
Exploring the Use of GPUs in Constraint Solving

F. Campeotto1,2, A. Dal Palù3, A. Dovier1, F. Fioretto1,2, and E. Pontelli2

1 Dept. Mathematics & Computer Science, Univ. of Udine
2 Dept. Computer Science, New Mexico State Univ.

3 Dept. Mathematics, Univ. of Parma

Abstract. This paper presents an experimental study aimed at assess-
ing the feasibility of parallelizing constraint propagation—with particu-
lar focus on arc-consistency—using Graphical Processing Units (GPUs).
GPUs support a form of data parallelism that appears to be suitable
to the type of processing required to cycle through constraints and do-
main values during consistency checking and propagation. The paper
illustrates an implementation of a constraint solver capable of hybrid
propagations (i.e., alternating CPU and GPU), and demonstrates the
potential for competitiveness against sequential implementations.

1 Introduction

Constraint programming has gained prominence as an effective paradigm for
problem modeling and solving, with applications to such diverse domains as
scheduling, satisfiability testing, optimization, and verification. A typical Con-
straint Satisfaction Problem (CSP) consists of a set of variables, each taking
values from an associated finite domain, along with a set of constraints. The
constraints are used to restrict the values that different variables can simultane-
ously assume. Resolving a CSP consists of determining complete assignments of
values to the variables that satisfy all the constraints. Constraint programming
is frequently used to address combinatorial problems, which are, in general, NP-
hard. Solving CSPs is usually achieved by combining backtracking search with
forms of consistency checking, to prune values from the variables’ domains that
are inconsistent with the constraints. Polynomial time techniques like node, arc,
path and bound consistency have been developed for this purpose.

The cost of solving complex CSPs has motivated the exploration of techniques
to improve the exploration of the search space; parallelism has been recognized as
a strong contender, especially with the wider availability of multicore and cluster
platforms. A large body of research has been developed to address parallelization
of backtracking search on a variety of parallel and distributed platforms.

The research presented in this paper makes a contribution to the domain of
parallel constraint solving, by exploring ways of using Single-Instruction Multiple-
Threads (SIMT) parallelism to reduce the cost of constraint propagation. The
choice of SIMT parallelism has two driving motivations. First of all, it is our

belief that this form of parallelism is suitable to the type of processing that con-
straints are subjected to during consistency checking. Second, SIMT is the style
of parallelism that is natively supported by modern General Purpose Graph-
ical Processing Units (GPGPUs). GPGPUs are massive parallel architectures,
that are available in the form of graphic cards in most modern computers; they
provide hundreds of computing cores at an affordable cost. Exploiting the par-
allelism offered by GPUs is not trivial—the cores are often significantly slower
than CPU cores, they impose restrictions on branching, and provide a complex
memory hierarchy with differences in speed, size, and concurrency of accesses.

The contribution of this paper is a feasibility study that demonstrates the
potential for using GPGPUs to speedup a constraint propagation engine, based
on the notion of events [23]. We propose a methodology to map constraints,
variables, and domain elements to threads running on GPU cores, thus enabling
the concurrent analysis of arc and bound-consistency and removal of inconsistent
domain values. The methodology is implemented in an experimental solver, and
shown to produce performance enhancements even in its simple and unoptimized
form. The prototype demonstrates also the strengths and weaknesses of GPU
parallelism in constraint solving. This is, to the best of our knowledge, the first
study investigating the use of GPGPUs in constraint propagation; this study
opens the doors to an alternative way to enhance performance of constraint
solvers, through the unexploited computational power offered by GPUs.

2 Background

A Constraint Satisfaction Problem (CSP) [19] is defined as P = (X,D,C) where:

• X = 〈x1, . . . , xn〉 is a n-tuple of variables;

• D = 〈Dx1 , . . . , Dxn〉 is a n-tuple of finite domains, each associated to a
distinct variable in X. We assume each Dxi ⊆ N; minDx and maxDx denote
the minimum and maximum element of Dx, respectively.

• C is a finite set of constraints on variables in X, where a constraint c
on the m variables xi1 , . . . , xim , denoted as c(xi1 , . . . , xim), is a relation
c(xi1 , . . . , xim) ⊆ ×im

j=i1
Dxj . The variables xi1 , . . . , xim are referred to as

the scope of c (denoted by scp(c)).

A solution of a CSP is a tuple 〈s1, . . . , sn〉 ∈×n
i=1D

xi s.t. for each c(xi1 , . . . , xim) ∈
C, we have 〈si1 , . . . , sim〉 ∈ c. P is (in)consistent if it has (no) solutions.

CSP solvers (e.g., Algorithm 1) alternate two steps: (1) Selection of a variable
and non-deterministic assignment of a value from its domain (labeling), and (2)
Propagation of the assignment through the constraints, to reduce the admissible
values of the variables and possibly detect inconsistencies (constraint propaga-
tion). Thus, at the core of a CSP solver there is a constraint propagation engine,
that repeatedly propagates information based on the available constraints; its
basic component s a function, from domains to domains, referred to as propa-
gator [23]. Given two n-tuples of domains D1 and D2, we say that D1 v D2 if,
∀x ∈ X, we have that Dx

1 ⊆ Dx
2 . A propagator f is a monotonically decreasing

function: f(D) v D and f(D1) v f(D2) whenever D1 v D2. Each constraint

c ∈ C is implemented by a set of propagators prop(c) that operate on the m-
tuple of domains of the variables in scp(p). In the paper we denote by F the set
of all propagators considered. If f(D) = D for all f ∈ F then D is a fixpoint of
F . A propagation solver i-solv for a set of propagators F and an initial domain
D finds the greatest fixpoint of F . i-solv start its computation from a subset
F0 ⊆ F of propagators and the current domains that will be, in general, reduced.

