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Unit 1 : Basic Concepts and

Introductory Regresssion Analysis

Sources : Chapter 1.

• Historical perspectives and basic definitions (Section 1.1).

• Planning and implementation of experiments (Section 1.2).

• Fisher’s fundamental principles (Section 1.3).

• Simple linear regression (Sections 1.4-1.5).

• Multiple regression, variable selection (Sections 1.6-1.7).

• Example: Air Pollution Data (Section 1.8).
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Historical perspectives

• Agricultural Experiments : Comparisons and selection of varieties (and/or

treatments) in the presence of uncontrollable field conditions, Fisher’s

pioneering work on design of experiments and analysis of variance

(ANOVA).

• Industrial Era : Process modeling and optimization, Large batch of

materials, large equipments, Box’s work motivated in chemical industries

and applicable to other processing industries, regressionmodeling and

response surface methodology.
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Historical perspectives (Contd.)

• Quality Revolution : Quality and productivity improvement, variation

reduction, total quality management, Taguchi’s work on robust parameter

design, Six-sigma movement.

• A lot of successful applications in manufacturing (cars, electronics, home

appliances, etc.)

• Current Trends and Potential New Areas :Computer modelling and

experiments, large and complex systems, applications to biotechnology,

nanotechnology, material development, etc.
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Types of Experiments

• Treatment Comparisons : Purpose is to compare several treatments of a

factor (have 4 rice varieties and would like to see if they aredifferent in

terms of yield and draught resistence).

• Variable Screening :Have a large number of factors, but only a few are

important. Experiment should identify the important few.

• Response Surface Exploration :After important factors have been

identified, their impact on the system is explored; regression model building.
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Types of Experiments (Contd.)

• System Optimization : Interested in determining the optimum conditions

(e.g., maximize yield of semiconductor manufacturing or minimize defects).

• System Robustness :Wish to optimize a system and also reduce the impact

of uncontrollable (noise) factors. (e.g., would like cars to run well in

different road conditions and different driving habits; anIC fabrication

process to work well in different conditions of humidity anddust levels).
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Some Definitions

• Factor : variable whose influence upon a response variable is being studied

in the experiment.

• Factor Level : numerical values or settings for a factor.

• Trial (or run ) : application of a treatment to an experimental unit.

• Treatment or level combination : set of values for all factors in a trial.

• Experimental unit : object to which a treatment is applied.

• Randomization : using a chance mechanism to assign treatments to

experimental units or run order.

7



Systematic Approach to Experimentation

• State the objective of the study.

• Choose the response variable. . . should correspond to the purpose of the

study.

– Nominal-the-best, larger-the-better or smaller-the-better.

• Choose factors and levels.

– Use flow chart or cause-and-effect diagram (see Figure 1).

• Choose experimental design (i.e., plan).

• Perform the experiment (use a planning matrix to determine the set of

treatments and the order to be run).

• Analyze data (design should be selected to meet objective sothat the

analysis is efficient and easy).

• Draw conclusions.
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Cause-and Effect Diagram
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Figure 1: Cause-and-Effect Diagram, Injection Molding Experiment
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Choice of Response : An Example

• To improve a process that often produces underweight soap bars.

Obvious choice of response,y = soap bar weight.

• There are two sub-processes : (i) mixing, which affects soapbar density

(=y1), (ii) forming, which affects soap bar dimensions (=y2).

• Even thoughy is a function ofy1 andy2, better to studyy1 andy2 separately

and identify factors important for each of the two sub-processes.
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Fundamental Principles : Replication,

randomization, and blocking

Replication

• Each treatment is applied to units that are representative of the population

(example : measurements of 3 units vs. 3 repeated measurements of 1 unit).

• Replication vs Repetition (i.e., repeated measurements).

• Enable the estimation of experimental error. Use sample standard deviation.

• Decrease variance of estimates and increase the power to detect significant

differences : for independentyi ’s,

Var(
1
N

N

∑
i=1

yi) =
1
N

Var(y1).
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Randomization

Use of a chance mechanism (e.g., random number generators) to assign

treatments to units or to run order. It has the following advantages.

• Protect against latent variables or “lurking” variables (give an example).

• Reduce influence of subjective bias in treatment assignments (e.g., clinical

trials).

