MATH 2420 Discrete Mathematics Lecture notes

Functions

Objectives:

1. Be able to prove statements using mathematical induction.

Proof by Induction

Until now everything we've proven has been a direct proof, whether a proof of a function being one-to-one or onto, or an element argument, or an algebraic proof of a set property.

But in mathematics, not everything can be proven directly, especially when dealing with sequences and series. In that case, we use the technique of proof by induction.

{from MATtours -SciMathMN}

Inductive proofs are based on the idea that you want to prove an infinite sequence of statements:

- property p is true for number 1
- property p is true for number 2
- property p is true for number 3
- $\bullet\,$ etc.

The method of proof is based on adding to the list infinitely many implications:

- p is true for 1
- If p is true for 1 then p is true for 2.
- P is true for 2.
- If p is true for 2 then p is true for 3.
- P is true for 3.
- If p is true for 3 then p is true for 4.
- Etc

We always want to show that our property is true for one more instance of n. That is, n + 1.

That is, if you can prove p is true for 1, and all of the "if p is true for ... then p is true for ..." then you've proved all of the "p is true for..." statements. In other words, if you can prove "p is true for 1" and "If p is true for n, then p is true for n + 1 for all natural numbers n" then you've proved "p is true for n for all natural numbers n." This is kind of like thinking about falling dominos. If you choose a domino in a line at random and push it over, the next domino in line falls. That is, if you push domino n over, domino n + 1 falls, too.

A proof by induction consists of two specific parts:

- 1. P is true for some particular integer a.
- 2. If P is true for some particular integer $k \ge a$, then it is true for the next integer k + 1.

Then P is true for all integers $n \ge a$.

Step 1 of the proof is the basis case, you prove that P(a) is true for a particular integer a. Step 2 is the inductive step, where you prove that for all integers $k \ge a$, if P(k) is true then P(k+1) is true.

To generalize, to prove the inductive step you suppose that P(k) is true (where k is some arbitrary integer greater than the basis case) then you show that P(k + 1) is true.

This can be done in a variety of ways - algebraically, graphically, or verbally.

The secret to inductive proofs, if there is one, is to recognize the part of the proof that you already know and have stated is proven. When proving for the k + 1 term, replace the variable with the k + 1 value, then expand and simplify. Once you expand the form you should recognize the part which you already know, namely, that part which is the answer to P(k).

An example:

- **Statement** Use mathematical induction to prove that the sum of the first n odd positive integers is n^2 .
- **Solution** Let P(n) denote the proposition that the sum of the first n odd positive integers is n^2 . We must first complete the basis step; that is, we must show that P(1) is true. Then we must carry out the inductive step; that is, we must show that P(n + 1) is true when P(n) is assumed to be true.
- **Basis Step** P(1) states that the sum of the first one odd positive integers is 1^2 . This is true since the sum of the first odd positive iteger is 1.
- **Inductive Step** To complete the inductive step we must show that the proposition $P(n) \rightarrow P(n+1)$ is true for every positive integer n. To do this, suppose that P(n) is true for a positive integer n; that is,

$$1+3+5+\dots+(2n-1)=n^2$$

We must show that P(n+1) is true, assuming that P(n) is true. Note that P(n+1) is the statement that

$$1 + 3 + 5 + \dots + (2n - 1) + (2n + 1) = (n + 1)^2$$

So, assuming that P(n) is true, it follows that

$$1 + 3 + 5 + \dots + (2n - 1) + (2n + 1) = [1 + 3 + 5 + \dots + (2n - 1)] + (2n + 1)$$
$$= n^{2} + (2n + 1)$$
$$= n^{2} + 2n - 1$$
$$= (n + 1)^{2}$$

Note how we replaced the majority of the equation with the simpler form n^2 because we recognized the pattern we already knew!

Conclusion Since P(1) is true and the implication $P(n) \rightarrow P(n+1)$ is true for all positive integers n, the principle of mathematical induction shows that P(n) is true for all positive integers n.

Verbal Form of Proof

Theorem 1. Any set of size n has exactly 2^n subsets.

Proof. For any $n \ge 0$, let P(n) be the proposition that any set of size n has exactly 2^n subsets. Then P(0) is the proposition that any set of size 0 has exactly $2^0 = 1$ subset. But the only set of size 0 is the empty set \emptyset , which does indeed have exactly 1 subset, namely, the empty set itself. Hence, P(0) is true.

Now we must show that if P(k) is true, then so is P(k+1). That is, we must show that if any set of size k has exactly 2^k subsets, then any set of size k + 1 has exactly 2^{k+1} subsets.

So let $s = \{x_1, x_2, x_3, \ldots, x_k, x_{k+1}\}$ be any set of size k + 1. Then we may classify all of the subsets of S into two groups - those subsets that contain the element x_{k+1} , and those that do not. Now, the subsets of S that do not contain the element x_{k+1} are precisely the subsets of the set $\{x_1, x_2, \ldots, x_k\}$. Furthermore, since this set has size k, we may use the fact that P(k) is true to deduce that there are 2^k such subsets. In other words, there are 2^k subsets of S that do not contain the element x_{k+1} .

On the other hand, the number of subsets of S that contain the element x_{k+1} is the same as the number of subsets of S that do not contain x_{k+1} . One way to see this is to observe that if we take all of the subsets of S that do not contain x_{k+1} and add x_{k+1} to each of these subsets, then we will get a complete list of all of the subsets of S that do contain the element x_{k+1} .

Hence, there are also 2^k subsets of S that do contain the element x_{k+1} , and so the total number of subsets of S is $2^k + 2^k = 2^{k+1}$. Thus, P(k+1) is true, and so the theorem is proved.

Corrected proof from Roman, 2nd ed, p. 52