
Towards a GPU-Based Parallel Constraint Solver

F. Campeotto1,2, A. Dal Palù3, A. Dovier1, F. Fioretto1,2, and E. Pontelli2

1 Dept. Mathematics & Computer Science, Univ. of Udine
2 Dept. Computer Science, New Mexico State Univ.

3 Dept. Mathematics, Univ. of Parma

Abstract. Constraint programming has gained prominence as an effec-
tive and declarative paradigm for modeling and solving complex com-
binatorial problems. In spite of the natural presence of concurrency,
there has been relatively limited effort to use novel massively paral-
lel architectures—such as those found in modern Graphical Processing
Units (GPUs)—to speedup constraint programming algorithms. This pa-
per presents an ongoing work for the development of a constraint solver
which exploits GPU parallelism. The work is based on two previous re-
sults where constraint propagation and approximated search have been
parallelized [5, 6]. We summarize these result and discuss the features we
have planned to carry on.

1 Introduction

General Purpose Graphics Processing Units (GPUs) are widely available in com-
mon desktop and laptop computers. The computational capabilities of such de-
vices can be exploited to perform general (i.e., not graphic-related) computation.
This is possible thanks to C-like programming languages, such as the program-
ming platform CUDA offered and supported by NVIDIA. Graphic cards offers
several hundreds parallel cores; however exploiting their parallelism in full is not
immediate for all the applications. Several factors are critical in gaining per-
formance and often there is no simple and direct translation from traditional
parallel encodings since GPUs support exclusively Single Instruction Multiple
Threads (SIMT) parallelism.

This paper presents an ongoing work for the development of a constraint
solver which exploits CUDA-GPU parallelism. The solver is referred to as NVID-
IOSO, which stands for NVIDIa-based cOnstraint SOlver.

In [5] we presented a first prototype of the solver, where the control of the
search is delegated to the CPU while an event-driven [18] constraint propagation
procedure is parallelized using GPU. Parallelism is exploited by either delegating
constraints to various GPU kernels or by parallelizing the propagation activities
within a single constraint. We observed speedup for problem instances exhibit-
ing a high number of—even simple—constraints, or when global constraints were
considered. Search strategies in [5] were rather naive: the “leftmost” variable is
chosen and the “min”imum value is attempted first. Subsequently, we integrate

the use of GPU to explore the large neighborhoods of a given solution, aimed
at improving a given cost function [6]. The neighborhoods are explored through
sampling-based approaches, e.g., Monte Carlo, Gibbs. We observed significant
speedup, which where due to that (1) the local search was delegated exclu-
sively to the GPU, and (2) the SIMT parallelism is suited to approximated
search strategy—similar computations are executed in different threads with
slight changes in the data addressed. The proposed approach is parametrical
with respect to the implemented technique for exploring the neighborhood.

The final step towards the realization of the solver NVIDIOSO involves the
development of a set of complete and incomplete search strategies and search
techniques. In all options (e.g., choice of the variable with most-constrained/min-
domain heuristics, values selection) we will exploit the parallelism offered by
GPGPU. For instance, lookahead stages of k consecutive assignments could be
attempted in parallel. This information could hence be used to evaluate the most
promising one, i.e., to be attempted as first.

The paper is organized as follows: after some background on constraint pro-
gramming, local search, and GPU in Section 2, we report on the current state of
the solver NVIDIOSO, in particular summarizing the contributions presented in
[5] and [6] (Section 3). Some related work is discussed in Section 4. Future work
and Conclusions end the paper.

2 Background

2.1 Constraint Programming

A Constraint Satisfaction Problem (CSP) [16] is a triple (X,D,C) where: X=
〈x1, . . . , xn〉 is a n-tuple of variables, D = 〈Dx1 , . . . , Dxn〉 is a n-tuple of finite
domains, each associated to a distinct variable in X, and C is a finite set of
constraints on variables in X. A constraint c(xi1 , . . . , xim) is a subset of the
cartesian product ×imj=i1Dxj . The variables xi1 , . . . , xim are referred to as the
scope of c (denoted by scp(c)). We assume each Dxi ⊆ N; minDx and maxDx

denote the minimum and maximum element of Dx, respectively. A solution of a
CSP is a tuple 〈s1, . . . , sn〉 ∈×ni=1D

xi s.t. for each c(xi1 , . . . , xim) ∈ C, we have
〈si1 , . . . , sim〉 ∈ c. A CSP is (in)consistent if it has (no) solutions.

