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Bayesian Computation

• Many intractable high-dimensional integrals
– Posterior distribution
– Posterior summaries
– Marginal posterior distributions
– Posterior predictive distributions

• Use approximation methods



Deterministic Methods

• Laplace’s Approximation (e.g. Tierney and Kadane
1986)
– May not be accurate.

• Gaussian Quadrature (e.g. Naylor and Smith 1982)
– Can produce accurate results.
– Cannot be used for high dimensions.



Simulation-Based Methods

• MC/MCMC (Metropolis et al. 1953, Hastings 1970, 
Geman and Geman 1984, Gelfand and Smith 1990, …)
– Can obtain results with arbitrary precision
– Suffer less from the curse of dimensionality
– Convergence issues
– High computational cost when dealing with computationally 

expensive posteriors



Examples of computationally expensive posteriors 

• Model calibration

Miller and Shih (2007)

Expensive



Examples-continued
• Geostatistics/Spatial statistics/Computer experiments

Joseph, Hung, Sudjianto (2008) Hung, Joseph, Melkote (2009)

Expensive



Examples-continued
• Inexpensive likelihood, but appearing within some 

algorithms.

• Simulation-based nonlinear optimal design (Muller 1999)

Not ExpensiveExpensive



New Deterministic Method
• Design of Experiments-based Interpolation technique 

(DoIt)
– Design of experiments
– Interpolation methods (e.g., kriging)

• Advantages
– Can obtain results with arbitrary precision
– Suffer less from the curse of dimensionality
– Works much faster than MC/MCMC

• Disadvantages
– Small to moderate number dimensions
– Continuous parameters



Earlier Work

• Bayes-Hermite Quadrature
– O’Hagan (1991)
– Kennedy (1998)
– Rasmussen and Ghahramani (2003)

• Hybrid Monte Carlo using Gaussian Process Models
– Rasmussen (2003)
– Bliznyuk et al. (2008)
– Henedrson et al. (2008)
– Fielding, Nott, and Liong (2011)



Laplace’s Approximation

• Bayesian model:

• Unnormalized posterior:



DoIt

• Unnormalized normal density function:

• Experimental design:

• DoIt:

• Kriging, Radial Basis Function,…



DoIt-continued

• Evaluations: 
• To get interpolation:

where                                 and

•



DoIt-continued
• Marginal likelihood

• Posterior distribution



Example

• Bayesian model:

• For y=0, posterior distribution: 



Example-continued

• Laplace’s approximation: 
• : 



Example-continued

• DoIt : 



Example-continued

• DoIt : 10 equally spaced points from 



A Result



Unknown Posterior Mode

• Assume that
• Leave-one-out cross validation: 
• From the kriging literature

• Minimize

• or



Example

• Bayesian model:

• Suppose             ,  



Example-continued
• Suppose we sample 10 equally spaced points from -10 

to 20.
• Minimizing WMSCV:



Example-continued

• m=20



Negativity Problem

• The coefficients     can be negative and can lead to 
negative posterior density values.



Mixture Normal Approximation

• Restrict        to be nonnegative:

• Quadratic program.
• Then, DoIt

becomes a mixture normal approximation.



Mixture Normal Approximation

• m=10

• Not a good fit.



Mixture Normal Approximation

• m=20

• Better, but not good enough.



Improved DoIt

• DoIt :

• Let 

• Then,

• New approximation:



Improved DoIt-continued



Improved DoIt-continued

• can be obtained using cross validation.



Improved DoIt-continued

• where



Binary Data Example

• m=10



Another Example

• Marin and Robert (2007)

• Unnormalized posterior:



Example-continued



Example-continued

• m=20



Marginal Posterior Distributions

• Using properties of multivariate normal distribution:



Posterior Summaries



Posterior Expectation

• More generally,

• Use approximations.



Posterior Expectation-continued

• First, let                                 and

• Let

• Approximate         using a kriging predictor:



Posterior Expectation-continued

• Choose          (Joseph 2006),

• Take



Example

• Posterior predictive density in the binary data example:

where

• Numerical integration: 

• Kriging approximation: 

• First order approximation: 



Experimental Design

• Initial space-filling design
• Sequential design



Space-Filling Design

• By Laplace’s approximation

• Transform:

• Then,



Space-Filling Design-continued

• Latin Hypercube Design (LHD) 
• Maximin LHD (Morris and Mitchell 1995)

• Let

• Find the remaining m-1 points by minimizing



Example: Density Control of Nanowires

• Dasgupta, Weintraub, and Joseph (2011)

ZnO thin film
Polymer films

Si substrate
ZnO thin film
Si substrate
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No polymer 5 nm 7.5 nm

10 nm 12.5 nm 22.5 nm

2.5 nm

20 nm

Results (1st set of experiments)

(All images at 5000x magnification; = 1 μm)
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Experimental Data
# Bi 

Layers
Thickn

ess 
(nm)

Density 
(NW/µm2)

