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Abstract. This paper considers the problem of releasing optimal power
flow benchmarks that maintain the privacy of customers (loads) using
the notion of Differential Privacy. It is motivated by the observation that
traditional differential-privacy mechanisms are not accurate enough: The
added noise fundamentally changes the nature of the underlying opti-
mization and often leads to test cases with no solution. To remedy this
limitation, the paper introduces the framework of Constraint-Based Dif-
ferential Privacy (CBDP) that leverages the post- processing immunity
of differential privacy to improve the accuracy of traditional mechanisms.
More precisely, CBDP solves an optimization problem to satisfies the
problem-specific constraints by redistributing the noise. The paper shows
that CBDP enjoys desirable theoretical properties and produces orders
of magnitude improvements on the largest set of test cases available.

1 Introduction

In the last decades, scientific advances in artificial intelligence and operations
research have been driven by competitions and collections of test cases. The MI-
PLIB library for mixed-integer programming and the constraint-programming,
planning, and SAT competitions have significantly contributed to advancing the
theoretical and experimental branches of the field. Recent years have also wit-
nessed the emergence of powerful platforms (such as Kaggle [1]) to organize
competitions between third-parties. Finally, the release of data sets may become
increasingly significant in procurement where third-parties compete to demon-
strate their capabilities. The desire to release data sets for scientific research,
competitions, and procurement decisions is likely to accelerate. Indeed, with
ubiquitous connectivity, many organizations are now collecting data at an un-
precedented scale, often on large socio-technical systems such as energy networks.
This data is often used as input to complex optimization problems.

The release of such rich data sets however raises some fundamental privacy
concerns. For instance, the electrical load of an industrial customer in the power
grid typically reflects its production and may reveal sensitive information on its
economic strategy.

Differential Privacy (DP) [5, 6] is a general framework that addresses the sen-
sitivity of such information and can be used to generate privacy-preserving data
sets. It introduces carefully calibrated noise to the entries of a data set to prevent
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the disclosure of information related to those providing it. However, when these
private data sets are used as inputs to complex optimization algorithms, they
may produce results that are fundamentally different from those obtained on the
original data set. For instance, the noise added by differential privacy may make
the optimization problem infeasible or much easier to solve. As a result, despite
its strong theoretical foundations, adoptions of differential privacy in industry
and government have been rare. Large-scale practical deployments of differential
privacy have been limited to big-data owners such as Google [7] and Apple [10].
In their applications, however, only internal users can access the private data by
evaluating a pre-defined set of queries, e.g., the count of individuals satisfying
certain criteria. This is because constructing a private version of the database is
equivalent to simultaneously answering all possible queries and thus requires a
large amount of noise.

This paper is motivated by the desire of releasing Optimal Power Flow (OPF)
benchmarks that maintain the privacy of customers loads and the observation
that traditional differential-privacy mechanisms are not accurate enough: The
added noise fundamentally changes the nature of the underlying optimization
and often leads to test cases with no solution. The paper proposes the frame-
work of Constraint-Based Differential Privacy (CBDP) that leverages the post-
processing immunity of DP to redistribute the noise introduced by a standard
DP-mechanism, so that the private data set preserves the salient features of the
original data set. More precisely, CBDP solves an optimization problem that
minimizes the distance between the post-processed and original data, while sat-
isfying constraints that capture the essence of the optimization application.

The paper shows that the CBDP has strong theoretical properties: It achieves
ε-differential privacy, ensures that the released data set can produce feasible
solutions for the optimization problem of interest, and is a constant factor away
from optimality. Finally, experimental results show that the CBDP mechanism
can be adopted to generate private OPF test cases: On the largest collection
of OPF test cases available, it improves the accuracy of existing approaches of
at least one order of magnitude and results in solutions with similar optimality
gaps to those obtained on the original problems.

2 Differential Privacy

A data set D is a multi-set of elements in the data universe U . The set of every
possible data set is denoted D . Unless stated otherwise, U is a cross product
of multiple attributes U1, . . . , Un and has dimension n. For example, U “ Rn is
the numeric data universe consisting of n-dimensional real-vectors. A numeric
query is a function that maps a data set to a result in R Ď Rr.

Two data sets D1, D2 P D are called neighbors (written D1 „ D2) if D1 and
D2 differ by at most one element, i.e., |pD1 ´D2q Y pD2 ´D1q| “ 1.

