
MATH 2420 Discrete Mathematics
Lecture notes

Sets and Set Theory

Objectives:

1. Determine whether one set is a subset of another

2. Determine whether two sets are equal

3. Determine whether an element is in a set or not

4. Determine the union, intersection, difference, and complement of
sets

5. Illustrate sets using Venn diagrams

6. Determine Cartesian product of two or more sets

7. Prove set identities

8. Use set identities to derive new set properties from old set prop-
erties

9. Use Venn diagrams to prove set identities

10. Determine whether sets form a partition of a given set

11. Determine the power set of a set

General definitions:

set A collection of discrete items, whether numbers, letters, people,
animals, cars, atoms, planets, etc. A set is identified when the
items are grouped together between { and }.

element One item in a set, whether a discrete item or a set itself.

cardinality The number of elements in a finite set.

Sets are defined by listing the elements between braces ({ }). Any
items listed between the braces are considered elements of the set,
even if those items are sets themselves. An item by itself is just an
element and not a set.

{a} is a set

a is not a set

If the elements of a set are too numerous to list individually, the set
may be defined by a property. We write the set defintion by listing
first the membership and then the condition which must be met for
membership. As an example

{x ∈ Z | −2 < x < 5}

where Z is the set of all integers defines a set which has elements x
which are integers between -2 and 5.
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Special Sets

Z+ set of all positive integer numbers

N set of all natural numbers (0, 1, 2, 3, 4, . . .)

Z set of all integer numbers

Q set of all rational numbers

I set of all irrational numbers

R set of all real numbers

U the universal set

Subsets
If A and B are subsets, A is called a subset of B if, and only if, every
element of A is also an element of B. We write this as A ⊆ B. Written
symbolically this is:

A ⊆ B ⇔ ∀ x, if x ∈ A then x ∈ B.

The definition of subset is rigid and inflexible. If any element in A
does not appear in B then A cannot be a subset of B. That is:

A 6⊆ B ⇔ ∃x such that x ∈ A and x 6∈ B.

Looking at the special sets above we have

N ⊆ Z ⊆ Q ⊆ R

A set can be a subset of itself, strange as this may seem. To differen-
tiate subsets by type, we call a subset with at least one item missing
from the larger set as a proper subset. That is, a set may be a
proper subset if, and only if, every element of A is in B but there is
at least one element of B that is not in A.

Set Equality

Two sets, A and B, can be said to be equal if every element in set A
is also in set B, and vice versa. Stated another way

A = B if (x ∈ A ⇒ x ∈ B) and (x ∈ B ⇒ x ∈ A)

Operations on Sets

We can operate on sets in a manner similar to other mathematical
operations. Our operators are a bit different, though.

union ∪ A ∪B all elements in both sets
intersection ∩ A ∩B all elements common to both sets
difference − A−B all elements in A but not in B
complement various Ac all elements not in A
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Procedural definitions:

union A ∪B = {x ∈ U | x ∈ A or x ∈ B}
intersection A ∩B = {x ∈ U | x ∈ A and x ∈ B}
difference A−B = {x ∈ U | x ∈ A and x 6∈ B}
complement Ac = {x ∈ U | x 6∈ A}

Examples:

union {1, 2, 3} ∪ {2, 4, 6} = {1, 2, 3, 4, 6}
intersection {1, 2, 3} ∩ {2, 4, 6} = {2}
difference {1, 2, 3} − {2, 4, 6} = {1, 3}

Empty Set
A set with no members, however weird, is part of set theory. It is called
the empty set (or null set) and is denoted by either empty brackets ()
or by the special symbol ∅.

Partitions and Disjoint Sets
Two sets are called disjoint if they have no elements in common. That
is

A ∩B = ∅

If we increase the number of sets to more than two we must consider
the property known as mutually disjoint. Also known as pairwise
disjoint. This refers to the relationship between any two sets at a
time. The definition is

Sets A1, A2, A − 3, . . . , An are mutually disjoint if, and
only if, no two sets Ai and Aj with distinct subscripts have
any elements in common. More precisely, for all i, j =
1, 2, . . . , n,

Ai ∩Aj = ∅ whenever i 6= j

Example: Let A1 = 1, 2, 3, A2 = 4, 5 and A3 = 6, 7, 8. Then

A1 A2 A3

A1 na ∅ ∅
A2 ∅ na ∅
A3 ∅ ∅ na

So what purpose does this serve? It provides the basis for constructing
partitions of sets. A partition is a collection of mutually disjoint sets
that when unioned together form the whole larger set. Each set must
be nonempty, that is, must have at least one member and all sets must
be pairwise, or mutually, disjoint. We use the following definition:

A collection of nonempty sets A1,A2,. . .,An is a partition
of a set A if, and only if,
1. A = A1 ∪A2 ∪ . . . ∪An;
2. A1,A2,. . .,An are mutually disjoint.
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Power Sets
So far we have seen that any given set can be broken into several
different subsets. A subset is simply a set of elements from a (usually)
larger set, though the set can be a subset of itself A ⊆ A, strange as
that may seem. We have also seen that the set of no elements, the
empty set, is always a subset of every set. This collection is referred
to as the power set of a set and is denoted P(§). But how many sets
are there in the power set? The number of sets is equal to 2n where n
is the number of elements in a set.