CSP solvers (e.g., Algorithm ??) alternate two steps: (1) Selection of a vari-
able and non-deterministic assignment of a value from its domain (labeling),
and (2) Propagation of the assignment through the constraints, to reduce the
admissible values of the variables and possibly detect inconsistencies (constraint
propagation). Thus, at the core of a CSP solver there is a constraint propa-
gation engine, that repeatedly propagates information based on the available
constraints. In turn, each constraint c ∈ C is implemented by a set of propa-
gators prop(c) acting on the domains of the variables in scp(c). We refer to F
as the set of all propagators involved in a given CSP instance. More formally,
given two n-tuples of domains D1 and D2, we say that D1 v D2 if, ∀x ∈ X,
we have that Dx

1 ⊆ Dx
2 . A propagator f is a monotonically decreasing function:

f(D) v D and f(D1) v f(D2) whenever D1 v D2. If f(D) =D for all f ∈ F ,
then D is a fixpoint of F . A propagation solver i-solv for a set of propagators F
and an initial domain D finds the greatest domain D′ ⊆ D which is a fixpoint
of F . i-solv start its computation from a subset F0 ⊆ F of propagators and the
current domains that will be, in general, reduced.

A Constraint Optimization Problem (COP) is a CSP where each solution is
scored according to a given cost function. The role of COP solvers is to find a
cost optimal solution. Their resolution process is similar of that of CSP solvers,
but in addition they rank each solution according to its cost.

2.2 Local search

Real-world combinatorial optimization problems often require a resolution pro-
cess which is prohibitively intensive in terms of computational resources. Thus,
incomplete search strategies are often preferred to exact approaches. Local Search
(LS) techniques [1, 16] are incomplete search approaches which deal with COPs
by iteratively improving a candidate solution s through slight “modifications”.
The set of allowed modifications is called the neighborhoods of s and it is often
defined by means of a neighborhood function η applied to s. More formally, given
a problem Π and an instance π ∈ Π, the search space S(π) of instance π is the
finite set of candidate solutions s ∈ S. A neighborhood function η : S(π)→ S(π)
is the function that determines the position that can be reached in one search
step at any given time during the search process.

LS methods rely on the existence of a candidate solution. Most problems
typically have a naive (clearly not optimal) solution. If this is not the case, some
constraints can be relaxed and a LS method is used with a cost function based
on the number of unsatisfied constraint: when a solution of cost 0 is found, it
will be used as a starting point for the original COP. Other techniques (e.g., a
constraint solver) might be used to determine the initial candidate solution.

Large Neighborhood Search (LNS) [20, 11] is a technique that hybridizes CP
and LS to solve optimization problems. It is a particular case of local search
where η defines neighborhoods which are larger than those typically adopted
by LS. Differently from LN, in LNS the sets of candidate solutions are explored
using a constraint based technique. If after a timeout an improving solution is not
found, a new random neighborhood is attempted. The process iterates until some
stop criteria is met. Technically, all constraints among variables are considered,
but the effect of η is to destroy the assignment for a set of variables. Typical
stopping criteria rely on a timeout or on a maximum number of consecutive
choices of η which do not lead to any improvements.

2.3 GPUs

Modern Graphics Processing Units (GPUs) are multiprocessor devices, offering
hundreds of computing cores and a rich memory hierarchy to support graphical
processing. In this paper, we consider the Compute Unified Device Architecture
(CUDA) programming model proposed by NVIDIA [17], which enables the use

of the multiple cores of a graphic card to accelerate general (non-graphical) ap-
plications. The underlying model of parallelism supported by CUDA is Single-
Instruction Multiple-Thread (SIMT), where the same instruction is executed
by different threads that run on identical cores, grouped in Streaming Multi-
processors (SM s), while data and operands may differ from thread to thread.

HOST
GLOBAL MEMORY

CONSTANT MEMORY

Shared
memory

Thread Thread

regs regs

Block

Shared
memory

Thread Thread

regs regs

Block

GRID

Fig. 1: CUDA Logical Architecture.

