
MATH 1070 Introductory Statistics
Lecture notes

Confidence Intervals and Hypothesis Testing

Objectives:

1. Learn the concepts of estimating a parameter and how to measure the confidence
of that estimate

2. Point estimates and interval estimates

3. Characteristics of good estimators

4. Learn how to compute confidence intervals

5. Computing necessary sample size for a given margin of error

6. Hypothesis testing and significance (Large samples - z test)

7. Type I and Type II error and what they are

8. Using p-values in hypothesis testing

9. Hypothesis testing and significance (Small samples - t test)

10. Testing the difference between two means (Matched pairs)

Estimating a Parameter

With small populations, less than 30 to 50 observations, it is relatively easy to compute
the actual value for the mean (µ). It can be done, it might be tedious and boring,
but it can be done. But if the population is 300 or 3000 or 300,000 observations
the possibility of computing the mean becomes less likely. Still possible, but with
decreasing chance of it actually happening.

When the population becomes as large as the population of the United States (recently
300,000,000) the possibility is so minimal as to be nonexistent. Gathering all the data
is an onerous chore, and crunching that much data would take a signficant amount
of time. It’s would be easier to compute with a smaller group of the data, something
like a sample.

When we use a sample to compute a statistic (x̄) we can then use that statistic
to estimate the population parameter (µ). That’s the hope. This is why we want
to eliminate as much bias as possible from our sample. A biased sample cannot be
generalized back to the population at large. Quite simply, the answer would be wrong.

This type of statistic is called a point estimate since it is a single number. Formally
we would say that

A point estimate of a parameter is the value of a statistic that is used to
estimate the parameter. (Weiss, p. 445)

Alternatively we could say

A point estimator draws inferences about a population by estimating the
value of an unknown parameter using a single value or point. (Keller and
Warrack, p. 304)



The problem with this is that the sample statistic (x̄) is just one estimate of the
parameter and while it might get the answer correct it could just as easily have been
wrong. (The sample mean x̄ is, however, the best estimator of the population mean
µ.) This means there is error in the point estimate.

So what makes a good estimator? There are three characteristics for a good estimator
which are:

1. Unbiased - the expected value should be equal to the parameter being estimated.

2. Consistent - as sample size increases, the value of the statistic should approach
the value of the parameter.

3. Relatively efficient - smallest variance of all possible estimators.

Unbiased means that, if you were to take an infinite number of samples, calculate the
value of the estimator in each sample, then average these values, the average value
would equal the parameter. This amounts to saying that, on average, the sample
statistic is equal to the parameter. (Keller and Warrack, p. 305)

We would like to know how good the estimator is and how close it comes to the real
parameter. We figure this out as a confidence interval (CI). We try to bound the
real value within a range of error to either side (+/-) of the estimate. A confidence
interval estimate of a parameter consists of an interval of numbers obtained from a
point estimate of a parameter together with a percentage that specifies how confident
we are that the parameter lies in the interval. The confidence percentage is called the
confidence level.

Law of Large Numbers

If an experiment is repeated again and again, the probability of an event
obtained from the relative frequency approaches the actual or theoretical
probability. Mann, p. 162

If a situation, trial, or experiment is repeated again and again, the pro-
portion of successes will tend to approach the probability that any one
outcome will be a success. Freund and Simon, p. 124

Critical Values of z

With a confidence interval we get to choose the margin of error we will accept and
how confident we want to be. This is great flexibility, but it is not free.

Why would we ever want to be less than 99% confident? Why would anyone? The
more confident you want to be the more data you will need. The law of large numbers
says that the larger the sample the closer to the real value of the parameter. But
the key word is “large”. We have to have more data to be more confident about the
interval. And data isn’t always without cost. Time or money will most likely be
needed.

We use different values for z in the computation of the confidence interval depending
upon the level of confidence we require. There are three very common levels of con-
fidence - 90%, 95%, and 99%. Each has a different value of z assigned to it. Where
does this value come from, though?



