INSTRUCTOR: JOHN SPURRIER, 420I LECONTE, 777-5072

TEXT: CLASSICAL AND MODERN REGRESSION WITH APPLICATIONS
RAYMOND H. MYERS, DUXBURY PRESS

OFFICE HOURS: I am generally available for questions whenever I am
in my office. Feel free to make an appointment, if you
prefer. Formal office hours are 2:00-3:00 M~Th. 1If you can
not find me, leave your name and number with my secretary in
the Department office.

GRADING: EXAMS (200 POINTS) There will be two exams prior to the
final exam. The first exam will be on Thursday, October 1.

HOMEWORK (100 POINTS) Homework is a vital part of your
learning experience in this course. You are to receive
NO assistance on the problems. You may discuss them with
the instructor. Some of the problems will be easy and some
will be hard. You may use the computer to solve the
homework unless the problem specifically states otherwise.
Homework is due on the Memday after it is assigned. Late
papers will be acceptedfonly under extreme circumstances.
TS oY
FINAL EXAM (150 POINTS) The final is scheduled for Friday
December 18, 9:00 AM - Noon

GENERAL COMMENTS: In graduate school, you will not necessarily
understand everything during the lecture. Look over your
notes after class and try to understand every line. If you
can not, then contact me. We will be building constantly on
previous lectures. You do not want to fall behind.

We will begin with a review of some concepts of applied
statistics. Most of you will have seen at least some of the
material. We will start in the text in about four weeks.
Until that time, you will want to read the class notes and
refer to previous texts that you have studied. 1If you do not
have a previous text, please see me.

TOPIC 1 - DESCRIPTIVE STATISTICS _ 3

The field of statistics can be divided into two parts, descriptive
and inferential. DESCRIPTIVE STATISTICS are techniques for providing

a summary of a data set. In medium to large data sets, it is

impossible to comprehend all of the data simultaneously. These

techniques include tables, charts, graphs, diagrams, and summary
statistics such as the sample mean and sample variance. The aim of
descriptive spfétistics is to provide the user with a summary of the
data that can be absorbed at a glance without inflicting any pain.

The best descriptive techniques provide the summary without losing

any of the original information. For example, we will see that the



stem-leaf diagram gives a graphical display of the data such that the

user can recover all of the original data points. If one samples

from the normal distribution, then the sample mean and variance

contain all of the pertinent information.

Descriptive statistics that are popular
for presenting information to a
nontechnical audience are the BAR CHART and
the PIE CHART. The bar chart presents a
bar representing the freqguency or relative
frequency of each value of the variable of
interest. Bar charts are also used at
times to represent a trend in a variable
over time. 1In this way, the bar chart is
an élternative graphical presentation of a
plot of the variable versus time. A pie
chart is an effective way of presenting the
proportion of the data that falls into each
of a small number of categories. The angle
of a slice of pie is 360 degrees times the
proportion of items falling into that
category. These charts particularly
effective if they are done in color.

A descriptive statistic for summarizing
numerical data is the histogram. To
construct a histogram, one divides the real
line into intervals of ‘equal width. The
histogram is a bar chart showing the
frequency or relative frequency of each
interval. When scaled properly, the
histogram estimates the probability density
function for continuous variables (the
probability mass function for discrete .
variables) in the population from which the
sample was taken.
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Histograms have two basic weaknesses. First, the choice of the:

intervals is”arbitraryi With some data sets, a diffefent selédtibﬁ
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of intervals gives a drastically different
picture. Second, the histogram loses
information. By looking at a histogram, you

can determine the number of observations

s

falling in each interval, but you can not AR K
determine the precise values of those SILICHT
observations. nzs i

Th;ee alternatives to histograms have 0ATA 12 3.5 3¢
become popular in the last several years. / s
The first of these is known as DENSITY ot
ESTIMATION. One such method,

estimation, computes for each real number x,

kernel density 3 A r:;;;zfj
. 1 .
- £

[1/(2h)] times the proportion of the sample RN

This has the e i 2 5 4
effect of representing each observation X by

a rectangle of width 2h and height [1/(2hn)]

centered at X, where n is the sample size.

Applying pressure from the top to the stacks

of rectangles yields the density estimate.

falling within h units of x.

One can uses shapes other than rectangles -t
which have area 1/n. The choice of h is 'i‘ F—————-—L_
arbitrary. Statistical theory suggests using ::_—_I-J L___
h = n %>, For more information about Y I
density estimation, see Nonparametric ¢ i 2 3 4 &
Probability Density Estimation by Richard A. KEANEL PENSITY
Tapia and James R. Thompson. ESTimaTE

A second alternative to histograms is the STEM-LEAF diagram. This

technique is described in detail in Exploratory Data Analysis by John
W. Tukey.
a gross measurement,

In the stem-leaf diagram each data point is represented by

the stem, and a fine measurement, the leaf. The

following example, taken
The data set consists of
the 50 states. The unit

from Tukey’s book, illustrates the concept.
the height of the. heighest point in each of
of measurement is 100 feet.
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0*]|34588 Fla,Del,La,Miss,RI
1 |236788
2 1003448
3 |24556
4 101489
5 103347
6 |367
7 |2
8 |8
9
10*|
11 |2
12 {678
13 12588
14 |455 Colo,Wash,Calif
15
16
17
18 |
19
20*|3 Alaska

The numbers to the left of the vertical line are the stems and those
to the right are the leaves. The stem 0 has 5 leaves 3,4,5,8 & 8.
This indicates that five states have highest heights > 0 and < 10
hundred feet units (1000 feet). Specifically, they are 03,04,05,08,
and 08 in terms of hundred feet units. Between 10 and 20 hundred
feet there are six states, etc. At times, it is informative to label
the extreme points. If you rotate the stem-leaf diagram 90 degrees,
you get a histogram. However unlike the usual histogram, you can
recover the data values.

The third alternative to the histogram is also found in Tukey’s
book. It is the BOX PLOT. ' In order to discuss the box plot, we need
to first consider some sample statistics. We use sample statistics
to estimate or describe some feature of the population from which the
sample is taken. One such feature is the CENTER of the population.
Unfortunately, the concept of center is not uniquely defined. We can
think of the center as being the POPULATION MEAN, the simple average
of all values in the population. We can also think of the center as
being the POPULATION MEDIAN, a point such that at least half of the
items have values less than or equal to the value and at least half
of the items have values greater than or equal to the value. The
population mean and median are not always equal. Further
complicating the problem is the fact that one can create several
other reasonable measures of the center.



A wide variety of sample statistics can be used to estimate the
population center. The first of these is the SAMPLE MEAN, the simple
average of the sample items, x. In many situations this is an
excellent estimator of the population center. By studying its form,
we can gain insight into the situations where it does not perfornm
well. Since it is the simple average, its value can be dominated by
one or a small number of observations that are very extreme relative
to the other observations. Thus, if one is sampling from a
population containing a small proportion of very extreme
observations, then the sample mean is not very reliable as an
estimate of the population center.

A second drawback of the sample mean in some experiments is that
we must observe all data points to compute it. In many survival
experiments we observe n items until t < n items fail. The variable
of interest is the time until failure. 1In this case it is not
possible to compute the sample mean. This type of data is one
example of CENSORED DATA.

An alternative estimator of the population center is the SAMPLE
MEDIAN. To compute the sample median, one orders the data ffbﬁuu
smallest to largest. If n is odd, the median is the middle wvalue.

If n is even, the median is the average of the two middlemost values.
This algorithm is consistent with the definition of the population
median. That is, at least half of the sample observations are less
than or equal to the sample median and at least half are greater than
or equal to the median.

The median is not effected by extreme data points. It can often
be computed with censored data. However, when one is sampling from a
population where extreme values are not present, it #% tends to be a
poorer estimator of the center of the population than is the sample
mean.

It is possible to define classes of estimators which are
compromises between the sample mean and the sample median. The
TRIMMED MEAN‘computes the simple average of the sample after one
deletes a fixed number of the smallest and largest observations. The
name is derived from the fact that we are trimming extreme

observations from the sample. With no trimming, you get the sample



mean. With complete trimming, you get the sample median. Between
these two extremes, you get a new compromise estimator.
A related estimator is the WINSORIZED MEAN.

Winsorized mean, one first trims the sample.

To compute the
Then all trimmed small
values are replaced by the smallest untrimmed value and all trimmed
large values are replaced by the largest untrimmed value. The
Winsorized mean is the simple average of the adjusted data set.

As an example, consider the ordered data set of size n=10:

1.3, 2.7, 2.9, 4.1, 5.6, 6.2, 6.6, 7.8, 8.9, 12.7

The sample mean is 58.8/10 = 5.88. The sample median is (5.6+6.2)/2
= 5.9, If we trim 20% on each side, the trimmed mean is '

(2.9 + 4.1 + 5.6 + 6.2 + 6.6 + 7.8)/6 = 33.2/6 = 5.533.
Winsorized 20% of each side, the Winsorized mean is
(2.9 + 2.9 + 2.9 + 4.1 + 5.6 +6.2 + 6.6+ 7.8+ 7.8 + 7.8)/10 =
54.6/10 = 5.46.
of the center.

If we

Note that for the sample we have several estimates
Without knowing more about the population there is no

way to know which is the best estimate. Statistical theory gives us

a way to choose
At times we

among estimators.

wish to estimate a point of the distribution other

than the center.

percentile is
than or equal
than or equal

a number such

to the number

to " the number.

This is done by using PERCENTILES.

The 30th

that at least 30% of the data is less

and at least 70% of the data is greater
For the above data set the 30th '

[}mqézﬂﬁﬁﬁ;percentile is 3.5. Similar definitions hold for the other

NS TTR ¢ percentiles. The median is the 50th percentile. Percentiles are
useful in reliability theory and guarantee times. For example, in
studying electronic components, you may wish to know the time such
This is the 5th
At times, percentiles are combined to estimate the

The average of the 25th and 75th

percentiles is an estimate of the center.

that 95% of the components survive past that time.
percentile.
center of the population.

PROBLEMS

The following data set gives the number of revolutions until failure
in millions of 25 ball bearings:

7.3, 5.7, 8.1, 9.2, 6.3, 4.2, 7.2, 5.8, 6.9, 9.1, 5.4, 7.8, 5.2,
4.3, 6.2, 7.9, 6.4, 7.4, 7.0, 2.8, 4.3, 8.1, 7.3, 5.8, 5.0



1. Compute the sample mean, the sample median, the trimmed mean with
20% trimming on each tail, the Winsorized mean adjusting for 20%
in each tail, the 20th percentile, and the 90th percentile.
Construct a stem-leaf diagram.

3. Construct a kernel density estimate with h=0.5.

In addition to estimating the center of the distribution or other
measures of location. It is important to describe the amount of
VARIABILITY from the center of the population. As with the center,
there are a number of ways that we can measure variability. The
51mplest measure of variability is the RANGE,;whlch is the dlfference,
between the highest score and the lowest score. From its definition,
we can see that the range is very sensitive to extreme observations.
It is also very inefficient in most settings except for very small
sample sizes. For these reasons, it is seldom used in practice,
although in some situations there are theoretical reasons for using
it to describe variability. 1Its main advantage is ease of
computation.

The most popular measures of variability are the VARIANCE and its
companion the STANDARD DEVIATION. The POPULATION VARIANCE, denoted.
by cz, measures the average squared distance between population: |
values and the population mean, y. Suppose the population has N

members with values Xl,...,X The population mean and variance are

N°
given by
;u=EXi/N and0'2=Z(Xi-,u)2/N.

The population standard deviation, denoted by ¢, is the nonnegative
square root of the population variance. The POPULATION STANDARD
DEVIATION is expressed in the original units of the measurements
That is, if the measurement is in inches, the standard deviation is
expressed in inches. The variance does not have this property.

The SAMPLE VARIANCE, denoted by Sz, estimates the population
variance. For a sample of size n, RyreeorXo, the sample variance is

s° =1 (x; - X2 / (n- 1),

Some authors use the divisor n rather than (n-1) in the definition of
the sample variance. While there are some reasons for doing this,

the use of n causes 82 on the average to underestimate 62- The
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sample standard deviation, S, is the nonnegative square root of the
sample variance.

The above formula for the sample variance gives us good intuition,
but it is not very convenient for hand or calculator calculation. By
expanding the square, one can rewrite the formula as

s? =1z xh) - x¥ml s (1),
When using a computer both algorithms have advantages. The second
formula requires only one pass through the data, while the first
requires one pass to compute X and a second pass to compute the sum
of squares. The second formula, however, is much more sensitive to
roundoff error than the first.

Like the mean, the variance and standard deviation are sensitive
to a small number of extreme_observations. In fact, the effect is
more dramatic because we are squaring the extreme departure. 1In
situations where you do not encounter extreme observations the
variance and standard deviation are excellent measures of
variability.

There are, of course, other measures of variability. One method
of making the estimator less sensitive to extreme observations is to
- compute the average absolute deviation from the sample mean

g |x; - x| / n.
One can also compute the median of the absolute deviations. Also the
deviations can be measured from the sample median, trimmed mean, etc.
rather than from the sample mean.

A different approach to measuring variability is to take the
difference of two percentiles. The most popular of these is the
INTERQUARTILE RANGE, the difference between the 75th percentile and .
the 25th percentile. This measure is called the H~SPREAD by Tukey.
He calls the 25th and 75th percentiles the hinges of the sample.

EXAMPLE Let us again use the sample of size 10 found on page 6.

