MATH 2420 Discrete Mathematics Proof: An Inequality for Harmonic Numbers

Definition

The harmonic numbers, denoted H_1, H_2, H_3, \ldots , are a special sequence of numbers. The sequence begins at one and continues as an infinite sum, like so

$$H_{1} = 1$$

$$H_{2} = 1 + \frac{1}{2}$$

$$H_{3} = 1 + \frac{1}{2} + \frac{1}{3}$$

$$H_{4} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}$$

$$H_{k} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{k} \forall n \in Z^{+}$$

Proposal

Use mathematical induction to show that

$$H_{2^n} \ge 1 + \frac{n}{2},$$

whenever n is a nonnegative integer.

From Rosen, 4th ed, pg. 193

Notice that this only applies to harmonic numbers at powers of 2.

Proof

To carry out the proof, let P(n) be the proposition that

$$H_{2^n} \ge 1 + \frac{n}{2}.$$

Basis Step

Let n = 0. Then P(0) is

$$H_{2^0} = H_1 = 1 \ge 1 + \frac{0}{2}.$$

Inductive Step

Assume that P(n) is true, so that

$$H_{2^n} \ge 1 + \frac{n}{2}.$$

It must be shown that P(n+1), which states

$$H_{2^{n+1}} \geq 1 + \frac{n+1}{2},$$

must also be true under this assumption. This is done as follows:

$$H_{2^{n+1}} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^n} + \frac{1}{2^n + 1} + \dots + \frac{1}{2^{n+1}} \quad (1)$$

$$= \underbrace{1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^n}}_{H_{2^n}} + \frac{1}{2^n + 1} + \dots + \frac{1}{2^{n+1}} \quad (2)$$

$$= H_{2^n} + \frac{1}{2^n + 1} + \dots + \frac{1}{2^{n+1}}$$
(3)

$$\geq \left(1+\frac{n}{2}\right) + \frac{1}{2^n+1} + \dots + \frac{1}{2^{n+1}} \tag{4}$$

$$\geq \left(1+\frac{n}{2}\right)+2^n \times \frac{1}{2^{n+1}} \tag{5}$$

$$\geq \left(1+\frac{n}{2}\right)+\frac{1}{2} \tag{6}$$

$$= 1 + \frac{n+1}{2}.$$
 (7)

Thus, by the Principle of Mathematical Induction, the inequality for the harmonic numbers is valid for all nonnegative integers n.

Discussion

Line 1

This is just the equation for P(n) with n+1 substituted for n and then the sequence expanded. Note that the term $\frac{1}{2^n}$ is followed by $\frac{1}{2^n+1}$ and not $\frac{1}{2^{n+1}}$. This is because consecutive powers of 2 are not consecutive numbers on the number line $(2^1 = 2, 2^2 = 4, 2^3 = 8, 2^4 = 16)$. In fact, the gap between consecutive powers increases as the power increases.

Line 2

In this line we recognize the part of the expanded series that we can replace, namely, all terms from 1 up to $\frac{1}{2^n}$. This is from the definition of the harmonic numbers.

Line 3

Here the "known" portion of the sequence is replaced by H_{2^n} .

Line 4

We now replace H_{2^n} with the inductive hypothesis which we have already proven.

Line 5

This is the most complex line in the proof. We have a problem in that we have the terms from $\frac{1}{2^{n+1}}$ to $\frac{1}{2^{n+1}}$ to deal with, and we don't know how many of them there are. Or do we? Let's look

at the powers of 2 as they increase:

$$2^{0} = 1$$

$$2^{1} = 2 = 1 + 1$$

$$2^{2} = 4 = 2 + 2$$

$$2^{3} = 8 = 4 + 4$$

$$2^{4} = 16 = 8 + 8$$

$$2^{5} = 32 = 16 + 16$$

The "distance" on the numberline from a power of 2 to the next power is always the same as the previous power of 2. That is, to get from 2^k to 2^{k+1} we need 2^k terms. We can write this as $2^k + 2^k$ or even as 2×2^k since adding a term to itself is the same as multiplying by 2. If we look at 2 as really 2^1 we then have $2^1 \times 2^k$, which can be rewritten as 2^{k+1} . If we replace k with n we have 2^{n+1} which is the denominator in the last term of the sequence. So we can reliably say that there are 2^n terms in that part of the sequence remaining after we replace the first half with H_{2^n} .

So that answers the first question, but why multiply by $\frac{1}{2^{n+1}}$?

Line 6

In this line we see the result $(\frac{1}{2})$ of the multiplication in the previous line. This results because of cancellation of common terms. The demoninator can be written as $\frac{1}{2^n \times 2}$ which allows us to cancel the 2^n leaving only $\frac{1}{2}$.

Line 7

Here the fraction $\frac{1}{2}$ is added to the fraction $\frac{n}{2}$ to simplify the terms and produce the final form, which is what was to be shown.