
Variable selection in regression analysis

ISyE 8813 - Lecture slides

Loosely based on Chapter 3 of The Elements of Statistical
Learning by Hastie et al. (2009)



Overview of regression Convex penalties Non-convex penalties Hierarchy and heredity

Overview of regression

2 / 38



Overview of regression Convex penalties Non-convex penalties Hierarchy and heredity

Linear model

We assume the following linear model for data:

yi =

p∑
j=1

xijβj + εi, i = 1, · · · ,n,

where:

y = (y1, · · · ,yn) ∈ Rn is the vector of observed responses,

Assume y is centered, i.e.,
∑n
i=1 yi = 0, hence no intercept

xj = (x1j, · · · , xnj) ∈ Rn is the j-th covariate vector,

X = (x1, · · · , xp) ∈ Rn×p is the model matrix,

β = (β1, · · · ,βp) ∈ Rp is the coefficient vector,

{εi}
n
i=1

i.i.d.
∼ N(0,σ2) is the observation noise.
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Linear model

Why linear?

After transformations, often a reasonable approximation for
many applications

Efficiency in variable selection

What inputs can be modeled?

Quantitative inputs

Basis expansions

e.g., polynomial, spline, wavelet

Numeric or “dummy” coding of qualitative inputs

e.g., five-level factor coded as 1, · · · , 5)

Interactions between inputs
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Least-squares estimation

Want to select and estimate coefficients β using data (X,y).

Most popular estimation method is least-squares estimation
(LSE), which minimizes the residual-sum-squares (RSS):

RSS(β) = (y− Xβ)T (y− Xβ) =

n∑
i=1

(yi − β0 −

p∑
j=1

xijβj)
2

Intuition: Obtaining the hyperplane-of-best-fit to data

If noise is Gaussian, same as maximum-likelihood estimation
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Least-squares estimation
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Least-squares estimation

The minimization can be per-
formed in closed-form:

RSS(β) = (y− Xβ)T (y− Xβ)

∇βRSS(β) = −2XT (y− Xβ)
set
= 0

β̂LS = (XTX)−1XTy.

Using this estimator, the fitted
values at the training inputs are:

ŷ = Xβ̂LS = X(XTX)−1XTy.
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Gauss-Markov Theorem

Theorem (Gauss-Markov)

For any linear unbiased estimator β̂ = Ay
with Eβ̂ = β, Var(β̂LS) � Var(β̂).

In other words, the variance from the
LSE estimator is optimal among all
linear estimators of β

But is this enough?
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Bias-variance trade-off

Let xnew ∈ Rp be a new input setting, with Y its observation
from the linear model

Consider the following decomposition of prediction error:

E
[(
Y − xTnewβ̂

)2]
=
(
xTnewE

[
β̂− β

])2
+ E

[(
xTnewβ̂− xTnewβ

)2]
+ σ2

= Bias2 + Variance + Observation Error

The estimator β̂ should jointly reduce prediction bias and
variance. However, a decrease in one often leads to an
increase in the other; this is the bias-variance trade-off
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Model selection

This motivates the need for model selection:

Selecting which variables are active provides a way to control
the bias-variance trade-off, which leads to better predictions

When many variables are considered, model selection provides
a more interpretable model using a small subset of variables
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Convex penalties
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Penalized selection

Penalized selection optimizes the following
problem:

min
β

RSS(β) + λ p∑
j=1

P(βj)

 ,

where P(β) > 0 is a penalty function.

P should have the increasing property:

P(β) > P(β ′) for |β| > |β ′|

This forces the optimization to set
most coefficients in β to 0, thereby
performing selection
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LASSO

Tibshirani (1996) proposed the popular LASSO method (least
absolute shrinkage and selection operator), which optimizes:

β̂n(λ) ≡ min
β

RSS(β) + λ p∑
j=1

|βj|


This can be stated in the equivalent primal form:

β̂n(t) ≡ min
β

RSS(β) :

p∑
j=1

|βj| 6 t

 ,

which can be viewed as the tightest convex relaxation of the
desired (discrete) model selection problem:

min
β

RSS(β) :

p∑
j=1

1{βj 6= 0} 6 t

 ,
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LASSO: Motivation
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LASSO: Theoretical properties

We want a method which selects the correct model as the number
of observations n→∞, i.e.:

lim
n→∞P

(
β̂n(λ) =s β

)
= 1,

where =s denotes sign equality.

This is indeed true for LASSO:

Theorem (Zhao and Yu, 2006)

Under regularity conditions on X, LASSO is selection consistent
if the penalty parameter λn satisfies λn/n→ 0 and
λn/n

(1+c)/2 →∞ for all 0 6 c < 1.
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LASSO: Application to prostate dataset

Consider the prostate cancer study by Stamey et al. (1989):

Response: Prostate-specific antigen levels

Predictors:
Log cancer volume (lcavol)
Log prostate weight (lweight)
age

Log benign prostatic hyperplasia (lbph)
Seminal vesicle invasion (svi)
Log capsular penetration (lcp)
Gleason score (gleason)
% of Gleason scores 4 or 5 (pgg45)
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LASSO: Application to prostate dataset
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LASSO: Application to prostate dataset
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LASSO: Optimization using LARS

Least-angle regression (LARS, Efron et al., 2004) is an efficient
way for solving the LASSO path P ≡ {β̂n(t), t > 0}:

Motivated by piecewise linearity and continuity of P

Algorithm:
1 Begin with empty active set A = ∅ and residual r = y

2 Add to A the variable j with smallest angle cos
{
|xTj r|/‖r‖

}
,

i.e., the variable with largest correlation |xTj r|
2/‖r‖2

3 Move LARS solution in the direction of the LSE for A, and
update residual r.

4 Stop when a non-active variable has smallest angle with r, and
go to Step 2.

See Algorithm 3.2 in Hastie et al. (2009) for details
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LASSO: Optimization using LARS

Visualization:
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LASSO: Optimization using LARS
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LASSO: Optimization using coordinate descent

When many variables are considered (p� 1), LARS can be
computationally expensive. State-of-the-art algorithms employ a
technique called coordinate descent:

Idea dates back to the Gauss-Seidel method from 1823

Iteratively optimizes each coefficient βk with other
coefficients {βk}k6=j fixed.