CUDA’s architectural model is sum-
marized in Figure 1.

A typical CUDA program is a
C/C++ program that includes parts
meant for execution on the CPU (re-
ferred to as the host) and parts meant
for parallel execution on the GPU
(referred as the device). A parallel
computation is described by a collec-
tion of kernels, where each kernel is
a function to be executed by several
threads. To facilitate the mapping of
the threads to the data structures be-
ing processed, threads are grouped in block, and have access to several memory
levels, each with different properties in terms of speed, organization and capacity.
Each thread stores its private variables in very fast registers. Threads within a
block can communicate by reading and writing a common area of memory (called
shared memory). Communication between blocks and communication between
blocks and the host (i.e., the CPU) is realized through a large (but slow) global
memory.

While it is relatively simple to develop correct CUDA programs (e.g., by
incrementally modifying a sequential program), it is nevertheless challenging to
design an efficient solution. Several factors are critical in gaining performance
and often there is no simple and direct translation from traditional parallel
encodings. Memory levels have significantly different sizes (e.g., registers are in
the order of dozens per thread, shared memory is in the order of a few kilobytes
per block) and access times, and various optimization techniques are available
(e.g., accesses to consecutive global memory locations by contiguous threads can
be coalesced into a single memory transaction). Thus, optimization of CUDA
programs requires a thorough understanding of GPU hardware characteristics.

3 Constraint Programming on GPUs

We present how we have exploited GPUs in the implementation of parts of the
Constraint Solver NVIDIOSO. In particular, we focus on the parallelization of
the constraint propagation (Sect. 3.1) and on the parallelization of approximated
search (Sect. 3.2).

3.1 Parallel Constraint Propagation

Constraint propagators are the core of CSP solvers. Their function is regulated
by a Constraint Propagator engine, which repeatedly propagates information
based on the available constraints, until no more information can be used to
further prune the variable’s domains. For this purpose, two general decisions
take place: (i) which propagators should execute, and (ii) in which order they
should execute. These decisions are based on the notion of event—a change in
the domain of a variable [18].

The engine of NVIDIOSO mixes CPU-based constraint propagation and GPU-
based constraint propagation, being able to select the appropriate execution
method for each constraint propagator. We base our engine on different levels of
parallelism:

Constraint Level: Each constraint c ∈ C is processed via an independent
parallel computation. A mapping of each constraint to a block of threads
allows us to fully capitalize on the parallel GPU’s SMs. Thus each call to
the propagator engine is associated to a kernel whose number of blocks equals
the number of the active constraints in the constraint queue.

Variable Level: Within each parallel computation, we process parallel domain
reduction for the variables involved in the constraint being propagated. Each
variable in the constraint scope is handled by a different thread. Such an ap-
proach is particularly suitable to handle global constraints (such as element,
inverse or table constraints).

Physical Level: To fully exploit device as well as host characteristics, we cat-
egorize each propagator to be processed either on the host or on the device.
Such categorization is based on propagators computational complexity: con-
straints with efficient propagators (e.g. involving few variables), are pro-
cessed on the host, while the others are delegated to the GPU. Reaching a
fixed point during the evolution of the propagation, is ensured by exchanges
of information between host and device.

The NVIDIOSO constraint propagation engine is described by Algorithm 1,
which is invoked after each labeling step. We denote with F0 the set of propa-
gators involving exclusively the variables touched during the last labeling step.
Line 2 splits F0 into two sets of propagators: Qhost and Qdev, representing the
propagators that will be executed on the CPU and those that will be executed
by the GPU respectively. These splits are established automatically according
to constraint execution properties: e.g., complex constraints which are always
delegated to the GPU.

At every loop iteration (lines 4–17) the engine determines the propagators
to split in the CPU and the GPU constraint queues. If Qdev is not empty, a call
to the kernel gpu propagate is invoked (line 6) with a number of block equal
to the number of propagator in Qdev (|Qdev|, constraint level parallelism), and
a number of threads equal to the maximum scope size (T , variable level paral-
lelism). If Qhost is not empty, sequential propagation is performed by invoking
the function cpu propagate (line 12) that performs propagation on the CPU.