Algorithm 1 search(X,D,C, `)

1: if ` > |X| then
2: output D; return true;
3: end if
4: for all d in Dx` do
5: D′ ← 〈Dx1 , . . . , Dx`−1 , {d}, Dx`+1 , . . . , Dx|X|〉;
6: F0 ← {prop(c) : c ∈ C ∧ x` ∈ scp(c)};
7: if i-solv(F0, D

′) ∧ search(X,D′, C, ` + 1) then
8: return true;
9: end if

10: end for
11: return false;

The procedure i-solv (Algorithm 2) iteratively invokes the propagators until
the greatest fixpoint is reached. Two general decisions have to be made in order
to reach the fixpoint: (1) Which propagators should execute, and (2) In which
order they should execute. These decisions are based on the notion of events: an
event is a change in the domain of a variable. We distinguish five types of events:
(1) failed event : there is a variable x such that D′x = ∅. (2) empty event :
no event happened, i.e., D′x = Dx for all variables considered. (3) sing event :
there is a variable x such that |D′x| = 1. (4) bc event : there is a variable x
such that minD′x > minDx or maxD′x < maxDx. (5) dmc event : there is a
variable x such that D′x ⊂ Dx. These events are used to invoke the necessary
propagators only, based on the changes to the variables’ domains that occurred.

Algorithm 2 i-solv(Q,D)

1: D′ ← D;
2: while Q 6= ∅ do
3: for all f ∈ Q do
4: D′′ ← f(D);
5: if failed event then return false; end if
6: D ← D′′;
7: end for
8: Q← new(Q,D′, D′′);
9: end while

10: return true;

The pseudo code in Algorithm 2 is similar to the well-known AC3 algorithm
(c.f., e.g., [19]): the while loop (lines 2–9) propagates the constraints in the
queue of propagators Q until no changes happen in the domains, i.e., D is a
fixpoint for the propagators invoked, or some domain is empty. The procedure

new(Q,D′, D′′) chooses the new propagators to be inserted in the queue, based
on the changes between the original domain D′ and the final domain D′′ and on
the propagators already in Q. As a side-effect, the procedure modifies the values
of the calling domain variable in the search procedure.

3 GPU computing

Modern graphic cards (Graphics Processing Units) are multiprocessor devices,
offering hundreds of computing cores and a rich memory hierarchy for graphical
processing (e.g., DirectX and OpenGL). Efforts like NVIDIA’s CUDA—Compute
Unified Device Architecture [21] aim at enabling the use of the multicores of
a GPU to accelerate general applications—by providing programming models
and APIs that enable the full programmability of the GPU. In this paper, we
consider the CUDA programming model. The underlying conceptual model of
parallelism supported by CUDA is Single-Instruction Multiple-Thread (SIMT), a
variant of the popular SIMD model. In SIMT, the same instruction is executed by
different threads that run on identical cores, while data and operands may differ
from thread to thread. CUDA’s architectural model is represented in Figure 2.

Different NVIDIA GPUs provide different numbers of cores, organized in a dif-
ferent way, and with different amounts of memory. The GPU consists of a series
of Streaming MultiProcessors (SMs); the number of SMs depends on the spe-
cific characteristics of each class of GPU—e.g., the Fermi architecture provides
16 SMs. In turn, each SM contains a collection of computing cores (contain-
ing a fully pipelined ALU and floating-point unit); the number of cores per SM
may range from 8 (in the older G80 platforms) to 32 (e.g., in the Fermi plat-
forms). Each GPU provides access to on-chip memory (for thread registers and
shared memory) and off-chip memory (L2 cache, global memory and constant
memory)—see Fig. 2.

A logical view of computations is introduced by CUDA, in order to define
abstract parallel work and to schedule it among different hardware configura-
tions. A typical CUDA program is a C/C++ program that includes parts meant
for execution on the CPU (referred to as the host) and parts meant for paral-
lel execution on the GPU (referred to as the device). A parallel computation
is described by a collection of kernels—each
kernel is a function to be executed by several
threads. Threads spawned on the device to
execute a kernel are hierarchically organized
to facilitate the mapping of the threads to
the (possibly multi-dimensional) data struc-
tures being processed: threads are organized
in a 3-dimensional structure (called block),
and blocks themselves are organized in 2-
dimensional tables (called grids). CUDA maps
blocks (coarse-grain parallelism) on the SMs
for execution; each SM schedules the threads

HOST
GLOBAL MEMORY

CONSTANT MEMORY

Shared
memory

Thread Thread

regs regs

Block

Shared
memory

Thread Thread

regs regs

Block

GRID

Fig. 2: CUDA Architecture

in a block (fine-grain parallelism) on its computing cores in chunks of 32 threads
at a time (called warps), thus allowing a group of threads in a block to use the
computing resources while other threads of the same block might be waiting
for information (e.g., completing a slow memory request). Threads have access
to several memory levels, each with different properties in terms of speed, or-
ganization (e.g., banks that can be concurrently accessed) and capacity. Each
thread stores its private variables in very fast registers (anywhere from 8K to
64K per SM); threads within a block can communicate by reading and writing
a common area of memory (called shared memory). On the other side, com-
munication between blocks is not supported and it can be accomplished after
the completion of the whole kernel. Nevertheless, global memory (up to several
GBytes) can be used to store information that can be used by subsequent kernels.

