
A GPU Implementation of Large Neighborhood Search
for Solving Constraint Optimization Problems

F. Campeotto and A. Dovier and F. Fioretto and E. Pontelli 1

Abstract. Constraint programming has gained prominence as an
effective and declarative paradigm for modeling and solving com-
plex combinatorial problems. Techniques based on local search have
proved practical to solve real-world problems, providing a good com-
promise between optimality and efficiency. In spite of the natural
presence of concurrency, there has been relatively limited effort to
use novel massively parallel architectures, such as those found in
modern Graphical Processing Units (GPUs), to speedup local search
techniques in constraint programming. This paper describes a novel
framework which exploits parallelism from a popular local search
method (the Large Neighborhood Search method), using GPUs.

1 Introduction
Constraint Programming (CP) is a declarative paradigm designed to
provide high-level modeling and resolution of combinatorial search
problems. It is attracting widespread commercial interest and it is
now becoming the method choice for modeling many types of opti-
mization problems (e.g., [15, 24, 2]), possibly combined with other
techniques. A problem is modeled using variables, each of them com-
ing with its own (typically, finite) domain, and a set of constraints
(i.e., relations) among variables. The model is given as input to a con-
straint tool (e.g., [22, 14]), which explores the search space of possi-
ble solutions, alternating non-deterministic variable assignments and
deterministic constraint propagation. The goal is typically to find one
(all) solution(s), the best one, or determine that the problem is un-
satisfiable. The programmer might help the search by tuning search
parameters or providing problem-specific knowledge.

Although this declarative approach allows one to model a broad
class of optimization problems with ease, real-world combinatorial
optimization problems are often characterized by huge search spaces
(e.g., [8]) and heterogeneous constraints. In this case, incomplete
search strategies (e.g., local search) are preferred w.r.t. exact ap-
proaches that require prohibitive time to find an optimal solution.

Recent technological trends have made massive parallel platforms
and corresponding programming models available to the broad users
community—transforming high performance computing from a spe-
cialized domain for complex scientific computing into a general pur-
pose model for everyday computing. One of the most successful ef-
forts is represented by the use of modern Graphical Processing Units
(GPUs) for general purpose parallel computing: General Purpose
GPUs (GPGPUs). Several libraries and programming environments
(e.g., the Compute Unified Device Architecture (CUDA) created by
NVIDIA) have been made available to allow programmers to access
GPGPUs and exploit their computational power.

1 Dept. Mathematics & Computer Science, University of Udine and Dept.
Computer Science, New Mexico State University

In this paper, we propose the design and implementation of a
novel constraint solver that exploits parallel Local Search (LS) us-
ing GPGPU architectures to solve constraint optimization problems.
The optimization process is performed in parallel on multiple large
promising regions of the search space, with the aim of improving
the quality of the current solution. The local search model pursued
is a variant of Large Neighborhood Search (LNS) [23, 3]. LNS is
a local search techniques characterized by an alternation of destroy
and repair methods. A solution is partially destroyed and an explo-
ration of its (large) neighborhood is performed until the solution is
repaired with a new one. Each neighborhood is explored using local
search strategies and the best neighborhood (i.e, the one that better
improves the quality of the solution) is selected to update the vari-
ables accordingly. The use of GPGPUs allows us to speed-up this
search process and represents an alternative way to enhance perfor-
mance of constraint solvers. The main contributions of this paper are:
1) Novel design and implementation of a constraint solver perform-
ing parallel search. Unlike the traditional approaches to parallelism,
we take advantage of the computational power of GPGPUs for solv-
ing any Constraint Optimization Problem expressed as a MiniZinc
model. To the best of our knowledge this is the first general constraint
solver system that uses GPGPU to perform parallel local search.
2) A general framework that exploits Single-Instruction Multiple-
Threads (SIMT) parallelism to speed-up local search strategies. We
will present six different local search strategies that can be used to
explore in parallel multiple large neighborhoods. These strategies are
implemented by making very localized changes in the definition of a
neighborhood. Hence, the user needs only to specify the structure of
a neighborhood, without worrying about how it is actually performed
the underlying parallel computation.
3) A hybrid method for solving constraint optimization problems that
uses local search strategies on large neighborhoods of variables. Usu-
ally, large neighborhood are explored using standard CP techniques.
Instead, we present an approach based on local search to find the
neighborhood that improves the objective function the most among a
large set of different neighborhoods.

2 Background
A Constraint Satisfaction Problem (CSP) [19] is defined as P =
(X,D,C) where: (1) X = 〈x1, . . . , xn〉 is an n-tuple of vari-
ables; (2) D = 〈Dx1 , . . . , Dxn〉 is an n-tuple of domains, each
associated to a distinct variable in X , and (3) C is a finite set
of constraints on variables in X , where a constraint c on the m
variables xi1 , . . . , xim , denoted as c(xi1 , . . . , xim), is a relation
c(xi1 , . . . , xim) ⊆ ×im

j=i1
Dxj . A solution of a CSP is a tuple

〈s1, . . . , sn〉 ∈ ×n
i=1D

xi s.t. for each c(xi1 , . . . , xim) ∈ C, we
have 〈si1 , . . . , sim〉 ∈ c(xi1 , . . . , xim). P is (in)consistent if it has

(no) solutions. A Constraint Optimization Problem (COP) is a pair
Q = (P, g) where P is a CSP, and g : ×n

i=1D
xi → N is a cost

function. Given Q, we seek for a solution s of P such that g(s) is
minimal (maximal) among all solutions of P .