Algorithm 1 gpu-i-solv(F0, D)

1: T ←max{|scp(c)| : c ∈ C};
2: 〈Qhost,Qdev 〉 ← split(F0);
3: while Qhost ∪Qdev 6= ∅ do
4: if Qdev 6= ∅ then
5: cudaMemcpy(Ddev, D);
6: gpu propagate<<< |Qdev|, T >>> (Qdev, Ddev);
7: cudaMemcpy(D′, Ddev);
8: if failed event then return false; end if
9: end if

10: if Qhost 6= ∅ then
11: for f ∈ Qhost do
12: D′′ ← cpu propagate(f,D);
13: if failed event then return false; end if
14: end for
15: end if
16: Daux ← D;D ← D′ ∩D′′;
17: 〈Qhost,Qdev 〉 ← split(D,Daux,Qhost ∪Qdev);
18: end while
19: return true;

Algorithm 2 gpu propagate(Q,D)

1: c id← Q[blockIdx];
2: (get propagators[get type(c id)])(c id,D);

If both propagations succeed, the domain D given by of the intersection of the
domains D′ and D′′ is used to determine the new sets of propagators that are
not at their fix point for D (lines 16–17).

The gpu propagate kernel (Algorithm 2) executes a propagator per block.
It uses its block ID to retrieve the ID of the constraint to propagate from Q
(line 1). The function get propagators returns a pointer to the device function
that implements the (set of) propagators for the constraint c indexed by its type
get type(c id). The constraint identifier c id is also used by the propagator to
identify the scope and any parameters of the constraint to propagate.

The propagation on the host is similar to that described above. The kernel
invocation is replaced by a for loop which iterates over all the propagators in
Qhost (lines 12-15).

For implementation details we refer the interested reader to [5].

3.2 Parallel Incomplete Search

NVIDIOSO implements a set of local searches taking advantage of the GPU paral-
lelism. In particular, we have implemented a Large Neighborhood Search scheme,
which requires an admissible (non optimal) solution to the considered problem
instance, which is computed using the techniques described in Section 3.1.

Let us briefly describe a sequential version of LNS. Given a valid assignment
s for the set of COP variables X, the LNS determines a new solution s′ = η(s)

modifying the values of a subset of variables N ⊆ X. The set N is referred to as
neighborhood and it is randomly generated. We call unassigned the variables in
N which are modified by the operator η. The admissible solutions identified by
the neighborhood are the ones potentially explored by a LS strategy (see below).

From this set of potential solutions a new admissible solution is selected. The
latter is referred to as LS starting point (or SP) and it may be equal to s. SPs
all represent solutions of the COP and they can be computed in different ways.
In particular, we implemented two strategies. In the first option, each SPi,j is
obtained by randomly choosing values from the domains of the variables in Ni.
This random assignment might not produce a solution of the constraints. How-
ever, for problems with a high number of solutions, this choice can be an effective
LNS starting point. In the second option, a random choice is performed only for
the first variable in Ni; this choice is followed by constraint propagation, in order
to reduce the domains of other variables. In turn, a random choice is made for
the second variable, using its reduced domain, and so on. If this process leads
to a solution, then such solution is used as a starting point SPi,j . Otherwise a
new attempt is done for a limited number of times, before discarding the start-
ing point. Constraint propagation is performed by a weak form of AC3 running
exclusively on the GPU. This represents a non trivial porting of simplified con-
straint propagation to GPU. In this implementation, after a variable x ∈ Ni
has been randomly labelled, the queue of constraint involving x is split among
parallel threads.4 Therefore, each thread performs independent and sequential
constraint propagation. To reduce the complexity of the data structures stored
in the device global memory, and the consequent number of memory accesses,
we perform a weak form of constraint propagation: the AC3 loop is executed
only for a fixed number of steps.

Initial
solution for X

N1 N2 Nt

SPt,1 SPt,m

128ᐧk
threads

Large
Neighborhood

Random
Starting Points

128ᐧk
threads

Fig. 2: Parallel exploration of subsets Ni
of variables. A LS strategy explores the
search space of Ni in parallel from dif-
ferent starting points SPij .