• Ensure validity of statistical inference (This is more technical; will not be

discussed in the book. See Chapter 4 of “Statistics for Experimenters” by

Box, Hunter, Hunter for discussion on randomization distribution.)
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Blocking

A block refers to a collection of homogeneous units. Effective blocking : larger

between-block variations than within-block variations.

(Examples: hours, batches, lots, street blocks, pairs of twins.)

• Run and compare treatments within the same blocks. (Use randomization

within blocks.) It can eliminate block-block variation andreduce variability

of treatment effects estimates.

• Block what you can and randomize what you cannot.

• Discusstyping experiment to demonstrate possible elaboration of the

blocking idea. See next page.

13



Illustration: Typing Experiment
• To compare two keyboardsA andB in terms of typing efficiency. Six

manuscripts 1-6 are given to the same typist.

• Several designs (i.e., orders of test sequence) are considered:

1.

1. A,B, 2. A,B, 3. A,B, 4. A,B, 5. A,B, 6. A,B.

(A always followed byB, why bad ?)

2. Randomizing the order leads to a new sequence like this

1. A,B, 2. B,A, 3. A,B, 4. B,A, 5. A,B, 6. A,B.

(an improvement, but there are four withA,B and two withB,A. Why is
this not desirable? Impact oflearning effect.)

3. Balanced randomization: To mitigate the learning effect, randomly
choose three withA,B and three withB,A. (Produce one such plan on
your own).

4. Other improved plans?
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Simple Linear Regression : Mortality Data

The data, taken from certain regions of Great Britain, Norway, and Sweden

contains the mean annual temperature (in degrees F) and mortality index for

neoplasms of the female breast.

Mortality rate (M) 102.5 104.5 100.4 95.9 87.0 95.0 88.6 89.2

Temperature (T) 51.3 49.9 50.0 49.2 48.5 47.8 47.3 45.1

Mortality rate (M) 78.9 84.6 81.7 72.2 65.1 68.1 67.3 52.5

Temperature (T) 46.3 42.1 44.2 43.5 42.3 40.2 31.8 34.0

Objective : Obtaining the relationship between mean annual temperature and

the mortality rate for a type of breast cancer in women.
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Getting Started
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Figure 2: Scatter Plot of Temperature versus Mortality Rate, Breast Cancer Data.
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Fitting the Regression Line

• Underlying Model :

y= β0+β1x+ ε, ε ∼ N(0,σ2).

• Coefficients are estimated by minimizing

N

∑
i=1

(

yi − (β0+β1xi)
)2

.

• Least Squares Estimates
Estimated Coefficients :

β̂1 =
∑(xi − x̄)(yi − ȳ)

∑(xi − x̄)2 , var
(

β̂1
)

=
σ2

∑(xi − x̄)2 ,

β̂0 = ȳ− β̂1x̄ , var
(

β̂0
)

= σ2
(

1
N
+

x̄2

∑(xi − x̄)2)

)

,

x̄=
1
N ∑xi , ȳ=

1
N ∑yi .
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Explanatory Power of the Model

• The total variation iny can be measured by corrected total sum of squares

CTSS= ∑N
i=1(yi − ȳ)2.

• This can be decomposed into two parts (Analysis of Variance (ANOVA)):

CTSS= RegrSS+RSS,

where

RegrSS= Regression sum of squares=
N

∑
i=1

(ŷi − ȳ)2,

RSS= Residual sum of squares=
N

∑
i=1

(yi − ŷi)
2.

ŷi = β̂0+ β̂1xi is called the predicted value ofyi at xi .

• R2 = RegrSS
CTSS = 1− RSS

CTSSmeasures the proportion of variation iny explained

by the fitted model.
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ANOVA Table for Simple Linear Regression

ANOVA Table for Simple Linear Regression

Degrees of Sum of Mean

Source Freedom Squares Squares

regression 1 β̂1 ∑(xi − x̄)2 β̂1 ∑(xi − x̄)2

residual N−2 ∑N
i=1(yi − ŷi)

2 ∑N
i=1(yi−ŷi)

2

(N−2)

total (corrected) N−1 ∑N
i=1(yi − ȳ)2

ANOVA Table for Breast Cancer Example

Degrees of Sum of Mean

Source Freedom Squares Squares

regression 1 2599.53 2599.53

residual 14 796.91 56.92

total (corrected) 15 3396.44
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t-Statistic

• To test the null hypothesisH0 : β j = 0 against the alternative hypothesis

H0 : β j 6= 0, use the test statistic

t j =
β̂ j

s.d.(β̂ j)
.

