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Abstract. Methods to predict the structure of a protein often rely on
the knowledge of macro-sub-structures and their exact or approximate
relative positions in space. The parts connecting these sub-structures
are called loops and, in general, they are characterized by a high degree
of freedom. Modeling proteins loops is thus a critical problem in pre-
dicting protein conformations that are biologically realistic. This paper
introduces a novel constraint targeted at modeling proteins loops with
fragment assembly, and presents a filtering technique, inspired by inverse
kinematics, that can drastically reduce the search space of potential con-
formations.

1 Introduction

Proteins are macro-molecules of fundamental importance in the way they reg-
ulate vital functions in all biological processes. These function are in a direct
correspondence with the protein’s 3D structure and, due to its inherent and com-
putational complexity [1, 5], investigating its spatial conformation is one of the
most important open problems in the bioinformatics field. This has originated a
variety of alternative approaches. One method, named fragments assembly, has
proved to be particularly promising. The idea behind this method is to assemble
a protein structure by using small protein subunits as templates that present
similarities (homologous affinity) w.r.t. the object sequence.

Nevertheless, even when protein structure prediction is realized using ho-
mologous templates, the final conformation may present aperiodic structures
(loops) connecting the known protein segments on the outer region of the pro-
tein. These protein regions are, in general, not conserved during evolution, and
therefore templates provide very limited statistical structural information. Mod-
eling a protein loop often imposes constraints in the way of connecting two
protein segments. Restrictions on the mutual positions and orientations (dihe-
dral angles) of the loop anchors are often present. Such restrictions are defined
as the loop closure constraints (Fig. 1). Popular methods for loop prediction
include the CCD [3] and the SOS algorithm [7].



Fig. 1: Helices with
a loop. The loop
anchors are colored
in orange; the loop
constraint is satis-
fied by the loops
connecting the two
anchor points.

In this paper, we adopt Constraint Programming (CP)
techniques to encode such constraints and, together with
fragments assembly, we investigate the problem of pro-
tein loop modeling. In particular, we abstract the problem
as a general multi-body system, where each composing
body is constrained by means of geometric properties in
the space and related to other bodies through joint rela-
tionships. This model leads to the Joined-Multibody (JM)
constraint. Realistic loop modeling requires the assembly
of hundreds of different body versions, making the prob-
lem intractable. We study an efficient approximated prop-
agator, named JM filtering (JMf), whose propagation is
performed by an ad-hoc algorithm. This propagator allows
us to efficiently compute classes of solutions, partitioned
by structural similarity and controlled tolerance.

We demonstrate the strength of the filtering algorithm
in significantly reducing the search space and in aiding the
selection of representative solutions.

2 The Joined-Multibody Constraint

A rigid block B is composed of an ordered list of at least three 3D points, denoted
by points(B), represented by circles in Figure 2. The anchors and end-effectors
of a rigid block B, denoted by start(B) and end(B), are the two lists containing
the first three and the last three points of points(B). With B(i) we denote the
i-th point of the rigid block B. For two ordered lists of points p and q, we write
p_ q if they can be perfectly overlapped by a rigid translation and/or rotation
(i.e., a roto-translation).

Definition 1 (Multi-body). A sequence S1, . . . , Sn of non-empty sets of rigid
blocks is said to be a multi-body. A sequence of rigid blocks B1, . . . , Bn, is called
a rigid body if, for all i = 1, . . . , n− 1, end(Bi) _ start(Bi+1).

A rigid body can be seen as one instance of a multi-body that guarantees the par-
tial overlapping of each two consecutive blocks. The overlapped points end(Bi)
and start(Bi+1) constitute the i-th joint of the rigid body, marked by orange
rectangles and grey circles in Figure 2. The number of rigid bodies “encoded”
by a single multi-body is bounded by Πn

i=1|Si|. A rigid body is defined by the

Fig. 2: A schematic representation of a rigid body

overlap of joints, and thus relies on a chain of relative roto-translations of its



blocks. Each points(Bi) is therefore positioned according to the coordinate sys-
tem associated to a rigid block Bi−1. Note that once the reference system for B1

is defined the whole rigid body is completely positioned. The relative positions
of two consecutive rigid blocks Bi−1 and Bi of a rigid body (2 ≤ i ≤ n) can be
defined by a transformation matrix Ti ∈ R4×4 determined from the start and
end of the blocks according to the standard Denavit-Hartenberg parameters [4]
obtained from the start and end of the respective blocks. We denote the product
T1 · T2 · . . . · Ti · (x, y, z, 1)T by ∇i(x, y, z).