The kernel, invoked by the host, is executed by the device and it is written
in standard C-code. The number of running blocks (gridDim) and the number of
threads of each block (blockDim) is specified by the kernel call that is invoked
on the host code with the following syntax:

Kernel ≪ gridDim, blockDim ≫(param1, . . . , paramn);

In order to perform a computation on the GPU, it is possible to move data
between the host memory and the device memory. By using the specific identifier
of each block (blockIdx—providing x, y coordinates of the block in the grid), its
dimension (blockDim) and the identifier of each thread (threadIdx—providing
x, y, z coordinates for the thread within the block), it is possible to differentiate
the data accessed by each thread and code to be executed. For example, the
following code fragment shows a kernel and the corresponding call from the
host. Each element of a two dimensional matrix is squared, and each thread is
in charge of one element of the matrix. The matrix A is represented by a pointer
in the device’s global memory; CUDA provides functions (e.g., cudaMemCopy)
to transfer data between the host and the device’s global memory.

int main() { ...

dim3 thrsBlock(n,n);

sqMatrix<<<1,thrsBlock>>>(A);

...

__global__ sqMatrix(float *Mat){

int i=threadIdx.x;

int j=threadIdx.y;

Mat[i][j] = Mat[i][j]*Mat[i][j]; }

While it is relatively simple to develop correct CUDA programs (e.g., by
incrementally modifying an existing sequential program), it is challenging to de-
sign an efficient solution. Several factors are critical in gaining performance. The
SIMT model requires active threads in a warp to execute the same instruction—
thus, diverging flow paths among threads may reduce the amount of actual
concurrency. Memory levels have significantly different sizes (e.g., registers are
in the order of dozens per thread, while shared memory is in the order of a
few kilobytes per block) and access times; different cache behaviors are applied
to different memory levels (e.g., constant memory is a cached read-only global
memory) and various optimization techniques are used (e.g., accesses to con-
secutive global memory locations by contiguous threads can be coalesced into

a single memory transaction). Thus, optimization of CUDA programs require a
thorough understanding of the hardware characteristics of the GPU being used.

4 Parallelizing the Constraint Engine

In this section we describe our approach to GPU-based execution of the i-solv
procedure presented in Section 2. The corresponding pseudo-code is reported in
Algorithm 3.

Our model encodes three different types of parallelism for constraint propa-
gation. Recall that constraint propagation is monotonic, therefore the order in
which the data is analyzed does not influence the result (while it might affect
the number of operations performed to reach the fixpoint).

Constraints: Given a set C of constraints for which propagation and consis-
tency checks are to be performed, a natural form of parallelism is to delegate
the processing of each constraint c ∈ C to a different parallel computation.
In particular, it is convenient to map a block of threads (Bc) to the handling
of each c, in order to exploit the various parallel GPU’s SM.
A kernel with a number of blocks of the size of the current constraint queue
C is invoked. Up to 232 blocks can be used on NVIDIA 2.x cards, which is
adequate for most CSPs.

Variables: A second level of parallelism is applied to the processing of a con-
straint c assigned to a block Bc. Domain reductions for the variables involved
in the constraint (namely x ∈ scp(c)) can be performed in parallel fashion. In
particular, each variable can be handled by a different thread that executes
the domain filtering. Moreover, the type of operations is executed in a SIMT
fashion, since the code for propagation usually repeats identically for each
variable. This level of parallelization is suitable to global constraints, such
as element, inverse, or table constraint—while it would not bring benefit to
constraints that admit efficient propagation algorithms.

CPU and GPU: Host and device are capable of independent and parallel work,
that can be synchronized by specific programming constructs. We designed
a third level of parallelism for constraint propagation, by partitioning the set
of propagators in two queues: one to be processed by the CPU and another
one by the GPU. Constraints with efficient propagators (e.g. few variables),
remains on the host, while the others are delegated to the GPU. During the
evolution of the propagation, exchanges of information between host and
device ensure to reach the fixpoint faster.

Let us describe the main components of Algorithm 3. At each invocation
of the i-solv procedure, the set of initial propagators F0 is split between host
and device by the function split that initializes the queues of constraints Qhost

and Qdev (host and device constraints), based on the type of constraints to be
propagated in line 2. The default distribution, based uniquely on the type, can
be changed by the split function according to two internal thresholds: (1) If
the number of CPU-propagators is higher than a given upper bound, they are

Algorithm 3 i-solv(F0, D)

1: T ←max{|scp(c)| : c ∈ C};
2: 〈Qhost,Qdev 〉 ← split(F0);
3: while Qhost ∪Qdev 6= ∅ do
4: if Qdev 6= ∅ then
5: cudaMemcpy(Ddev, D);
6: gpu propagate<<< |Qdev|, T >>> (Qdev, Ddev);
7: cudaMemcpy(D′, Ddev);
8: if failed event then return false; end if
9: end if

10: if Qhost 6= ∅ then
11: for f ∈ Qhost do
12: D′′ ← cpu propagate(f,D);
13: if failed event then return false; end if
14: end for
15: end if
16: Daux ← D;D ← D′ ∩D′′;
17: 〈Qhost,Qdev 〉 ← split(props(D,Daux,Qhost ∪Qdev));
18: end while
19: return true;

all moved to Qdev; (2) If the number of GPU-propagators is lower than a given
lower bound, they are moved to Qhost.