• The higher the value oft, the more significant is the coefficient.

• For 2-sided alternatives,p-value= Prob
(

|td f |> |tobs|
)

, df = degrees of

freedom for thet-statistic,tobs = observed value of thet-statistic. Ifp-value

is very small, then either we have observed something which rarely

happens, orH0 is not true. In practice, ifp-value is less thenα = 0.05 or

0.01,H0 is rejected at levelα.
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Confidence Interval

100(1−α)% confidence interval forβ j is given by

β̂ j ± tN−2, α
2
×s.d.(β̂ j),

wheretN−2, α
2

is the upperα/2 point of thet distribution withN−2 degrees of

freedom.

If the confidence interval forβ j does not contain 0, thenH0 is rejected.
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Predicted Values and Residuals

• ŷi = β̂0+ β̂1xi is the predicted value ofyi at xi .

• r i = yi − ŷi is the corresponding residual.

• Standardized residuals are defined asr i
s.d.(r i)

.

• Plots of residuals are extremely useful to judge the “goodness” of fitted

model.

– Normal probability plot (will be explained in Unit 2).

– Residuals versus predicted values.

– Residuals versus covariatex.
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Analysis of Breast Cancer Data

The regression equation is

M = - 21.79 + 2.36 T

Predictor Coef SE Coef T P

Constant -21.79 15.67 -1.39 0.186

T 2.3577 0.3489 6.76 0.000

S = 7.54466 R-Sq = 76.5% R-Sq(adj) = 74.9%

Analysis of Variance

Source DF SS MS F P

Regression 1 2599.5 2599.5 45.67 0.000

Residual Error 14 796.9 56.9

Total 15 3396.4

Unusual Observations

Obs T M Fit SE Fit Residual St Resid

15 31.8 67.30 53.18 4.85 14.12 2.44RX

R denotes an observation with a large standardized residual.

X denotes an observation whose X value gives it large leverage.
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Outlier Detection

• Minitab identifies two types of outliers denoted by R and X:

R: its standardized residual(yi − ŷi)/se(ŷi) is large.

X: its X value gives large leverage (i.e., far away from majority of the X

values).

• For the mortality data, the observation with T = 31.8, M = 67.3(i.e., left

most point in plot on p. 16) is identified as both R and X.

• After removing this outlier and refitting the remaining data, the output is

given on p. 27. There is still an outlier identified as X but notR. This one

(second left most point on p.16) should not be removed (why?)

• Residual plots on p. 28 show no systematic pattern.

Notes: Outliers are not discussed in the book, see standard regression texts.

Residual plots will be discussed in unit 2.
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Prediction from the Breast Cancer Data

• The fitted regression model isY =−21.79+2.36X, whereY denotes the

mortality rate andX denotes the temperature.

• The predicted mean ofY atX = x0 can be obtained from the above model.

For example, prediction for the temperature of 49 is obtained by substituting

x0 = 49, which givesyx0 = 93.85.

• The standard error ofyx0 is given by

S.E.(yx0) = σ̂

√

1
N
+

(x̄−x0)2

∑N
i=1(xi − x̄)2

.

• Herex0 = 49, 1/N+(x̄−x0)
2/∑N

i=1(xi − x̄)2 = 0.1041, and

σ̂ =
√

MSE= 7.54. Consequently,S.E.(yx0) = 2.432.
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Confidence interval for mean and prediction interval

for individual observation

• A 95% confidence interval for the mean responseβ0+β1x0 of y atx= x0 is

β̂0+ β̂1x0± tN−2,0.025×S.E.(yx0).

• Here the 95% confidence interval for the mean mortality corresponding to a

temperature of 49 is [88.63, 99.07].

• A 95% prediction interval for an individual observationyx0 corresponding tox= x0

is

β̂0+ β̂1x0± tN−2,0.025σ̂

√

1+
1
N
+

(x̄−x0)2

∑N
i=1(xi − x̄)2

,

where 1 under the square root representsσ2, variance of thenewobservationyx0.