For LASSO, this coordinate optimization for βj has
closed-form minimizer:

S

xTj
y−

n∑
k=1,k6=j

xkβk

 ; λ

 ,

where S {z; λ} = sgn(z)(|z|− λ)+ is the soft-thresholding
operator in Donoho (1995).
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LASSO: Optimization using coordinate descent
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LASSO: Optimization using coordinate descent

Observation: Coordinate descent much faster than LARS for
n,p� 1! 24 / 38
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Non-negative garrote (NNG)

Brieman (1995) proposed the non-negative garrote (NNG),
which optimizes:

d̂ = min
d

RSS(β̂LS � d) + λ p∑
j=1

dj, dj > 0 ∀j = 1, · · · ,p

 ,

where � is the Hadamard (element-wise) product.

The resulting estimator for NNG is β̂(λ) = β̂LS � d̂
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NNG: Comparison with LASSO

Advantages:

Stable selection method, often outperforming LASSO when
n > p (# observations > # variables)
For small p, efficient optimization using quadratic
programming (QP)

Disadvantages:

Performs poorly when n < p (# observations < # variables),
due to reliance on LSE
QPs are computationally expensive for large p

26 / 38



Overview of regression Convex penalties Non-convex penalties Hierarchy and heredity

NNG: Optimization using QP

When n > p, the NNG problem can be reformulated as a QP (try
as exercise), which has general form:

min
x

[
1

2
xTQx+ cTx, Ax 6 b

]
.

QPs can be solved efficiently using:

interior point methods,

active set optimization,

augmented Lagrangian penalization,

extensions of the simplex algorithm

See Nocedal and Wright (2006) for details.
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NNG: Optimization using LARS

Two drawbacks of NNG are that:

it performs poorly for n < p,

QPs are computationally expensive for large p.

These two problems are addressed in Yuan and Lin (2007), who:

used LASSO to generate initial estimates for NNG,

proposed a LARS-like algorithm to efficiently generate the
NNG path,

proved the resulting estimator is both estimation- and
selection-consistent.

28 / 38



Overview of regression Convex penalties Non-convex penalties Hierarchy and heredity

Non-convex penalties
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Non-convex penalties: Motivation

Selection consistency of LASSO relies on the
irrepresentability condition (Zhao and Yu, 2006), which
prevents variables from being “too correlated”

But observational data are often highly correlated in practice,
particularly in biology and social sciences!

Non-convex penalties address this by bridging the gap
between the l1-norm relaxation in LASSO and the l0-norm
desired for selection.
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Non-convex penalties

Many flavors proposed in the literature:

Bridge (power) penalty (Frank & Friedman, 1993):

P(βj) = |βj|
γ, γ ∈ (0, 1],

SCAD penalty (Fan & Li, 2001):

P(βj) =

∫ |βj|
0

min

{
1,

(γ− t/λ)+
γ− 1

}
dt, γ > 2,

Minimax concave penalty (MCP) (Zhang, 2010):

P(βj) =

∫ |βj|
0

(1 − t/(γλ))+ dt, γ > 1.
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Non-convex penalties

Visualization of non-convex penalties:
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Non-convex penalties: Coordinate descent

Similar to LASSO, the coordinate optimization for these
non-convex penalties have closed-form minimizers (called
threshold functions):

See Mazumder et al. (2011) for details.
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Hierarchy and heredity
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Hierarchy and heredity: Motivation

Until now, we considered only the general setting where there is no
relationships between variables.

In practice, variables often have an innate structure which can be
further exploited (see Wu and Hamada, 2009):

Hierarchy: Some variables are more important than others,
forming a hierarchy,

Heredity: Some variables can be active only when other
variables (called parent effects) are active

e.g., a two-factor interaction is active only if one or both of its
parent main effects are also active.

Both occur naturally in engineering, in genetics and more generally,
in designed experiments.
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Hierarchy and heredity: designed experiments

For designed experiments, Yuan, Joseph and Lin (2007)
generalized LARS to incorporate hierarchy and heredity:

For a variable j, define its dependency set Dj as its parent
effects,
Instead of the variable with highest correlation, the modified
LARS picks the variable j with the highest average correlation:

1

1 + #{Dj}
‖XTj∪Dj

r‖2/‖r‖2,

where the columns of Xj∪Dj
correspond to j and Dj.
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Hierarchy and heredity: observational data

From this, several approaches have been proposed for incorporating
hierarchy and heredity in the model selection of observational data:

Zhao, Rocha and Yu (2009): Uses composite absolute
penalties to select hierarchical variables,

Bien, Taylor and Tibshirani (2013): Selects hierarchical
interactions using a convex-constrained LASSO,

Lim and Hastie (2013): Selects hierarchical interactions using
a group-LASSO formulation.
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Summary

Model selection is necessary for two reasons:

to reduce prediction error in the bias-variance trade-off,
to obtain a more interpretable model.

LASSO provides a convex relaxation of this selection problem,
and can be solved via LARS or coordinate descent

NNG works well in practice when paired with LASSO

Non-convex penalties are necessary when variables are highly
correlated

More elaborate selection methods are needed when variables
have known structures, such as hierarchy or heredity
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