For example, if we have a set A = {2, 4, 6} then the power set P(A)
consists of

∅, {2}, {4}, {6}, {2, 4}, {2, 6}, {4, 6}, {2, 4, 6}

of which all but {2, 4, 6} are proper subsets.

This works even for the empty set ∅ thusly:

There are no elements in the empty set since it is “empty”.
Hence the cardinality is zero. If we compute 20 we get an
answer of 1, which is the only subset of ∅ which is itself. �

Cartesian Products
In sets, order and repetition usually don’t matter. But what if they do?
Then we have an item known as an ordered n-tuple. Often seen with
only two elements, these are called ordered pairs. Ordered n-tuples
are unique based on elements and order of elements. Two n-tuples can
be equal only if all elements are the same and in the same order.

(1, 2) 6= (2, 1)
(3, (−2)2, 1

2) = (
√

9, 4, 3
6)

Now, if X and Y are sets, we let X × Y denote the set of all ordered
pairs (x, y) where x ∈ X and y ∈ Y . This is called the Cartesian
product of X and Y . Symbolically,

A×B = {(a, b) | a ∈ A and b ∈ B}

Example:
Let A = 1, 2 and B = 1, 4, 7. Then

A×B = {(1, 1), (1, 4), (1, 7), (2, 1), (2, 4), (2, 7)}
B ×A = {(1, 1), (1, 2), (4, 1), (4, 2), (7, 1), (7, 2)}

This can be applied to more than two sets at a time.
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Properties of Sets

Subset Relations

1. Inclusion of Intersection: For all sets A and B,

A ∩B ⊆ A and A ∩B ⊆ B

2. Inclusion in Union: For all sets A and B,

A ⊆ A ∪B and B ⊆ A ∪B

3. Transitive Property of Subsets: For all sets A, B, and C

if A ⊆ B and B ⊆ C, then A ⊆ C

Procedural Versions of Set Definitions
Let X and Y be subsets of a universal set U and suppose x and y are
elements of U .

1. x ∈ X ∪ Y ⇔ x ∈ X or x ∈ Y
2. x ∈ X ∩ Y ⇔ x ∈ X and x ∈ Y
3. x ∈ X − Y ⇔ x ∈ X and x 6∈ Y
4. x ∈ Xc ⇔ x 6∈ X
5. (x, y) ∈ X × Y ⇔ x ∈ X and y ∈ Y

Element Arguments
Using these subset relations and set definitions, we can prove that sets
are subsets of each other. To prove that X ⊆ Y requires two steps:

1. Suppose that x is a particular yet arbitrarily chosen element of
X.

2. Show that x is an element of Y .

This is an element argument or also known as a “chasing x argu-
ment” (in that we “chase” x from one side of the statement to the
other).

Using this method of proving subsets we can show that two sets are
equal to each other. We know that two sets are equal if they are
subsets of each other, so if we can show the subset relation then we
have shown the equality. So first we show that X ⊆ Y and then we
show that Y ⊆ X.

This can best be explained with an example.

Show that R ∩ (S ∪ T ) ⊆ S ∪ (R ∩ T ).
We must show that each x in R ∩ (S ∪ T ) is also in

S ∪ (R ∩ T ).
1. Let x ∈ R ∩ (S ∪ T ).
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2. Then x is in both R and S ∪ T by definition.
3. Since x is in S ∪ T , x is in S or x is in T . This gives us

two cases.
4. (a) In the case that x is in S, we get that x ∈ S∪(R∩T )

by the definition of union.
5. (b) In the case that x is in T , we get that x ∈ (R∩T ) by

the definition of intersection and the observation above
that x ∈ R.

6. Then, once again, we get x ∈ S∪(R∩T ) by the definition
of union.

7. Thus in either case x ∈ S ∪ (R ∩ T ).
8. Thus each x in R ∩ (S ∪ T ) is in S ∪ (R ∩ T ) as well, so

R ∩ (S ∪ T ) ⊆ S ∪ (R ∩ T )

From Bogart, p. 21-22
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