
MATH 2420 Discrete Mathematics
Lecture notes

Functions

Objectives:

1. Be able to prove statements using mathematical induction.

Proof by Induction

Until now everything we’ve proven has been a direct proof, whether a
proof of a function being one-to-one or onto, or an element argument,
or an algebraic proof of a set property.

But in mathematics, not everything can be proven directly, especially
when dealing with sequences and series. In that case, we use the
technique of proof by induction.

{from MATtours -SciMathMN}
Inductive proofs are based on the idea that you want to prove an
infinite sequence of statements:

• property p is true for number 1

• property p is true for number 2

• property p is true for number 3

• etc.

The method of proof is based on adding to the list infinitely many
implications:

• p is true for 1

• If p is true for 1 then p is true for 2.

• P is true for 2.

• If p is true for 2 then p is true for 3.

• P is true for 3.

• If p is true for 3 then p is true for 4.

• Etc

We always want to show that our property is true for one more instance
of n. That is, n + 1.

That is, if you can prove p is true for 1, and all of the “if p is true
for . . . then p is true for . . .” then you’ve proved all of the “p is true
for. . .” statements. In other words, if you can prove “p is true for 1”
and “If p is true for n, then p is true for n + 1 for all natural numbers
n” then you’ve proved “p is true for n for all natural numbers n.”
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This is kind of like thinking about falling dominos. If you choose a
domino in a line at random and push it over, the next domino in line
falls. That is, if you push domino n over, domino n + 1 falls, too.

A proof by induction consists of two specific parts:

1. P is true for some particular integer a.

2. If P is true for some particular integer k ≥ a, then it is true for
the next integer k + 1.

Then P is true for all integers n ≥ a.

Step 1 of the proof is the basis case, you prove that P (a) is true for
a particular integer a. Step 2 is the inductive step, where you prove
that for all integers k ≥ a, if P (k) is true then P (k + 1) is true.

To generalize, to prove the inductive step you suppose that P (k) is
true (where k is some arbitrary integer greater than the basis case)
then you show that P (k + 1) is true.

This can be done in a variety of ways - algebraically, graphically, or
verbally.

The secret to inductive proofs, if there is one, is to recognize the part
of the proof that you already know and have stated is proven. When
proving for the k + 1 term, replace the variable with the k + 1 value,
then expand and simplify. Once you expand the form you should
recognize the part which you already know, namely, that part which
is the answer to P (k).

An example:

Statement Use mathematical induction to prove that the sum of the
first n odd positive integers is n2.

Solution Let P (n) denote the proposition that the sum of the first n
odd positive integers is n2. We must first complete the basis step;
that is, we must show that P (1) is true. Then we must carry out
the inductive step; that is, we must show that P (n + 1) is true
when P (n) is assumed to be true.

Basis Step P (1) states that the sum of the first one odd positive
integers is 12. This is true since the sum of the first odd positive
iteger is 1.

Inductive Step To complete the inductive step we must show that
the proposition P (n) → P (n+1) is true for every positive integer
n. To do this, suppose that P (n) is true for a positive integer n;
that is,

1 + 3 + 5 + · · ·+ (2n− 1) = n2

We must show that P (n + 1) is true, assuming that P (n) is true.
Note that P (n + 1) is the statement that

1 + 3 + 5 + · · ·+ (2n− 1) + (2n + 1) = (n + 1)2
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So, assuming that P (n) is true, it follows that

1 + 3 + 5 + · · ·+ (2n− 1) + (2n + 1) = [1 + 3 + 5 + · · ·+ (2n− 1)] + (2n + 1)
= n2 + (2n + 1)
= n2 + 2n− 1
= (n + 1)2

Note how we replaced the majority of the equation with the sim-
pler form n2 because we recognized the pattern we already knew!

Conclusion Since P (1) is true and the implication P (n) → P (n + 1)
is true for all positive integers n, the principle of mathematical
induction shows that P (n) is true for all positive integers n.

Verbal Form of Proof

Theorem 1. Any set of size n has exactly 2n subsets.

Proof. For any n ≥ 0, let P (n) be the proposition that any set of size
n has exactly 2n subsets. Then P (0) is the proposition that any set of
size 0 has exactly 20 = 1 subset. But the only set of size 0 is the empty
set ∅, which does indeed have exactly 1 subset, namely, the empty set
itself. Hence, P (0) is true.

Now we must show that if P (k) is true, then so is P (k + 1). That is,
we must show that if any set of size k has exactly 2k subsets, then any
set of size k + 1 has exactly 2k+1 subsets.

So let s = {x1, x2, x3, . . . , xk, xk+1} be any set of size k + 1. Then we
may classify all of the subsets of S into two groups - those subsets that
contain the element xk+1, and those that do not. Now, the subsets of
S that do not contain the element xk+1 are precisely the subsets of the
set {x1, x2, . . . , xk}. Furthermore, since this set has size k, we may use
the fact that P (k) is true to deduce that there are 2k such subsets. In
other words, there are 2k subsets of S that do not contain the element
xk+1.

On the other hand, the number of subsets of S that contain the element
xk+1 is the same as the number of subsets of S that do not contain
xk+1. One way to see this is to observe that if we take all of the
subsets of S that do not contain xk+1 and add xk+1 to each of these
subsets, then we will get a complete list of all of the subsets of S that
do contain the element xk+1.

Hence, there are also 2k subsets of S that do contain the element xk+1,
and so the total number of subsets of S is 2k + 2k = 2k+1. Thus,
P (k + 1) is true, and so the theorem is proved.

Corrected proof from Roman, 2nd ed, p. 52
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