Recall the standard normal distribution. We used it in standardized variables. The
area under this curve is 1 and at any point along the curve we know the percentage of
area to the left of that point. Also recall the 65-95-99.7 empirical rule where we used
the standard deviation to identify where 65%, 95%, and 99.7% of the data would be
found.

We use the same concept here to compute the confidence interval.

The formula for the confidence interval is

x̄± zα/2
σ√
n

that is, the sample mean plus or minus the margin of error. The α in the computation
is the amount of error we are willing to accept in the interval. Why is it divided by
2? Because the distribution is symmetrical (remember?) we have to have the same
amount of area (error) in the upper and lower tails. So we have half the error allocated
to the lower tail and half the error allocated to the upper tail.

When we subtract this amount of error from the whole (1.0) we get the confidence
level we want for the interval estimate. This is also the area under the curve of the
normal distribution.

So if we want a 95% confidence interval we are willing to accept 5% error. Divide
that error by half and we get 2.5% (0.05/2 = 0.025). Now, look inside the standard
normal table for a value close to 0.0250. We find this on the row labeled “-1.9” and
in the column labeled “0.06”, so the critical value for z is -1.96. Since the distribution
is symmetrical that means the upper tail is at 1.96. We use the positive value for the
computation of the margin of error since we add or subtract the same amount from
the sample mean to create the interval.

Selecting Sample Size

How do we know what size sample to select? Randomly guess? Actually, the appro-
priate sample size can easily be determined from a formula. To use this formula we
need two pieces of information

1. The desired confidence level of the interval estimator; and

2. The margin of error, or bound of the error of estimation (B).

The formula for the margin of error is

zα/2
σ√
n

= B

By use of algebra we can manipulate this equation into the following form:

n =
(za/2σ

B

)2

where n is the sample size. So given a confidence level and a target value for the
margin of error we can then use the reworked equation to compute the desired sample
size.



A forester would like to estimate the mean tree diameter of a large tract
of trees. He wants to estimate µ to within 0.5 inch, with 99% confidence.
A quick survey reveals that the smallest tree has a diameter of two inches,
while the largest tree has a diameter of 27 inches. How large a sample
should he take?

Taking this apart we inventory what information we have:

• Margin of error = 0.5 in

• Confidence interval = 99%

• α = 0.01 (1 - 0.99)

• Range of tree trunk sizes = 27 - 2 = 25

From these values we know that zα/2 = z0.01/2 = z0.005 so we need a value for z with
0.005 area in the upper and lower tails. Looking in the standard normal table we
don’t find that exact value, but we do find 0.9949 at 2.57 and 0.9951 at 2.58. Since
our desired value is between the two, we split the difference at 2.575.

We do not have the population standard deviation σ, but we can estimate the value
if we take the range of the values and divide by 4. So, the range of trunk sizes is 27 -
2 = 25 which when we divide 25 by 4 we get 6.25. Neat trick, eh?

So now it’s just “plug and churn” in the formula, like so:

n =
(za/2σ

B

)2

(1)

=
(

2.575× 6.25
0.5

)2

(2)

=
(

16.09375
0.5

)2

(3)

= (32.18751)2 (4)
= 1036.0351 (5)

So the sample size for this experiment should be 1,037 trees.

Note that the answer wasn’t 1,037 but 1,036.0351. We had to round up to the next
smallest integer. That’s because we can’t take a partial observation. What is 0.0351
of a tree anyway? If we just threw away the fractional part and used a sample size of
1,036 we wouldn’t get the desired margin of error.



Hypothesis Tests in Statistics

In the hard sciences, and even in some of the “soft” sciences, we ask questions that
we answer with experiments. We usually have an idea about what should happen,
or we hope will happen, and we run experiments to collect data to support or refute
these ideas. We call these ideas, or guesses, hypotheses. In statistics we have the
same methodology for testing claims or beliefs about populations of data.

