
MATH 2420 Discrete Mathematics
Proof: An Inequality for Harmonic Numbers

Definition
The harmonic numbers, denoted H1,H2,H3, . . ., are a special sequence
of numbers. The sequence begins at one and continues as an infinite
sum, like so
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k
∀n ∈ Z+

Proposal
Use mathematical induction to show that

H2n ≥ 1 +
n

2
,

whenever n is a nonnegative integer.

From Rosen, 4th ed, pg. 193

Notice that this only applies to harmonic numbers at powers of 2.

Proof
To carry out the proof, let P (n) be the proposition that

H2n ≥ 1 +
n

2
.

Basis Step
Let n = 0. Then P (0) is

H20 = H1 = 1 ≥ 1 +
0
2
.

Inductive Step
Assume that P (n) is true, so that

H2n ≥ 1 +
n

2
.

It must be shown that P (n + 1), which states

H2n+1 ≥ 1 +
n + 1

2
,
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must also be true under this assumption. This is done as follows:
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Thus, by the Principle of Mathematical Induction, the inequality
for the harmonic numbers is valid for all nonnegative integers n.

Discussion

Line 1
This is just the equation for P (n) with n+1 substituted for n and
then the sequence expanded. Note that the term 1

2n is followed
by 1

2n+1 and not 1
2n+1 . This is because consecutive powers of 2

are not consecutive numbers on the number line (21 = 2, 22 = 4,
23 = 8, 24 = 16). In fact, the gap between consecutive powers
increases as the power increases.

Line 2
In this line we recognize the part of the expanded series that we
can replace, namely, all terms from 1 up to 1

2n . This is from the
definition of the harmonic numbers.

Line 3
Here the “known” portion of the sequence is replaced by H2n .

Line 4
We now replace H2n with the inductive hypothesis which we have
already proven.

Line 5
This is the most complex line in the proof. We have a problem in
that we have the terms from 1

2n+1 to 1
2n+1 to deal with, and we

don’t know how many of them there are. Or do we? Let’s look
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at the powers of 2 as they increase:

20 = 1
21 = 2 = 1 + 1
22 = 4 = 2 + 2
23 = 8 = 4 + 4
24 = 16 = 8 + 8
25 = 32 = 16 + 16

The “distance” on the numberline from a power of 2 to the next
power is always the same as the previous power of 2. That is,
to get from 2k to 2k+1 we need 2k terms. We can write this as
2k + 2k or even as 2× 2k since adding a term to itself is the same
as multiplying by 2. If we look at 2 as really 21 we then have
21 × 2k, which can be rewritten as 2k+1. If we replace k with n
we have 2n+1 which is the denominator in the last term of the
sequence. So we can reliably say that there are 2n terms in that
part of the sequence remaining after we replace the first half with
H2n .
So that answers the first question, but why multiply by 1

2n+1 ?

Line 6
In this line we see the result (1

2) of the multiplication in the
previous line. This results because of cancellation of common
terms. The demoninator can be written as 1

2n×2 which allows us
to cancel the 2n leaving only 1

2 .

Line 7
Here the fraction 1

2 is added to the fraction n
2 to simplify the terms

and produce the final form, which is what was to be shown.

3