By varying these bounds, it is possible to force the computation completely
on the CPU (huge lower bound) or completely on the GPU (upper bound =
0). These bounds are used to handle the cases where a large number of efficient
propagators are assigned to the CPU, while they could take advantage of parallel
propagation or, vice-versa, very few expensive propagators are assigned to the
GPU, where the time required by memory transactions between host and device
would likely offset the advantages of a parallel propagation. The only exception
to these rules is for complex constraints (such as the table constraint) that are
always delegated to the GPU.

Every loop iteration analyzes and modifies the propagators in Qhost and in
Qdev. If Qdev is not empty, parallel propagation is performed by invoking the
kernel gpu propagate (line 6), with as many blocks as the size of Qdev, and
as many threads per block as the maximum scope size among all constraints.
The kernel function gpu propagate is sketched in Algorithm 4 and explained
later. If Qhost is not empty sequential propagation is performed by invoking the
function cpu propagate (line 12). If both propagations succeed, the new states
D′ and D′′, produced respectively by the GPU and the CPU, are merged (line
16) and the function props() determines the minimal sets of propagators that
are not at their fixpoint for the domain D (line 17). The function props() is
based on the notion of events. It calculates the events based on status Daux of
the previous iteration and the current status D (evts(D,Daux)), and updates
the queue of propagators accordingly:
props(D,Daux, Q) = {f ∈ F : evt set(f) ∩ evts(D,Daux) 6= ∅} \ fix(Q,D)

where the set evt set(f) is the set of events related to the propagator f , and

fix(Q,D) = {f ∈ Q : f(D) = D}. This set of events is computed by analyzing
the differences between D and Daux.

Algorithm 4 gpu propagate(Q,D)

1: c id← Q[blockIdx];
2: get propagators[get type(c id)](c id,D);

Let us briefly discuss Algorithm 4. This kernel invokes a propagator per block.
The identifier of the block (blockIdx) is used as index on the queue Q to retrieve
the identifier c id of the constraint to propagate. The function get propagators
returns a pointer to the device function that implements the (set of) propagators
for the constraint c indexed by its type get type(c id). The constraint identifier
c id is also used by the propagator to identify the scope and any parameters
of the constraint to propagate.4 A failed event is generated when there is an
empty domain. If this is the case, then the propagation will fail and the i-solve
procedure will return false; this will cause the search to backtrack (line 9).

The propagation on the host is similar; the kernel invocation is replaced by a
for loop that iterates over all the propagators in Qhost (lines 12-15). Let us note
that, differently from the propagation on the device, the failed event is checked
every time a propagator has been considered. Let us discuss some details related
to the CPU and GPU implementations of these algorithms.
Domain representation. Domains are represented using bit-masks stored in k
unsigned int 32-bit variables. Precisely, considering D ⊆ {0, . . . , 32k−1} viewing

the k variables as a unique string, the domain D is represented by
∑32k−1

i=0 2ibi,
where if i ∈ D then bi = 1, else bi = 0. Negative numbers can be implemented
using an appropriate offset value. The use of bit-wise operators on domains
reduces the differences between the GPU cores and the CPU cores, since access
to data in the former is much slower than in the latter. Three extra variables
are used: two for storing the domain bounds (minD and maxD) and one for
storing the current event associated to D. We denote with M = k+3 the number
of variables used. For instance, for storing domains included in [0..927] we use
M = 32 unsigned int variables.

Status representation. The status of the computation at every node of the
search tree is represented by a vector of M · |V | where M is as described above.
This representation of the status reduces the total number of accesses to the
global memory, since every consecutive 32 domain values are grouped together
in a single integer value. The choice of M as a multiple of 32 integers allows us
to take advantage of the device cache, since global memory accesses are cached
and served as part of 128-byte memory transactions. Moreover, using the same
array of data for both the bit-mask and the domain bounds increases the coa-
lesced memory accesses, i.e., the accesses to the global memory are coalesced for
contiguous locations in global memory, increasing access performance.

4 The relationships between constraints and variables (constraint graph) is stored in
the device memory, to limit the information exchange between CPU and GPU.

Data transfers. The memory dataflow is designed in order to optimize memory
throughput. Since applications should strive to minimize data transfers between
the host and the device (i.e., data transfers with low bandwidth), at each parallel
propagation step we transfer the minimum information needed to represent the
current state in the search tree. Namely, we copy into the global memory of the
GPU the previous decisions performed in the current exploration of the search
tree, and only the domains of the variables not labeled yet. These domains still
ensure a correct execution of the propagation algorithm, as we are interested in
reducing only the domains of the variables that are still to be labeled. In order to
allow concurrent computations on the host and the device, every cudaMemcpy
is performed as an asynchronous data transfer. A call to the CUDA function
cudaDeviceSynchronize(), used to synchronize the host and the device, is
requested only when the CPU has finished its sequential propagation.

MiniZinc constraints encoding. In this work we considered the finite domain
constraints that are available in the MiniZinc/FlatZinc modeling language [15].
Given a MiniZinc model, we translate it and produce an input for our solver
in three steps: (1) first, we read the MiniZinc file to identify the global con-
straints being used; (2) we translate the model into a FlatZinc model without
considering the global constraints (we use the compiler available in the MiniZinc
distribution [15]); and (3) the FlatZinc translation is given as input to a parser
that produces the input for the solver.