The method hence iteratively ap-
plies a search strategy to select a new
admissible solution by assigning val-
ues to the variables in the neighbor-
hood N . The new solution s′ may im-
prove the cost function and it can be
used for subsequent iterations of the
method. This process is repeated for
h iterative improving steps, each of
them restarting from the best solution
found so far. Note that at each step
a new neighborhood is selected. After
h iterations, the process restarts from
scratch and is repeated for rst restarts or until a given time-out limit is reached.
In the end, the best solution found during the whole search process is returned.

There are two main aspects where parallelism can help to increase the chances
to incur in the optimal solution. Rather than perturbing a single neighborhood

4 In order to avoid warp divergence the queue of constraints is split among warps of
threads instead of assigning different constraints to consecutive threads.

for a solution s, we can perturb t neighborhoods (N1, . . . ,Nt). The GPU parallel
paradigm is highly suitable to this aim, as no dependencies occur between each
neighborhood. Moreover, rather than computing a single starting point in the
neighborhood, m different starting points SPi,j (i = 1, . . . , t and j = 1, . . . ,m)
are retrieved in parallel. This produces t×m solutions explored in parallel with
the selected LS strategy. At the end of the computation, the best solution is re-
trieved (through an efficient communication between GPU and CPU), compared
to s and a new iteration is set up by the CPU.

Let us observe that it is possible to design different parallel frameworks where
multiple threads are devoted to propagation for the same CSP associated to a
specific LS branch, with the ideas presented above and implemented in a full-
GPU version (future work).

From the GPU design point of view, we define t×m blocks and each of them
is in charge of controlling the corresponding starting point SPi,j (Fig. 2). Each
block is identified by a group of 128 · k (1 ≤ k ≤ 8) threads, where k depends on
the specific GPU in use. These threads handle the operations of the LS algorithm
in order to perturb the correspondent starting point SPi,j and hence determine
the new solution s′ through the function η.

3.3 Local Search Strategies.

We describe six LS strategies, which we will adopt to test our framework. Each
strategy follows a similar pattern: the operator η is repeatedly applied on the
set N of unassigned variables, so to transit from a solution s to a new solution
s′ = η(s). Let us observe that applying η to s involves performing consistency
checking in order to ensure that the assignment s′ is a solution. Whereas s′ is not
a solution we simply set s′ = s. On the other hand, if s′ represent an admissible
solution we compute its cost.

1. The Random Labeling (RL) strategy randomly assigns to the variables in
N values drawn from their domains. This strategy might be effective when
we consider many sets N , and the COP is not very constrained. It can be
repeated a number p of times for better chances of finding an admissible
solution.

2. The Random Permutation (RP) strategy performs a random permutation
(e.g., using Knuth’s shuffling algorithm [12]) of the values assigned to the
variables N in s and updates the values according accordingly. It can be used
on problems where the domains of the variable are identical (e.g., TSP). It
can be repeated p times.

3. The Two-exchange permutation (2P) strategy swaps the values from s of a

pair of variables in N . The neighborhood size is n = |N |(|N |+1)
2 , and we force

the number of starting points to be less than of equal to n.
4. The Gibbs Sampling (GS) strategy [3] is a simple Markov Chain Monte

Carlo algorithm commonly used to solve the maximum a-posteriori estima-
tion problem. We use it for COPs in the following way. Let ν be the current
solution cost. The function f is defined as follows: for each variable x in N ,

choose a random candidate d ∈ Dx \ {s(x)}; then determine the new value
ν′ of the cost function, and accept or reject the candidate d with probability
ν′

ν . This process is repeated for p samplings steps; for p large enough, the
process converges to the a local optimum for the large neighborhood.

5. The Iterated Conditional Mode (ICM) [3] can be seen as a greedy approxima-
tion of Gibbs sampling. The idea is to consider one variable x ∈ N at a time,
and evaluate the cost of the solution for all the assignments of x satisfying
the constraints, keeping all the other variables fixed to their original value
in the correspondent SP. Then x is assigned with the value that optimizes
the costs.

6. The Complete Exploration (CE) enumerates all the possible combinations
of values of the variables in N . Given an enumeration d1, . . . ,de of these
values, each di is assigned to a block i, and the corresponding cost function
is evaluated. The assignment with the best solution is returned. This method
can be adopted when the product of the size of domain’s variables of N is
not huge.