The methodology is the same:

1. Formulate a hypothesis about a phenomenon of interest.

2. Design an experiment to test this hypothesis.

3. Collect the data.

4. Analyze the data from the experiment.

5. Draw a conclusion.

In statistical tests, however, we don’t always have to run a physical experiment. We
can analyze data from an observational study which we have questions about.

Hypothesis testing is an area of statistics where the art comes into play. It is true
that using the same data set and slightly different, but equally valid, criteria one can
prove the exact opposite of an argument. In this area it is much more about the
interpretation of the numbers than the numbers themselves.

Test statistics used in hypothesis testing - the z statistic

The z test is a statistical test for the mean of a population and is used when the
population is normally distributed and σ is known or n is greater than or equal to 31.

The formula for the z test is
z =

x̄− µ
σ√
n

where

x̄ = sample mean
µ = population mean
σ = population standard deviation
n = sample size

The Null and Alternative Hypothesis

Just as any argument has two sides, our tests have two hypotheses. These hypotheses
have specific names and notation. We also have to pay attention to how we word and
formulate the hypotheses.

The first hypothesis is the null hypothesis. This is a claim or statment about a
population parameter that is assumed to be true until it is declared false (Mann p.
423). The notation we use for the null is H0, read “H naught” or “H zero”. In most
cases we want the null hypothesis to be proven false. There are certain cases where
we don’t want to disprove the null, and it is important to understand that we don’t
prove the null. We said it is assumed to be true, not that we know it to be true for
certain.



The other side of the argument is the alternative hypothesis. We write the alterna-
tive as Ha or H1. This is read the way it appears. This is a claim about a population
parameter that will be true if the null hypothesis is false. This is the side of the
argument that we are usually trying to prove to be true. We want the alternative to
be true, if the data support it.

When discussing tests of hypothesis it is important to remember that we do not prove
the null hypothesis to be true. We can prove the null to be false but we cannot prove
it to be true. Recall that we said the null was assumed to be true. So what’s the
difference?

We will use the US legal system to illustrate the difference. In the legal system a
defendant, the person being prosecuted, is presumed innocent. It is the job of the
prosecutor to prove the guilt of the defendant, not prove his innocence. We assume
the defendant is innocent until proven guilty. In situations where the guilt of the
defendant seems obvious but the defendant goes free we often hear the phrase, “the
prosecution failed to make the case.” Insufficient evidence was presented to prove the
guilt so the presumption of innocence was not refuted.

We have to word our conclusions accordingly. Some authors will say that we accept
the null hypothesis, but this is not the wording that is commonly used. The phrase
more often used is “fail to reject” which is not the same as “accept” for the reasons
stated above. “Fail to reject” the null hypothesis conveys the idea that although we
may not be happy about it we have to live with the null hypothesis.

Error in Hypothesis Testing

Sometimes we still make an error and draw the wrong conclusion despite the data. We
could reject a true null hyopthesis or accept a false alternative hypothesis. Of course,
this is bad and we want to minimize the possibility of this happening. We have to
admit, though, that the two possible errors are not the same in severity. Rejecting a
true null hypothesis is worse than accepting a false alternative.

Again, think about the legal system. Convicting an innocent person is much worse
than allowing a criminal go free. True, letting a criminal escape punishment is bad for
society but convicting an innocent person for a crime and punishing them is worse.
This is a major argument used against capital punishment (the death penalty). The
consequences are so great it is considered too risky by its opponents.

The two types of errors are represented by different Greek letters and are given differ-
ent names. Type I error occurs when a true null hypothesis is rejected. We use the
letter alpha (α) to represent this error. We want this error to be as small as possible.
We call this the level of significance of the test. Type II error occurs when a false
null hypothesis is not rejected. The Greek letter beta (β) is used to represent this
error.

Stating the Hypotheses

How to state the hypotheses depends on what the goal of the test is. Depending
upon the desired outcome we will formulate either a one-tailed or two-tailed null and
alternative hypothesis. Remember, the null hypothesis is what we have to live with
if the data don’t suport the alternative. The null is what we assume to be true in the
absence of conclusive proof to the contrary.