Propagators. We have implemented the propagators for the FlatZinc con-
straints plus specific propagators for some global constraints that take advantage
of GPU parallelism. As described earlier, every propagator is implemented as a
specific device function invoked by a single block. For example, let us consider
an all different constraint c on the variables x1, . . . , xn, naively encoded as a
quadratic number of binary 6= constraints. It can be implemented by a set of n
propagators p1, . . . , pn, such that the propagator pi takes care of the constraints
xi 6= xj where j 6= i (see Algorithm 5). The propagator is typically activated for
one i at a time. A sequential implementation of this propagator requires time
O(n), while the parallel version requires O(1).

Algorithm 5 pi(c id,D)

1: xi ← scp(c id)[i];
2: label← min Dxi ; {min Dxi = max Dxi since xi is the current labeled variable}
3: n← scp(c id).size(); {Constraints information on device global memory}
4: if threadIdx < n ∧ threadIdx 6= i then
5: temp← scp(c id)[threadIdx];
6: Dtemp[label]← 0;
7: end if

Some other constraints require more than one block to fully exploit the par-
allel computation. This is the case, for example, of the table constraint (see
Sec. 5). To handle these cases, we modified Algorithm 3 in order to further split
the queue Qdev in two queues: one for constraints that are propagated using one
block per propagator, and one for constraints that use more than one block.

5 Results

We experimentally evaluated our solver using several classical benchmarks. Bench-
marks are encoded in MiniZinc and compiled automatically in the solver. In par-
ticular, we compare the performance of our solver (in terms of execution time)
with that of two state-of-the-art solvers, namely Gecode [24] and JaCoP [10].
Our solver does not include advanced search strategies at this time—therefore,
for a fair comparison, we use Gecode and JaCoP with a naive “leftmost” strategy
with increasing value assignment. In order to measure parallel performance, we
analyze the speed-ups and limitations of the GPU version against a purely CPU
execution of our code—as mentioned earlier, this can be realized by modifying
the bounds used to manage the constraint queues. Thus, while the first set of
comparisons gives us an idea about the baseline performance of our core solver
(including an indication of the overhead introduced to support parallelism), the
second set of data measures the improvements gained by using parallelism. We
have aimed at creating a core solver that is efficient and competitive with the
state-of-the-art, containing overhead to the minimum. All tests have been per-
formed on the following hardware: the Host is an AMD Opteron 270, 2.01GHz,
RAM 4GB, while the Device is an NVIDIA GeForce GTS 450, 192 cores (4MP),
Processor Clock 1.566GHz, OS Linux.

Comparison with Gecode and JaCoP. We start by evaluating the perfor-
mance of our solver w.r.t. the solvers Gecode and JaCoP on some classical bench-
marks, specifically nQueens, Schur (numbers 1, . . . , N in B blocks), and the
propagation stress benchmarks (see, e.g., the MiniZinc benchmarks folder [15]).
Let us remark that the all different constraints is implemented in a “quadratic
way” in all these problem instances—this explains the relatively slow running
times for nQueens. As expected, there are instances that better fit one solver, and
other instances that better fit others (see Table 1—running times in seconds).
We report two columns for our solver (CPU and GPU). For this experiment, let
us focus on the GPU column (the CPU column is used in the following experi-
ments). or a fair comparison, we modified the hybrid and adaptive recomputation
parameters of Gecode. In particular we switched off cloning by setting the value
cd (commit distance) greater than the expected depth of the search tree.

The labeling strategy for our solver, Gecode and JaCoP is the naive “left-
most” strategy with increasing value assignment. We can observe that the solver
we are proposing is, on average, comparable with the state-of-the-art.

Comparing GPU vs CPU. In this section we compare the GPU parallel ver-
sion of the solver w.r.t. a purely sequential version. The core of the propagators
are implemented in the same way (i.e., they use the same C encoding). The main
drawbacks of the GPU computations are primarily related to data transfers, due
to the GPU memory latency and coalesced access patterns, and to the difference
between the GPU clock and the CPU clock.

We have tested various benchmarks described in Table 1: the running times
are comparable for the sequential and parallel executions. Similar considerations
hold for other “small” instances. We used the upper bound (UB) parameter

N CPU GPU Gecode JaCoP
24 6.273 9.699 7.094 47.59
26 5.975 8.773 7.438 47.55
28 50.88 68.47 66.88 442.6
30 930.3 1278 1407 9600

N B CPU GPU Gecode JaCoP
40 4 88.59 84.75 19.02 2.570
41 4 92.92 90.71 19.54 2.610
42 4 97.03 95.41 20.54 2.700
43 4 108.4 98.75 21.35 2.850

k n m CPU GPU Gecode JaCoP
10 20 200 0.043 0.053 0.696 2.550
10 20 300 0.068 0.082 1.740 4.730
10 20 400 0.175 0.159 3.155 8.460
10 20 500 0.339 0.306 4.968 13.94

Table 1: Comparison between i-solv (sequential CPU and parallel CPU versions),
Gecode, and JaCoP for the nQueens, Schur, and propagation stress benchmarks.

to move constraints from the host queue to the device queue. UB is calculated
empirically, and it is automatically set by the solver in a preprocessing step,
by considering the average numbers of global memory accesses w.r.t. the type
of propagators involved in the model. For example, if there is an average of 3
memory accesses for each propagator, and each propagator requires O(1) time,
then the upper bound will be set to at least 900, since each global memory
access requires about 300 clock cycles. Table 2 shows how the UB affects the
computational time on the Golomb ruler problem for a ruler of 20 integers.
Notice that the solver with an appropriate upper bound performs better than
both the CPU and the GPU without upper bound (UB = 0, all constraints
propagated on device). The model comprise both O(1) and O(n) propagators.