3.4 Experiments

We implemented CPU and GPU versions of the constraint solver. We run our
experiments on a CPU AMD Opteron (TM), 2.3GHz, 132 GB memory, Linux
3.7.10-1.16-desktop x86 64, and GPU GeForce GTX TITAN, 14 SMs, 875MHz,
6 GB global memory, CUDA 5.0 with compute capability 3.5. In what follows
we report only the most significant results. The experiments are performed on a
subset of the local search strategies described above. The interested reader can
visit http://clp.dimi.uniud.it/sw/cp-on-gpu/ for a more extensive set of
tests and benchmarks.

Solving CSPs. In [5] we evaluated the performance of our CSP solver w.r.t. the
solvers Gecode and JaCoP on some classical benchmarks, specifically nQueens,
Schur (numbers 1, . . . , N in B blocks), and the propagation stress benchmarks
(see, e.g., the MINIZINC benchmarks folder [15]).

The results showed that our solver is, on average, comparable with the state-
of-the-art.

For benchmark problems defined using table constraints (e.g. the crossword
game, the Langford problem, several synthetic problems, and some other real-
world problems), a speedup of at least 2 is obtained, showing that the use of the
GPU pays off on large instances and real problems.

Solving COPs. In [6] we evaluate the performance of the GPU solver for
COPs on some MINIZINC benchmarks,5 comparing its results against the so-
lutions found by the state-of-the-art CP solver JaCoP [13]. We present results

5 The interested reader can visit http://clp.dimi.uniud.it/sw/cp-on-gpu/ for a more
extensive set of tests and benchmarks.

on medium-size problems which are neither too hard to be solved with standard
CP techniques nor too small to make a local search strategy useless.

We considered the following four problems:6 (1) the Transportation problem
with the RL strategy, with only 12 variables but the optimal solution is hard to
find using CP. The heuristics used for JaCoP is the first fail, indomain min,
while for the GPU implementation we used the RL method.
We used t = 100 neighborhoods of size 3, m = 100 SP each, and h = 500. (2) the
TSP with 240 cities and some flow constraints considering the RP strategy. The
heuristics used for JaCoP is the same as above, RP strategy is used in GPU-LNS
with p = 1. We use t = 100 neighborhood of size 40, m = 100, and h = 5000.
(3) the Knapsack problem using the RL strategy. We considered instances of
100 items7. The strategy adopted in JaCoP is input order, indomain random,
while for the GPU version we used the RL search strategy, with t = 50 neigh-
borhoods of 20 variables, m = 50, and h = 5000. (4) the Coins grid problem.
We considered this problem to test our solver on a highly constrained prob-
lem. For (4) we sightly modified the LS strategy: first we set η(s) = s, then
we used CP (option 2) to generate random SPs. The strategy adopted in Ja-
CoP is most constrained, indomain max, while for the GPU version we used
the RL search strategy, with t = 300 neighborhoods of 20 variables, m = 150,
and h = 50000. Table 1 reports the first solution value, the best solution found
(within 10 min) and the (average on 20 runs for GPU) running times. For the
GPU version we also report the standard deviation of the best solution value.
(1) and (2) are minimization problems, while (3) is a maximization problem.
Best results are boldfaced.

Table 1: MINIZINC benchmarks (minimization problems, save Knapsack).

System Benchmark First Sol Best Sol(sd) Time(s)

JaCoP Transportation 6699 6640 600
JaCoP TSP 10098 6307 600
JaCoP Knapsack 7366 15547 600
JaCoP Coins grid 20302 19478 600

GPU Transporation 7600 5332 (56) 57.89
GPU TSP 13078 6140 (423) 206.7
GPU Knapsack 0 48219 (82) 6.353
GPU Coins grid 20302 16910 (0) 600

We also compared the GPU solver for COPs against a standard implemen-
tation of a LNS in OscaR. OscaR is a Java toolkit that provides libraries for
modelling and solving COP using Constraint Based Local Search [11]. We com-
pare the two solvers on a standard benchmark used to test LNS strategies,

6 Models and description are available at http://www.hakank.org/minizinc/
7 An hard instance has been generated using the generator that can be found at
http://www.diku.dk/~pisinger/generator.