Typical CSP solvers alternate two steps: (a) Selection of a variable
and non-deterministic assignment of a value from its domain (label-
ing), and (b) Propagation of the assignment through the constraints,
to reduce the admissible values of the remaining variables and pos-
sibly detect inconsistencies (constraint propagation). COP solvers
follows the same scheme but they explore the space of possible so-
lution of the problem in order to find the optimal one, e.g., using
branch and bound techniques. A complete COP solver stops when-
ever exploration is complete, while an incomplete COP solver might
stop when a given limit is reached (e.g., time/number of improving
solutions), returning the best solution found so far.

LS techniques [1, 19] deal with COPs and are based on the idea
of iteratively improving a candidate solution s by minor “modifica-
tions” in order to reach another solution s′ from s. The set of allowed
modifications is called the neighborhoods of s and it is often defined
by means of a neighborhood function η applied to s. LS methods
rely on the existence of a candidate solution. Most problems typi-
cally have a naive (clearly not optimal) solution. If this is not the
case, some constraints can be relaxed and a LS method is used with
a cost function based on the number of unsatisfied constraint: when
a solution of cost 0 is found, it will be used as a starting point for
the original CSP. Other techniques (e.g., a constraint solver) might
be used to determine the initial candidate solution.

LNS [23, 25] is an incomplete technique that hybridizes CP and
LS to solve optimization problems. It is a particular case of local
search where η(s) generates a (random) neighborhood larger than
those typically used in LS. The difference is that these sets of candi-
date solutions are explored using constraint based techniques, and the
best improving solution is looked for. If after a timeout an improving
solution is not found, a new random neighborhood is attempted. The
process iterates until some stop criteria are met. Technically, all con-
straints among variables are considered, but the effect of η(s) is to
destroy the assignment for a set of variables. The stop criteria can in-
clude a global timeout or a maximum number of consecutive choices
of η(s) that have not lead to any improvements.

Modern GPUs are multiprocessor devices, offering hundreds of
computing cores and a rich memory hierarchy to support graphical
processing. In this paper, we consider the CUDA programming model
proposed by NVIDIA [20], which enables the use of the multiple
cores of a graphic card to accelerate general (non-graphical) appli-
cations. The underlying model of parallelism supported by CUDA
is Single-Instruction Multiple-Thread (SIMT), where the same in-
struction is executed by different threads that run on identical
cores, grouped in Streaming Multiprocessors (SMs), while data and
operands may differ from thread to thread.

A typical CUDA program is a C/C++ program. The functions in
the program are distinguished based on whether they are meant for
execution on the CPU (referred to as the host) or in parallel on the
GPU (referred as the device). The functions executed on the device
are called kernels, where each kernel is a function to be executed
by several threads. To facilitate the mapping of the threads to the
data structures being processed, threads are grouped in blocks, and
have access to several memory levels, each with different properties
in terms of speed, organization and capacity. CUDA maps blocks
(coarse-grain parallelism) to the SMs for execution. Each SM sched-
ules the threads in a block (fine-grain parallelism) on its computing
cores in chunks of 32 threads (warps) at a time. Blocks are organized

in a 3D grid, and hence a kernel is executed by a grid of parallel
thread blocks. Threads within a block can communicate by reading
and writing a common area of memory (shared memory). Commu-
nication between blocks and communication between the blocks and
the host is realized through a large slow global memory.

The development of CUDA programs that efficiently exploit SIMT
parallelism is a challenging task. Several factors are critical in gain-
ing performance. Memory levels have significantly different sizes
(e.g., registers are in the order of dozens per thread, shared mem-
ory is in the order of a few kilobytes per block) and access times,
and various optimization techniques are available (e.g., coalesced of
memory accesses to contiguous locations into a single memory trans-
action). Thus, optimization of CUDA programs requires a thorough
understanding of GPU’s hardware characteristics.

3 Solver Design and Implementation

Overall Structure of the Solver. The structure of our constraint
solver is based on the general design recently presented in [6]—
where a GPU architecture is used to perform parallel constraint prop-
agation within a traditional event-driven constraint propagation en-
gine [21]. We adopt this design to compute a first feasible solution
to be successively improved via LNS (an initial solution as input, if
known, can be specified). Variable’s domains are represented using
bit-masks stored in ` unsigned int 32-bit variables (for a suitable `),
while the status of the computation at every node of the search tree
is represented by a vector of bit-masks corresponding to the current
domains of all the variables in the model. The supported constraints
correspond to the set of finite domain constraints that are available
in the MiniZinc/FlatZinc modeling language [17]. We modify the
solve directive of FlatZinc to specify the local search strategy to
be used during the neighborhood exploration.