1.3, 2.7, 2.9, 4.1, 5.6, 6.2, 6.6, 7.8, 8.9, 12.7
We have previously seen that X = 5.88 and.that the median is 5.9.
The sample range is 12.7 - 1.3 = 11.4. The sample variance
s2 = (1(1.3)%4(2.7)%+. . .+(12.7)2] - [58.82,101} , (10-1) = 11.4618
This can also be computed
S2 = [(1.3—5.88)2+...+(12.7—5.88)2] / (10-1) = 11.4618
The sample standard deviation is (11.4618)172 - 3.3855




The average absolute deviation from the mean is
(11.3-5.88] +...+ 112.7-5.88|] / 10 = 2.56
The median absolute deviation from the mean is (1.92+2.98) /2 = 2.45
The 25th percentile is 2.£, the 75th percentile is 835, and the H-
spread is 8.35 - 2.8 = 5.%5. 3¢
Notice that unlike the meéasures of center, the measures of

variability are not directly comparable.

We are now réady to describe the third alternative to the
histogram which is the BOX PLOT. Box plots are also known as box and
whisker plots. The box plot is a schematic representation of a data
set. It can be arranged with a vertical or horizontal orientation.
We will illustrate it here with a horizontal orientation to save

Space. Construction of the box plot begins by drawing vertical lines
to répresent the 25th and 75th percentiles. These vertical'lines are
then connected by two horizontal lines to form a rectangle, box. a

vertical line is drawn across the box at the 50th percentile, median.
A horizontal line, whisker, is drawn outside the box from the 25th' |
percentile line covering all data points falling up‘to 1}5~H¥spread5f

less than the 25th percentile. The process is repeated for the upper
tail. Data points falling more than 1.5 H-spreads but less than 3 -

spreads outside the box are known as "outside" values. Points

falling 3 or more H-spreads away from the box are known as "far out"
values. Outside values are denoted by small circles and far out
values are denoted by circles with dots in the middle. Some authors
use different notation for marking these values. The sample mean is
denoted by a "+" sign.

Outside and far out values demand special attention. They may
represent mistakes due to measurement or data entry errors. They may
also indicate situations that are much different from the rest. For
example, if the data set represents monthly sales for each of a
companies 100 account representatives, then outside and far out
values in the upper tail may suggest that these representatives have
positive techniques that could be used be the other representatives.,
" In the lower tail, extreme values may suggest the need for more
training or motivation.
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Let us now construct a box plot for the highest peak data given in
the stem leaf diagram on page 4. Straightforward calculations yield
that the 25th percentile is 20, the median is 46, the 75th percentile
is 112, and the mean is 61.64. The H-spread is 112 20 = 92, The
25th percentile minus 1.5 H-spreads is 20 - 1.5(92) -118.0. The
75th percentile plus 1.5 H-spreads is 112 + 1.5(92) 250.05. Thus,
the lower whisker runs from 20 and covers all data points down to

-118.0. Because our smallest data point is 3, the whisker runs from

3 to 20. The upper whisker runs from 112 and covers all data points

up to 250.0. Because oq} largest data point is 203, the whisker runs
from 112 to 203. 1In our example, there are no outside or far out

values. The box plot is given below:
N

zj‘l"‘q, AERTAN FESUN { M%
-] +‘-/LL’ \C\é‘k A S&M ‘.,.2}5

0 0 0 0 0 1 1 1 1 1 2 2
0 2 4 6 8 0 2 4 6 8 0 2
0 0 0 0 0 0 0 0 0 0 0 0
The facts that the meﬂdiah is much closer to the 25th percentile than
the 75 percentile and that the right whisker is much longer than the
left suggests that the data set has a long right tail and a short
left tail.
Notice that the box plot does not preserve all of the information.
We can not recreate all of the dggg~boints as we could with the stem-
leaf diagram. For the peak data the box plot gives us no clue that
the data set is bimodal (has two peaks). Thus, the box plot should
be thought of as a quick summary of the data. It provides a fair
amount of information, but we will generally want to take a closer
look.
Box plots are particularly effective for comparing several data

sets. This might arise when one takes a sample of items produced on
several production lines or for displaying. the size distributions of
samples of an animal species collected at different times throughout
the year.
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Breaking Strength (pounds/square inch) For 7 Production Lines

Line 1 S =] ——

Line 2 — j’] '—_
line 3 “4 L.+ L—;_;_—-

line 4 o3 { +

line 5 —_— I+ i

line 6 _ — l |

line 7 —————— , [+ }

4 4 5 5 6 6 7 7 8 8 9 9

0 5 0 5 0 5 0 5 0 5 0 5
Notice how easily one can compare the distributions. ©Line 2 tends to
produce items having larger breaking strenghs and less variability
than the other lines. Line 4 displays some outside observations on
the low side. Line 7 displays large variability.

PROBLEMS
4. Construct by hand a box plot for the data in the problem set on
page 7.

TOPIC 2 - INTRODUCTION TO SAS

SAS is a statistical computing package which is extremely helpful
in data analysis and in report writing. wWe will begin our study of
SAS by taking a simple program and looking at the printout that it
generates. Our program will analyze the following data set:
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ID SEX WEIGHT HEIGHT AGE ID SEX WEIGHT HEIGHT AGE
1 F 119 66 17 21 M 164 70 21
2 F 130 63 19 22 F 163 73 19
3 F 140 65 21 23 M 186 69 21
4 F 163 68 23 24 F 125 65 19
5 F 201 66 21 25 F 133 64 21
6 M 156 68 22 26 M 177 68 22
7 F 121 65 23 27 F 119 63 23
8 M 183 70 22 28 M 135 66 17
9 F 95 57 18 29 F 154 68 19

10 F 145 66 20 30 F 121 67 20

11 F 128 65 21 31 F 106 60 23

12 M 168 70 24 32 M 154 70 18

13 F 134 68 23 33 F 178 68 19

14 M 215 72 21 34 M 188 74 20

15 m 195 72 22 35 M 212 72 19

16 F 145 68 19 36 F 169 71 20

17 M 159 69 22 37 M 152 66 18

18 F 128 62 - 21 38 F 121 65 19

19 M 175 67 24 39 M 166 70 21

20 M 230 75 20 40 F 155 64 20

We will first list the program and then study the effect of each line
of the program. Each line in the listing of the computer program
represents a separate card image. The entries in lower case letters
are supplied by the user. '

//Jjobname JOB (15400015),'yourname',CLASS=Q,USER=userid,
// PASSWORD=password,MSGCLASS=A
/*ROUTE PRINT MVS.R43
$JOB SAS I5400015,yourname
DATA ONE;
INPUT ID 1-2 SEX $ 4 WEIGHT 6-8 HEIGHT 10-11 AGE 13-14;
CARDS;
1 F 119 66 17

40 F 155 64 20

PROC PRINT;

PROC CHART;VBAR HEIGHT/MIDPOINTS=58 62 66 70 74;

PROC FREQ; TABLES AGE;

PROC FREQ; TABLES SEX*AGE;

PROC CHART;PIE SEX;

PROC MEANS; .
:%>PROC SORT;BY SEX;

PRoc menns; PROC UNIVARIATE PLOT;VAR HEIGHT;
B se¥s PROC PLOT;PLOT WEIGHT*HEIGHT=SEX;
PROC SPLOT;VAR WEIGHT;CLASSES SEX;
SFINISH
/*

4
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NOTE: The above program is designed to produce a hard copy
printout in Remote 43 on the first floor of Leconte. If you wish to
have the output returned to your terminal replace the third line by
/*ROUTE PRINT VM.userid

EXPLANATION OF THE PRINTOUT
We will go through the program line by line and explain the
effects on the printout.

The first three lines are JOB CONTROL CARDS. They alert the
computer that you wish to run a SAS program, that the cost should be
billed to account I5400015, and what your name is. The version of
SAS that we are using is known as FASTBATCH. It has the advantage
that your program has high priority for running on the computer. The
disadvantages are that the amount of time and the number of pages of
printout are limited. Also you can not read data from mass storage
or tapes under FASTBATCH. 1In analyzing real data sets, you may not
be able to use FASTBATCH. 1In that case the JOB CONTROL CARDS are
somewhat different.

DATA ONE;
This statement tells SAS to create a data set named ONE.

INPUT ID 1-2 SEX $ 4 WEIGHT 6-8 HEIGHT 10-11 AGE 13-14;

The statement informs the computer that the data will be entered
such that the ID value will be in colums 1-2, the value of SEX will
be in column 4, the value of WEIGHT will be in columns 6-8, etc. The
$ following SEX indicates that character rather than numeric data
will be entered for the variable SEX. We have used formatted input.
If we had used unformatted input the statement would have been

INPUT ID SEX $ WEIGHT HEIGHT AGE;
With unformatted input the data can be placed in any column as long
as the values are in proper order and separated by at least one
space.

At times we wish to create new variables or change the variable
listed on the INPUT card. For example, our data has weight in
pounds. We might wish to convert the value to kilograms. This is
done by putting the following card after the INPUT card:

WEIGHT = WEIGHT/2.2046;
A list of possible control statements is given in the USER’S GUIDE.

CARDS;
This statement informs the computer that the data will be read in
on cards (or card images). The data follows the CARDS statement.

1 F 119 66 17

40 F 155 64 20

Using our input statement we have one data card per individual.
Thus, we have 40 data cards. The first data card tells the computer
that the first observation has ID=1, SEX=F, WEIGHT=119, HEIGHT=66 and
AGE=17. After the last data card is read, our data set ONE is formed
with forty observations. The rest of the cards perform operations on
this data set.
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PROC PRINT;

The PRINT procedure prints the data set that we have just created.
It is important to check this printing carefully to make sure that
the data in the computer is what we think it should be. It also
serves as a written record of the data set.

PROC CHART;VBAR HEIGHT/MIDPOINTS=58 62 66 70 74;

We are using the CHART procedure to produce a histogram for the
variable HEIGHT. The word VBAR tells SAS that we want vertical bars
in our histogram (HBAR for horizontal bars). We are specifying that
the midpoints of the classes should be 58 62 66 70 74. 1If we leave
this off, SAS will select classes for us.

PROC FREQ;TABLES AGE;
This statement gives a frequency table for the variable AGE. Note
that individual values of AGE are used and not classes.

PROC FREQ;TABLES SEX*AGE;
Here the FREQUENCY procedure is used to give a cross-
classification of the sample by age and sex.

PROC CHART;PIE SEX;
A pie chart is presented for the variable SEX.

PROC MEANS;

The MEANS procedure produces a set of descriptive statistics for
all numeric variables. Note in our data set SEX in not a numeric
variable. The procedure serves two purposes. First it gives a handy
set of descriptive statistics. Second it serves as a check for
errors in the data set. The user should look at the minimum and
maximum values of each variable to see if they are reasonable.

PROC SORT;BY SEX;

The SORT procedure sorts the data set by the variable SEX. Thus
our data set is arranged such that all females are listed first
followed by all males. The following statement would sort the data
by sex first and that by age within sex.

PROC SORT;BY SEX AGE;

The SORT procedure produces no printout.

PROC MEANS;BY SEX;
The MEANS procedure is run separately for females and males. Note
the data must be sorted by SEX to use this option.

PROC UNIVARIATE PLOT;VAR HEIGHT;

The UNIVARIATE procedure produces a vast set of descriptive
statistics summarizing the variable HEIGHT in our data set. The word
PLOT yields the stem-leaf diagram, the box plot, and the normal
probability plot.

PROC PLOT;PLOT WEIGHT*HEIGHT=SEX;

The PLOT procedure produces scatterplots of two variables. Here
we are asking for a plot of WEIGHT versus HEIGHT. We are using the
value of SEX as the printing symbol. If we had left =SEX off the
plot request a different type of symbol would have been used. Under
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that system the letter ’'A’ would represent one observation, ‘the
letter ’'B’ would represent two observations, etc.

PROC SPLOT;VAR WEIGHT;CLASSES SEX;

The SPLOT procedure produces separate box plots on the variable
weight for each sex. Again, the data set had to be sorted by SEX to
use this command.

SFINISH
%

//

So long computer. I am done with you for now. It has been fun.
Don’t call me. 1I’ll call you.
PROBLEM
5. The following data set has diameter in millimeters (D) and the
breaking strengh in pounds (B) of 20 samples of monofiliment fishing
line: :

item D B item D B item D B
1 13 10 8 12 11 15 19 21
2 8 6 9 12 14 16 11 15
3 5 1 10 15 20 17 10 13
4 9 12 11 14 20 18 14 18
5 11 10 12 15 18 19 20 24
6 13 9 13 10 12 20 16 18
7 8 4 14 8 7

a)Write a SAS program which plots B versus D and which gives box
plots for the variables B and D.

b)Based on the plot, describe the relationship between B and D.

c)Is it reasonable to assume that reducing the variability in D will
reduce the variability in B?

TOPIC 3 - ELEMENTS OF PROBABILITY

In most of the mathematical sciences we work with deductive logic.
That is, we make a set of deflnltlons and assumptlons and see what
theorems we can deduce from them. If our assumptions are valid and
our method of proof is correct, then the theorems are unquestionably
correct.

In developing the theory of statistics, there is a great deal of
theorem proving - deductive logic. However, the basic nature of
'statistics involves inductive and not deductive. The experimenter
wishes to make an inference about a population of interest. It is
not possible due to time or money constraints to make a measurement
on every item in the population. Therefore, measurements are made on
only a sample of items drawn from the population. We then generalize
from the results of the sample to the entire population - inductive

logic. We must realize that inductive logic is subject to error.
That is, some of our inferences about the population based on the
sample results will be wrong.
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Much of the study of statistics involves quantitifying the
probability that our inference will be wrong and in designing
experiments in such a way as to limit the probability of error to
some "acceptable" level. What is "acceptable" often depends on the
amount of money available for the study and the ramifications of a
wrong decision. 1In order to quantify and limit these probabilities,
we need to first formally define some concepts of probability theory.