For i = 1, . . . , n, the coordinate system conversion (x′, y′, z′), for a point
(x, y, z) ∈ points(Bi) into the coordinate system of B1, is obtained by:

(x′, y′, z′, 1)T = T1 · T2 · . . . · Ti · (x, y, z, 1)T = ∇i(x, y, z) (1)

Homogeneous transformations are such that the last value of a tuple is always 1.
Note that the matrix T1 affects the positioning and rotation of the first fragment
and thus the overall placement of the protein.

Definition 2 (JM-constraint). The joined-multibody (JM) constraint is de-
scribed by a tuple: J = 〈S,V ,A,E, δ〉, where:

– S = S1, . . . , Sn is a multi-body. Let B = {B1, . . . , Bk} be the set of all rigid
blocks in S, i.e., B =

⋃n
i=1 Si.

– V = V1, . . . , Vn is a list of finite-domain variables. For i = 1, . . . , n, the
variable Vi is associated to a domain dom(Vi) = {j : Bj ∈ Si}.

– A = A1,A2,A3, and E = E1, . . . , E3n are lists of sets of 3D points such that:
• A1 ×A2 ×A3 is the set of admissible points for start(B), with B ∈ S1;
• E3i−2×E3i−1×E3i is the set of admissible points for end(B), with B ∈ Si,
i = 1, . . . , n

– δ is a constant, used to express a minimal distance constraint between dif-
ferent points. Let us assume that for all B ∈ B and for all a, b ∈ points(B),
if a 6= b then ‖a− b‖ ≥ δ (where ‖ · ‖ is the Euclidean norm).

Intuitively, the JM constraint limits the spatial domains of the various blocks
composing the multibody, in order to retain those fragments that assemble prop-
erly and that do not compenetrate.

A solution for the JM constraint J is an assignment σ : V −→ {1, . . . , |B|}
s.t. there exists a sequence of matrices T1, . . . , Tn with the following properties:

Domain: For all i = 1, . . . , n, σ(Vi) ∈ dom(Vi).

Joint: For all i = 1, . . . , n − 1, let (a1, a2, a3) = end(Bσ(Vi)) and (b1, b2, b3) =
start(Bσ(Vi+1)), then it holds that (for j = 1, 2, 3):

∇i(ajx, ajy, ajz) = ∇i+1(bjx, b
j
y, b

j
z)

Spatial Domain: Let (a1, a2, a3) = start(Bσ(V1)), then T1 · aj ∈ Aj × {1}.
For all i = 1, . . . , n, let (e1, e2, e3) = end(Bσ(Vi)) then

∇i(ejx, ejy, ejz) ∈ E3(i−1)+j × {1}
where 1 ≤ j ≤ 3 and T2, . . . , Ti (in ∇i) are the matrices that overlap Bσ(Vi−1)

and Bσ(Vi) (the product ×{1} is due since we use homogeneous coordinates).



Minimal Distance: For all j, ` = 1, . . . , n, j < `, and for all points a ∈ points(Bσ(Vj))
and b ∈ points(Bσ(V`)), it holds that:

‖∇j(ax, ay, az)−∇`(bx, by, bz)‖ ≥ δ

2.1 Loop Modeling by the joined-multibody constraint

We addressed the problem of connecting two rigid block structures through a
protein loop via the joined-multibody constraint. The proposed encoding and the
constraint solving procedure are implemented within FIASCO (Fragment-based
Interactive Assembly for protein Structure prediction with COnstraints) [2]. FI-
ASCO is a C++ tool that provides a flexible environment that allows us to easily
manipulate constraints targeted at protein modeling through fragment assembly.
The starting point is a given protein together with the pair of the two known
(large) blocks connected by the target loop. The model will account for them
in the definitions of sets E. The coordinates of the initial and the final anchors,
relative to the given blocks, are known. Moreover, the sequence of amino acids
a1, . . . , an connecting the two anchors is known. Loop modeling can be realized
using the joined-multibody constraint J = 〈S,V ,A,E, δ〉 where:

• For i = 1, . . . , n the set Si contains all the protein’s fragments (i.e., rigid
blocks) associated with the amino acid ai.

• dom(Vi) is the set of labels that uniquely identify the fragments that can be
used for the amino-acid ai. Note that a fragment is used to encode a single
residue.

• The constant δ (now δ = 1.5Å) asserts a minimum distance between atoms,
used for overlapping fragment during each fragments assembly step.