The solver manages two types of variables: (1) Standard Finite Do-
main (FD) variables and (2) Auxiliary (Aux) variables. Aux variables
are introduced to represent FlatZinc intermediate variables and they
are used to compute the objective function. Their domains are ini-
tially set to all allowed integer values. We denote with xaux

fobj the Aux
variable that represents the cost of the current solution. The search
is driven by assignments of values to the FD variables of the model.
The value of Aux variables is assigned by constraint propagation.

After a solution s is found, a neighbor is computed using η(s),
by randomly selecting a set of variables to be “released” (i.e., unas-
signed). The use of a GPU architecture allows us to concurrently
explore several of these sets N1, . . . ,Nt, all of them randomly gen-
erated by η(s). Let m be a fixed constant; we compute m initial as-
signments for the variables in the setNi—these are referred to as the
(LS) starting points SPi,j (i = 1, . . . , t and j = 1, . . . ,m) and can
be computed in two ways. In the first option (random), each SPi,j
is obtained by randomly choosing values from the domains of the
variables in Ni. This random assignment might not produce a solu-
tion of the constraints. However, for problems with a high number
of solutions, this choice can be an effective LNS starting point. In
the second option (CP), a random choice is performed only for the
first variable inNi; this choice is followed by constraint propagation,
in order to reduce the domains of other variables; in turn, a random
choice is made for the second variable, using its reduced domain, and
so on. If this process leads to a solution, then such solution is used
as a starting point SPi,j . Otherwise a new attempt is done. It is of
course possible to implement other heuristics for the choices of the
variables and their values (e.g., first-fail, most-constrained). If the
process leads to failure for a given number of consecutive attempts,

only the already computed SPi,j (if any) are considered.
A total of 128 · k (1 ≤ k ≤ 8) threads (a block) are associated

to each SPi,j belonging to the correspondent set Ni. These threads
will perform LS starting from SPi,j (Fig. 1). The value of k depends
on the architecture and it is used to split the computation within each
starting points, as described in what follows.

Initial
solution for X

N1 N2 Nt

SPt,1 SPt,m

128ᐧk
threads

Large
Neighborhood

Random
Starting Points

128ᐧk
threads

Figure 1. Parallel exploration of subsets Ni of variables. A LS strategy
explores the space of Ni in parallel from different starting points SPij .

When all the threads end their computations—according to a given
LS algorithm (see Sect. 4)—we select among all of them the solution
σ that optimizes the value xaux

fobj among all solutions σi,j computed.
This solution is compared with the previous one and, in case, σ is
stored as the new best solution found so far.

This process is repeated for h Iterative Improving (II) steps, each
restarting from the best found so far, but changing the randomly gen-
erated subsets of variables Ni. After h IIs, the process restarts from
the initial solution and is repeated for s restarts or until a given time-
out limit is reached. In the end, the best solution found during the
whole search process is restored. For example, the directives:

lns(50, 2, 4, 10, Gibbs, 100, 600);
solve minimize fobj;

written in the model cause the solver to select t = 2 subsetsNi, each
containing 50% of the whole set of variables X (randomly chosen),
with m = 4 SP per subset, s = 100 restarts, and a time-out limit of
600 sec. The solver tries to improve the value of xaux

fobj in h = 10 II
using Gibbs sampling as LS strategy—see Sect. 4.

Exploiting GPU Parallelism. Let us describe more in detail how we
divide the workload among parallel blocks, i.e, the mapping between
the subsets of variables Ni and CUDA blocks. The complete set of
constraints, including those involving the objective function, and the
initial domains are static entities; these are communicated to the GPU
once at the beginning of the computation. We refer to the status as
the current content of the domains of the variables—in particular, an
assigned variable has a singleton domain. As soon as the solver finds
a feasible solution, we copy the status into the global memory of the
device, as well as the t subsets of variables representing the neigh-
borhoods to explore. The CPU is in charge to launch the sequence of
kernels with the proper number of blocks and threads. In what fol-
lows we focus on a single II step since the process remains the same
for each restart s (the CPU stores the best solution found among all
restarts). At each iterative improving step r, 0 ≤ r ≤ h, the CPU
launches the kernel Kr

1 with t · m blocks, where each block is as-
signed its own SPi,j . Each block contains 128k threads. A kernel of
type K1 starts a local search optimization process from each start-
ing point in order to explore different parts of the search tree at the
same time. The current global status will be updated w.r.t. the best
neighborhood selected among all.

After the kernel Kr
1 has been launched by the host, the control

goes back immediately to the CPU which calls a second kernel Kr
2

that will start the computation on GPU as soon as Kr
1 has finished.

