
MATH 3070 Introduction to Probability and Statistics
Lecture notes

Relationships: Simple Regression

Objectives:

1. Learn the equation for simple regression

2. Compute the regression equation for a given data set

Simple Linear Regression

Once we’ve established there is a relationship, we’d like to make use of this knowledge.
Specifically, we’d like to be able to use this relationship to predict behavior of the
response variable. Having established there is a relationship between square footage
and sale price of a house, it would be useful to a prospective buyer to know what a
house might list for given its size.

To do this we use a technique known as linear regression. The name gives a hint
as to what type of relationship must exist (linear) for this to work. We will use the
equation of a line which we fit to the data as a predictive equation. Once we know what
the line is we can “plug in” new values for the explanatory (independent) variables,
turn the crank, and get the predicted output. Simple. But how do we identify the
line?

The first step in the process is to produce a scatterplot of the variables. (Note:
This will only illustrate the simple case where one explanatory variable is assumed to
adequately explain all the behavior of a single response variable.) Once we have the
data points plotted we can fit a line to them. For any given set of data points there
are an infinite number of lines that can be fit. The trick is to find the one that fits
the best. To illustrate this we will use a small dataset and fit two lines to it1:

x y

4 6
9 10
1 2
6 2

First let us plot a horizontal line (y = 5). This gives a predicted value of 5 for all
values of y regardless of input values for x. To differentiate the real values of y from
the predicted values, we will use the notation of “y-hat” (ŷ) to indicate the predicted
values. Given this, we see there are errors in the prediction. We can measure the
error by subtracting the predicted value from the actual value, like so:

x y y − ŷ

4 6 6− 5 = 1
9 10 10− 5 = 5
1 2 2− 5 = −3
6 2 2− 5 = −3

1From Modern Elementary Statistics, 9th ed, Freund and Simon, Prentice Hall, 1997



If we sum these errors we get zero, which isn’t very interesting (as with the variance
and standard deviation). So we will square these values to remove the sign

x y y − ŷ (y − ŷ)2

4 6 6− 5 = 1 1
9 10 10− 5 = 5 25
1 2 2− 5 = −3 9
6 2 2− 5 = −3 9

Now the sum of our errors is 44, a much more meaningful number. This doesn’t look
very good, though. Let’s try to fit a better line to the data such as y = 1 + x. This
actually fits two of the points exactly [(1, 2), (9, 10)] which reduces our error greatly.
Following the same procedure as before (subtracting the predicted value for y from
the real value for y, squaring the result) we get the following:

y = 5 y = 1 + x
x y y − ŷ (y − ŷ)2 y − ŷ (y − ŷ)2

4 6 6− 5 = 1 1 6− 5 = 1 1
9 10 10− 5 = 5 25 10− 10 = 0 0
1 2 2− 5 = −3 9 2− 2 = 0 0
6 2 2− 5 = −3 9 2− 7 = −5 25

The sum of our squared terms is now 26, which is much better than the 44 we got
with the horizontal line. Comparing the two lines we would conclude that the second
line is a better fit.

This line is called the least-squares line because its sum of squared errors is less
than the other line’s. The procedure we will use is called the method of least-squares
precisely because of this. We want the line that minimizes the errors between the
actual values for y and the predicted values for y (ŷ). We accept that there will be
error since only a perfect line has all the data points exactly aligned and that would
be rare (or manufactured).

Calculating the Regression Line

The following discussion is based upon the symbols and formulas used in Johnson and
Kuby.