In the probability context, an EXPERIMENT is any process which
yields an outcome or observation. In statistics we are interested in
RANDOM EXPERIMENTS. That is, an experiment where the outcome can not
be predicted in advance with certainty. The set of all possible
outcomes is known as the SAMPLE SPACE. The sample space is denoted
by'the symbol @. Any particular outcome is called a SAMPLE POINT. cv
Any cbllection’of"sémple“points‘isfknOWn as an EVENT. We generally
denote events by carital letters from the first of the alphabet. Two
events are MUTUALLY EXCLUSIVE if they contain no sample points in
common. The event made up of no sample points is called the NULL
EVENT. It is denoted by ¢. ,

EXAMPLE A left-handed wino rolls a die. His sober friend records
the number of spots showing. The possible outcomes are 1,2,3,4,5,
and 6. Thus, @ = {1,2,3,4,5,6}. There are 26 = 64 distinct events
formed by all possikilities of including or excluding the integers
1,...,6. The events A = {1,3,5} and B = {2,4,6} are mutually
exclusive.

We are now ready to define a probability model. A PROBABILITY
MODEL is a set function defined on the collection of events such that

1. For each event A in @, 1 > P(A) >0
2. P(Q) =1
3. For any collection of mutually exclusive events Al, A2’ A3, .o

P(AlUA Uua, u ...)=P(Al)+P(A2)+P(A3)+...

2 3

It is important to note that in any random experiment, there are an
infinite number of set functions that will satisfy these rules. That
is, there are an inZinite number of probability models.

EXAMPLE In the roll the die experiment, we can assign any
nonnegative numbers which sum to 1 to the events {1}, {2}, {3}, {4},
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{5}, {6}. Any such assignment satisfies the above rules. Some
assignment patterns follow naturally from assumptions that we might
consider making. For example, if we assume that the die is perfectly
balanced, then it is natural to assign probability 1/6 to each of the
sample points. However, if we assume that the die is weighted such
that on each roll it yields 1 spot, then the probability model which
assign probability 1 to the sample point {1} and 0 to all others is
natural.

We would like to choose P so that for every event A, P(A) is the

proportion of the time that A would occur if we performed the
experiment a very large number of times. In general we do not have
an opportunity to perform the experiment a large number of times.
Thus, we must use our best judgment to assign the P function. Much
of statistical inference involves choosing among competing
probability models. ,

A RANDOM VARIABLE is a numerical value assigned to every sample
point in @. Thus, it is a function from 2 to the real line. Because
we can not predict with certainty which sample point will occur, we
also can not predict the value of the random variable which will
occur.

EXAMPLE

A student is selected at random from a population of students.
The random variable of interest is height in inches. Note that it is
possible to define other random variables in this experiment. We
could have measured weight, age, head circumference, IQ, or any of
several other measurements.

EXAMPLE

A manufactured product is selected at random from all similar
items produced during the day. It is placed in use and the time
until failure is measured.

EXAMPLE

A bird is selected at random from a particular species. The
variable X is set equal to 0 if the bird is female and 1 if the bird
is male. Note that in the strict sense, using M or F would not
define a random variable.
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Random variables are generally denoted by capital letters at the
end of the alphabet. The probability model on the sample space
induces a probability model on the random variable. Thus, we speak

about the probability that the random variable X takes on a value in
the subset A of the real line. We define the CUMNULATIVE DISTRIBUTION
FUNCTION (or distribution function) by F(x) = P(X £ x) for all «x.
The most common types of random variables are either discrete or
continuous. A DISCRETE random variable has a range of possible
values con51st1ng of a countable set of points on the real line, for
example the integers or the positive integers. A CONTINUOUS random
variable has a range of possible values of the entire real line or
some combination of nondegenerate intervals on the real line.
Discrete random variables tend to arise when one counts and
continuous variables arise when one measures. Note that all

measuring devices are discrete since they can only be read with

finite precision. However, the quantity that they measure, such as
length, is continuous. 1In this case, we consider the random wvariable
to be continuous.

With discrete random variables, probability is assigned to the
possible values of the random variable through the PROBABILITY MASS:
FUNCTION £(x). Thus f£(x) = P(X = x). One computes P(X ¢ A) by
summing f£(x) over all x € A. Thus, one computes F(z) by summing f(x)
over all x < z. Let us consider some examples of families of
discrete probability distributions. In each case one gets a
particular discrete distribution by specifying values of the
parameter(s).

EXAMPLE - DISCRETE UNIFORM ON 1,...,n

f(x) = 1/n for x = 1,...,n and 0 otherwise.

In this distribution each of the numbers from l,...,n are equally
likely to occur. The probability distribution of the number of spots
showing in the roll of a balanced die is discrete uniform with n = 6.
EXAMPLE - BINOMIAL n,p .

f(x) = (" )p (1- p)n ¥ for x = 0,1,...,n and 0 otherw1se, where (2) =
n!/[x!({n- x)'] and 0 < p < 1. The binomial distribution is the
probability distribution of the number of successes in a binomial
experiment. That is an experiment where there are n independent
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trials each of which ends in either a success or failure and the
probability of success is constant at P in all trials.
EXAMPLE - GEOMETRIC p ¢

f(x) = (l—p)xp for x = 0,1,2,... and 0 otherwise for 0 g p < 1,
The geometric distribution is the probability distribution of the
number of failures before the first success in an experiment where
there are independent trials each of which ends in success or
failure, the probability of success is constant at p in all trials,
and the trials continue until one success is achieved.
EXAMPLE - NEGATIVE BINOMIAL k,p e

£(x) = (%I 1) (1-p)%p% for x = 0,1,2,... and o otherwise for 0 g p
€1, k is a positive integer. The negative binomial distribution is
a generalization of the last example where the trials continue until
there have been k successes. '
EXAMPLE -~ HYPERGEOMETRIC DISTRIBUTION n,a,b

£(x) = (3 (,2,)/(32P) for x=max(0,n-b),...,min(n,a) and 0
otherwise, where a and b are nonnegative integers and n is a positive
integer < a+b. The hypergeometric distribution is the'distribution
of the number of successes in n draws without replacement from a
finite population containing a successes and b failures.
EXAMPLE - POISSON X\ B

£(x) = X e™ / x1 for x=0,1,2,... and 0 otherwise, where X > 0.
The Poisson distribution is the probability distribution of the
number of occurrences of an event over a fixed time period where the
probability of a single occurence of the event in any short time
interval (t,t+4) is proportional to 4, the probability of two or
_ more occurrences in such a time interval is negligible, and the
occurrence or nonoccurrence of events in nonoverlapping time
intervals are independent.

With continuous random variables, we can not assign probabilities
to each of the possible values, there are an uncountable number of
them. Instead, we assign probability to intervals via the
distribution function F. Thus, P(a <X <b) = F(b) - F(a). 1If F(x) is"-
differentiable with respect to x, then its derivative is known as the
PROBABILITY DENSITY FUNCTION. The density function is denoted by
f(x). Thus P(a < X < b) = fg f(x)dx provided the densityﬁgxists.
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Also, F(z) = ffm f(x)dx. With continuous random variables the

probability that X equals any particular point on the real line is

said to be zero. Thus, P(a < X < b) = P(a < X < b) = P(a £ X £ b)
P(a < X < b). It is f(x) that the kernel density estimator

s

approximates.

It is convenient to describe continuous distributions by their
density functions. They resemble histograms. Let us consider some
examples of families of continuous distributions which possess
density functions. 1In each case one gets a particular continuous
distribution by specifying a value for the parameter(s).

EXAMPLE - UNIFORM (a,b)
f(x) = 1/(b-a) for a < x < b and 0 otherwise, where a < b.
In this probability model x

all subintervals of (a,b)
having equal length have

equal probability. a b

EXAMPLE — NORMAL (u,cz)

e&g”; £(x) = [l/(2n62)1/2%exp[—(1/2)(x—,u)z/az] for - < x < ®, where 4
any real number and ¢° > 0. This density function gives us the
familiar bell shaped curve which is centered
at v and is symmetric about u. ///~\\\\

The parameter y is the location 7
parameter and we will see later / \\
that it is the expected value ,//// S

or mean of the distribution. A
The parameter 02 effects the spread of the curve. We will see late
that 62 is the variance of the distribution. The parameter o is
known as a scale parameter for this distribution. The distribution
function for the normal distribution does not have a closed form.

has to be approximated using numerical integration.

Consequently, most statistics book publish tables for the normal
distribution with ¢ = 0 and 02 = 1. This distribution is known as
the STANDARD NORMAL DISTRIBUTION. These tables vary some in format
and one has to be careful to see what probability the number in the

table represents. Some give P(-» < X < a), while others give

is

r

It
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P(0 < X £ a). For normal distibutions other than the standard
normal, one makes the transformation Z = (X-y)/¢ prior to using the
table. For a normal distribution with ¢ = 0.5 and o = 2, P(X < 2) =
P[Z = (X - 0.5)/2 < (2 -0.5)/2 =0.75]) = 0.7734.

OPTIONAL HOMEWORK [To be done if you need practice on the normal
tables. Recall that P(Z < -c) = P(Z > c)]
Let Z have a standard normal distribution. Show that P(z < 2.1)=
0.9821, P(0 < Z < 1.46)= 0.4279, P(-1.64 < Z < 1.64) = 0.8990,
P(z2 < -1.96) = 0.0250.
Let X have a normal distribution with ¢ = 0.5 and ¢ = 2. Show that
P(X £2.1) = 0.7881, P(0 < X < 1.46) = 0.2831, P(-1.64 < X < 1.64) =
0.5734, P(X < ~-1.96)= 0.1093.
EXAMPLE - GAMMA «,B

£(x) = {1/[T(a)B8%1}1x* Texp(-x/B) for 0 < x < = and 0 otherwise,
where o« and 8 > 0. The symbol I'(a) denotes the gamma function
evaluated at «. TI(a) = I; ya—lexp(—y)dy for « > 0. . The
parameter « is known as a shape parameter since changing its value
changes the basis shape of the density function. The parameter B is
a scale parameter. The gamma family of distributions is one of
several used to model the lifetimes of manufactured parts. There are
two important special cases. The EXPONENTIAL DISTRIBUTION (o = 1)
has the property that the probability that an item fails by time t+s
given that it has survived until t does not depend upon t. The' CHI
SQUARE DISTRIBUTION WITH U DEGREES OF FREEDOM (< = v/2, B = 2) plays
an important role in making inferences about the variance of a normal
distribution.

We will address other important continuous distributions as the
need arises. For more information about probability distributions

see a textbook in mathematical statistics such as Introduction to

Mathematical Statistics by Robert V. Hogg and Allen T. Craig or

Statistical Theory by Bernard W. Lindgren. Another excellent source

of facts about probability distributions i§ a series of four volumes
entitled Distributions in Statistics by Norman Johnson and Samuel
Kotz.

It is convenient to summarize probability distributions with

descriptive measures. This is generally done using the chcept of
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expected values. For a discrete random variable X, the EXPECTED
VALUE or MEAN, denoted by E(X) or Myr is defined by E(X) = Exf(x)
provided the sum exists, where the summation is over all possible

values of X.

EXAMPLE

For the discrete uniform distribution E(X) = E§=l X (1/n) =
(1/n)fx = (1l/n)n(n+l)/2 = (n+l)/2.
EXAMPLE

Consider the discrete distribution with mass 1,2, 1,4, 1/8, 1/16,
... at the points 2, 4, 8, 16, ..., respectively. 1In this case
L x £(x) = I(1l) where the summation is over an infinite set of
points. Thus, E(X) does not exist.

We can also speak of the expectation of a function of X.
E(g(X)) = Ig(x)f(x) provided the summation exists, where the
summation is over all possible values of X. Of particular interest
are functions of the type g(X)=Xr. E(er is known as the rth MOMENT

of X. The VARIANCE of a random variable is defined by

o2 = E(X?)-E(X)2.

For continuous random variables with a density £(x), E(X) is

defined by E(X) = Ifmxf(x)dx provided the integral exists.
EXAMPLE

For the continuous uniform distribution, E(X) = Ifmxf(x)dx =
fPx11/(b-a)1dx = [1/(b-a)1(b%/2 - a/2) = (a+b) /2.
EXAMPLE

For the Cauchy distribution f(x)=[c/n]/[c2+(x—p)2]'for all x.
In this case Ifmxf(x)dx does not exist. Thus, the Cauchy
distribution does not have a mean.

The following table gives the mean and variance for some of the
probability distributions that we have considered in the examples.
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DISTRIBUTION MEAN VARIANCE
discrete uniform (n+l1) /2 (n+l)(n-1)/12
binomial np np{l-p)
Poisson A A
continuous uniform  (a+b),2 (b-a)2/12
normal u o
gamma o aBZ
Cauchy none none

We can also describe a probability distribution in terms of
probability points. That is the value of x such that F(x)=p for a
constant 0 < p < 1.

% HOMEWORK
6. Graph the density function of the gamma distribution with the
q/ following («,B) values: (1,1), (1,2), (2,1) and (3,1). Put all
g graphs on the same sheet of graph paper or computer plot.
7. Graph the density functions of the Cauchy distribution with u=0
and o=1 and the standard normal distribution on the same sheet.

An important fact about expectation is that it is a linear
E(ECLL%S) operator. That is, if Xyr...,X are random variables with
i expectations Hirees1ly and agrdyr-..,2, are constants then
Z;@; E(*L> E[a0+alxl+...+anxn] = aptaq byt @ . It follows from this fact
that if Xl""’Xn each have mean ¢ then X also has mean u.