Trial 1 Trial 2

0 0.0 123 123

1 2.5 46 48

2 5.0 8 11

3 7.5 8 7

4 10.0 7 2

5 12.5 5 1

8 20.0 2 -

10 25.0 0 0
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Trial 1

Trial 2

polymer thickness (nm)

nanowire density (NW/μm^2)

ZnO Nanowire Growth Density vs Polymer Thickness

123

123

45.5

48.1666666667

8
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8.25
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6.75
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1.4166666667
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Sheet1

		# of bilayers		approximate thickness (nm)				density (NW/μm2) - sample 1		density (NW/μm2) - sample 2

		0		0				123		123

		1		2.5				45.5		48.1666666667

		2		5				8		10.9166666667

		3		7.5				8.25		7

		4		10				6.75		1.75

		5		12.5				4.75		1.4166666667

		8		20						1.9066666667

		10		25				0.07		0.1125

		# of bilayers				density (NW/μm2) - sample 1		density (NW/μm2) - sample 2		approximate thickness (nm)

		0				123		123		0

		1				45.5		48.1666666667		2.5

		2				8		10.9166666667		5

		3				8.25		7		7.5

		4				6.75		1.75		10

		5				4.75		1.4166666667		12.5

		8						1.9066666667		20

		10				0.07		0.1125		25

						2.0899051114		2.0899051114

						1.6580113967		1.6827465924

						0.903089987		1.0380900496

						0.9164539485		0.84509804

						0.8293037728		0.2430380487

						0.6766936096		0.1512676753

						0		0.2802747741

						-1.15490196		-0.9488474776
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Trial 1

Trial 2

polymer thickness (nm)

nanowire density (NW/μm^2)

ZnO Nanowire density vs Polymer Thickness
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Example-continued

• Density of nanowires (y)
• Thickness of polymer films (x)

• Let
and 

• Prior: and 



Example-continued

• Posterior mode:

• obtained through numerical differentiation.
•
• MmLHD
•



Example-continued



Example-continued

• Metropolis algorithm with 3,000,000 samples (black line).



Comparison

• Quadrature method: didn’t converge!
• Gaussian Variational Approximation (GVA) (Ormerod

and Wand 2012)



Sequential Design

• Add points one-by-one to improve approximation.
• Optimal design theory: add the new point at a location 

with the largest prediction uncertainty.
• DoIt can be viewed as a simple kriging predictor given

• Conditional prediction variance is



Sequential Design-continued

• Let       be the leave-one-out estimate of the prediction 
variance

• Optimize in the neighborhood of  



Example

• Haario, Saksman, and Tamminen (2001)



m=100



m=100+25



m=100+50



m=100+75



Example-continued

• % Relative Error:



Comparison: Variational Bayes



Comparison: Hybrid MCMC

• Fielding, Nott, and Liong (2011)

• CPU time: Hybrid MCMC=90 mins, DoIt=3 mins.



Discussion from Dagupta and Meng: connections to QMC

• Experimental design

– QMC: low discrepancy sequence in [0,1]d

– DoIt: initial space-filling design+ sequential design

• Posterior summaries

– QMC: Monte Carlo average
– DoIt: smooth interpolation + analytical evaluation

• DoIt is likely to perform better than QMC when the 
posterior densities are smooth.



Numerical Comparison

• Binary data example

• Laplace approximation: N(2.37, 2.672)
• van der Corput sequence: ½, ¼, ¾, ….and re-scaled to 

[2.37-15,2.37+15]. 



Posterior Mean



Posterior Variance



Hierarchical Models

• May contain very large number of parameters
• Not easy to find a good space-filling design in high 

dimensions.
– Make use of the hierarchical structure.



Hierarchical Models-continued
• Suppose we can obtain explicit expression of

• And have the conditional distribution

• Use DoIt :

• Then,



Example 1: A Longitudinal Data Analysis

• Orthodontic measurements on 27 children (Phinheiro
and Bates 2000)

• 32 parameters



Longitudinal Data-continued

• Integrating out u

• Also,

• DoIt : 250-run MmLHD in 5 dimensions





Discussion from Ormerod & Wand
• VB approximation can be improved using the grid-based 

variational approximation method in Ormerod (2011).
• DoIt can be used for the same purpose!

– Center the experimental design using VB estimates.



VB+DoIt



VB+DoIt
• VB can be used to improve DoIt, whenever VB 

implementation is readily available.



Example 2: LAMM
Laser assisted mechanical micromachining (LAMM) integrates 
thermal softening with mechanical micro cutting 
(Singh, Joseph, and Melkote 2011)

Mechanical micromachiningLaser heating

= LAMM+



Objective

Find optimum processing conditions that minimize 
cutting/thrust forces and thermal damage.