Table 2: Quadratic Assignment Problem (minimization)

System q First Sol Best Sol (sd) Time(s)

OscaR 15 79586 9086 (0) 63.09

OscaR 32 430 254 (0) 126.2

OscaR 64 300 212 (0) 1083

GPU 15 83270 0 (0) 0.242

GPU 32 368 199.6 (9.66) 1.125

GPU 64 254 121.6 (2.87) 2.764

namely the Quadratic Assignment Problem (QAP).8 We used three different
datasets (small/medium/large sizes). OscaR is run using adaptive LNS with
Restart techniques. For each instance we tried different combinations of restarts
and adaptive settings; Results for the best combination are reported in 2, as well
as GPU solver results with the RP strategy, h = 10, t = 50 neighborhood of size
20, and m = 50. For both systems results are averaged on 20 runs. Standard
deviations of best solutions are reported. The GPU version of the solver out-
performs OscaR (this is mainly due to the fact that GPU-LNS considers 2500
neighborhoods at a time). We also tried to compare GPU-LNS against OscaR
on a highly constrained benchmark, namely the Coins problem. We started both
the LNSs from the same initial solution found by OscaR (i.e., 123460), and we
used the same setting described above for the GPU implementation. Both sys-
tem reached the time-out limit with an objective value of 25036 for GPU solver,
and 123262 for OscaR.

4 Related Work

Extensive research has been conducted focusing on LS and LNS to solve COPs,
considering many different variants (see [9] for a survey). While extensive re-
search has also been conducted focusing on parallel constraint solving [10], the
use of GPGPUs in CP has been less investigated. A recent, relevant reference
is [2]. The authors implemented the Adaptive Search algorithm, a local search
algorithm that can be used for COP and CSP whose search strategy is based
on iterative repair. Basically, the degree of unsatisfiability of a constraint is
evaluated and helps, together with the cost function in driving the search. A
tabu list is also used for avoiding re-visiting recently considered assignments.
Our solver is general and their strategy will be implemented in NVIDIOSO as
future work. Moreover, NVIDIOSO can run MINIZINC models and deals with
constraint propagation using GPU, as well. The solver presented in this paper
is an extension of the solver presented in [5] where constraint propagation is
performed in parallel using GPGPUs. On the other hand, the use of GPUs ar-
chitectures is not new for speeding up LS strategies, in particular, for solving

8 The description of the problem and the model used for OscaR are available at
https://bitbucket.org/oscarlib/oscar/wiki/lns.

hard combinatorial real-world problems. For example, in [19] the authors present
an implementation of a LS strategy based on GPU computation and they test it
on the vehicle routing problem. In [7] the authors present an implementation of
system where local search strategies are performed on GPGPUs considering the
protein structure prediction problem. A guideline for design and implementation
of LS strategies on GPUs is presented in [14], and in [21]. Instead, in [4] the au-
thors proposes a framework for heterogeneous systems with multiple CPUs and
GPUs interconnected through a network. The authors evaluate the framework
on the TSP problem and showing its scalability properties considering a system
which includes 256 CPUs and 384 GPUs.

Parallelization of SAT solving procedures, which present similar issues at high
level, have been also explored [8]. The parallelization of (i) the unit-propagation
procedure (performed at every visited node of the search tree) and (ii) the com-
plete parallelization of the “tail” of the search tree have been investigated. The
results for (i) indicate that significant speedups arise for large formulas (corre-
sponding to a large number of constraints in a CSP), where the GPU overhead
is payed off by parallel work. For (ii) it was observed that parallel expansion of
different branches by parallel threads can lead to speedups of one order of mag-
nitude, but it relies on parameter tuning. The main drawback is the divergence
of code, namely threads that execute different code, due to different branching
in the search algorithm, which degrades the performances.

5 Future Work and Conclusions

We have reported on an ongoing project on developing a constraint solver for
finite domains which exploits the power of GPGPU computing. Motivated by
the highly parallel hardware platforms available to the broad community, we
presented the design of a constraint solver that performs parallel constraint
propagation as well as parallel LNS on GPGPUs architectures. Our results show
the potential of GPU parallelism in both approaches.

As future work we plain to exploit a deeper integration within LNS and con-
straint propagation. The framework should be general enough to allow the user
to combine these kernels in order to design any search strategy, in a transpar-
ent way w.r.t. the underlying parallel computation. Combining kernels to define
different (local) search strategies should be done using a declarative approach,
i.e., we plan to extend the MiniZinc language to support the above features.