CPU UB = 0 UB = 100 UB = 500 UB = 1000 UB = 1500 UB = 2000

266.4 223.4 216.4 214.2 210.4 207.8 208.2

Table 2: Influence of the upper bound parameter on the Golomb ruler problem.

Significant performance improvements emerge when more complex constraints
are considered. As explained in Section 4, the GPU is delegated to large sets of
non trivial propagators. Using the CUDA framework, the CPU and the GPU can
execute concurrently, since the kernels and the memory copy operations between
host and device can be performed asynchronously. Let us focus on two “expen-
sive” constraints, namely the inverse and the combinatorial table constraint.

The inverse constraint. This constraint ties two arrays of variables using the
global inverse property. Given two lists X = [x1, . . . , xn] and Y = [y1, . . . , yn] of
integer variables, where Dxi = Dyi = [1..n], the constraint inverse(X,Y) holds
iff (∀i ∈ [1..n])(∀j ∈ [1..n])(xi = j ↔ yj = i). The FlatZinc implementation of
this constraint uses n2 Boolean variables and 2n2 reified equality constraints:∧

i,j xi = j ↔ Bij ∧
∧

i,j yj = i↔ Bij

The GPU version of this constraint is implemented by 2n propagators. Namely,
n propagators are used for the “→” (resp., “←”) direction of the constraint,
considering the labeling of one variable in X (resp., in Y). Since we expand
the relation xi = j ↔ yj = i either on the left or the right side depending on

the labeled variable, we do not need to explicitly use the Boolean variables Bij

to link the binary equality constraints. These constraints are propagated by n
threads. For example, let us assume that x1 = 2 after the labeling of x1; the
constraint engine invokes the propagator inverse(x1, Y) where the thread whose
threadIdx = 2 propagates the constraint y2 = 1 (i.e, B12 = true), while the
other threads propagate the constraints yi 6= 1, where i ∈ {1, 3, 4, . . . , n− 1, n}.

Table 3 compares the sequential and the parallel implementations of the
inverse constraints, by increasing the number n of variables in its scope.

n CPU GPU Speedup

100 0.030 0.026 1.15
250 0.338 0.152 2.22
500 2.456 0.744 3.30
750 7.855 2.142 3.66

Table 3: Time comparison for the inverse constraint.

For n = 100 there is a poor speedup, since the CPU cores are faster than
the GPU cores and the instance of the problem is small. The speedup increases
for bigger instances (i.e., n > 200) where the parallel computations offset the
difference of speed between CPU and GPU cores. We have verified that the
FlatZinc encoding of the inverse constraint is sensibly slower; for instance, if
n = 100, the CPU takes time 3.583 seconds, while the GPU 3.334 seconds.

The inverse constraint is employed in several encodings, such as the black
hole problem, and it is also used to create the dual models of problems.

The table constraint. A table constraint is an extensional constraint defined by
explicitly listing (a set of n) m-tuples of values that are either allowed (positive
table constraint) of disallowed (negative table constraint) for the variables in
its scope. Table constraints arise naturally in configuration problems where they
represent available combinations of options. For some applications, compatibility
between resources, e.g., persons or machines, can be expressed by tables. Tabular
data may also come from databases: the results of database queries are sometimes
expressed as tables that have large arity.

A table constraint c represented by a n×m matrix and the Generalized Arc
Consistency (GAC) [19] is maintained through propagation. Precisely, focusing
on a variable xi ∈ {x1, . . . , xm} = scp(c) a support for all the values in Dxi is
searched. This is realized by iterating over the n allowed tuples until a valid one
is found. This algorithm ensures consistency in time O(nm) (a faster, but more
complex, algorithm is presented in [12]).

Using the GPU, it is possible to reduce this time to (parallel) time O(1), by
performing the GAC test as follows: we assign each row to a kernel block, and
each column to a different thread within the block. For table constraints with
scope size larger than 1024, we split the computation among multiple kernels.
For 1 ≤ i ≤ n and 1 ≤ j ≤ m, thread tij checks whether the value contained in
the cell cij is valid w.r.t. the domain Dxj

. The domains of the variables involved
in the constraint are then replaced with the (new) domains, containing only
those values that still might lead to a solution, as determined by each block.

We impose a specific ordering among propagated constraints: we first prop-
agate binary constraints and constraints that have a fast propagator, that may
eventually lead to a failure; more expensive propagators are executed last.

Table 4 compares the times for the propagation of the table constraint varying
the number of rows n, the number of columns m, and the size of the domains
of the variables. The tables are filled with random values, where |D| is the size
of the domain; note that larger domains produce fewer valid tuples after the
labeling of a variable involved in the constraint.

n×m | D | CPU GPU Speedup

100× 100 2 0.002 0.001 2.00

250× 250 2 0.007 0.003 2.30

500× 500 2 0.026 0.010 2.60

n×m | D | CPU GPU Speedup

100× 100 50 0.001 0.001 1.00

250× 250 50 0.003 0.001 3.00

500× 500 50 0.013 0.004 3.25

Table 4: Time comparison for the table constraint with random values.