TOPIC 4 - SAMPLING

We make our inferences about a population by taking measurements
on a sample of size n and generalizing to the population. If our
sample is not representative of the population then there is no
reason to believe that our inference will be correct. Unfortunately,
it is often difficult to look at a particular sample and know whether
or not it is representative. This takes a considerable knowledge of
the population of interest. If we knew that much about the
population, we could probably answer all of our questions without
taking a sample. Moreover, a sample that you think is
representative, may not appear to be representative to another judge.
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\
Since we will never be able to agree that we have a representative

sample. Our attention centers on techniques of drawing samples in g
scientific fashion. Such sampling techniques allow one to compute

expected values and standard deviations of the random variables which
are used to estimate the parameters of interest such as the
population mean or the proportion of individuals that have a
characteristic of interest. Scientific samples do not insure that
indivdual samples are representative. They can however in most cases

insure that the expected value of the estimator is equal to the
quantity that we are trying to estimate.
In order to be a scientific sample, the sampling process has to
satisfy the following:
1. It is possible to define the set of distinct possible samples Sl'
82,83,...,SV.
2. Each possible sample S; has assigned to it a known probability my
of being selected.
3. Using a random process in which each possible sample S; has
probability n, of being selected, one of the samples is selected.
4. A well stated rule for computing the desired estimator for every
possible sample is given.

The above rules define a random experiment where the random
variable of interest is the estimator. Since we know how likely each
sample is to occur, it is possible to compute the expected value and
the standard deviation of the estimator in terms of the population
values. If we do not know how likely each sample is to occur, it is

{ not possible to make these calculations.
It order to satisfy the above rules, we generally have to have a
list of the members of the population. This list is called a FRAME.

Once we have a frame, it is conceptually simple to list all possible

samples. In practice, it would be a tedious job make such a list,
Fortunately, we only need to be able to make the list. It is not
necessary to actually do it. It is often a difficult task to
construct a frame. For example, if the population of interest is the
residents of Columbia, then an up-to-date frame does not exist.
However, one could find a list of all addresses or a list of all
phone numbers.
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Once one has the frame, the assignment of the probabilities, ns
is generally determined by the method of sampling that one is using.
The simplest scientific sampling technique is SIMPLE RANDOM SAMPLING.
A sample of size n is a simple random sample if all possible samples
of size n have an equal'chahce of being selected. Note that this is
a stronger statement than saying that each item in the population has
an equal chance of being selected.

Prior to selecting the sample, it has to be determined whether an
item will be allowed to appear in the sample more than once. If we

allow an item to appear more than once, our sample is a SAMPLE WITH

wLWﬁ*w’ QM'5REPLAC‘EIVVIVE'VN'I*. If we do not allow an item to appear more;thah 6h&é,"

Nonprr vorores ix sample is a SAMPLE WITHOUT REPLACEMENT. Sampling without:

replacement has the advantages of producing estimators with‘Smallet
standard deviations than sampling with replacement and of not
bothering an individual more than once., Sampling with replacement
has the advantage that we do not have to check for duplicates in our
sample. ‘

If we sample with replacement, there are Nn.pbssible samples. 1In
imple random sampling with replacement,,ni = l/Nn. If We sample
ithout‘replacement, there are (g) possible samples. 1In simple
random sampling without replacement, m,o= l/(ﬂ).

;wzwmj

e

It follows from the definition that simple random sampling is free
of selection bias provided that the frame is accurate. Because all
possible samples are equally likely to be picked, no subgroup has an
unfair weighting in the selection process. Note that this is not
true, if our sample is the first n people that we see on the street.
However, we are not assured of a representative sample. If we took a
simple random sample of 200 University of South Carolina students, it
is possible although unlikely that all of them would have the last
name Smith. 1In sampling with replacement it is possible although
extremely unlikely that we would select the same person all 200
times.

With simple random sampling, the random process of selecting the
sample is generally done by using a TABLE OF RANDOM NUMBERS or by
generating random numbers on the computer. The process will be
explained first for the table of random numbers. A table of random



Table I Random Numbers

OLUMN
ROW 1 2 3 4 5 6 7 8 9 1o 1" 12 13 14

1 10480. 15011 01536 02011 81647 91646 69179 14194 62590 36207 20969 99570 91291 90700
2 22368 46573 25595 85393 30995 89198 27982 53402 93965 34095 52666 19174 39615 99505
3 24130 48360 22527 97265 76393 64809 15179 24830 49340 32081 30680 19655 63348 58629
4 42167 = 93093 (06243 61680 07856 16376 39440 53537 71341 57004 00849 74917 97758 16379
5 37570 39975 . 81837 16656 06121 91782 60468 81305 49684 60672 14110 06927 01263 54613
6 77921 06907 11008 42751 - 27756 53498 18602 70659 = 90655 15053 21916 81825 44394 42880
7 99562 72905 56420 69994 98872 31016 71194 18738 44013 48840 63213 21069 10634 12952
8 96301 91977 05463 07972 18876 20922 94595 56869 69014 60045 18425 84903 42508 32307
9 89579 14342 63661 10281 17453 18103 57740 84378 25331 12566 58678 44947 05585 56941
10 85475 36857 53342 53988 53060 59533 38867 62300 08158 17983 16439 11458 18593 64952
" 28918 69578 88231 33276 - 70997 79936 56865 05859 90106 31595 01547 85590 91610 78188
12 63553 40961 48235 03427 49626 © 69445 18663 72695 52180 20847 12234 90511 33703 90322
13 09429 93969 52636 92737 88974 33488 36320 17617 30015 08272 84115 .27156 30613 74952
14 10365 61129 87529 85689. 48237 52267 67689 93394 01511 26358 85104 20285 29975 89868
15 07119 97336 71048 . 08178 77233 13916 47564 81056 97735 85977 29372 74461 28551 90707
16 51085 12765 51821 51259 = 77452 16308 60756 92144 49442 53900 70960 63990 75601 40719
17 02368 21382 52404 60268 89368 19885 55322 44819 01188 65255 64835 44919 05944 55157
18 01011 54092 33362 94904 31273 04146 18594 29852 71585 85030 51132 01915 92747 64951
19 52162 53916 46369 58586 = 23216 14513 83149 98736 23495 64350 94738 17752 35156 35749
20 07056 97628 33787 09998 42698 06691 76988 13602 51851 46104 88916 19509 25625 58104
21 48663 91245 85828 14346 09172 30168 90229 04734 59193 22178 30421 61666 99904 32812
22 54164 58492 2242t 74103 47070 25306 76468 26384 58151 06646 21524 16227 96909 44592
23 32639 32363 05597 24200 13363 38005 94342 28728 35806 06912 17012 64161 18296 22851
24 29334 2700t 87637 87308 58731 00256 45834 15398 46557 41135 10367 07684 36188 18510
25 02488 33062 28834 07351 19731 92420 60952 61280 50001 mwmmm. 32586 86679 50720 94953
26 81625 72295 04839 96423 24878 82651 66566 14778 76797 14780 13300 87074 79666 95725
27 29676 20591 68086 26432 46901 20849 89768 81536 86645 12659 92259 57102 80428 25280
28 00742 57392 39064 66432 84673 40027 32832 61362 98947 96067 64760 64584 96096 98253
29 05366 04213 25669 26422 44407 44048 37937 63904 45766 66134 75470 66520 34693 90449
30 91921 26418 64117 94305 26766 25940 39972 22209 71500 64568 91402 42416 07844 69618
31 00582 04711 87917 77341 42206 35126 74087 99547 81817 42607 43808 76655 62028 76630
32 00725 69884 62797 56170 86324 88072 76222 36086 84637 93161 76038 65855 77919 88006
33 69011 65795 95876 - 55293 18988 27354 26575 08625 40801 59920 29841 80150 12777 48501
34 25976 57948 29888 88604 67917 48708 18912 82271 65424 69774 33611 54262 85963 03547
(conlinued)
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numbers is a table of numbers, often 5 digit numbers, generated by a
computer to approximate a simple random sample of all 5 digit
numbers. The steps for sampling with replacement are the following:
l. Assign each sampling unit a unique identification number (e.qg.
number the frame from 1 to N)
Pick a random starting point in the random number table.
If the random number corresponds to an identification number in
the population, select that item in your sample. 1If not, skip
that random number and go to the next one.
Continue down the column until a sample of size n is selected.
If the bottom of the column is reached, move to the top of the
next column.
If one is sampling without replacement then step 3 is modified so
that one checks to see if that identification number is already in
the sample.

To use the computer in place of a table of random numbers, then,
one generates a string of random numbers that approximates a sample
from the uniform distribution on (0,1). The selected identification
number is then the greatest integer less than or equal to NU+1, where
U is the uniform random variable. ‘

PROBLEM 8. It is desired to take a simple random sample without
replacement of size 10 from the households with surname Hampton in
the Metropolitan Columbia area. The frame consists of the Hampton
listings in the white pages of the Greater Columbia telephone book.
Start in row 5 column 9 of the table of random numbers and use the
first two digits.

a) What is your sample?

b) Comment on the appropriateness of the frame.

After one selects the sample, data is collected on each item in
the sample. We are generally interested in estimating the population
mean u, the population total T, or the population proportion P. The
population total is the sum of the measurement of interest for all
members of the population. That is, T = Ny. The population
proportion is the number of individuals in the population having the
characteristic of interest divided by N.
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For simple random sampling our point estimator for u is X. For f,
our point estimator is NX. For estimating P our estimator is ﬁ_= the
number of individuals in the sample having the characteristic of
interest divided by n.

These estimators are random variables and as such have means and

standard deviations. These estimators have expected values equal to
the population values that they estimate. That is E(X)= =4, E(NX) = <,
and E(P) = P. Estimators whose expected values equal the populatlon
values that they estimate are called UNBIASED ESTIMATORS. The

standard deviation of an estimator is known as its STANDARD ERROR.
R ————r———
The standard error of these estimators differ for sampling with

replacement and sampling without replacement.

For sampllng without replacement, the estimated standard error of
X is [(s /n)(N—n)/N]l/z. If we multiply this quantity by N, we get
the estlmated standard error of NX The estimated standard error of

? is {Ip(1-p)/(n-1)1(N-n) N} /2. T8 L Bt coton fedn
For sampling with replacement, the estimated standard error of X
is [s /n]l/z. Again, we multiply by N to get the estimated standard

error of NX. The estimated standard error of ﬁ is [6(1—6)/n]1/2.
Note that the standard errors for sampling with replacement are
larger than those for sampling without replacement.

We can be approximately 95% confident that the unknown population
value falls within two estimated standard errors of the point
estimate. That is)when using simple random sampling without
replacement)g‘e X + 2 [(sz/n)(N--n)/N]l/2 for approximately 95% of all
possible samples.

Simple random sampling is the simplest approach to scientific
sampling. There are numerous other techniques. The text Sampling

Techniques by William G. Cochran is a classic reference to these
ideas. We will consider one other sampling method in this course.
That method is STRATIFIED SAMPLING.

In stratified sampling we divide our populatlon 1nto K-
nonoverlapping subgroups called strata. we then draw a 31mple random

sample of size n. from the N. members of the ith stratum, i=1, - k.

Note that in stratlfled sampllng we are ruling out many of the
samples that were possible with simple random sampling. We are

N o= pepdiber sig
Sb\a«b‘«, - & (Y \L\
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forcing our sample to have a set number of items from each stratum.
In simple random sampling, the number from each stratum is randon.

Stratified sampling offers two advantages over simple random
sampling.

1. Stratified sampling insures that we can make estimates for

specific subpopulations. 1In simple random sampling, a subpopulation
may not occur in the sample or it may occur so seldom that
subpopulation estimates are unreliable. It may be important to have
an estimate of a proportion on a statewide basis and to also have

estimates on a countywide basis or for the set of urban counties and
the set of rural counties.

{' 2. If the strata can be constructed so that there is less
varlablllty in the variable of interest within the strata than in the
population as a whole, then the standard errors of our estimators are

Ismaller for stratified sampling than for simple random sampling. 1In
many cases the reduction in the standard error due to stratification
can be tremendous. It is sometimes difficult to know what variable
on which to stratify. Note that it can not be the variable of
interest, since we must stratify before we make our measurements. It

must be a variable which is known for all members of the population
and ideally it is highly related to the variable of interest. For

example, if we wished to estimate the number of acres in South

Carolina planted in corn, We might wish to stratify based on the
[IN g
farm size.

The estimators used with stratified sampling are pieced together
from simple random sampling estimators computed for the strata. For
example, the population total is the sum of the strata total. Thus,
we separately estimate the total for each strata and then add the
results. 1In symbols we write the stratified total estimate as

X N, R
_ i=1 i %41
where X, is the mean of the items drawn from the ith stratum.
The stratlfled estimator of the population mean is the estimator of
the total divided by N. That is, K a5

- Z\_L

Xop = & (N ;/N) X =S~

For the stratified estimator of the populatlon proportion, we replace

Xl by 6 That is,
= A

SRS RENC NI T s U PUEE, EEN v



29

To compute the estimated standard error of X st' Ve first compute
the sample variance, siz, for the items from the ith stratum, i =
1,...,k. The estimated standard error of the stratlfled estlmator of
the mean when sampllng w1thout replacement is

(25, (0 /% 10s;2/mp) (n,-n 0w, 13172,
The estimated standard error of the stratlfled estimator of the total

when sampling without replacement is the same formula multiplied by
N. The estimated standard error of the stratified estlmator of the

populatlon proportlon when sampling without replacement is
(25 M2 18 (181 /tng-1)71 L -np) /w1312,

In each case the estlmated standard error come from piecing together

the results of the independent simple random samples. We utilize the
fact that for independent random variables Var(Za X )=Za, 2Var(X ).
EXAMPLE The city of Ferndale has two re51dent1al areas. The
first area with 1000 households is comprised of typically lower
income families. The second area with 200 households is comprised of
typically upper income families. It is of interest to estimate the
mean household income in Ferndale. It is decided to use stratified
sampling with household income determined for 100 households in the
first area and 20 in the second area. THe data is summarized as

= 2
AREA Ni n; Xy S;
1 1000 100 11,376 7,595,536
2 200 20 65,682 374,577,320

The stratified estimate of the mean is
(1000,1200) 11376 + (200,/1200) 65682 = 20427.
The estimated standard error of the estimate is
‘ {(1000/1200)2 [(7595536,100) (1000-100)/1000] +
(200,1200)2 [(374577320,/20) (200-20),2001}%/2 = 718.

