augmented
matrix will not be an orthogonal array. Next, we
show that D cannot contain an orthogonal array with
more than 8 rows. Let ij,ig,...i, denote the p ac-
tive factors in the order in which they are identified
as active. For each pair (ix,%x+1), the level combi-
nations (—, +) and (+, —) can appear twice and only
twice corresponding to the two swapping runs. Thus,
the largest orthogonal submatrix of the N x 2 ma-
trix with columns iy and ig4; has 8 rows. To prove
the last part, we note that the four runs along with
two stage 1 runs and two capping runs (+,+, —, —)
and (—,—,+,+) form a 24! design with the defin-
ing relation I = ABCD. Therefore; the combina-
tion of the two half fractions with defining relations
I = —ABCD and I = ABCD constitute a 2* full
factorial design,

Hypothesis Test for Stage 1 and Derivation of /break
Equations (13) and (14) -

Because the variance of the median obtained from
a random sample of size n drawn from a normal pop-
ulation can be approximated as w/2n for large n,
it is easy to see that the dlstrlbutlon of My, — M,
can be approx1mated as N2YF_ 8, (n0?)/3). Now
let 0,2 and aw denote the sample variances of the
two sets of observations on y* and y~, respectively,
and 62 = (csz + a‘wz) /2 denote the pooled variance.
Then (M — /(6+/7/3) follows a noncentral ¢
distribution Wlth 4 degrees of freedom and noncen—
trality parameter 6 = (2 Z@- Bi)/(o+/7/3). Note
that Zle B; > 0 implies at least one of the factors
is active.

Hypothesis Test for the Swapping Stage and
Derivation of Equation (15)

Define the following statistics with respect to the
swapping of factor z;:

S_(CE.,;) = Mb - yi—7
sT(x;) =y — My (26)
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Because My is distributed approximately as
N(Bo + 3;8; + Xju Bik, (n/6)0?) and y; ~
(/30 ﬁz+23;&z BJ Eﬁéz ,31.3 +Zﬁéz ki 6]’9’ )’
the distribution of s (z;) can be approximated by
N(2(8i + 34 Bi3), (1 + m/6)0?). Similarly, the dis-
tribution of s7(x;) can be approximated by N(2(8;—
32 Bi), (1 +7/6)o 2). Note that factor z; is active
if and only if at least one of the following conditions

holds good: (i) B; # 0, (ii) >_,4; Bij # 0. Thus, the
following null hypothesis of interest at this stage is

Bi = X_;4: Bij = 0. The hypothesis is rejected
at level « if either or both of the following two events
occur:

4 18T

" 1.236

. 57 (=)

‘1236 > ty.0/2s (27)
where 1.23 = (1 + 7/6)'/2. Because AT and A~ are
independent events, Equation (15) follows immedi-
ately.

> t4,0/2;

Hypothesis Test for the Capping Stage and Derivation
of Equation (18)

Define the following statistics with respect to the
capping of factors in F:

C+(f) = My, _y;‘?
C™(F)=yr — My. (28)

Proceeding as before, it can be easily seen that

CHF)~N2Y Bi+2) > By, (1+7/6)0% |,

i¢F igF jEF

C(F)~N 22,3i—222,3ij,(1+7r/6)02

igF igF jEF

Note that the capping runs will be successful (i.e.,
all factors x;,i ¢ F will be declared inert) if and
only if both the following conditions hold good: (i)
Yigr B =0and (i) 3,07 225 Bij = 0. Thus, the
following null hypothesis of interest at this stage is
Ho: Y igrBi=2ier def Bi; = 0. The hypothesis
is re_]ected (i-e., the capping run declared unsuccess-
ful) at level o 1f either or both of the following two
events occur:

+. ICH(A)
BT T e
_ |C~(F
B . % > t4,o¢/2- (29)
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Because B* and B~ are independent events, Equa-
tion (18) follows immediately.

Hypotheses Testing in the Presence of Three-Factor
Interactions

Due to the presence of three-factor interactions,
the expectations of the test statistics associated with
stage 1, swapping and capping require the following
modifications:

k k
E(My—My) =28+ >33 8],
i=1

i<l j<l I=1

B(st(z))=2( B+ Y. > B+ > B |

J#Ll#L] J#
B(s™(z) =2 Bi+ > Bist — > B
JFLUF] J#i
BICHF)=2> Bi+2) ). B
igr Y(F)
+23 ) By,
igF jEF
BO-(F)N=2)_6+2> 3 > B
igF ¥(F)
23" By,
igF j€F

where 9(F) is the set of all triplets (3, j, 1), where one
or all of the i, 7,1 ¢ F.

The variance expressions and the test procedures

are exactly identical to those derived in the Appen-
dices before.
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