Definition 1 (Differential Privacy [5]). A randomized mechanism M : D Ñ

R with domain D and range R is ε-differentially private if, for any event S Ď R
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and any pair D1, D2 P D of neighboring data sets:

PrrMpD1q P Ss ď exppεqPrrMpD2q P Ss, (1)

where the probability is calculated over the coin tosses of M.

A Differential Privacy (DP) mechanism maps a data set to distributions over
the output set. The released DP output is a single random sample drawn from
these distributions. The level of privacy is controlled by the parameter ε ě 0,
called the privacy budget, with values close to 0 denoting strong privacy.

DP satisfies several important properties. Composability ensures that a com-
bination of differentially private mechanisms preserve DP [6].

Theorem 1 (Composition). Let Mi : D Ñ Ri be an εi-differentially pri-
vate mechanism for i “ 1, . . . , k. Then, their composition, defined as MpDq “

pMipDq, . . . ,MkpDqq, is p
řk
i“1 εiq-differentially private.

Post-processing immunity ensures that privacy guarantees are preserved by ar-
bitrary post-processing steps [6].

Theorem 2 (Post-Processing Immunity). Let M : D Ñ R be a mechanism
that is ε-differentially private and g : R Ñ R1 be an (arbitrary) mapping. The
mechanism g ˝M is ε-differentially private.

The Laplace Distribution with 0 mean and scale b has a probability density

function Lappx|bq “ 1
2be

´
|x|

b . The sensitivity of a query Q, denoted by ∆Q, is
defined as ∆Q “ maxD1„D2

}QpD1q ´ QpD2q}1. The following theorem gives a
differentially private mechanism for answering numeric queries [5].

Theorem 3 (Laplace Mechanism). Let Q : D Ñ R be a numerical query.
The Laplace mechanism, defined as MLappD;Q, εq “ QpDq ` z where z P R is

a vector of i.i.d. samples drawn from Lapp
∆Q

ε q achieves ε-differential privacy.

The Laplace mechanism is a particularly useful building block for DP [6]. Koufo-
giannis et al. [16] proved its optimality by showing that it minimizes the mean-
squared error for both the L1 and L2 norms among all private mechanisms that
use additive and input-independent noise. In the following, Lappλqn denotes the
i.i.d. Laplace distribution over n dimensions with parameter λ.

Lipschitz privacy The concept of Lipschitz privacy is appropriate when a data
owner desire to protect individual quantities rather than individual participation
in a data set. Application domains where Lipschitz privacy has been successful
include location-based systems [3, 20] and epigenetics [4].

Definition 2 (Lipschitz privacy [16]). Let D be a metric space. A random-
ized mechanism M : D Ñ R is ε-Lipschitz differentially private if:

PrrMpD1q P Ss ď exppε}D1 ´D2}qPrrMpD2q P Ss,
for any S Ď R and any two inputs D1, D2 P D .

The Laplace mechanism with parameter ε achieve ε-Lipschitz DP.
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N The set of nodes in the network θ∆ Phase angle difference limits

E The set of from edges in the network Sd “ pd ` iqd AC power demand
ER The set of to edges in the network Sg “ pg ` iqg AC power generation
i imaginary number constant c0, c1, c2 Generation cost coefficients
I AC current <p¨q Real component of a complex number
S “ p` iq AC power =p¨q Imaginary component of a complex number
V “ v=θ AC voltage p¨q

˚ Conjugate of a complex number
Y “ g ` ib Line admittance | ¨ | Magnitude of a complex number
W “ wR ` iwI Product of two AC voltages = Angle of a complex number

su Line apparent power thermal limit xl, xu Upper and lower bounds of x
θij Phase angle difference (i.e., θi ´ θj) x A constant value

Table 1. Power Network Nomenclature.

3 Optimal Power Flow

Optimal Power Flow (OPF) is the problem of determining the best generator
dispatch to meet the demands in a power network. A power network is composed
of a variety of components such as buses, lines, generators, and loads. The net-
work can be viewed as a graph pN,Eq where the set of buses N represent the
nodes and the set of lines E represent the edges. Note that E is a set of directed
arcs and ER is used to denote those arcs in E but in reverse direction. Table 1
reviews the symbols and notation adopted in this paper. Bold-faced symbols are
used to denote constant values.