This kernel is in charge of performing a parallel reduction on the
array of costs computed by Kr

1 . It can be the case that in some
blocks, the LS strategy implemented is unable to find a solution; in
this case the corresponding value is set to ±∞ (according to min-
imization/maximization). Moreover, Kr

2 updates the status with the
new assignment σ of values for the variables in the subsets N r

i that
has led to the best improvement of xaux

fobj.
At each II, r is incremented. If r ≤ h then the CPU will select

t new subsets of variables N r+1
i for the following cycle. Also this

operation is performed asynchronously w.r.t. the GPU, i.e., the new
subsets of variables are copied to the global memory of the device by
a call to an asynchronous cudaMemcpy instruction. As a technical
note, the array containing the new subsets is allocated on the host us-
ing the so-called pinned (i.e., host-locked) memory that is necessary
in order to perform asynchronous copies between host and device.

When the time limit is reached or r > h, host and device are
synchronized by a synchronous copy of the current status from the
GPU to the CPU (Fig. 2). If the time limit is not reached and another
restart has to be performed, the current solution is stored (if it im-
proves the current objective value), the objective function is relaxed,
and the whole process is repeated.

Determine New
N

CUDA Async
Copy N

LNS Iterative
Improving r

Update Global
Status Copy LNS Iterative

Improving r+1

C
PU

G
PU

LaunchLaunch
K1

r K2
r

Launch
K1

r+1
Launch
K2

r+1 …

…

Costs
Large Neighborhoods

Update Global Status

New sets N

r+1
1..t

r+1
1..t

r+1
1..t

Figure 2. Concurrent computations between host and device.

A portion of the global memory of the GPU is reserved to store
the status, the array representing the sets N , and an array of size
(1 + |N |) · t ·m of 32 bits unsigned integer, to store the assignment
and the correspondent cost for each starting point.

As anticipated above, an additional level of parallelism is ex-
ploited using the threads belonging to the same block focused on the
LS part (kernel Kr

1). Precisely, Kr
1 is launched with 128k threads

(i.e., 4k warps) per block. We use parallelism at the level of warp to
avoid divergent computational branches for threads belonging to the
same warp. Divergent branches do not fit into the SIMT model, and
cause a decrease of the real parallelism achieved by the GPU.

First, all of the threads are used to speed-up the copy of the cur-
rent status from the global to the shared memory, and to restore the
domains of the Aux variables. The queue of constraints to be propa-
gated is partitioned among warps, according to the kind of variables
involved: (1) FD variables only, (2) FD variables and one Aux vari-
able, (3) two or more Aux variables, and (4) xaux

fobj. Since the process
starts with SPi,j , the constraints of type (1) are only used to check
consistency when random option for SP is used. This is done using
the first two warps (i.e., threads 0 . . . 64k−1). Observe that the use of
a thread per constraint might lead to divergent computations, when
threads have to check consistency of different constraints. As soon
as a warp finds an inconsistent assignment, it sets the value of the
xaux

fobj variable to ±∞ in the shared memory, as well as a global flag
to inform the other threads to exit. Constraints of type (2) propagate
information to the unique Aux variable involved. This can be done in
parallel by the other two warps (i.e., threads 64k . . . 128k − 1).

If no failure has been found, all threads are synchronized in order
to be ready to propagate
constraints of type
(3). This propagation
phase requires some
sequential analysis of a
queue of constraints and
a fixpoint computation.
To reduce the numbers
of scans of this queue,
we use the following
heuristic: we sort the
queue in order to con-
sider first constraints
that involve variables
that are also present in
constraints of type (2), Figure 3: Thread partition within a block.

and only later constraints that involve only Aux variables. The idea
is that Aux variables that are present in constraints of type (2) are
already assigned after their propagation and can propagate to the
other Aux variables. We experimentally observed that this heuristic
reduces the number of scans to one in most of the benchmarks. We
use all warps to propagate this type of constraints. In practice, we
divide the queue in 4k chunks, and we loop on these chunks until
all variables are ground or an inconsistent assignment is detected.
Finally, threads are synchronized and the value of the variable xaux

fobj

is computed propagating the last type of constraints. (Fig. 3).
Some Technical Details. Since the whole process is repeated several
times, some FD variables and Aux variables need to be released. This
process is done exploiting CUDA parallelism, as well. In our exper-
iments we set k = 4, and hence we use 512 threads per blocks for
splitting the constraints. The splitting is parametric w.r.t. k A greater
(or lower) number of threads is, of course, possible since kernel in-
vocations and splitting are parametric w.r.t. the value k. The reason
behind 512 depends on the specific GPU we are using and the num-
ber of SMs available. In particular, a larger number of threads would
require more resources on the device, leading to a slower context
switch between on blocks. Experiments allowed us to observe that
for our hardware 512 threads is a good compromise between par-
allelism and resources allocated to each block. However, this is a
compiler parameter that can be changed for other platforms.