Thermal Model

• Mapped dense mesh (25 µm x 12.5 µm x 20µm)
• An 8 noded 3-D thermal element (Solid70) is used
• Gaussian distribution of heat flux applied to a 5x5 element 

matrix which sweeps the mesh on the front face

1
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JUL 19 2006
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Geometric Model
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For plane strain conditions,



Shear Flow Strength
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Forces

• Cutting and thrust forces,
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•Initialize h=hinitial
•Calculate Force, Ft(h) from force model
•Determine kequil

•Calculate new thrust force Ftnew based on new depth of cut, hnew

|{ Ftnew/(hinitial-hnew) }-kequil|≤0.1

•Calculate equilibrium depth of cut, h
•Calculate the equilibrium force, Fc and Ft

hnew = h - ε

h = hnew

•Initialize h=hinitial
•Calculate Force, Ft(h) from force model
•Determine kequil

•Calculate new thrust force Ftnew based on new depth of cut, hnew

|{ Ftnew/(hinitial-hnew) }-kequil|≤0.1

•Calculate equilibrium depth of cut, h
•Calculate the equilibrium force, Fc and Ft

hnew = h - ε

h = hnew

Equilibrium Forces/Deflection



Thermal Model

Material Model

Force Model

Temperature
Distribution, T

•
εε ,

Stress
Distribution, S

Forces, Fc and Ft
Actual Depth of Cut, h

Geometric Model

)HRC,T,,(f εεσ =

Elastic Deflection

Thermal Model

Material Model

Force Model

Temperature
Distribution, T

•
εε ,

Stress
Distribution, S

Forces, Fc and Ft
Actual Depth of Cut, h

Geometric Model

)HRC,T,,(f εεσ =

Elastic Deflection

Force model



LAMM-continued



LAMM-continued

• Unnormalized posterior

• Integrating out   



LAMM-continued

• Conditional distribution:



LAMM-continued

• DoIt : m=100 (red), MCMC: m=100,000 (black)



LAMM-continued

• Computational time
– DoIt = 3 seconds
– MCMC=10 minutes

• Computationally expensive likelihood. 
– Computational complexity: 
– Here n=48.

200 times faster!



Conclusions

• A new deterministic approximation method using design 
of experiments and interpolation techniques.
– Very general.
– Can obtain the results with arbitrary precision.
– Suffer less from the curse of dimensionality compared to lattice-

based quadrature methods.
– Some of the very large hierarchical problems can be solved 

efficiently.
– Very fast!
– Almost a black box method (no extra programming or derivations 

are needed).



Conclusions

• Disadvantages
– Not as flexible as MCMC.
– Not easy to find good space-filling designs in high dimensions.
– Can handle only continuous parameters.
– Cannot ensure nonnegativity of the posterior density.



Nonnegative DoIt

• Joseph, Technometrics, 2013, February.



Future Research

• Fast generation of design points at high probability 
regions.
– Need a better design strategy.

• Fast approximation using local versions of     .
– Need a better modeling strategy.

• Topics for future research!



Conclusions

If you have a Bayesian problem, then just

Do It !


	Bayesian Computation Using�Design of Experiments-Based Interpolation Technique
	Bayesian Computation
	Deterministic Methods
	Simulation-Based Methods
	Examples of computationally expensive posteriors 
	Examples-continued
	Examples-continued
	New Deterministic Method
	Earlier Work
	Laplace’s Approximation
	DoIt
	DoIt-continued
	DoIt-continued
	Example
	Example-continued
	Example-continued
	Example-continued
	A Result
	Unknown Posterior Mode
	Example
	Example-continued
	Example-continued
	Negativity Problem
	Mixture Normal Approximation
	Mixture Normal Approximation
	Mixture Normal Approximation
	Improved DoIt
	Improved DoIt-continued
	Improved DoIt-continued
	Improved DoIt-continued
	Binary Data Example
	Another Example
	Example-continued
	Example-continued
	Marginal Posterior Distributions
	Posterior Summaries
	Posterior Expectation
	Posterior Expectation-continued
	Posterior Expectation-continued
	Example
	Experimental Design
	Space-Filling Design
	Space-Filling Design-continued
	Example: Density Control of Nanowires
	Slide Number 45
	Experimental Data
	Example-continued
	Example-continued
	Example-continued
	Example-continued
	Comparison
	Sequential Design
	Sequential Design-continued
	Example
	m=100
	m=100+25
	m=100+50
	m=100+75
	Example-continued
	Comparison: Variational Bayes
	Comparison: Hybrid MCMC
	Discussion from Dagupta and Meng: connections to QMC
	Numerical Comparison
	Posterior Mean
	Posterior Variance
	Hierarchical Models
	Hierarchical Models-continued
	Example 1: A Longitudinal Data Analysis
	Longitudinal Data-continued
	Slide Number 70
	Discussion from Ormerod & Wand
	VB+DoIt
	VB+DoIt
	Example 2: LAMM
	Objective
	Thermal Model
	Geometric Model
	Shear Flow Strength
	Forces
	Equilibrium Forces/Deflection
	Slide Number 81
	LAMM-continued
	LAMM-continued
	LAMM-continued
	LAMM-continued
	LAMM-continued
	Conclusions
	Conclusions
	Nonnegative DoIt
	Future Research
	Conclusions