Let’s look at an example where the hypotheses are one-tailed: Suppose building spec-
ifications in a certain city require that the average breaking strength of residential
sewer pipe be more than 2,400 pounds per foot of length. Each manufacturer who
wants to sell pipe in this city must demontrate that its product meets the specifi-
cation. From the point of view of the city conducting the tests, the null hypothesis
is that the manufacturer’s pipe does not meet specifications unless the tests provide
evidence otherwise. The hypotheses are then

H0 : µ ≤ 2, 400 Ha : µ > 2, 400

The following example shows how to state a two-tailed hypothesis: A food processor
wants to check whether the average amount of coffee that goes into his 4-ounce jars
is indeed 4 ounces. Since the food processor cannot afford to put much less than
4 ounces into each jar for fear of losing customer acceptance, nor can he afford to
put much more than 4 ounces into each jar for fear of losing part of his profit, the
appropriate alternative hypothesis is µ 6= 4. (Miller and Freund, p. 237)

In this example the null hypothesis is that the jars are filled exactly right with 4
ounces each. The alternative is that they aren’t. Maybe less, maybe more, but not 4
ounces. So they would be written as

H0 : µ = 4 Ha : µ 6= 4

Decision Making with p-values

We need some way of determining if we reject or fail to reject the null hypothesis.
We do that by comparing the calculated test value against the critical value in the
appropriate table. But that means checking different tables for different statistics.
There’s a simpler way.

A p-value is “the probability of getting a difference between x̄ and µ0 greater than
or equal to that actually observed.” (Miller and Freund, p. 243). The p-value is the
area under the normal curve. By comparing the p-value to the alpha level we can
easily decide to reject or fail to reject.

1. If p > α, then fail to reject H0.

2. If p ≤ α, the reject H0.

How do we calculate the p-value? One method from McClave and Dietrich (p. 328)
is as follows:

1. Determine the value of the test statistic z corresponding to the result of the
sampling experiment.

2. (a) If the test is one-tailed, the p-value is equal to the tail area beyond z in
the same direction as the alternative hypothesis. Thus, if the alternative
hypothesis is of the form >, the p-value is the area to the right of, or above
the observed z value. The same is true in the case of <.

(b) If the test is two-tailed, the p-value is equal to twice the tail area beyond the
observed z value in the direction of the sign of z. That is, if z is positive,the
p-value is twice the area to the right of, or above the observed z value. The
same holds true in the case where z is negative.



To illustrate, let us look at the example from McClave and Dietrich (p. 327-328):

In their example, they calculate the value for the test statistic for n = 50 sections of
sewer pipe. This was calculated as z = 2.12. The question was whether the mean
breaking strength of the sewer pipe exceeds 2,400 pounds per foot. Since we are
asking if the strength exceeds a certain value the test is one-tailed. Our alternative
hypothesis would be Ha > 2, 400. We want to test for values greater than z = 2.12 as
those would be even more contradictory to H0. So the observed p-value for this test
is

P (z ≥ 2.12)

This is equivalent to the area under the standard normal curve to the right of z = 2.12.
Looking in a standard normal table we find that z = 2.12 corresponds to 0.9830. The
area to the right of that value, then, is 1 − 0.9830 = 0.0170. This is quite small and
we therefore say these results are “very significant”, that is, they disagree with the
null hypothesis and favor the alternative.

How do we know whether this means “reject” or “fail to reject”? That depends upon
the alpha level we chose at the beginning of the experiment. If we chose α = 0.05 (a
standard value) then the p-value is less than α and we reject the null. If we chose
α = 0.01 then the p-value is greater than α and we fail to reject the null.

It is not “fair” to wait until the p-value is calculated and then choose the α level that
gives you the answer you want. It is acceptable, however, to choose a more stringent
value if the original value allows you to reject the null. In other words, you can always
reject the null more strongly.