We also introduce an additional level of parallelism based on the
size of the domains—suitable to support some of the LS strategies
discussed in Sect. 4 (e.g., ICM). These strategies may explore the
whole domain of a FD variable in order to select the best assignment.
This exploration can be done in parallel, by assigning 64k threads to
the first half of the domain and 64k threads to the second half (i.e., the
queues of constrains will be splint in 64k chunks instead of 128k).

The design presented so far does not depend on the local search
strategy adopted, as long as it guarantees that each variable is as-
signed a value. We also require that the status does not exceed 49KB,
since this is a typical limit for the shared memory of a block in the
current GPUs. If the size of the problem is greater than this thresh-
old, we copy chunks of status into the local memory according to the
variables involved in the current queue of constraints to propagate.

4 Local Search Strategies
We have implemented six LS strategies for testing our framework.
These strategies lead from a solution s to s′ by repeatedly applying
η on the set N of variables that can be re-assigned. After the action,

constraints consistency is checked and xaux
fobj is computed. New strate-

gies can be added as long as they implement a function η starting
from s and from a subset of variables N . We stress that the primary
purpose of the LS presented in this section is to show how these
methods can take advantage of the underlying parallel framework,
more than the quality of the results they produce. Ad-hoc LS strate-
gies should be implemented based on the problem to solve.
1) The Random Labeling (RL) strategy randomly assigns to the vari-
ables of N values drawn from their domains. This strategy might be
effective when we consider many sets N , and the COP is not very
constrained. It can be repeated a number p of times.
2) The Random Permutation (RP) strategy performs a random per-
mutation (e.g., using Knuth’s shuffling algorithm)of the values as-
signed to the variables in N in s and updates the values according
accordingly. It can be used on problems where the domains of the
variable are identical (e.g., TSP). It can be repeated p times.
3) The Two-exchange permutation (2P) strategy swaps the values
of one pair of variables in N . The neighborhood size is n =
|N|(|N|+1)

2
, and we force the number m of starting points to be≤ n.

4) The Gibbs Sampling (GS) strategy [5] is a simple Markov Chain
Monte Carlo algorithm commonly used to solve the maximum a-
posteriori estimation problem. We use it for COPs in the following
way. Let ν be the current value of xaux

fobj. The function f is defined
as follows: for each variable x in N , choose a random candidate
d ∈ Dx\{s(x)}; then determine the new value ν′ of xaux

fobj, and accept
or reject the candidate d with probability ν′

ν
. This process is repeated

for p samplings steps; for p large enough, the process converges to
the a local optimum for the large neighborhood.
5) The Iterated Conditional Mode (ICM) [5] can be seen as a greedy
approximation of Gibbs sampling. The idea is to consider one vari-
able x ∈ N at the time, and evaluate the cost of the solution for
all the assignments of x satisfying the constraints, keeping all the
other variables fixed. Then x is assigned with the value that mini-
mize (maximize) the costs. To speed-up this process, all values for
x are evaluated in parallel, splitting the domain of Dx between two
groups of 2k warps each.
6) The Complete Exploration (CE) enumerates all the possible com-
bination of values of the variables in N . Given an enumeration
~d1, . . . , ~de of these values, each ~di is assigned to a block i, and the
corresponding cost function is evaluated. The assignment with the
best solution is returned. This method can be adopted when the prod-
uct of the size of domain’s variables ofN is not huge.

5 Experiments

We implemented CPU and GPU versions of the LNS-based solver
called CPU/GPU-LNS respectively. We first compare the two ver-
sions of the solver. Then, we compare the GPU-LNS against a pure
CP approach in JaCoP [14], and a LNS implementation in Os-
caR [18]. We run our experiments on a CPU AMD Opteron (TM),
2.3GHz, 132 GB memory, Linux 3.7.10-1.16-desktop x86 64, and
GPU GeForce GTX TITAN, 14 SMs, 875MHz, 6 GB global mem-
ory, CUDA 5.0 with compute capability 3.5. In what follows we re-
port only the most significant results. The interested reader can visit
http://clp.dimi.uniud.it/sw/cp-on-gpu/ for a more
extensive set of tests and benchmarks. In all tables t (|N |) denotes the
number (size) of large neighbors,m the number of SP per neighbor,
times are reported in seconds, and best results are boldfaced.

CPU vs GPU: solving CSPs. We compared CPU and GPU on ran-
domly generated CSPs defined by 6= constraints between pairs of

variables. We use this benchmark to test the performance of GPU-
LNS on finding feasible starting points SP (see option CP, Sect. 3).
Table 1 reports the results in seconds for a CSP consisting of 70 vari-
ables and 200 constraints. In these experiments SP are generated
considering one variable at a time, assigning it randomly with a value
in its domain and subsequently propagating constraints to reduce do-
mains of the other variables. When the number of SPi,j increases,
speedups of one order of magnitude w.r.t. the sequential implemen-
tation are obtained. A high number of parallel tasks compensate both
the different speed of the GPU cores w.r.t. the CPU cores and the
memory latency of the device memory.