• The 95% prediction interval for the predicted mortality of an individual

corresponding to the temperature of 49 is [76.85, 110.85].
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Regression Results after Removing the Outlier

The regression equation is

M = - 52.62 + 3.02 T

Predictor Coef SE Coef T P

Constant -52.62 15.82 -3.33 0.005

T 3.0152 0.3466 8.70 0.000

S = 5.93258 R-Sq = 85.3% R-Sq(adj) = 84.2%

Analysis of Variance

Source DF SS MS F P

Regression 1 2664.3 2664.3 75.70 0.000

Residual Error 13 457.5 35.2

Total 14 3121.9

Unusual Observations

Obs T M Fit SE Fit Residual St Resid

15 34.0 52.50 49.90 4.25 2.60 0.63 X

X denotes an observation whose X value gives it large leverage.
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Residual Plots After Outlier Removal
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Figure 3: Residual Plots

Comments :No systematic pattern is discerned.
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Multiple Linear Regression : Air Pollution Data

http://lib.stat.cmu.edu/DASL/Stories/AirPollutionandMortality.html

• Data collected by General Motors.

• Response is age-adjusted mortality.

• Predictors :

– Variables measuring demographic characteristics.

– Variables measuring climatic characteristics.

– Variables recording pollution potential of 3 air pollutants.

• Objective : To determine whether air pollution is significantly related to

mortality.
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Predictors
1. JanTemp : Mean January temperature (degrees Farenheit)

2. JulyTemp : Mean July temperature (degrees Farenheit)

3. RelHum : Relative Humidity

4. Rain : Annual rainfall (inches)

5. Education : Median education

6. PopDensity :Population density

7. %NonWhite : Percentage of non whites

8. %WC : Percentage of white collar workers

9. pop : Population

10. pop/house :Population per household

11. income : Median income

12. HCPot : HC pollution potential

13. NOxPot : Nitrous Oxide pollution potential

14. SO2Pot :Sulphur Dioxide pollution potential
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Getting Started

• There are 60 data points.

• Pollution variables are highly skewed, log transformationmakes them

nearly symmetric. The variables HCPot, NOxPot and SO2Pot are replaced

by log(HCPot), log(NOxPot) and log(SO2Pot).

• Observation 21 (Fort Worth, TX) has two missing values, so this data point

will be discarded from the analysis.
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Scatter Plots
Figure 4: Scatter Plots of mortality against selected predictors
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Fitting the Multiple Regression Equation

• Underlying Model :

y= β0+β1x1+β2x2+ . . .+βkxk+ ε, ε ∼ N(0,σ2).

• Coefficients are estimated by minimizing

N

∑
i=1

(

yi − (β0+β1xi1+β2xi2+ . . .+βkxik)
)2

= (y−Xβ)′(y−Xβ).

• Least Squares estimates :

β̂ = (X′X)−1X′y.

• Variance-Covariance matrix ofβ̂ : Σβ̂ = σ2(X′X)−1.
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Analysis of Variance

• The total variation iny, i.e., corrected total sum of squares,

CTSS= ∑N
i=1(yi − ȳ)2 = yTy−Nȳ2, can be decomposed into two parts

(Analysis of Variance (ANOVA)):

CTSS= RegrSS+RSS,

whereRSS= Residual sum of squares= ∑(yi − ŷi)
2 = (y−Xβ̂)T(y−Xβ̂),

RegrSS= Regression sum of squares= ∑N
i=1(ŷi − ȳ)2 = β̂

T
XTXβ̂ −Nȳ2.

ANOVA Table

Degrees of Sum of Mean

Source Freedom Squares Squares

regression k β̂
T

XTXβ̂ −Nȳ2 (β̂
T

XTXβ̂ −Nȳ2)/k

residual N−k−1 (y−Xβ̂ )T(y−Xβ̂ ) (y−Xβ̂ )
T
(y−Xβ̂ )/(N−k−1)

total N−1 yTy−Nȳ2

(corrected)
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Explanatory Power of the Model

• R2 = RegrSS
CTSS = 1− RSS

CTSSmeasures of the proportion of variation iny

explained by the fitted model.R is called the multiple correlation coefficient.

• Adjusted R2 :

R2
a = 1−

RSS
N−(k+1)

CTSS
N−1

= 1−
(

N−1
N−k−1

)

RSS
CTSS

.

• When an additional predictor is included in the regression model,R2 always

increases. This is not a desirable property for model selection. However,R2
a

may decrease if the included variable is not an informative predictor.