• For the spatial domains, we set in A the coordinates of the initial anchor
and in E a 3D interval. This interval is calculated from the coordinates of
the final anchor, using the covalent radii bond distances of the specific types
of atoms belonging to the final anchor itself. Note that now we use intervals
to represent sets of points. We use this slack for the last 3 points of the
loop in order to cushion the error produced during the clustering step, still
obtaining solutions that are geometrically eligible.

Let us observe that more than one loop in the same target protein can be
modeled simultaneously in this way.

3 Filtering algorithm for the joined-multibody constraint

We designed a filtering algorithm (JMf) for ad-hoc propagation of the JM con-
straint in protein loop modeling. The Joined-Multibody filtering is inspired by
arc consistency on the 3D positions of end-effectors, and uses a clustering re-
lation over these bounds, in order to retain those domain variable assignments
that produce similar spatial results. The equivalence relation captures those rigid
bodies that are geometrically similar and thus compacts small differences among
them; relevant gains in computation time can be derived when some errors are
tolerated.



The JMf algorithm receives as input a JM-constraint 〈S,V ,A,E, δ〉, a clus-
tering function ∼ on the space of triples of 3D points, and a function fsel that
selects a representative fragment for each cluster (i.e., each equivalence class)
produced by ∼. Note that the JMf algorithm is parametric w.r.t. ∼ and fsel.
JMf is based on an iterative procedure that computes for each body in S the
fragments to be retained. Since the joints depend on the preceding bodies, the
algorithm computes the domains starting from the first body. At iteration i,
every fragment from Si is joined to the previous bodies instances already com-
puted at step i, producing a set Ri of end-effectors. Based on local geometric
properties, the function ∼ computes a set of equivalence classes from Ri. From
each of such clusters, the function fsel selects the new fragment representative
that satisfy the constraint and that will be used to calculate Ri+1 in the next
step.

Clustering. The proposed clustering relation for loop modeling takes into ac-
count two factors: (a) the positions of the end-effectors in the 3D space and
(b) the orientation of the planes formed by the fragments’ end-effectors. This
combination of clusterings allows to capture both spatial and rotational features
of rigid bodies.

The spatial clustering (a) is based on three parameters: kmin, kmax ∈ N,
(kmin ≤ kmax), and r ∈ R, r ≥ 0. The clustering works as follows. Given set of
fragments, the end-effectors of each fragment are considered (i.e., its three last
atoms) and the centroid of the triangle based on their coordinates is computed.
Then, a set of kmin fragments, pairwise distant at least 2r, is selected from
the initial set. These fragments are selected as representatives of the equivalence
classes. Other fragments will be assigned to a class whom representative centroid
has mutual distance of at most r Å. This clustering ensures a rather even initial
distribution of clusters, however some fragments may not fall within the kmin
clusters. We allow to create up to kmax−kmin new clusters, each of them covering
a sphere of radius r. Remaining fragments are then assigned to the closest cluster.

The orientation clustering (b) partitions the fragments according to their rel-
ative orientation of the plane (called β) described by the end-effectors positions.
This is handled in a pre-processing phase, being independent on other domains.
The final cluster is the intersection of the two partitioning algorithms. Moreover,
the representative selection function fsel selects the fragments for each partition
according to some preferences (e.g., most frequent fragment, closest to the center,
etc.).

The filtering algorithm is similar to a directional arc consistency, when the
global constraint is viewed as a conjunction of binary constraints between adja-
cent blocks. In particular, as soon as the domain for the variables related to the
initial anchor of a JM constraint is instantiated, the corresponding constraint is
woken up. The algorithm JMf is invoked with the parameters described above.
If there are no empty domains after this stage, the search proceeds by selecting
the leftmost variable and assigning it a fragment (block) in a leftmost order. All
domains are pre-sorted from the most likely to the least likely for each variable
(the previous stage of filtering preserves the ordering).



4 Experimental Results

The proposed method has been tested on a data set of 10 loop targets for each
of the lengths 4, 8, and 12 residues. The targets are chosen from a set of non-
redundant X-ray crystallography structures structures [3]. We analyze the per-
formances of the Joined-Multibody filtering by examining the fraction of the
search space explored during solution search, along with the qualities of the
loop prediction. The latter is expressed by a meausre of the root mean square
deviation (RMSD) of the atoms of proposed loop with respect to the native
conformation. All experiments are conducted on a Linux Intel Core i7 860, 2.5
GHz, memory 8GB, machine.