The AC Model The AC power flow equations are based on complex quan-
tities for current I, voltage V , admittance Y , and power S. The quanti-
ties are linked by constraints expressing Kirchhoff’s Current Law (KCL), i.e.,
Igi ´ I

d
i “

ř

pi,jqPEYER Iij , Ohm’s Law, i.e., Iij “ YijpVi ´ Vjq,, and the defini-

tion of AC power, i.e., Sij “ ViI
˚
ij . Combining these three properties yields the

AC Power Flow equations, i.e.,

Sgi ´ S
d
i “

ÿ

pi,jqPEYER

Sij @i P N

Sij “ Y
˚
ij |Vi|

2 ´ Y ˚ij ViV
˚
j pi, jq P E Y ER

These non-convex nonlinear equations are a core building block in many power
system applications. Practical applications typically include various operational
constraints on the flow of power, which are captured in the AC OPF formula-
tion in Model 1. The objective function (2) captures the cost of the generator
dispatch. Constraint (3) sets the reference angle for some arbitrary r P N , to
eliminate numerical symmetries. Constraints (4) and (5) capture the voltage and
phase angle difference operational constraints. Constraints (6) and (7) enforce
the generator output and line flow limits. Finally, Constraints (8) capture KCL
and constraints (9) capture Ohm’s Law.

Notice that this is a non-convex nonlinear optimization problem and is NP-
Hard [17, 23]. Therefore, significant attention has been devoted to finding convex
relaxations of Model 1.
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Model 1 The AC Optimal Power Flow Problem (AC-OPF)

variables: Sgi , Vi @i P N, Sij @pi, jq P E Y E
R

minimize:
ÿ

iPN

c2ip<pSgi qq
2
` c1i<pSgi q ` c0i (2)

subject to: =Vr “ 0, r P N (3)

vli ď |Vi| ď v
u
i @i P N (4)

´ θ∆ij ď =pViV
˚
j q ď θ

∆
ij @pi, jq P E (5)

Sgli ď Sgi ď S
gu
i @i P N (6)

|Sij | ď s
u
ij @pi, jq P E Y E

R (7)

Sgi ´ S
d
i “

ř

pi,jqPEYER Sij @i P N (8)

Sij “ Y
˚
ij |Vi|

2
´ Y ˚ij ViV

˚
j @pi, jq P E Y ER (9)

The SOC Relaxation The SOC relaxation [14] lifts the product of voltage
variables ViV

˚
j into a higher dimensional space (i.e., the W -space):

Wi “ |Vi|
2 i P N (10a)

Wij “ ViV
˚
j @pi, jq P E (10b)

It takes the absolute square of each constraint (10b), refactors it, and relaxes
the equality into an inequality:

|Wij |
2 ďWiWj @pi, jq P E (11)

Constraint (11) is a second-order cone constraint, which is widely supported
by industrial strength convex optimization tools (e.g., Gurobi [11], CPlex [13],
Mosek [21]). The SOC relaxation of (AC-OPF) is presented in Model 2 (SOC-
OPF). The constraints for the generator output limits (6), line flow limits (7),
and KCL (8), are identical to those in the (AC-OPF) model. Constraints (12)
and (13) capture the voltage and phase angle difference operational constraints.
Constraints (14) and (15) capture the line power flow in the W -space. Finally,
constraints (16) strengthen the relaxation with second-order cone constraints for
voltage products.

The Quadratic Convex (QC) Relaxation The QC relaxation was intro-
duced to preserve stronger links between the voltage variables [12]. It represents
the voltages in polar form (i.e., V “ v=θ) and links these real variables to the
W variables using the following equations:

Wii “ v2i i P N (17a)

<pWijq “ vivj cospθi ´ θjq @pi, jq P E (17b)

=pWijq “ vivj sinpθi ´ θjq @pi, jq P E (17c)

The QC relaxation relaxes these equations by taking tight convex envelopes of
their nonlinear terms, exploiting the operational limits for vi, vj , θi ´ θj . In par-
ticular, it uses the convex envelopes for the square xx2yT and product xxyyM
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Model 2 The SOC Relaxation of AC-OPF (SOC-OPF)

variables: Sgi ,Wi @i P N, Wij @pi, jq P E,Sij @pi, jq P E Y E
R

minimize:(2)

subject to: (6), (7), (8)

pvliq
2
ďWi ď pv

u
i q

2
@i P N (12)

tanp´θ∆ij q< pWijq ď = pWijq ď tanpθ∆ij q< pWijq @pi, jq P E (13)

Sij “ Y
˚
ijWi ´ Y

˚
ijWij pi, jq P E (14)

Sji “ Y
˚
ijWj ´ Y

˚
ijW

˚
ij pi, jq P E (15)

|Wij |
2
ďWiWj @pi, jq P E (16)