UsuallyR2
a is a better measure of model fit.
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Testing significance of coefficients :t-Statistic

• To test the null hypothesisH0 : β j = 0 against the alternative hypothesis

H0 : β j 6= 0, use the test statistic

t j =
β̂ j

s.d.(β̂ j)
.

• The higher the value oft, the more significant is the coefficient.

• In practice, ifp-value is less thenα = 0.05 or 0.01,H0 is rejected.

• Confidence Interval : 100(1−α)% confidence interval forβ j is given by

β̂ j ± tN−(k+1), α
2
×s.d.(β̂ j),

wheretN−k−1, α
2

is the upperα/2 point of thet distribution withN−k−1

degrees of freedom.

If the confidence interval forβ j does not contain 0, thenH0 is rejected.
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Analysis of Air Pollution Data
Predictor Coef SE Coef T P

Constant 1332.7 291.7 4.57 0.000
JanTemp -2.3052 0.8795 -2.62 0.012
JulyTemp -1.657 2.051 -0.81 0.424

RelHum 0.407 1.070 0.38 0.706
Rain 1.4436 0.5847 2.47 0.018

Educatio -9.458 9.080 -1.04 0.303
PopDensi 0.004509 0.004311 1.05 0.301
%NonWhit 5.194 1.005 5.17 0.000

%WC -1.852 1.210 -1.53 0.133
pop 0.00000109 0.00000401 0.27 0.788
pop/hous -45.95 39.78 -1.16 0.254

income -0.000549 0.001309 -0.42 0.677
logHC -53.47 35.39 -1.51 0.138

logNOx 80.22 32.66 2.46 0.018
logSO2 -6.91 16.72 -0.41 0.681

S = 34.58 R-Sq = 76.7% R-Sq(adj) = 69.3%

Analysis of Variance

Source DF SS MS F P

Regression 14 173383 12384 10.36 0.000
Residual Error 44 52610 1196
Total 58 225993

37



Variable Selection Methods

• Principle of Parsimony (Occam’s razor): Choose fewer variables with

sufficient explanatory power. This is a desirable modeling strategy.

• The goal is thus to identify the smallest subset of covariates that provides

good fit. One way of achieving this is to retain the significantpredictors in

the fitted multiple regression. This may not work well if somevariables are

strongly correlated among themselves or if there are too many variables

(e.g., exceeding the sample size).

• Two other possible strategies are

– Best subset regression using Mallows’Cp statistic.

– Stepwise regression.
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Best Subset Regression

• For a model withp regression coefficients, (i.e.,p−1 covariates plus the

interceptβ0), define itsCp value as

Cp =
RSS
s2 − (N−2p),

whereRSS= residual sum of squares for the given model,s2 = mean square

error = RSS(for the complete model)
df (for the complete model), N = number of observations.

• If the model is true, thenE(Cp)≈ p. Thus one should choosep by picking

models whoseCp values are low and close top. For the samep, choose a

model with the smallest Cp value(i.e., the smallest RSS value).
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AIC and BIC Information Criteria

• The Akaike information criterion (AIC) is defined by

AIC = Nln(
RSS
N

)+2p

• The Bayes information criterion (BIC) is defined by

BIC = Nln(
RSS
N

)+ pln(N)

• In choosing a model with the AIC/ BIC criterion, we choose themodel that

minimizes the criterion value.

• Unlike theCp criterion, the AIC criterion is applicable even if the number of

observations do not allow the complete model to be fitted.

• The BIC criterion favors smaller models more than the AIC criterion.
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Stepwise Regression

• This method involves adding or dropping one variable at a time from a given

model based on apartial F-statistic.

Let the smaller and bigger models be Model I and Model II, respectively.

The partialF-statistic is defined as

RSS(Model I)−RSS(Model II)
RSS(Model II)/ν

,

whereν is the degrees of freedom of theRSS(residual sum of squares) for

Model II.

• There are three possible ways

1. Backward elimination : starting with the full model and removing covariates.

2. Forward selection : starting with the intercept and adding one variable at a time.

3. Stepwise selection :alternate backward elimination and forward selection.

Usually stepwise selection is recommended.
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Criteria for Inclusion and Exclusion of Variables

• F-to-remove : At each step of backward elimination, compute the partialF

value for each covariate being considered for removal. The one with the

lowest partialF , provided it is smaller than a preselected value, is dropped.