Thus, we are approximately 95% confident that the mean household
income is between 20,427 + 2(718). That is ($18,991,%21,863). The
total income for the 1200 household is estimated to be 1200(20,427)=
$24,512,400 and the estimated standard error of the estimate is
1200(718)=%861,600. We are approximately 95% confident that the
total income is in the interval $24,512,400 + 2(861,600).

In this example we sampled the same proportion of observations
from each stratum. Since the variance is larger in stratum 2, it



q/22=ﬁ?

would have been advantageous to take a larger proportion of the items
from stratum 2 than from stratum 1. See Cochran for futher details.

In this example, there is a big advantage in using stratified
sampling over simple random sampling. If we had been using simple
random sampling and had obtained the same sample, our data would have
yielded x = 20427 and s2 = 479,170,490. Thus, our point estimate of
the mean would have been the same, but the estimated standard error
would have been {(479170490,120)[(1200-120),12001}1/%=1896. Thus,
effective stratification has reduced the estimated standard error of
the mean from $1896 to $718.

PROBLEM 9. In this problem provide enough detail so that I can
check your work. I need to check how you selected your sample and
your calculations.

a) Using the table of random numbers, draw a simple random sampl?
without replacement of size 6 from the population listed on page #3.
Give an approximate 95% confidence interval for the mean weight.

b) Repeat part a using a stratified random sample without
replacement where you stratify based on sex and select 3 individuals
from each stratum.

c) Comment of the difference in the answers in parts a and b.
Would you expect similar differences if the variable of interest had
been age?

TOPIC 5 - SAMPLING DISTRIBUTIONS

In this section we wish to state facts about the probability
distribution of 6, X, and s?. Let us begin with X.

Let Xl,...,xn be independent outcomes of a random variable having
distribution function F. These outcomes may come from independent
trials of a experiment such as measuring the resistance of capacitors
being produced on an assembly line or they may be survey results with
the sampling done with replacement. We are interested in the
probability distribution of X. The probability distribution of X
depends on F. It follows from the laws of expectation that if F has
a finite mean y then E(X) = y. Futhermore, if F has a finite
variance 02, then var(X) = az/n. Thus, the variability of X
decreases with n.
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We can say more about the distribution of X for large n provided
that the variance of F exists. 1In this case the distribution of
Zo= nl/z(i - u)/o approaches the standard normal as n approaches =,

This result is known as the CENTRAL LIMIT THEOREM. Thus provided F
has a finite variance the distribution of X is approximately normal

with mean ¢ and variance cz/n. The precision of this approximation
‘depends upon F and improves as n increases.

The display on the following page illustrates the central limit
theorem. The top row of figures depict density functions
corresponding to four different distribution functions. These
figures give us the density function of X when n=1. The second row
of figures depict the density function of X based on samples of size
two from the same four distributions. The third and fourth row of
figures depict the density function of X based on samples of size
five and thirty for the same four distributions. Notice how
different the four figures are in the top row and how similar they
are in the bottom row.

If F is a normal distribution, then the distribution of X is
normal with mean ¢ and variance cz/n. That is, the approximation is
exact for all n. _

If F is a normal distribution, then the random variable (n—l)sz/c2
has a chi square with n-1 degrees of freedom. Recall from page 24
that the chi square distribution is a special cgfe of the Gamma
family of distributions. It follows from page 28, that the expected
value of a chi square random variable equals the number of degrees of
freedom. Thus, E(Sz) = 02. A table of the probability points of chi
square distributions is found in most elementary statistics books.

If F is not a normal distribution, then (n—l)SZ/c2 does not have
chi square distribution. However, if F has a finite variance 02,
then E(SZ) = oz. Thus, S2 is an unbiased estimator of 62-

In making inferences about u, we will be interested in the random
variable T = nl/z(i - w)/S. This is the variable 2 that we discussed
in the central limit theorem with ¢ replaced by its estimator S. If
F is a normal distribution, the random variable T hag the STUDENT'S T

DISTRIBUTION WITH n-1 DEGREES OF FREEDOM. The name student refers to
the fact that the originator of this distribution W. S. Gosset
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published has results under the pen-name Student. The T distribution
is continuous and is symmetric about zero. The density function of
the t dlstrlbutlon with v degrees of freedom is given by

£(x) = {TL(v+1)/21/0(nv) Y/ 2r(v/2)1) (1exP/v) " (VF1) /2
As v approaches ©, the T distribution approaches the standard normal.
Most elementary statistics books provide tables of the probability
points of the T distribution.

If F is not a normal distribution, then the variable T does not
have the T distribution. However, if F has a finite variance then
the distribution of the variable T still approaches the standard
normal as n approaches =,

In a_binomial experiment we perform n independent trials each

having probability of success p. The total number of successes X has
a binomial distribution with parameters n and p. The expected value
and variance of X are np and np(l-p), respectively. An estimator of
p is 6 X/n. From the laws of expectation, the expected value and
variance of 6 are P and p(l-p)/n, respectively. Thus, the variance
of 6 decreases with n.

n

If we write X = zi=l Xi' where Xi = 1, if the ith trial is a

1
success and 0, otherwise. We see that ﬁ‘can be thought of as a
sample mean of the X;'s. Thus for 0 < p < 1, by the central limit
theorem the dlstrlbutlon of (p p)/Ip(l- p)/n]l/ approaches the
standard normal as n approaches =, Equivalently, for large n, the
binomial distribution can be approximated by the normal distribution
with mean np and variance np(l-p). The approximation improves as n_
increases and is better for values of p close to 1/2. For extremely
small values of p the distribution of X can be approximated by a

. . N
Poisson distribution with parameter \ = np. P&Np”uw &ﬁﬁmf e hwv%%%g

Approximating a discrete binomial distribution by a continuous
normal distribution causes some technical difficulties. This arises
from the fact that the binomial distribution assigns probabilities to
integer values and the probability of integer values under the normal
distribution is zero. To correct for this we generally approximate
the probability that the binomial variable X equal an integer x by
the probability that the normal variable falls in the interval x+1/2.

€ ) - € ()=

PRt = s 0=p)
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For example with n=20 and p=1/2, we approximate P(X=10) by the
probability that a normal random variable with mean 20(1/2)=10 and
variance 20(1/2)(1/2)=5 lies between 9.5 and 10.5. Similarly, we
approximate P(X<10) by the probability that the same normal
distribution is less than 9.5.

In making inferences about p, we will be interested in the random
variable (§ - p)/1f(1-§),m1t/2.
the distribution of this variable approaches the standard normal as n

It can be shown that for 0 < p < 1,

approaches w,

One example of a binomial experiment comes from sampling with
replacement and determining if each sampled item has a characteristic
of interest. 1In this case p is the population proportion. Note that
when we sample without replacement, the distribution of X is '
hypergeometric. If n is small relative to N, then the binomial
distribution provides a good approximation to the hypergeometric.

TOPIC 6 - HYPOTHESIS TESTING
Hypothesis testing is a major branch of statistical inference. To
understand the role of hypothesis testing in science, we will begin
by reviewing the SCIENTIFIC METHOD. The‘scientific method was
formulated by Francis Bacon in the early 1600s. .
1. State a hypothesis
The hypothesis is a statement or conjecture about the
state of nature or reality. The hypothesis is made based
on the knowledge of science.
2. Perform an experiment
The experiment is designed to show whether or not the
hypothesis is true.
3. Make a conclusion about your hypothesis.
4. Formulate a new hypothesis
The new hypothesis is based on the past knowledge of science
plus that gathered through the cu;fent experiment.
‘We see that hypotheses are a central part of the scientific
investigation. We should also note a role of the statistician
throughout the process. The statistician can help in formulating the
hypotheses, designing the experiment, and in analyzing the
experimental data.
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We formulate STATISTICAL HYPOTHESES by making statements about the
population parameters or the distribution functlons. Some examples of
statistical hypotheses are the follow1ng

The mean weight 4 of the population of males is 160 pounds.
The proportion of undergraduate students who have smoked marijuana
is 0.6.
The mean lifetime of GE light bulbs is greater than the mean
lifetime of Sylvania light bulbs..
We see a number of advertizing claims that are in the form of
hypotheses. Some examples are:
Nothing is more effective for fighting athlete’s foot than Desenex.
STP Gas Treatment improves your gas mileage.
Schlitz drinkers are better lovers.
These hypotheses may or may not be correct.

The procedure of hypothesis testing is that we state two
hypotheses, the NULL HYPOTHESIS HO and the ALTERNATIVE HYPOTHESIS Hl'
The hypothesis that the experimenter wishes to prove is stated as the
alternativebhypothesis. The null hypothesis is the Contradictionk0§

the alternative hypothesis and generally contains =, ¢, or >. The
method of proof in hypothesis testing is to try to prove the
alternative hypothesis by showing beyond reasonable doubt that the
null hypothesis is false. That is, the burden of proof is on the
experimenter. If we are unable to show beyond a reasonable doubt
that the null hypothesis is false, then our conclusion is that we can
not reject the null hypothesis. Note that we do not prove that the

null hypothesis is true.

We have a perfect analogy to the criminal court system where the
accused is presumed innocent until proven guilty beyond a reasonable
doubt. If there is reasonable doubt, then the accused is released.
He is not required to prove that he is innocent.

Notice that we can make two types of errors. We can make a Eﬁfﬁﬁg
ERROR of rejecting Hd when in fact Hj is Esgé;or we can make a TYPE
II ERROR OF failing to reject H, when~H0 is false. We try to control
the probability of each of these errors.

We refer to the probability of a type I error as the SIGNIFICANCE
LEVEL of the hypothesis test. We denote the significance level by «.
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11. A sample of 1200 registered nurses shows that 580 of them are

employed by hospitals. Can we conclude at the 5

% level that less
than 50%

of the population of nurses are employed by hospitals?

The decision whether or not to reject H0 depends upon the choice

of a. The smaller the value of « is, the stronger the evidence must

. . .- be in support of H1 before we reject H

0° The choice of « is
subjective.

It is very possible that different investigators might

wish to use different values of «. Because of these facts it is

convenient to report the results of a test of hypotheses in terms of
the P-VALUE, also known as the OBSERVED LEVEL OF SIGNIFICANCE;

The
p-value has two equivalent definitions.

=

i L 1. The p-value is the smallest value of o such that we would
f o reject the null hypothesis.
2.

The p-value is the probablllty under the null hypothesis of

observ1ng a result as extreme or more extreme in support of the
_alternative.

d The first definition is better for interpreting the meaning of a
bm\ﬂ“«**ﬂbj ~reported p-value. 1If the p-value = 0.0322, we know immediately that
/ Zilf a 20,0322 we reject H0 and if o« < 0.0322 we fail to;reject~H0;
/"

/ The second definition is better for computation of the p-value.,

i In our example'test of Ho: u = 1.5 versus Hl: u # 1.5, the value of
%
i

the test statistic was -1.199.

e For the two sided alternative, large
o positive and large negative values of T support H, . Thus,

% / p-value = P(T < -1.199 or T » 1.199|u=1.5).
—$§ 2 Since the distribution of T is symmetric under HO’ we have
-+ % p-value = 2 P(T » 1.199 | 4 =1.5).

éw i From the table for the t distribution with 19 degrees of freedom, we

5 | bound P(T»1.199|u=1.5) between 0.10 and 0.20. Thus, the p-value is
< \\letween 0.20 and 0.40. Hence, our result is not that unusual if H

is true. )
For the one sided alternative Hy: 02 > 0.01, large values of X2

support Hy. Thus, the p-value is P(x2 > 104.927|az=0.01).
value can be bounded by looking at a table of the chi square
distribution with 19 degrees of freedon.

0.001. Thus, if H0 is true,

The p-

The p-value is less than
we have observed a most unusual event.

e e
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®|,% PROBLEM

12. An experiment with n = 13 yields a computed t statistic of
0.873. Report the p-values for the following alternatives: u > Moo
Mu < ,Uor M #,UO-

13. 1If the p-value = 0.008, would HO be rejected at « = 0.01?

TOPIC 7 - INTERVAL ESTIMATION-

We have discussed estimating a population parameter by computing a
point estimator. The point estimate is our best guess as to the
value of the parameter. However, the point estimator is a random
variable, and we know that it is very unlikely that the point
estimator equals the true value of the parameter. With point
estimation, we know our estimate is most likely wrong, and we hope'

that it is close to the true value.

In order to establish a reliable estimate of the parameter we must
allow for the error in the estimation process. That is, we state
that the unknown parameter falls in a specified interval on the real
line rather than saying it equals a specific point. By taking this
approach, we can calculate or approximate the probability that we are
correct. By adjusting the width of the interval we can achieve any
degree of reliability that we wish. However, increasing the
reliability increases the width of the interval. An intéfvdf
estimator that has probability 1 - o of covering the value of the
unknown parameter is known as a (l-«)100% CONFIDENCE INTERVAL £or the

parameter. Confidence intervals can be derived using two essentially
equivalent approaches. Depending on the setting, one approach is
sometimes more intuitive than the other.

The first approach for constructing confidence intervals is known
as the PIVOTAL method. 1In the pivotal method, we find a random

variable which is a function of the sample values and the unknown

parameter of interest. It can not be a function of other parameters.