The equation for a regression line is the same as we learned before, only we use some
slightly different symbols. The equation is written

ŷ = b0 + b1x

We compute the value for b1 first since we actually use that value to calculate b0. The
formula for b1 is

b1 =
SSxy

SSxx

where SSxy is the “sum of squares” for each pair of observations x and y and SSxx

is the “sum of squares” for each x observation. The values for these are computed by
the following formulas:

SSxy =
∑

xy − (
∑

x)(
∑

y)
n



SSxx =
∑

x2 − (
∑

x)2

n

To compute b0 we use the following formula:

b0 =
∑

y − (b1 ×
∑

x)
n

So let’s see what this looks like when we apply the formulas to our previous example.
First we need to square our x values for the SSx formula:

x y x2

4 6 16
9 10 81
1 2 1
6 2 36

Next we will calculate the product of each x, y pair of observations. This is for the
SSxy formula.

x y x2 x× y

4 6 16 24
9 10 81 90
1 2 1 2
6 2 36 12

Now we will sum the columns to get totals for x, y, x2, and x× y.

x y x2 x× y

4 6 16 24
9 10 81 90
1 2 1 2
6 2 36 12
20 20 134 128

Now we can calculate the values for SSxx and SSxy, like so:

SSxx =
∑

x2 −
(

(
∑

x)2

n

)
= 134− (20)2

4
= 34

SSxy =
∑

xy − (
∑

x)(
∑

y)
n

= 128− (20× 20)
4

= 28

The slope of the line (b1) is then calculated as

b1 =
SSxy

SSxx
=

28
34

= 0.8235

We use that value to calculate the y-intercept of the line (b0)

b0 =
∑

y − (b1 ×
∑

x)
n

=
20− (0.8235× 20)

4
= 0.8824



So the equation of our line of “best fit” is

ŷ = 0.8824 + 0.8235× x

To quickly check to see if we’ve done all the math correctly, plug in the mean value
for x in the equation. You should get the mean value of y as the predicted value. In
this case, the mean of x (x̄) is 5 (20

4 ). So using that value we get

ŷ = 0.8824 + 0.8235× 5 = 4.999

This value is almost exactly our mean of y, the difference is 0.0001 and due to rounding
error. So our equation seems to be correctly derived. Now, if we use our equation to
calculate our predicted values, we get the following results:

x y ŷ = 0.8824 + 0.8235× x

4 6 4.1764
9 10 8.2939
1 2 1.7059
6 2 5.8234

And our residuals (y − ŷ) are

x y ŷ = 0.8824 + 0.8235× x y − ŷ

4 6 4.1764 1.8236
9 10 8.2939 1.7061
1 2 1.7059 0.2941
6 2 5.8234 -3.8234

Now, square the residuals to get the Sum of Squared Error, or SSE, which we can
then compare to our two previous lines.

x y ŷ = 0.8824 + 0.8235× x y − ŷ (y − ŷ)2

4 6 4.1764 1.8236 3.3255
9 10 8.2939 1.7061 2.9108
1 2 1.7059 0.2941 0.0865
6 2 5.8234 -3.8234 14.6184

The sum of our squared errors (residuals) is 20.9412. Our previous lines had sum of
squared errors of 44 (y = 5) and 26 (y = 1 + x). This value is better than either of
those, so this line is a better fit to the data.

Interpreting b0 and b1

What are these mysterious variables b0 and b1? In other terms we can think of b0 as
the y-intercept and b1 as the slope of the line.

We have to be careful with the regression line, though, because the values produced
are not always rational. Yes the line crosses the y-axis at b0 when we plug in zero for x,



but the value at zero may not make sense. For example, a regression line that predicts
food expenditure (in hundreds of dollars) based upon income has the equation

ŷ = 1.1414 + 0.2642x

so when we plug in zero for x we get $1.1414 which means the family spends $114.14
when they have zero income. This is a problem known as extrapolation. The
regression line is calculated using a given data set and the line is valid for all data
points within the limits (minimum and maximum) of that data set. Outside those
limits the regression line may not be valid. There is a demonstrated relationship
between age and height in children, and height can reasonably be estimated from
age with a sufficiently large data set, but growth stops eventually and age continues.
Predicting height for someone at age 21 would probably yield a value that would be
meaningless.