Examples containing table and inverse constraints.
The Three-barrels problem is a planning problem, where the state of the world
is represented by three barrels of wine, whose capacities are n (even number),
n/2 + 1, and n/2− 1, respectively. At the beginning, the largest barrel is full of
wine, while the other two are empty. The goal is to reach a state in which the two
largest barrels contain the same amount of wine. Moreover, the only admissible
action is to pour wine from one barrel to another, until the latter is full or the
former is empty. We encoded this problem as a decision problem, by imposing
an upper bound ` on the number of actions and evaluating whether the goal
state can be reached in ` steps. In this setting, we have 3(` + 1) variables, with
domains {1, . . . , n}, representing the sequence of states, and ` variables with
domains {0, . . . , 5}, representing the 6 possible “pouring” actions. The labeling
is done on the action variables, and ` table constraints tie the ith state with
the successor i + 1th state. Table 6 (left) shows the results for the Three-barrels
problem considering a number of actions ` equal to n, that was experimentally
found to be the length of the shortest successful plan. The speedup is slowly
increasing due to the size of the tables (r× 7, with r proportional to n) and the
number of valid rows at each labeling (at most 6 given the current state), that
reduce the propagation time to O(r).
The Black-hole is a card game problem derived from [4]. A MiniZinc model is also
present in the benchmark folder of the MiniZinc distribution [15], using both the
global constraints inverse and table. The former is used to relate card values and
positions in the sequence, while the latter is used to impose matching constraints
among consecutive cards. The < constraints impose an order between played
cards, and are always propagated on the host. Table 6 (right) shows the results
for the Black-hole game problem. Since the game is devised for 52 cards, the set
of order constraints for instances 104 and 208 are artificially introduced. The
table shows an increasing speedup. The GPU is faster even on small instances,
since the two expensive constraints are propagated in parallel on the GPU.

Three-Barrels Problem

n CPU GPU Speedup

100 176.5 160.8 1.09

120 364.9 324.3 1.12

140 679.6 588.8 1.15

Black-hole Problem

n. cards CPU GPU Speedup

52 7.637 7.694 0.99

104 68.14 51.08 1.33

208 73.77 42.66 1.72

Table 5: Time comparison for the Three-barrels problem and the Black-hole game

Positive table constraint benchmarks. The following benchmark problems are
defined using only positive table constraints.5 They include some well-known
problems, such as the crossword game, the Langford problem, several synthetic
problems, and some other real-world problems, such as the modified Renault
problem. A speedup of at least 2 is obtained in all the problem instances, show-
ing that the use of the GPU pays off on large instances and real problems.

Instance CPU GPU Speedup Instance CPU GPU Speedup

CW-m1c-lex-vg4-6 0.015 0.005 3.00 langford-2-50 44.06 15.16 2.94

CW-m1c-uk-vg16-20 1.488 0.225 6.61 ModRen 0 0.381 0.154 2.74

CW-m1c-lex-vg7-7 209.4 43.87 4.77 ModRen 49 0.317 0.117 2.74

langford-2-40 136.4 46.39 2.90 RD k5 n10 d10 m15 0.138 0.053 2.60

Table 6: Positive table constraint benchmarks.

6 Related Work

Extensive research has been conducted focusing on parallelizing backtracking
search, both in the context of CSP as well as in more general search-based sce-
narios (e.g., [28, 9, 11, 25]). Some works in this direction include the foundational
work of Van Hentenryck in parallelizing the Chip system [26], the follow-up work
in various CLP systems (e.g., [6]), the work of Perron [17], Schulte [22], and the
more recent explorations by Michel et al. [14].

The problem of parallelizing consistency techniques has been also explored
in the literature. The seminal works of Nguyen and Deville [16] and Hamadi [7]
present methods based on message passing and distributed memory platforms;
these approaches rely on the partitioning of the set of constraints among pro-
cessors, and the use of messages to exchange variable domains. More recent
approaches shifted the focus to multicore platforms and multithreaded imple-
mentations — e.g., the proposals by Rolf and Kuchcinksi [18] and Ruiz-Andino
et al. (focused on non-binary constraints [20]). Note that, following the results
from Kasif [8], establishing arc-consistency is P-complete; this is an indication
that extracting parallelism from AC is, in general, not an easy problem (and, in
the worst case, may not lead to complexity improvements).

To the best of our knowledge, this is the first reported effort exploring the
use of GPGPUs in constraint propagation; some related effort includes [2], that

5 These benchmarks can be downloaded from http://becool.info.ucl.ac.be/

resources/positive-table-constraints-benchmarks.

shows how to parallelize unit propagation on GPGPUs. Some preliminary studies
have instead addressed the problem of parallelizing search on GPUs [2, 5, 13].

7 Future work and Conclusions

In this paper, we presented a feasibility study exploring the potential for ex-
ploitation of fine-grained GPU-level parallelism from the process of constraint
propagation. The investigation has been grounded in a prototype (with com-
petitive performance with the state-of-the-art), demonstrating the potential for
enhanced performance, especially in the context of complex global constraints.
This is not an easy task, and the speedups proposed are in-line with results
observed for parallelization of other classes of problems on GPUs.

This work complements preliminary studies [2, 27], conducted by the authors,
in the context of SAT and ASP solving—where we demonstrated performance
improvement from the “orthogonal” direction of parallelizing the actual search
process. The combination of these two aspects (parallel search and parallel prop-
agation) provide a roadmap for the creation of a fully GPU-parallel constraint
solver—which is the focus of our future effort. The performance improvements
for complex constraints reflect also on the potential for effective exploitation of
parallelism in the case of domain-specific constraints with complex propagation
strategies. We experimented with an ad-hoc constraint-based implementation of
protein structure prediction via fragment assembly, parallelized on GPUs using
similar techniques, with excellent performance results, outperforming previous
approaches [1, 3]. We will continue along our current efforts of developing ad-hoc
strategy to propagate complex constraints on GPUs.