This random variable is known as the pivotal. The probability

distribution of the pivotal must not depend on the unknown
parameters. We write either an exact or approximate probability

statement involving the pivotal. We then use algebraic manipulations
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to rewrite the probability statement so that the parameter of
interest is isolated and the other terms are functions only of the
sample. The functions of the sample serve as the endpoints of our
interval estimate.
EXAMPLE

If Xl""’xn is a random sample from a population having a normal
distribution, then T = (n)1/2(%-4)/s has a T distribution with n-1
degrees of freedom. The variable T is our pivotal for y. Our
probability statement is

oo = Pl=t 5 < T <t o) = B=t_, < (m)Y/2(Xpl/s < ¢

Rewriting within the probability statement yields

l-o = P(X - tm/ZS/nl/2 < u <X + ta/ZS/nl/z).
Thus, we are (1-«)100% confident that g lies in the interval

Xt ., S/ nt/2, |

Decreasing «, increases our degree of confidence and the value of

a/Z)

ta/Z' which increases the width of the interval.

For our example data, we had X = 1.437, § = 0.235, and n=20. 1If
w2 = 2.0930. Thus,
we are 95% confident that the true value of y lies in the interval
1.437 + 2.0930(0.235)/(20)%/2,
+ 0.110 or (1.327,1.547).

At times it is of interest to bound g only on one side. This is

we use «=0.05, then with 19 degrees of freedom t

Evaluating the interval yields 1.437

accomplished by making the probability statement about the pivotal
involve a one sided inequality. For exanple,

l-a = P(T < t_) = e[n'/2(X-p)/s < t_].
Rewriting the inequality yields

l-o = Plu > X - t_ 5 / /%],
Thus, we are (1l-«)100% confident that y exceeds X - taS/nl/z.
For our example data, t.05 = 1.729. Thus, we are 95% confident that
p > 1.437 - 1.729(0.235)/(20)2/%2 = 1.346. Notice that the one sided
interval gives us a tighter lower bound than the two sided interval.
The price of this tighter lower bound is that our upper bound is .

The second approach to constructing confidence intervals is known

as HYPOTHESIS TEST INVERSION method. When we reject the null
hypothesis Hy: e=eo in favor of the alternative Hy: e¢eo, we are

concluding that 6 does not equal eo. That is, 90 can be ruled out as
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a possible value of 6. 1In constructing a confidence interval, we
wish to include all values of the parameter that we can not rule out.

Thus, the hypothesis test inversion method for constructing a two
sided (1-«)100% confidence interval for a parameter is to include all
values eo such that we can not reject HO: e=eo in favor of Hl:e¢eo
with a significance level of a.

In our example, we could not reject HO: pu=1.5 in favor of Hy:
u#l.5 at «=0.05. Thus, the point 1.5 falls within the 95% two sided
confidence interval for u. 1In order to conveniently use the
hypothesis test inversion method, we need an algorithm to compute the
endpoints of the confidence interval. 1In the case of confidence
intervals for the mean of a normal distribution the algorithm follows
the same steps as the pivotal method. We are looking for the set of

1/2

values of Hy such that -t ,< n (i—yo)/S < ta/Z' The resulting

o/
S/nl/z agrees with that found through the

confidence interval, Xita/2

pivotal method.

One sided confidence intervals can be found by inverting tests of
hypotheses with one sided alternatives. For example, to bound 6 from
0_with
significance level a. The logic of this is that if we reject Hy, we

below, we invert the test of HO: 6 < 60 versus Hl: e > 6

are concluding that 6 > 60, Thus, we can rule out all values of 6 <
90.
In the case of confidence intervals for the mean of a normal
distribution the algorithm for finding the endpoint of the one sided
interval again follows the same steps as the pivotal method. We are
1/2(i—p0)/s <t_. The resulting

+®) agrees with that found through

looking for the set of Ho such that n
confidence interval (X - tQ‘S/nl/2
the pivotal method.

In the case of the mean of the normal disttibution, the two
methods yield the same confidence intervals. The approximate
confidence intervals for the binomial parameter P do not agree
although the differences are quite small. The pivotal variable is

z = (B-p)/1B(1-8)/m11/2 |
which is approximately distributed as the standard normal. The

resulting approximate 95% confidence interval for P is

B+ 1.961P(1-8)/n1172.



45

For the hypothesis test inversion method, we wish to find the set of
values of PO such that -1.96 < (Q—Po)/[PO(l—PO)/n]l/2 < 1.96. The
endpoints are the solutions for Py of the equations

B-py = £1.960p,(1-p,)/n11/2,
The pivotal method ylelds a 51mpler solution and is generally used

In the case of the variance of a normal dlstrlbutlon the two
methods agree. The pivotal variable is (n—l)S /a which has a chi
square distribution with n-1 degrees of freedom. The two sided
probability statement is P(xi_m/2 < (n—l)SZ/c2 < xi/z) = l-e.
Rewriting the statement yields

2,2 2 2,2
P[(n-1)S /xm/2 < ¢” < (n-1)s /xl—a/Z] = l-a. 5
Thus, the (1-«)100% two sided confidence interval for o% is
2,.2 2,2
((n_l)s /Xa/ZI (n"l)s /Xl /2)
For our example, n=20, thus we have 19 degrees of freedom. For a 95%
2 =32.9.
.025
= 0.0552. Thus, the 95% confidence
interval for ¢° is (19(0.0552)/32.9, 19(0.0552)/8.91) which
simplifies to (0.0319, 0.1178).

~

5
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two sided confidence 1nterval we find x2975—8 91 and X

The sample variance was 0. 2352

2

PROBLEMS

14. Using the data from problem 10 on page 40, find

a) a 95% confidence interval for the mean reaction time,

b) a 95% lower confidence bound on the mean reaction time,

c) a 95% confidence interval for the population variance,

d) a 95% confidence interval for the population standard deviation.

15. Using the data from problem 11 on page 41, find
a) a 95% confidence interval for the population proportion,

b) a 99% confidence interval for the population proportion.

TOPIC 8 -~ COMPARING TWO TREATMENTS (NORMAL THEORY)

A major role of the applied statistician is to assist the
experimenter in designing the experiment so that the experimenter
gets the most possible information from the data. To do this the
statistician must be involved in the project from the beginning. we
will introduce the concept of EXPERIMENTAL DESIGN'through the problem



A study is designed to determine if a weight loss plan is more
effective for obese men than for obese women. The variable of
interest is the percentage change in body weight over a three month
period. That is,

£ 100 * (begin weight - end weight) / begin weight.

Positive scores indicate weight loss and negative scores indicate
weight gain. A sample of n, = 20 women yielded il = 6.32 and Sl2 =
4.39. A sample of n, = 18 men yielded 22 = 9.14 and 822 = 11.34. We
wish to test HO: My > My Versus Hl: 4y < My at « = 0.05. Large
negative T support Hl' Let us compute k and .

k (4.39/20) / [(4.39/20) + (11.34/18)] = 0.2584

v 1/ {[(0.2584)2/(20—1)] + [(1—0.2584)2/(18—1)]} = 27.88
Looking in the t table for 27.88 degrees of freedom we find that we
will reject Hy if T ¢ -1.701. Our test statistic is

T = [(6.32—9.14)—0]/[(4.39/20)+(1l.34/18)]l/2 = -3,060.

- Thus, we reject Hy at «=0.05 and conclude that the plan provides men

a mean percentage weight loss which is statistically significantly
larger than women. The p-value is between 0.001 and 0.0025.
A 95% confidence interval for Hq=Ho is
(6.32-9.14) + 2.048 [(4.39/20) + (11. 34/18)]
-2.82 + 1.89

! Thus men on average lose between 0.93 and 4.71 more percentage points

of weight than women do.

1 = 022?". Note that
this is a statistical hypothesis that can be tested. 1In order to
test this hypothesis we need to introduce the F DISTRIBUTION. Let X

A
X Y\ m/¥4 have a chi square distribution with vy degrees of freedom and Y have
i

You may now be asking "How do I know if ¢

a chi square distribution with v, degrees of freedon. If X and Y are
independent,'then'E = (X/vl)/(Y/vz)ghas an F distribution with vy and
v, degrees of freedom. v, is called the numerator degrees of freedom

and vz'is called the denominator degrees'of‘freedom; If v, > 2, then
E(F) ex1sts and equals vz/(v -2). If vy > 4, then Var(F) exists and
equals sz (V +V, 2)/[vl(v2—2)2(v2-4)]. The distribution is bounded
below by 0 and is unbounded above. These distributions have a long
right tail. It is of interest to note that 1/F has an F distribution

with v, and v, degrees of freedon. Probability points for the F

| - asaidaisen
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Toduo €3
distribution are generally tabled for only the upper tail. That is,
in terms of points F, such that P(F > F ) = o« for « = 0.10, 0.05,
0.025, and 0.01. To get a lower tail p01nt, we look up the upper

‘tail p01nt for the F dlstrlbutlon with the roles of the numerator and

denominator degrees of freedom reversed and then 1nvert the result
For example, if v, = 4 and v, = 10, the fact that P(F > 4. 47) %
0.025 can be determined directly from the F table. To find the point
such that the probability of being less than or equal to the point is
0.025, F.975, we look at the F table with 10 and 4 degrees of
freedom and o = 0.025 and find the value 8.84 and then take the
inverse F.975=1/8.84 = 0.113. Thus, with v1=4 and v2=10, P(F <
0.113)=0.025.

We know that (nl—l)s /a has a chi square distributibh with'n
: 2

l—l

degrees of freedom and (n l)S /a has a chi square distribution
with n2~1 degrees of freedom prov1ded that we are sampling from
populations with normal distributions. 1In the independent sample
design (5,%/0,%) / (5,2/0,%) has an F distribution with n;-1 and n,-1
degrees of freedom.

Under the assumption that a12=622, the statistic F= S /S has an
F distribution with nl—l and nz—lfdegrees of freedom. Values of F >
1 sugg;st 012 > 622 and val;es osz < 1 suggest the reverse. To test
HO: o, = o," versus le o, # o, at level o, we reject H0 if the
test statistic F is < the lower o/2 point or if F > the upper «/2
point of the F distribution with nl—l and n2—1 degrees of freedom.

We can get a (1-«)l00% confidence interval for 012/022

inverting the probability statement
PIF)_, o < (5,%/020/(8,%/0,%) < F_ 50 = 1-a.

PROBLEM 16. Show that the above probability statement yields the
following (1-«)100% confidence interval for 612/0222
2 2 2 2

EXAMPLE ‘

Suppose that two independent samples yield the following results:
n,=8, X,=43.5, 5.%2=142.5 and n,=11, X,=34.6, S.2=65.4. We wish to

1 1 2 2 1 22 2 2 2

test HO: g =0," versus le g #o, at «=0.05. With 7 and 10 degrees

=3.95 and F =1/4.76=0.210. Thus, we

of freedom, we find F.025, 975
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Fq\(-’ Fi:’s:} .
reject H0 if F23.95 or F<0.210. Because F=142.5/65.4=2.18, we can
not reject H, at «=0.05.

0
A 95% confidence interval for o 2/022 is (2.18/3.95, 2.18/0.210)

which simplifies to (0.552,10.38).

wﬁ&m e VL A PR VE N VIS V- S S
PROBLEMS ex
17. Repeat the test of hypotheses in the example with « = 0.10.
What is the p-value? o '
18. Follow the logic at the bottom of page 44 to derive the power of
the test of equality of variances. What can you say about the power
of the «=0.05 test in the example if in fact 012 = 10022.

Note that the confidence interval in the example is quite wide.
We need large sample sizes to get narrow intervals or to get high
power in tests of hypotheses.

It is at times of interest to use the one sided alternative Hy:
olz > a22. This could be of interest in industrial settings where we
might be trying to prove that method 2 produces less variability than
method 1. In this case we would reject H0 if F > F .

It is also possible to test HO oq /022 = C. In that case our
test statistic is F = (Slz/szz)/c. The rejection region is
unchanged.

The T tests comparing means do not depend heavily on the
assumption of normal population when we have large sample sizes.
However, the F test for comparing variances does depend heavily on
the normality assumption even for large sample sizes. That is, if we
sample from highly non-normal populations then the true probability
of making a type I error may differ greatly from the nominal or

stated « value even for large sample sizes. We say that T tests are

ROBUST to moderate departures from normality for large sample sizes.

The F test is not robust. The fact that the T tests are robust do
not mean they are the best test in the face of non-normality. The
branch of statistics known as NONPARAMETRIC STATISTICS deals with

‘methods derived without assuming a parametric family of distributions

such as the normal family. For more information about nonparametric
statistics, see Nonparametric Statistical Methods by Myles Hollander
and Douglas Wolfe.
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In using the F test as a pfeliminary test to decide which version
of the independent sample T test to use, it is best to let o« be large
such as 0.20 for small and medium sample sizes since falsely
rejecting the null hypothesis of equal variances in this case would
not be a very serious error.

PROBLEMS

19. A study is designed to compare the effect of an experimental
mixture of cement to the standard mixture. The measure of interest
is the amount of force required to break a concrete post made from
the cement. The data consists of breaking strengths for 20 posts of
each type of cement. The data are summarized by

Experimental Standard
sample sigze 20 20
sample mean 325.6 291.8
sample variance 432.4 398.4

a. Give a 95% confidence interval for the ratio of the variance for

the experimental to the variance of the standard.

b. Is there sufficient evidence to conclude at the 5% level that the

experimental cement yields stronger concrete than the standard
cement? What is the p-value?

c. Give a 95% confidence interval for the difference in means. How

would you explain these results to someone who has never studied

statistics?