Table 1. CPU vs GPU: solving CSP

|N | t m CPU-LNS(s) GPU-LNS(s) Speedup
20 1 1 0.216 0.218 0.99
20 50 50 1.842 0.379 4.86
20 100 100 6.932 0.802 8.64
30 1 1 0.216 0.218 0.99
30 50 50 2.460 0.377 6.52
30 100 100 8.683 0.820 10.58

Table 2. MKCP benchmark using six LS strategies (maximization)

LS |N | t m Max CPU-LNS(s) GPU-LNS(s) Speedup
RL 20 1 1 22828 0.206 0.359 0.57
RL 20 50 50 28676 9.470 0.603 15.70
RL 20 100 100 29084 35.22 1.143 30.81
RL 30 1 1 20980 0.218 0.258 0.84
RL 30 50 50 27382 7.733 0.615 12.57
RL 30 100 100 29028 43.24 1.394 31.01
RP 20 1 1 15902 0.046 0.069 0.66
RP 20 50 50 17586 13.59 4.154 3.27
RP 20 100 100 17709 53.32 16.28 3.27
RP 30 1 1 16489 0.045 0.068 0.66
RP 30 50 50 17375 13.49 4.187 3.22
RP 30 100 100 17527 53.88 16.46 3.27
2P 10 1 1 15073 0.151 0.062 2.43
2P 10 20 20 16541 1.231 0.381 3.23
2P 10 50 50 16636 2.839 0.832 3.41
2P 20 1 1 15083 0.285 0.119 2.39
2P 20 20 20 16628 4.597 1.351 3.40
2P 20 50 50 16646 11.11 3.267 3.40
GS 10 1 1 26486 0.546 1.910 0.28
GS 10 10 10 29308 28.09 12.15 2.31
GS 10 50 50 30810 724.2 279.6 2.59
GS 30 1 1 24984 1.053 4.880 0.21
GS 30 10 10 27722 78.59 33.84 2.32
GS 30 50 50 28546 1982 747.92 2.65

ICM 5 1 1 31718 0.644 1.637 0.39
ICM 5 10 10 32204 32.23 7.650 4.21
ICM 5 20 20 32296 120.8 26.50 4.55
ICM 20 1 1 31948 0.993 2.522 0.39
ICM 20 10 10 32202 25.55 4.636 5.51
ICM 20 20 100 32384 92.68 13.26 6.98
CE 2 1 100 8004 0.692 0.324 2.13
CE 3 1 1000 9060 3.932 0.829 4.74
CE 2 1 400 17812 2.673 0.279 9.58
CE 3 1 8000 20020 43.26 1.298 33.32
CE 2 1 900 24474 3.444 0.817 4.21
CE 3 1 27000 29262 83.06 2.159 38.47

Table 3. Minizinc benchmarks (minimizazion problems, save Knapsack).

System Benchmark First Sol Best Sol(sd) Time(s)
JaCoP Transportation 6699 6640 600
JaCoP TSP 10098 6307 600
JaCoP Knapsack 7366 15547 600
JaCoP Coins grid 20302 19478 600

GPU-LNS Transporation 7600 5332 (56) 57.89
GPU-LNS TSP 13078 6140 (423) 206.7
GPU-LNS Knapsack 0 48219 (82) 6.353
GPU-LNS Coins grid 20302 16910 (0) 600

CPU vs GPU: evaluating LS strategies. CPU and GPU solvers have
been compared considering the LS strategies of Sect 4. As bench-

Table 4. Quadratic Assignment Problem (minimization)

System q First Sol Best Sol (sd) Time(s)
OscaR 15 79586 9086 (0) 63.09
OscaR 32 430 254 (0) 126.2
OscaR 64 300 212 (0) 1083

GPU-LNS 15 83270 0 (0) 0.242
GPU-LNS 32 368 199.6 (9.66) 1.125
GPU-LNS 64 254 121.6 (2.87) 2.764

mark we considered a Modified version of the k-Coloring Problem
(MKCP). The goal is to maximize the difference of colors between
adjacent nodes, i.e. max

∑
(i,j)∈E |xi − xj |, where xi (xj) repre-

sents the color of the nodes i (j), provided pairs of adjacent nodes
are constrained to be different. Here we report the results concerning
on one instance2 of a graph with 67 nodes and 232 edges, that re-
quires 4423 Aux variables and 4655 constraints. The initial solution
(value 2098 with domains of size 30) is found by a leftmost strategy
with increasing value assignment (this time has not been considered
in the table). Since in this experiments our goal is just to compare
CPU and GPU times, we run tests with the same pseudo-random se-
quence, h = 10 and s = 0. Results are reported in Table 2. For
the LS and RP we considered p = 5 repetitions.3 Better speedups
are in obtained for larger neighborhoods and in particular for the RL
method and the CE method which are the less demanding strategies
(GPU cores receive simple but numerous task to execute). On the
other hand, the higher speedups are obtained by the CE strategy. Us-
ing CE we considered only one neighborhood reducing its size to 2,
3 and varying the domains size from 10 to 30.
Comparison with standard CP. In this section we evaluate the per-
formance of the GPU-LNS solver on some Minizinc benchmarks,
comparing its results against the solutions found by the state-of-the-
art CP solver JaCoP [14]. We present results on medium-size prob-
lems which are neither too hard to be solved with standard CP tech-
niques nor too small to make a local search strategy useless.