Acknowledgment

This research is partially supported by the National Science Foundation under
grants number 1345232 and 0947465, and by the INdAM-GNCS Project 2014.

References

1. E. H. Aarts and J. K. Lenstra. Local search in combinatorial optimization. Prince-
ton University Press, 2003.

2. A. Arbelaez and P. Codognet. A GPU Implementation of Parallel Constraint-Based
Local Search. In Parallel, Distributed and Network-Based Processing (PDP), pages
648–655, 2014.

3. C. M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag New
York, Inc., 2006.

4. M. Burtscher and H. Rabeti. A scalable heterogeneous parallelization framework
for iterative local searches. In IPDPS, pages 1289–1298, 2013.

5. F. Campeotto, A. Dal Palù, A. Dovier, F. Fioretto, and E. Pontelli. Exploring the
Use of GPUs in Constraint Solving. In Practical Aspects of Declarative Languages,
volume 8324 of Lecture Notes in Computer Science, pages 152–167, New York,
2014. Springer Verlag.

6. F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli. GPU Implementation of
Large Neighborhood Search for Solving Constraint Optimization Problems. Tech-
nical report, TR-CS-NMSU-2014-4-25, NMSU, 2014.

7. F. Campeotto, A. Dovier, and E. Pontelli. Protein Structure Prediction on GPU: a
Declarative Approach in a Multi-agent Framework. In Proc. of 2013 International
Conference on Parallel Processing. IEEE Computer Society, 2013.

8. A. Dal Palù, A. Dovier, A. Formisano, and E. Pontelli. Exploiting Unexploited
Computing Resources for Computational Logics. In Proceedings of the 9th Italian
Convention on Computational Logic, volume 857 of CEUR Workshop Proceedings,
pages 74–88, Aachen, Germany, 2012. CEUR-WS.org.

9. F. Focacci, F. Laburthe, and A. Lodi. Local search and constraint programming.
In Handbook of metaheuristics, pages 369–403. Springer, 2003.

10. I. P. Gent, C. Jefferson, I. Miguel, N. Moore, P. Nightingale, P. Prosser, and
C. Unsworth. A preliminary review of literature on parallel constraint solving.
In Proceedings PMCS 2011 Workshop on Parallel Methods for Constraint Solving.
Citeseer, 2011.

11. P. V. Hentenryck and L. Michel. Constraint-based local search. The MIT Press,
2009.

12. D. E. Knuth. The Art of Computer Programming: Seminumerical Algorithms. II.
Addison-Wesley, 1969.

13. K. Kuchcinski and R. Szymanek. Jacop library. users guide, 2009.

14. T. V. Luong, N. Melab, and E.-G. Talbi. Large Neighborhood Local Search Op-
timization on Graphics Processing Units. In Workshop on Large-Scale Parallel
Processing (LSPP) in Conjunction with the International Parallel & Distributed
Processing Symposium (IPDPS), Atlanta, États-Unis, 2010.

15. N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, and G. Tack.
Minizinc: Towards a standard cp modelling language. In Principles and Practice
of Constraint Programming–CP 2007, pages 529–543. Springer, 2007.

16. F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint Programming. Else-
vier, 2006.

17. J. Sanders and E. Kandrot. CUDA by example: an introduction to general-purpose
GPU programming. Addison-Wesley Professional, 2010.

18. C. Schulte and P. J. Stuckey. Efficient constraint propagation engines. ACM Trans.
Program. Lang. Syst., 31(1), 2008.

19. C. Schulz. Efficient local search on the gpuinvestigations on the vehicle routing
problem. Journal of Parallel and Distributed Computing, 73(1):14–31, 2013.

20. P. Shaw. Using constraint programming and local search methods to solve vehicle
routing problems. In Principles and Practice of Constraint ProgrammingCP98,
pages 417–431. Springer, 1998.

21. T. Van Luong, N. Melab, and E. Talbi. Large neighborhood local search optimiza-
tion on graphics processing units. In Parallel & Distributed Processing, Workshops
and Phd Forum (IPDPSW), 2010 IEEE International Symposium on, pages 1–8.
IEEE, 2010.