To show the filtering power of the JM constraint we employ different evalu-
ations based on protein loop lengths. For short protein loops (10 loops of length
4) we analyze the loop closures generated by two CSPs: the first with the JM
constraint enabled (JMf), and the second is a simple combinatorial fragment
assembly search (NC). For both problems we exhaustively explored the search
space. For longer protein loops (10 loops of lengths 8 and 12, respectively), where
a complete search space exploration cannot be computed in reasonable time, we
compute an approximation of a filtering measure based on the ratio between the
nodes pruned by propagating the JM constraint within a timeout of 600 seconds4

and number of possible nodes expandable by an NC search.
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Fig. 3: Ratio of the solutions for short loop lengths (left) and RMSD comparison (right)

The aforementioned experiment are reported in Figure 3 (left) and Figure 4.
We relate the filtering measures at varying of the cluster parameters r and β.
The adopted parameters for the β angles are reported on the x-axes, while the
r values for the clustering distances are plotted in different colors (10Å is the
lightest color). The number of fragments in each variable domain is 60. This
increases the likelihood to generate a loop structure that is similar to the native
one.

4 We merely count the actual search time, excluding the time spent in the clustering
phase from the total running time.



Figure 3 (left) reports the ratio (Rsol) between the number of solutions for
the CSPs with and without the JM constraint at varying of the clustering pa-
rameters, while kmin and kmax are set to 20 and 100, respectively. The white
dots represent the average values of all the trials and the vertical bars illustrate
the standard error of the mean: σ√

N
, where σ is the standard deviation and N

is the number of samples. It can be observed that the number of the solutions
generated by the JM constraint decreases as the β and r values increase, as one
can expect. The size of the prop-labeling tree and running times decrease with
a similar trend.
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Fig. 4: Ratio of the search space explored using JMf for 8-loops (left) and 12-loops.

Longer loops are analyzed in Figure 4, which reports the percentage of the
approximate space left to explore after the JM propagation. The space filtered
by the JM constraint rises up to 10% of the original prop-labeling tree according
to the increasing values of r and β. However, this is just an under-estimation of
the pruning capability, as several fragments might immediately lead to a failure
due to spatial constraints and allotting more time for the computations allows
further pruning, thus increasing the filtering measure.

Figure 3 (right) reports on the qualities of the loop predictions generated
by the JMf. In particular, we show that the RMSD measure is not significantly
degraded by the large filtering performed by the propagator. The experiments
are carried on with kmin = 20 and kmax = 100, while r and β are set respec-
tively to 1.0 and 15 for loops of length 4, and 2.5 and 60 for longer loops. In our
analysis, such parameters guarantee a good compromise between filtering power
and accuracy of the results. In Figure 3 (right), the bottom and top point of
each vertical line show the RMSD of the best and worst prediction, respectively,
within the group of targets analyzed. The results are biased by the fragment
database in use: we excluded from it the fragments that belong to the deposited
protein targets. Therefore it is not possible to reconstruct the original target
loop and none of the searched are expected to reach a RMSD equal to 0. The
bottom and top horizontal lines on each box shows the RMSD of the 25th and
75th percentile prediction, respectively, while the line through the middle shows
the median. We observe no substantial difference in the distributions related to



short loop predictions (length 4), and an improvement for targets of greater size
due to time-out. Such results experimentally show the strength of our method:
JM filtering algorithm removes successfully redundant conformations; moreover,
it quickly direct the search space exploration through predictions that are bio-
logically meaningful.

We also compare our method to three other state-of-the-art loop samplers:
the Cyclic Coordinate Descent (CCD) algorithm [3], the self-organizing algo-
rithm (SOS) [7], and the FALCm method [6]. Table 1 shows the average RMSD
for the benchmarks of length 4, 8 and 12 as computed by the four programs.
Note that our solution does not include specific heuristics and additional infor-
mation that are used in the other programs. Moreover, it can be noted that our
results are in line with those produced by the other systems, even if a general
fragment database has been used in our system.

Loop Average RMSD
Length CCD SOS FALCm JMf

4 0.56 0.20 0.22 0.30
8 1.59 1.19 0.72 1.31
12 3.05 2.25 1.81 1.97

Table 1: Comparison of loop sampling methods

5 Conclusions

In this paper, we presented a novel constraint (joined-multibody) to model rigid
bodies connected by joints, with constrained degrees of freedom in the 3D space,
along with a filtering technique to exploit the geometrical features of the rigid
bodies. We showed its application in sampling protein loop conformations. In
particular, we showed that the search space of the protein loop conformations
generated is drastically reduced, when the joined-multibody constraint is prop-
agated, with controlled loss of quality.

As future work, we plan to apply our filtering method to other related appli-
cations, for example, those where there is the need of generating large number
of protein conformations, by acting only on a restricted part of the protein.
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