We considered the following four problems:4 (1) The Trasporta-
tion problem, with only 12 variables but the optimal solution is hard
to find using CP. The heuristics used for JaCoP is the first fail,
indomain min, while for GPU-LNS we used the RL method.
We used t = 100 neighborhoods of size 3, m = 100 SP each, and
h = 500. (2) The TSP with 240 cities and some flow constraints.
The heuristics used for JaCoP is the same as above, RP strategy is
used in GPU-LNS with p = 1. We use t = 100 neighborhood of
size 40, m = 100, and h = 5000. (3) The Knapsack problem. We
considered instances of 100 items5. The strategy adopted in JaCoP
is input order, indomain random, while for GPU-LNS we
used the RL search strategy, with t = 50 neighborhoods of 20 vari-
ables, m = 50, and h = 5000. (4) The Coins grid problem. We
considered this problem to test our solver on a highly constrained
problem. For this benchmark we sightly modified the LS strategy:
first we set η(s) = s, then we used CP (option 2) to generate ran-
dom SPs. The strategy adopted in JaCoP is most constrained,
indomain max, while for GPU-LNS we used the RL search strat-
egy, with t = 300 neighborhoods of 20 variables, m = 150, and
h = 50000. Table 3 reports the first solution value, the best solution
found (within 10 min) and the (average on 20 runs for GPU-LNS)
running times. For GPU-LNS the sd of the best solution is reported.
2 1-Insertions 4.col from http://www.cs.hbg.psu.edu/
txn131/graphcoloring.html Other tests are available on-line.

3 For the RP strategy we slightly modified the model transforming the color-
ing benchmark into a permutation problem.

4 Models and description are available at http://www.hakank.org/minizinc/
5 An hard instance has been generated using the generator that can be found

at http://www.diku.dk/˜pisinger/generator.

Comparison with Standard LNS. We compared GPU-LNS against
a standard implementation of a LNS in OscaR. OscaR is a Java
toolkit that provides libraries for modelling and solving COP using
Constraint Based Local Search [25]. We compare the two solvers
on a standard benchmark used to test LNS strategies, namely the
Quadratic Assignment Problem (QAP).6 We used three different
datasets (small/medium/large sizes). OscaR is run using adaptive
LNS with Restart techniques. For each instance we tried different
combinations of restarts and adaptive settings; Results for the best
combination are reported in Table 4, as well as GPU-LNS results
with the RP strategy, h = 10, t = 50 neighborhood of size 20, and
m = 50. For both systems results are averaged on 20 runs and stan-
dard deviation of best results is reported. Standard deviations of best
solutions are reported. The GPU-LNS version of the solver outper-
forms OscaR (this is mainly due to the fact that GPU-LNS considers
2500 neighborhoods at a time). We also tried to compare GPU-LNS
against OscaR on the Coins problem benchmark. We started both the
LNSs from the same initial solution found by OscaR (i.e., 123460),
and we used the same setting described above for GPU-LNS. Both
system reached the time-out limit with an objective value of 25036
for GPU-LNS, and 123262 for OscaR.

The presented results show speedups that increase with the size of
the problems. However, it is not always easy to estimate the qual-
ity of the parallelization and, in particular, to obtain linear speedup
w.r.t. GPU cores. A simple formula such as number of cores ·
GPU speed/CPU speed returns an unreachable upper bound, since
the GPU architecture, bank conflicts, memory speed, GPU-CPU
transfer time are major bottlenecks. These factors must be consid-
ered and different parameters (e.g., the number of threads per block)
must be tuned according to the available architecture.

6 Related Work and Conclusion
Motivated by the highly parallel hardware platforms available to the
broad community, we presented the design of a constraint solver that
uses GPU computation to perform both parallel constraint propaga-
tion and parallel search. GPGPUs has been already investigated in
the computational logic community. Some examples of SAT solvers
on GPUs can be found in [9, 16, 10]. Extensive research has been
also conducted focusing on LS and LNS to solve COPs, considering
many different variants (see [11] for a survey). While extensive re-
search has also been conducted focusing on parallel constraint solv-
ing [12], the use of GPGPUs in CP has been less investigated (e.g.,
see [6]) . A guideline for design and implementation of LS strategies
on GPUs is presented in [26, 27]. In the recent proposal [4] the au-
thors implements a specific Constraint Based Local Search method
on GPU. Our solver design is more general, and user can specify lo-
cal search strategies, including those of [4] . Previous works of our
group presented solvers that uses GPU either to perform only con-
straint propagation [6] or that are problem-driven designed [7].