20. 1In a paired comparison experiment the boys in Ms. Proctor’s 3rd
grade class are timed in running two 40 yard dashes, one wearing Nike
shoes and one wearing Keds shoes. The data are:

BOY JDS GDW DRE WAQ TYU OSS PPW QQW KDE WAS MCM AAW 1IYZ
NIKE 7.5 9.3 8.1 5.9 7.3 8.5 9.9 6.5 8.3 8.7 9.2 7.3 6.7
KEDS 7.8 9.2 8.7 5.4 7.0 7.9 9.4 6.8 7.9 8.8 9.5 7.7 6.2
a. Can we conclude at o« = 0.05 that there is a difference in the
effects of the shoes on speed? What is the p-value?

b. Wwhat suggestions would you make regarding the order of running in
the shoes, i.e. Nike first and then Keds? Why?

c. What suggestions would you make regarding the length of time
between the two dashes? Why?

C,QA#‘SKW\A‘Q»L\ Ve
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21. A study is designed to compare the average salt content in two
brands of cereal. A random sample of 15 boxes of cereal G yields the
following results: 530, 518, 525, 534, 536, 529, 532, 524, 527, 523,
519, 522, 529, 526, 531. A random sample of 15 boxes of cereal W
yields 483, 492, 520, 510, 502, 487, 513, 490, 528, 499, 463, 541,
495, 513, 525. Can we conclude at the 5% level that the two cereals
differ in average salt content? What is the p-value?

It is very easy to perform these tests of hypotheses in SAS. For
the one sample problem, PROC UNIVARIATE includes the test statistic
for testing Hy: p=0 and the p-value for the two-sided alternative.

If you wish to test that the mean of a variable X is 23, you define a
new variable Y=X-23 and then test that the mean of Y is 0. For one
sided alternatives, you divide the two sided alternative‘in“half”if:
thé‘pdiht ¢stimate supports the alternative and take 1 minus half the
p—vélﬁe‘for'the two sided alternative if the point estimate does not
support the alternative. 1

For the dependent sample t test, the SAS data set would contain
the variables PAIR, X1, and X2. One then defines the new variable
DIFF = X1-X2 and runs PROC UNIVARIATE on the variable DIFf. This
vields a test of HO: 91—62 = 0 versus the two sided alternative. The
interpretation of the p-value is the same as above.

For the independent sample problem, the SAS procedure is PROC
TTEST. The SAS statement to run PROC TTEST is
PROC TTEST;CLASS variablel;VAR variable2;

This statement tells the computer to divide the data set into two
groups based on the value of variable 1 and to analyze the data using
the variable variable2. The analysis gives a test of equality of
variances versus a two-sided alternative and both versions of the t-~
test for equality of means versus a two-sided alternative. Again,
one can adjust the p-value for one-sided alternatives.
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The significance level is our measure of how strong the evidence must
be in support of Hy in order to reject Hy. That is, the significance
level measures the amount of doubt that we think is reasonable. With

o« = 0.05, we are willing to falsely reject a true Hy five percent of

the time. With « = 0.01, we are willing to reject a true null
hypothesis one percent of the time. It is harder to reject Hy with «
= 0.01 than with « = 0.05. .

~ We refer to the probability of a type II error as the OPERATING
CHARACTERISTIC of the test. We denote the operating characteristic
by 8. It is at times convenient to talk about the probability of

rejecting Ho; This probability, which equals 1-8, is known as the

POWER‘lthe test. The value of B depends on the true value of the

parameter under H,. That is, the operating characteristic is a
function of the parameter. The same is true for the power.

Ideally, we would like to have « and B both close to zero. The
value of « is chosen by the experimenter.” The value of g depends on
the choice of « and on the sample size. For fixed «, B decreases as
our sample size increases. Thus, in determining our sample size we
need to consider the B function as well as our dollar costs.

EXAMPLE - TEST OF BINOMIAL PARAMETER (ONE-SIDED ALTERNATIVE)

An experimenter wishes to prove that anexperimental type of
chemotherapy has a probability greater than 0.20 of producing a '
desired effect on patients having a particular type of cancer. He
wishes to use « approximately equal to 0.05 and to have B
approximately equal to 0.10 if the true probibility is 0.40. He is
considering an experiment with n = 15 patients.

The hypotheses are HO: P £ 0.2 and Hy: P> 0.2. Let X denote the
number of patients exhibiting the desired effect. Large values of X
support the alternative hypothesis. The probability distribution of
X is binomial with parameters n and P. We desire o to be
approximately 0.05, so we need to find a value c¢ such that

P(X > c|P=0.2) is approximately 0.05.
The test would then reject H0 if X > c. The following table gives
the binomial probabilities for n=15 and p=0.2 and 0.4:
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p=0.2 p=0.4
C P(X=c) P(X>c) P(X=c) P(X>c)
0 0.0352 1.0000 0.0005 1.0000
1 0.1319 0.9648 0.0047 0.9995
2 0.2309 0.8329 0.0219 0.9948
3 0.2501 0.6020 0.0634 0.9729
4 0.1876 0.3519 0.1268 0.9095
5 0.1032 0.1643 0.1859 0.7827
6 0.0430 0.0611 0.2066 0.5968
7. 0.0138 0.0181 0.1771 0.3902

We see from the third column that P(X26|P=0.2)=0.0611. Thus, if we
use the decision rule to reject H0 if X > 6, then « = 0.0611. We see
from the last column that P(X>6|P=0.4)=0.5968. Thus, if we use this
decision rule then the power of our test is 0.5968 at P=0.4. This
vields a value of B = 1-0.5968 = 0.4032 which is larger than the
experimenter wanted. There are two solutions 1) take a larger sample
size or 2) keep this sample size and realize that if P=0.4 you are
going to make the wrong decision with probability 0.4032.(/2)

How large does n have to be to have the power at P=0.4
approximately equal to 0.9? To answer this question, we will use the
normal approximation to the binomial distribution. Recall for large
n that z = (X—np)/[np(l—p)]l/2 is approximately distributed as the
standard normal distribution. Thus,

P{[X-n(0.2)1/(n(0.2)(0.8)]1/2 3 1.645 | p=0.2} = 0.05.
Rewriting yields

P{X » n(0.2) + 1.645[n(0.2)(0.8)1%2 | p=0.2} = 0.05.
Thus, for large n we reject Hy if X > n(0.2) + 1.645[n(0.16)]%/2.
The power of the test at P = 0.4 is

P{X 2 n(0.2) + 1.645(n(0.16)1%/2 | p=q.4}

which can be rewritten as
P{[X-n(0.4)1/[n(0.4)(0.6)1%/2 »
[n(0.2)+1.645(0.16n)"%n(0.4)1/[n(0.4) (0.6)1%/2 | p=0.4}
This can be approximated by
P{Z > [n(-0.2)+1.645(0.16n)1/21,10.24n11/2}.
The problem is solved by setting the right hand side equal to -1.282
and solving for n, because P(z > -1.282) = 0.90. Thus, we have
~0.2n + 1.645(0.16n)272 = _1.282(0.24n)1/2,

e S %&4@i¥ %ugk,



37

Simplifying yields -0.2n = n'/2[-1.286]. solving for n yields n =
41.3. Thus, to achieve a power of 0.9 at P=0.4, we must use
approximately 41 patients in the study.

Let us now formally state the steps involved in a test of
hypotheses.
1. Formally state the hypotheses that you wish to prove as the
alternative hypothesis and its contradiction as the null hypothesis.

2. Choose the level of significance.

3. Choose a test statistic whose distribution is known under the
point of equality in the null hypothesis.
4. Find the rejection region, the range of values of the test
statistic such that you will reject Hy. '
5. 1If possible, compute B for several values of the parameter under
the alternative hypothesis. If these values of B are not acceptable,
adjust the sample size.
6. Collect the data.
7. Compute the test statistic and make your decision.
8. Write the decision in terms of the original pfbblem.

In our example, step 8 would result in one of the following two
statements being written: ‘ _
"At the 0.05 level of significance, the response rate was shown to be
statistically significantly larger than 0.20."
"At the 0.05 level of significance, we could not reject the null
hypothesis that the response rate was less than or equal to 0.20."

Let us now review the test statistics and decision rules for
testing hypotheses about yu, 02, and P.
TESTS INVOLVING 4 *

Assumption: Xl,...,Xn is a random sample from a normal
distribution.

NN
Test statistic: T = (mY/2(% - ug)/s T= V7 A3

Hypotheses: HO: pSyo versus le ﬂ>u0 where Mo is a constant.
HO: pZﬂO versus le u<p0,
HO: p=p0 versus Hl: u#po.
Null distribution: 1If y = Y T has a t distribution with n-1
degrees of freedom.
Support for alternative: Positive T support u > Mg and negative T
support u < My
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Decision rule: Rejection region depends on alternative used. For

alternative u > Mo+ the rejection rule is reject H0 if T > ta

where P{(T > ta|u=u0)=a.

For the alternative uy < Moo the

rejection rule is to reject Hy if T < —ta.

Y the rejection rule is to reject Hy if 1| > t,

TESTS INVOLVING 02

distribution.
Test statistic: x2 = (n—l)SZ/oo2

Hypotheses: HO: 525002 versus H,: 2

For the alternative

/2"

Assumption: Xl,...,xn is a random sample from a normal

18 © >002, where 002 is a constant.

HO: 022002 versus Hl: 02<002.
HO: 62=602 versus le qz#coz.
Null distribution: 1If 62 = 502, x2 has a chi square distribution
with n-1 degrees of freedo&.
Support for alternative: Large values of x2 support 62 > 502.
Small values of x2 support 62 < 00?.

Decision rule:

alternative 02 > ooz

2

X o where P(x2 2 2

2 X" 1o
2 ] . 2 2
oo + reject Hy if x° < X%;_ .

= 002) = a.

TESTS INVOLVING P

Assumption: Binomial experiment.

Rejection region depends on alternative used.

For the alternative u2¢a

For
2

, the rejection rule is reject Hy if xX° 2

For the alternative 02 <

2
0 ’

Test statistic: X = number of successes in n trials

Hypotheses: Hy:

HO: P_>_P0 versus le P<PO.

P=P ..,

HO: P=P0 versus Hl: 0

PSPO versus le P>P0, where P0 is a constant.

Distribution: X has a binomial distribution with parameters n and

P. For large n, z=(x—np)/[np(l—p)]1/2

distributed as the standard normal.
Support for alternative:
P>P

Decision rule:

0° Small values of X (negative Z) support P<P

Rejection region depends on alternative used.

is approximately

Large values of X (positive Z) support

0°
For



39

alternative P>Py, reject H for sufficiently large X (large
positive Z). For alternative P<Py, reject Hy for sufficiently
small X (large negative Z). For alternative P#PO, reject HO
for sufficiently large or small X ( large positive or negative
z).

EXAMPLE -

It is assumed that the diapeter of a manufactured part follows a
normal distribution. A buyer wishes to see if there is sufficient
evidence to conclude that the mean diameter of items produced by the
process differs from 1.500mm. The buyer selects a sample of 20 items
from the production line and computes X = 1.437mm and S = 0.235mn.
The hypotheses are Hys pu=1.500mm Hy: ##1.500mm
The test statistic is T=(n)1/2(i - 1.500)/8.

Under the null hypothesis the test statistic has a t distribution
with 19 degrees of freedom. The value of t.025 for 19 degrees of
freedom is 2.0930. We will reject H0 in favor of H, at the 5% level
of significance if |T|>»2.0930.
The computed value of the statistic is ‘

T = (20)1/%(1.437-1.500),0.235 = -1.199 |
We can not reject the null hypothesis at the 5% level. We do not

JPhave statistically significant evidence that the mean diameter
differs from 1.500mm.

The buyer also wishes to investigate that the variance of the
population of product diameters is not too large. He wishes to test

at «=0.05 the null hypothesis that 0250.0100 versus the alternative

that ¢2>0.0100. The test statistic is X% = (19)5%/0.0100. We reject
H, at the 5% level if x° » 30.144. Our data yields X° = |
19(0.2352)/0.0100 = 104.927. Hence, we reject H, at the 5% level and
conclude that the variance is statistically significantly greater
than 0.0100.

The power of tests of hypotheses involving u is a function of u/c.

That is, when testing HO: u = 10 versus le 4 = 10 at « = 0.05 we can
not compute the power of the test if ¢ = 12 without also specifying

the value of ¢. We can, however, compute the power for u being one

standard devigfion greater than 10. The distribution of the test

1/2(2 - #y)/8 when the null hypothesis is er¢e is a
‘F&LSQ_

statistic T=(n)
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noncentral t distribution. This distribution is discussed in detail
in other courses. The sample size required to achieve a desired
power can be found in Table A-12 of Introduction to Statistical

Analysis (3rd Ed) by W. J. Dixon and F. J. Massey. For example, with
a one sided alternative and o = 0.05 the required sample size to
achieve power equal to 0.9 for uy one o away from I is 11 and for yu
one half ¢ away from Mo is 37. Power can also be computed through
the IMSL computer routines.

The power of tests of hypotheses involving &2 is a function of
2

We reject Hy if (n-1)s%/6% > xza. The power of the test is

2].

P[(n-1)8%/0,2 > x% 161 = Pl(n-1)52/0% 3 (0, 2/02)X2 | o
0 o 0 o
The left handside of the last inequality has a chi square
distribution with n-1 degrees of freedomn. Thus, the”powérTis the
probability that the chi square value is greater than or equal to a

constant. This probability can be bounded from the chirsquare table

or evaluated using the computer. 1In our example of testing Hy: uz <

2 5 0.01 with « =0.05, if ¢2=0.04, the power of the
test is the probability that a chi square variable with 19 degrees of
freedom is > (0.01,0.04)30.144 = 7.536. A chi square table bounds
this probability between .99 and .995. Thus, for this value of 02 we
are almost certain to reject Hy.