Let us conclude with a final observation: the overall strategy for handling
constraint propagation reported in Algorithm 2 is designed for efficient sequen-
tial implementation, and indeed is at the core of the state-of-the-art constraint
solvers. Alternative schemes (e.g., AC-3), that can be found in several other im-
plementations, provide a lower level of sequential performance, but they are also
more amenable for GPU-level parallelization (as we demonstrated in a prelimi-
nary study). Unfortunately, the difference in sequential performance effectively
defeats the advantages gained from parallelism.

Acknowledgments. The authors acknowledge Marco Meneghin for his support in
the developing of the wrapper from FlatZinc.

References

1. F. Campeotto, A. Dovier, and E. Pontelli. Protein structure prediction on GPU:
a declarative approach in a multi-agent framework. In Proc. of International Con-
ference on Parallel Processing. IEEE, pp. 474–479, 2013.

2. A. Dal Palú, A. Dovier, A. Formisano, and E. Pontelli. Exploiting unexploited
computing resources for computational logics. In 9th Italian Convention on Com-
putational Logic, CEUR Workshop Proceedings, Vol. 857, pp. 74–88, 2012.

3. A. Dal Palú, A. Dovier, F. Fogolari, and E. Pontelli. CLP-based protein fragment
assembly. TPLP, 10(4–6):709–724, 2010.

4. I. Gent et al. Search in the Patience Game ‘Black Hole’. AI Communications,
20(3):211–226, 2007.

5. K. Gulati and S.P. Khatri. Boolean Satisfiability on a Graphic Processor. In Great
Lakes Symposium on VLSI, pp. 123–126. ACM, 2010.

6. G. Gupta, E. Pontelli, M. Carlsson, M. Hermenegildo, and K.M. Ali. Parallel
Execution of Prolog Programs: a Survey. ACM TOPLAS, 23(4):472–602, 2001.

7. Y. Hamadi. Optimal Distributed Arc Consistency. Constraints, 7(3-4), 2002.
8. S. Kasif. On the Parallel Complexity of Discrete Relaxation in Constraint Satis-

faction Networks. Artificial Intelligence, 45(3):275–286, 1990.
9. H. Kitano and J.A. Hendler, editors. Massive Parallel Artificial Intelligence.

AAAI/MIT Press, 1994.
10. K. Kuchcinski and R. Szymanek. JaCoP Library User’s Guide, 2012. http://

jacop.osolpro.com/.
11. H. Le and E. Pontelli. Dynamic Scheduling in Parallel Answer Set Programming

Solvers. In High Performance Computing Symposium. ACM Press, 2007.
12. C. Lecoutre. STR2 Optimized Simple Tabular Reduction for Table Constraints.

Constraints, 16(1), 2011.
13. Q. Meyer, F. Schonfeld, M. Stamminger, and R. Wanka. 3-SAT on CUDA: Towards

a Massively Parallel SAT Solver. In HPCS, pp. 306–313. IEEE, 2010.
14. L. Michel, A. See, and P. Van Hentenryck. Transparent Parallelization of Con-

straint Programming. INFORMS Journal on Computing, 21(3), 2009.
15. N. Nethercote et al. MiniZinc: Towards a Standard CP Modelling Language. In

Proc. of CP 2007, pp. 529–543. Springer, 2007. www.minizinc.org.
16. T. Nguyen and Y. Deville. A Distributed Arc-Consistency Algorithm. Science of

Computer Programming, 30(1–2):227–250, 1998.
17. L. Perron. Search Procedures and Parallelism in Constraint Programming. In

Principles and Practice of Constraint Programming, pp. 346–360, Springer, 1999.
18. C. Rolf and K. Kuchcinski. Parallel Consistency in Constraint Programming. In

Proc. of PDPTA, pp. 638–644, CSREA Press, 2009.
19. F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint Programming (Foun-

dations of Artificial Intelligence), Elsevier, 2006.
20. A. Ruiz-Andino, L. Araujo, F. Saenz, and J. Ruz. Parallel Execution Models for

Constraint Propagation. In Proc. of CP, LNCS 1520, p. 473, Springer Verlag, 1998.
21. J. Sanders and E. Kandrot. CUDA by Example. An Introduction to General-

Purpose GPU Programming. Addison Wesley, 2010.
22. C. Schulte. Parallel Search Made Simple. In Techniques for Implementing Con-

straint Programming Systems, TRA9/00, University of Singapore, 2000.
23. C. Schulte and P. J. Stuckey. Efficient constraint propagation engines. ACM

TOPLAS, 31(1), 2008.
24. C. Schulte, G. Tack, and M. Z. Lagerkvist. Modeling and Programming with

Gecode, 2013. Web site: http://www.gecode.org.
25. E.G. Talbi. Parallel Combinatorial Optimization. John Wiley and Sons, 2006.
26. P. Van Hentenryck. Parallel Constraint Satisfaction in Logic Programming. In

Proc. of ICLP, pp. 165–180, MIT Press, 1989.
27. F. Vella, A. Dal Palù, A. Dovier, A. Formisano, and Enrico Pontelli. CUD@ASP:

Experimenting with GPGPUs in ASP solving. In 10th Italian Convention on
Computational Logic, CEUR Workshop Proceedings, Vol. 1068, pp. 163–177, 2013.

28. H. Zhang, M.P. Bonacina, and J. Hsiang. PSATO: a Distributed Propositional
Prover and its Application to Quasigroup Problems. JSC, 21(4):543–560, 1996.