In general, in our solver, large neighborhoods are explored using
LS techniques with the goal of improving the current solution eval-
uating a large set of neighborhoods at a time. The choice of local
search strategies is twofold: first, incomplete but fast methods are
usually preferred for optimization problems where the search space is
very large but not highly constrained. Second, with very few changes,
the parallel framework adopted for a local search method can be eas-
ily generalized to be suitable for many different local search strate-
gies, requiring minimal parameter tuning. Our experimental results

6 The description of the problem and the model used for OscaR are available
at https://bitbucket.org/oscarlib/oscar/wiki/lns.

show that the solver implemented on GPU outperforms its sequen-
tial version. Good results are also obtained by comparing the solver
against standard CP and LNS. Moreover, we showed that many LS
strategies can be encoded on our framework by changing few pa-
rameters, without worrying about how it is actually performed the
underlying parallel computation. As future work we plain to exploit
a deeper integration within LNS and constraint propagation. The
framework should be general enough to allow the user to combine
these kernels in order to design any search strategy, in a transparent
way w.r.t. the underlying parallel computation. Combining kernels
to define different (local) search strategies should be done using a
declarative approach, i.e., we plan to extend the MiniZinc language
to support the above features.
Acknowledgments. The research is supported by GNCS and NSF
grants 1345232, 0947465. We thank A. Formisano and A. Dal Palù.

REFERENCES
[1] E. Aarts and J. K. Lenstra. Local Search in Combinatorial Optimiza-

tion. John Wiley & Sons, Chichester (UK), 1997.
[2] A. Aggoun et al. Integrating Rule-based Modeling and CP for Solving

Industrial Packing Problems. ERCIM News, 81, 2010.
[3] R.K. Ahuja et al. A Survey of Very Large Scale Neighborhood Search

Techniques. Discrete Applied Math, 123, 2002.
[4] A. Arbelaez and P. Codognet. A GPU Implementation of Parallel

Constraint-Based Local Search. 22nd PDP, pp. 648–655, 2014.
[5] C. M. Bishop. Pattern Recognition and Machine Learning (Information

Science and Statistics) Springer, 2006.
[6] F. Campeotto et al. Exploring the Use of GPUs in Constraint Solving.

Proc of PADL, LNCS 8324, pp. 152–167, 2014.
[7] F. Campeotto et al. Protein Structure Prediction on GPU: A Declarative

Approach in a Multi-agent Framework. ICPP 2013, pp. 474–479, 2013.
[8] A. Caprara et al., Algorithms for railway crew management. Math.

Programming 79:127–141, 1997.
[9] A. Dal Palù et al. Exploiting Unexploited Computing Resources for

Computational Logics. Proc of CILC, pp. 74–88, CEUR 857, 2012.
[10] C. S. Costa. Parallelization of SAT Algorithms on GPUs. Technical

report, INESC-ID, Technical University of Lisbon, 2013.
[11] F. Focacci et al. Local Search and Constraint Programming. Proc of

MIC, pp. 451–454, 2001
[12] I. Gent, et al., A Preliminary Review of Literature on Parallel Con-

straint Solving. Workshop Parallel Meth. for Constraint Solving, 2011.
[13] K. Kuchcinski and R. Szymanek. JaCoP Library User’s Guide, 2012.

http://jacop.osolpro.com/.
[14] D. Kurlander et al. Commercial Applications of Constraint Program-

ming. Proc of CP, Springer-Verlag, 1994.
[15] P. Manolios, and Y. Zhang. Implementing Survey Propagation on

Graphics Processing Units. SAT 2006, 311-324.
[16] N. Nethercote et al. MiniZinc: Towards a Standard CP Modeling Lan-

guage. Proc of CP, pp. 529–543, 2007. www.minizinc.org.
[17] OscaR Team. OscaR: Scala in OR, 2012 Available from

https://bitbucket.org/oscarlib/oscar.
[18] F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint Program-

ming (Foundations of Artificial Intelligence), Elsevier, 2006.
[19] J. Sanders and E. Kandrot. CUDA by Example. An introduction to

General-Purpose GPU Programming. Addison Wesley, 2010.
[20] C. Schulte and P. J. Stuckey. Efficient constraint propagation engines.

ACM TOPLAS, 31(1), 2008.
[21] C. Schulte, G. Tack, and M. Z. Lagerkvist. Modeling and Programming

with Gecode, 2013. Web site: http://www.gecode.org.
[22] P. Shaw. Using constraint programming and local search methods to

solve vehicle routing problems. Proc of CP, pp. 417–431, 1998.
[23] H. Simonis. Building Industrial Applications with Constraint Program-

ming. Proc of CCL, Springer-Verlag, 2002.
[24] P. Van Hentenryck and L. Michel. Constraint-Based Local Search. The

MIT Press, 2005.
[25] T. Van Luong et al. GPU Computing for Parallel Local Search Meta-

heuristic Algorithms. IEEE Trans. Computers, 62(1):173–185, 2013.
[26] T. Van Luong et al. Large Neighborhood Local Search Optimization on

GPUs. Proc of Workshop on Large-Scale Parallel Processing, 2010.