The procedure continues until no more covariates can be dropped. The

preselected value is often chosen to beF1,ν,α, the upperα critical value of

theF distribution with 1 andν degrees of freedom. Typicalα values range

from 0.1 to 0.2.

• F-to-enter : At each step of forward selection, the covariate with the

largest partialF is added, provided it is larger than a preselectedF critical

value, which is referred to as anF-to-entervalue.

• For stepwise selection, theF-to-remove andF-to-enter values should be

chosen to be the same.

(See Section 1.7)
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Air Pollution Example: Best Subsets Regression

Vars R-Sq R-Sq(adj) C-p BIC S variables

4 69.7 67.4 8.3 608 35.6 1,4,7,13

5 72.9 70.3 4.3 606 34.0 1,4,5,7,13

6 74.2 71.3 3.7 607 33.5 1,4,6,7,8,13

7 75.0 71.6 4.3 609 33.3 1,4,6,7,8,12,13

8 75.4 71.5 5.4 612 33.3 1,4,5,7,8,10,12,13
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Pollution Data Analysis - Stepwise Regression
Stepwise Regression: Mortality versus JanTemp, JulyTemp, ...

Alpha-to-Enter: 0.15 Alpha-to-Remove: 0.15

Response is Mortality on 14 predictors, with N = 59

N(cases with missing observations) = 1 N(all cases) = 60

Step 1 2 3 4 5 6 7

Constant 887.9 1208.5 1112.7 1135.4 1008.7 1029.5 1028.7

%NonWhit 4.49 3.92 3.92 4.73 4.36 4.15 4.15

T-Value 6.40 6.26 6.81 7.32 6.73 6.60 6.66

P-Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Educatio -28.6 -23.5 -21.1 -14.1 -15.6 -15.5

T-Value -4.32 -3.74 -3.47 -2.10 -2.40 -2.49

P-Value 0.000 0.000 0.001 0.041 0.020 0.016

logSO2 28.0 21.0 26.8 -0.4

T-Value 3.37 2.48 3.11 -0.02

P-Value 0.001 0.016 0.003 0.980
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Pollution Data Analysis - Stepwise Regression
(Contd)

Alpha-to-Enter: 0.15 Alpha-to-Remove: 0.15

Response is Mortality on 14 predictors, with N = 59
N(cases with missing observations) = 1 N(all cases) = 60

JanTemp -1.42 -1.29 -2.15 -2.14
T-Value -2.41 -2.26 -3.25 -4.17
P-Value 0.019 0.028 0.002 0.000

Rain 1.08 1.66 1.65
T-Value 2.15 3.07 3.16
P-Value 0.036 0.003 0.003

logNOx 42 42
T-Value 2.35 4.04
P-Value 0.023 0.000

S 48.0 42.0 38.5 37.0 35.8 34.3 34.0
R-Sq 41.80 56.35 63.84 67.36 69.99 72.86 72.86
R-Sq(adj) 40.78 54.80 61.86 64.94 67.16 69.73 70.30
C-p 55.0 29.5 17.4 12.7 9.7 6.3 4.3
BIC 634.52 621.62 614.60 612.63 611.76 609.90 605.83
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Final Model

Rival Models

Variables Cp BIC Remarks

Model 1 1,4,6,7,8,13 3.7 607 Minimum Cp

Model 2 1,4,5,7,13 4.3 606 Minimum BIC and chosen by stepwise

We shall analyze data with Model 2. (Why? Refer to the rules onpage 38 and

use the principle of parsimony.)
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Analysis of Model 2

Predictor Coef SE Coef T P

Constant 1028.67 80.96 12.71 0.000

JanTemp -2.1384 0.5122 -4.17 0.000

Rain 1.6526 0.5225 3.16 0.003

Education -15.542 6.235 -2.49 0.016

%NonWhite 4.1454 0.6223 6.66 0.000

logNOx 41.67 10.32 4.04 0.000

S = 34.0192 R-Sq = 72.9% R-Sq(adj) = 70.3%

Analysis of Variance

Source DF SS MS F P

Regression 5 164655 32931 28.45 0.000

Residual Error 53 61337 1157

Total 58 225993
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Residual Plot
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Figure 6 : Plot of Residuals
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Comments on Board
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