Looking at another example (McClave and Dietrich, p. 329) we can illustrate the pro-
cess for a two-tailed test. With a two-tailed test we originally said that the parameter
(µ) was exactly equal to a given value. In a two-tailed test it does not matter if the
statistic is more or less than the established parameter value, only that is isn’t the
same (= versus 6=).

In this example, McClave and Dietrich computed the test statistic to measure the
mean response time for drug-injected rats. They originally stated that the response
time was 1.2 seconds. The hypotheses would then be

H0 : µ = 1.2 seconds Ha : µ 6= 1.2 seconds

The observed value of the test statistic was z = −3.0. Any value greater or less than
this would lead to a rejection of the hypothesis. (Again, we don’t care whether the
resonse time is greater or less, just that it isn’t 1.2 seconds.) The observed significance
level for the test is

P (z < −3.0 or z > 3.0)

Looking in the standard normal table for the area under the curve at z = −3.0 we
find 0.0013. No subtraction is necessary. But since it is a two-tailed test the total
p-value is twice this area, so

2× P (z < −3.0) = 2× 0.0013 = 0.0026

which again is quite strong. So if α was 0.05 or 0.01 we would reject the null and
conclude the mean response time was not 1.2 seconds.



Test statistics used in hypothesis testing - the t statistic

The t test is a statistical test for the mean of a population and is used when the
population is normally distributed, σ is unknown, and n is less than 31.

The formula for the t test is
t =

x̄− µ
s√
n

where

x̄ = sample mean
µ = population mean
s = sample standard deviation
n = sample size

The degrees of freedom (d.f.) are n− 1.

t Distribution versus Standard Normal Distribution

Similarities:

1. Bell shaped

2. Symmetric around the mean

3. Mean, median, and mode are equal to 0 and located at the center of the distri-
bution

4. Never touches the x axis (asymptotic)

Differences:

1. Variance greater than 1

2. Actually a family of curves based on the concept of degrees of freedom, which is
related to sample size

3. As the sample size increases, the t distribution approaches the normal distribu-
tion

Testing the Difference Between Two Sample Means

So far all we have discussed are tests of one sample taken from a population. But
what if we want to test the effectiveness of a new drug or teaching method? We need
to run an experiment where we have two groups, one the experimental subjects and
one the control subjects, and then compare the results.

To control as much as possible for outside influences, we try to make sure the samples
are as alike as possible. To do this we use the matched pairs design of experiments.
In this design we takes samples where the subjects in one group match as closely as
possible the subjects in the other group. This can sometimes be accomplished with
the same set of subjects. In this case we refer to this as pre-test, post-test since
we test the subjects before we perform the experiment and then test again after the
experiment. We then perform a hypothesis test on the difference of the two sets of
measurements.



When we are testing two samples in a matched pairs design we are testing for the
presence of some change in the measured phenomenon. We take the difference of the
two measurements, compute the mean, and test against zero (0). Why zero? If the
mean of the differences is statistically close to zero then there is no effect. The test
we use is the t test and the formula for the t test is similar to the one we already have
seen and used, with one exception:

t =
x̄− 0

s√
n

In this formula we have replaced the population mean (µ) with zero. Our other
variables in the equation remain the same and the hypothesis testing methods are the
same.

The computation of the difference can be affected by which sample is of interest.
That is, if we are testing if men make more than women in the workplace we want to
subtract the salary of the woman from the salary of the man in the observation. We
then want to test the hypothesis that Ha : µ > 0 since the question was, ”Do men
make more than women?”



Hypothesis Formulation Table (Mann p. 430)

Two-tailed Left-tailed Right-tailed
Test Test Test

For the null (H0) = ≥ ≤
For the alternative (Ha) 6= < >
Rejection region In both tails Left tail Right tail

Tips to Remember for Hypothesis Testing

1. Proper sample size selection is required for tests to be effective.

2. Ha can be < , >, or 6=.

3. If p > α, then fail to reject H0.

4. If p ≤ α, the reject H0.

5. An α of 0.05 is typical.