0.01 versus Hl: c

PROBLEMS
10. A psychologist measures the reaction times in seconds of 20
individuals exposed to visual stimuli. The data in seconds are:
0.85 0.76 0.73 0.58 0.61 0.74 0.71 0.65 0.75 0.56
0.64 0.59 0.78 0.58 0.71 0.73 0.70 0.78 0.74 0.69
a) 1Is the assumption that the data follows a normal distribution
unreasonable? Why? Regardless of your answer, assume normality for
the rest of the problem.
b) The psychologist wishes to prove that the population mean differs
from 0.70 seconds. 1Is there sufficient statistical evidence at o =
0.05? 1Is there sufficient statistical evidence at o« = 0.10?

c) Test HO: 02 = 0.01 versus Hl: 02 # 0.01 at o« = 0.05.
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of comparing two treatments under the assumption of normal
distributions.

We wish to compare treatments 1 and 2. For example, we may be
comparing two types of fertilizers or two types of gasoline. Another
possibility is that treatment 1 is a real treatment and treatment 2
is no treatment. 1In this case, we call treatment 2 a CONTROL.

Through the use of a control, we separate the real effect of the

treatment from other factors involved in conductlng the experlment

For example in one study involving a certain type of headache pain,
twenty percent of the subjects reported that the1r pain was
deminished after a nurse gave them a PLACEBO, a treatment ‘which has

no effect. Thus, in that study it was important to separate the
effect of a pain medicine from the effect of receiving something from
the nurse. This could be accomplished by giving some subjects the
pain medicine and other subjects the placebo in an identical fashion.
It is important that the patients be randomly assigned to treatments
and that in each case they be made to believe that the pill may be
effective.

Generally the experimenter wishes to prove that one treatment is
more effective than the other treatment. For sake of this
discussion, we will suppose that larger is better. In this type of
study, the treatments are applied to experimental units (subjects,
plots, cars, etc.) and responses are measured. In such studies the
experimenter has the choice of two different designs, INDEPENDENT

samples and bEPENDENT:samples. The second design is also known as
PAIRED COMPARISONS.

In the 1ndependent sample de51gn we randomly a551gn experlmental

units to the treatments to achieve the sample 51zes that we de51re ’
In the dependent sample design we divide the exper1menta1 units 1nto
subsets of size two so that within a subset the units are as much

alike as possible. We then randomly select one unit from each pair

to receive treatment 1 and the other unit from the pair receives
treatment 2.

In order to decide which design to use, we must consider the
SOURCES OF VARIATION for our response variable. There is possible

variation due to the treatment effect. That is, treatments 1 and 2
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may differ in their average effect on the response. It is this
effect that we are wishing to establish. We estimate this effect by
computing il - 22' the sample mean of the responses for treatment 1
minus the sample mean of responses for treatment 2.

There is also possible variation due to differences in

experimental units. That is, variation in the responses among units

receiving the same treatment. 1In the independent samples design, the
variation in the experimentalhunits;shows up in the standard error of

&, - X,. Thus with the independent sample design, the;gg£§”variat£oh
there is among experimental units, the larger the standard error.

The power function of the test of hypotheses involving thé treatment
effect is a decreasing function of the standard error. Thus, the

more variation there is among experimental units receiving the same
treatment, the less likely we are to detect a true difference among
the two treatments.

In the dependent sample design, we seek to control most of the
variation among eggerimental units by pairing. It i; our goal in
;;E;;;;Mzo make the experimental unzgs within the pair as alike as
QgsSible.' If we are successful, then within a pair there will be

very little variation among experimental units. We then estimate the

difference in the treatment effects separately for each pair by

_subtracting the response for treatment 2 from the response for

treatment 1. The data analysis is then done on the difference

scores. The standard error of il - 22 in the dependent sample design
is not effected by variation among experimental units appearing in
different pairs. 1In the dependent'samplefdesign we can not estimate

the standard error as well as we can in the independent sample design

since the takingnbf'differences‘usés;up'degrees of freedom that could

have been used to estimate the standard error.
The decision between the independent and dependent sample designs
depends on our assessment of the variation-among the experimental

units. If this variation is large and we are able to pair units so

that within a pair the units are much more alike than in the
population as a whole, then the advantage of the dependent sample
design outweighs the disadvantage. If the variation among
experimental units is small or if we can not pair'tﬁe units so that
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within a pair the units are much more alike than in the populatioﬁ as
a whole, then the disadvantage of the dependent sample design

outweighs the advantage.
In some experiments we can measure both treatments on the same

experimental unit. In this way the is no variation within the pair.
This method can not be used if the treatment alters the experlmental
unit #ﬁ there is a learning effect If the treatments are given
sequentially, it is 1mportant that half of the units get treatment 1
first and the other half get treatment 2 first.
EXAMPLE

The Army wishes to compare two brands of combat boot heels
designed for male soldiers. The variable of interest is the amount
of wear to the heel in six months of wear. The experimental units
are individual soldiers. The experimenter realizes that there are
many sources of variation among the soldiers with respect to boot
heel wear. Some of these factors are how much the soldier weighs,
how he walks, where he walks, how often we walks, how well he cleans
foreign objects from the heel, etc. Thus, the experimenter
anticipates a large amount of variability among the experimental
units. Therefore, a dependent sample design is used where each
soldier is his own control. That is each soldier in the study will
wear one type of heel on his left shoe and the other type on hlS
right shoe. The choice of which heel goes on the left foot is made
at random. At the end of six months, the amount of wear on each heel
is measured and the difference between the type 1 heel and the type 2
heel is recorded.
EXAMPLE

An investigator wishes to test the effectiveness of two different
types of fertilizer on plant growth in a greenhouse experiment. The
experimental unit is a clay pot filled with a prepared planting
mixture. Seeds from a common source are planted in each pot.
Temperature, light, and moisture are held constant for all pots. 1In
this example the variation between experimental units is probably
very small. There may be small environmental differences and there
may be differences in the seeds. However, it is difficult to
distinguish these differences before planting. Thus, the
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investigator would use an independent sample design with random
assignment of the clay pots to the fertilizers.

We have considered the situation of comparing two treatments which
are applied to experimental units. Another situation that arises is
comparing two populations. In this case we select random samples
from each of the two populations and compare the results. The
samples are selected independéntly. In this situation there is no
choice in design. oOur analysis is that of the independent sample
design.

Let us now turn to inferences for the two designs. We will begin

with the dependent sample design. Let 91 denote the effect of

treatment 1 and 62 denote the effect of treatment 2. We wish to make
inferences for o = 6, - ©,. If & > 0 then treatment 1 gives a larger
expected response than treatment 2. Suppose there are n pairs. Let
Xli denote the response for treatment 1 in the ith pair and XZi
denote the response for treatment 2, i =1,...,n. The difference
score for the ith pair is Y, = Xli - XZi' The difference Yi

estimates © for each pair. Thus, we can think of Yl""’Yn as being

a sample from a population centered at 8. We make all of our

inferences for 6 based on this sample of differences. If we assume
that the difference scores follow a normal distribution then the
inferences are the same as those for 4 in a sample from a single
normal population. The power of the dependent sample t test is a

function of (6—60)/6; where o is the standard deviation of the

population of difference scd?és, The power is determined in the same

manner as in the one sample t test.

EXAMPLE

An experiment is designed to test the effectiveness of a treated tape
to discourage barnacles from attaching to the bottom of boats. In
the experiment, eight panels are placed in'a tidal creek at different
locations. Half of the panel is covered with the tape and the other
half is left uncovered, i.e. is a control. The measurement of
interest is the surface area covered by barnacles at the end of one
year. If the treatment is effective, the treatment-control

difference will be negative.
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[ & Xl L XZ T 3 ‘L.
PANEL TREATMENT CONTROL TREATMENT - CONTROL
1 13.7 24.8 -11.1
2 9.7 18.3 -8.6
3 12.4 21.6 -9.2
4 6.3 13.8 -7.5
5 10.4 22.6 -12.2
6 8.9 15.2 -6.3
7 17.2 31.5 -14.3
8 4.3 9.8 -5.5
AVERAGE 10.3625 19.7000 -9.3375

The analysis is done on the differences. The sample standard
deviation of the difference scores is § = 3.0194. To test for the
effectiveness of the treatment, we test Hy: © > 0 versus Hys 6 < 0 at
o = 0.05. The_ T statistic is
T = (8)/2(%- 0)/5 = (8)1/2(-9.3375-0),3.0194 = -8.75.
The rejection region is based on a T distribution with 8 - 1 = 7
degrees of freedom. We reject Hy at « = 0.05 if T < -1.895.
Clearly, we reject H0 and conclude that the treated tape is effective
in reducing the barnacle coverage. The p-value for this test is less
than 0.0005.
A 95% confidénce interval for the effect of the treatment is
~9.3375 + 2.365(3.0194)/(8)1/?
-9.3375 + 2.5247
In the independent sample design, we have n, observations from
treatment 1 with a sample mean of il and a sample variance of 812 and
n, observations from treatment 2 with a sample mean of iz and a
sample variance of 822. The analysis for the independent design can
follow one of two courses. The deciding factor is whether we are

willing to assume that the variances are equal for the two groups.

We will first consider the analysis under the assumption that the

variances are equal. Under our assumption, the two sample variances
estimate the commog variance cz. Thus, we can combine the estimates
into a single estimate. This combined estimate is known as the
POOLED ESTIMATE of the variance. It is given by

= _ : i ey e &__‘_5.‘
Sp [(n1 l)S1 + (n2 1)S2 ]/[n1 +n, 2]. € na
If we are sampling from normal populations with equal variances, then

(nl+n2—2)sp2/c2 has a chi-square distribution with nl+n242;degrees of
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freedom. The difference in the sample means, il—iz, has a normal
distribution with mean My = Hy and variance cz[(l/nl)+(l/n2)] and the
difference in the sample means is independent of the pooled estimator

of the variance. Thus, if we are sampling from normal populations
with equal variances, the random variable

LRy - &) = (g - wp)] /7 (521 (L/mp)+(1/my) 132 |
has a T distribution with nl+n2+2~degrees of freedom. This variable
serves as the pivotal for confidence intervals for Hi=#5, and upon
substituting a hypothesized value for Hi=Hys it serves as a test
statistic.

TEe il—a)lOO% co§fidence”1nterva11§gr Hi=H4 is given by
where the tm/2 is the probability point from the T distribution with
n1+n2—2 degrees of freedom.

Tests of hypotheses involving differences of the means involve

statements of the type pl—p2=eo, where eo is a specified constant.

Of particular interest is the case of eo=o which corresponds to the

statement Hy = Hig. The test statistic for hypotheses of this type is
T = [(%)-%;)-01/(5, 21 (1/n))+(1/n,) 131/, |

Positive values of T suggest u1 = My > eﬁ and negatlve values of T

suggest u, - u, < 6,. The power of this t test is a function of

[(pl—pz)—eol/a. Table A-12 of Dixon and Massey gives the sample size
necessary to achieve a particular power. For example, if we are
trying to prove My > Hy with o« = 0.05 and desire a power of 0.9 if
(yl—yz)/d = 0.5 then n, = n, = 36.
EXAMPLE
It is desired to know if there is a difference in the mean

percentage sugar content of a particular species of orange grown in
two different locations. We wish to test HO: My = M, Versus le My #
My at a = 0.05. Samples of 10 oranges are selected from each
location. The test statistic will have 18 degrees of freedom and we
will reject HO if |T] 2 2.101. The results for location 1 are
summarized by il = 5.62 and Sl2 = 0.24 and for loé%tion 2 are
summarized by 22 = 5.31 and Sz2 = 0.32. The pooled estimate of the
variance is sz = [(10-1)0.24 + (10-1)0.321/[10+10-2] 0.28. The
test statistic is

T = [(5.62-5.31)-0],{0.28[0.1+0.1]}1/% = 0.31,0.2366 = 1.310.
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Hence, we can not reject Hy at a=0.05, The p-value is
P(T > l.310|pl=p2) + P(T < -1.310]p1=p2) = 2 P(T > 1~310lﬂ1=ﬂ2)-
From the T table we can see that the p-value is slightly greater than
0.2.
A 95% confidence interval for u,-u, is given by
o 12 1,2
(5.62-5.31)+2.101[0.28(0.1+0.1)]
which yields the interval (-0.187,.807). Our conclusion is that the
mean for location 1 exceeds the mean for location 2 by between
-0.187% to 0.807%.

We will now consider the analysis when one is not willing to

assume the two variances are equal. This is known as the BEHRENS-
FISHER PROBLEM. Let 012 and 022 denote the variances associated with
treatments 1 and 2, respectively. The difference of the two sample

means,’il—iz, has a normal distribution with mean Hy=Hy and variance
[(clz/nl) + (azz/nz)]. It is natural to want to use the pivotal
variable

T = (R - Ky - (uy - wy) 10 P52y 112,
Unfortunately, the distribution of T depends on the unknown
variances. Several authors have approximated the distribution of T.
One such approach says that the variable T is approximately
distributed as a T distribution with v degrees of freedom where v is

(4TS [0

determined from the data by

v=1/ (1x/(n-1)] + ((1-)%/(n,-1)1},

where ,
k = (s;%/m)) / 1(s,%/m,) + (5,2/m,)]
1 1 1 1 2 271
The (1-#)100% confidence interval for Hi=Hy is
s 2 2 1/2 .
X=Xyt ol(87/m)+(8,7/n)) 1777, sh=na
where tm/2 comes from the row of the t table with v degrees of
freedom. It will probably be necessary to interpolate between two
rows of the table.
The test statistic for hypotheses of the type pl—p2=eo is
s = 2 2 1/2
T = [(Xl—xz)“eol / [(Sl /nl)+(sz /nz)] / .
The rejection region is found using the row of the t table with v
degrees of freedom.
EXAMPLE