Model 3 The QC Relaxation of AC-OPF (QC-OPF)

variables: Sgi , Vi “ vi=θi, @i P N, Wij @pi, jq P E, Sij @pi, jq P E Y E
R

minimize: (2)

subject to: (3)–(8), (14)–(16)

Wii “ xv
2
i y
T i P N (18)

<pWijq “ xxvivjy
M
xcospθi ´ θjqy

C
y
M
@pi, jq P E (19)

=pWijq “ xxvivjy
M
xsinpθi ´ θjqy

S
y
M
@pi, jq P E (20)

of variables, as defined in [19]. Under the assumption that the phase angle dif-
ference bound is within ´π{2 ď θlij ď θ

u
ij ď π{2, relaxations for sine xsinpxqyS

and cosine xcospxqyC are given in reference [12]. Convex envelopes for equations
(17a)–(17c) can be obtained by composing the convex envelopes of the functions
for square, sine, cosine, and the product of two variables, i.e.,

Wii “ xv
2
i y
T i P N (21a)

<pWijq “ xxvivjy
M xcospθi ´ θjqy

CyM @pi, jq P E (21b)

=pWijq “ xxvivjy
M xsinpθi ´ θjqy

SyM @pi, jq P E (21c)

The QC relaxation also proposes to strengthen these convex envelopes with a
second-order cone constraint from the SOC relaxation ((10a), (10b), (11)). The
complete QC relaxation is presented in Model 3.

The DC model The DC model is an extensively studied linear approximation
to the AC power flow [24]. The DC load flow relates real power to voltage
phase angle, ignores reactive power, and assumes voltages are close to their
nominal values (1.0 in per unit notation). The DC OPF is presented in Model 4.
Constraints (22) capture the phase angles operational constraints. Constraints
(23) and (24) enforce the generator output and line flow limits. Constraints (25)
captures the KCL and constraints (26) the Ohm’s Law.
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Model 4 The DC Relaxation of the AC OPF (DC-OPF)

variables: <pSgi q, θi @i P N, Sij @pi, jq P E Y E
R

minimize: (2)

subject to: (3)

|θi| ď θ
u
i @i P N (22)

<pSgli q ď <pSgi q ď <pSgui q @i P N (23)

<p|Sij |q ď <psuijq @pi, jq P E Y ER (24)

<pSijq “ ´bijpθi ´ θjq @pi, jq P E Y ER (25)

<pSgi q ´ <pSdi q “
ř

pi,jqPEYER Sij @i P N (26)

4 The Differential Privacy Challenge for OPF

When releasing private OPF test cases, it is not critical to hide user partic-
ipation: The location of a load is public knowledge. However, the magnitude

Fig. 1. Average L1 error re-
ported by the Laplace Mecha-
nism. The percentages express
the AC-OPF instances with
satisfiable solution.

of a load is sensitive: It is associated with the ac-
tivity of a particular customer (or group of cus-
tomers) and may indirectly reveal production lev-
els and hence strategic investments, decreases in
sales, and other similar information. Indirectly, it
may also reveal how transmission operators oper-
ate their networks, which should not be public in-
formation. As a result, the concept of Lipschitz dif-
ferential privacy is particularly suited to the task.

As mentioned in Section 2, the Laplace mech-
anism can be used to achieve Lipschitz DP. How-
ever, its application on load profile queries results
in a new output vector of loads which produces
undesirable outcomes when used as input to an
OPF problem. Indeed, Figure 1illustrates the av-
erage error (measured as the L1 distance) between
the original load and the private load for a set of
44 networks.1 With a privacy budget of ε “ 0.1, the average error is about
10–implying a significantly higher load than the actual demand. The numbers
reported on each bar represent the percentage of feasible private instances for the
AC OPF problem: It reveals severe feasibility issues with the private instances.

These results highlight the challenges that arise when traditional differen-
tial privacy is applied to inputs of complex optimization tasks. For instance, the
Laplacian mechanism is oblivious to the structure of the data set (e.g., the gener-
ation capabilities should be large enough to serve the load) and the constraints
and objectives of the optimization application (e.g., the transmission network
should have the ability to transport electricity from generators to loads). As a

1 The experimental settings are reported in all details in Section 7.
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result, it produces private data sets that are typically not useful and not repre-
sentative of actual OPFs. What is needed is a differential-privacy mechanism that
preserves the structure of the optimization model and its computational proper-
ties such as the optimality gap between the solutions produced by MINLP solvers
and convex relaxations.

5 Constrained-Based Differential Privacy

This section introduces Constraint-Based Differential Privacy (CBDP) to rem-
edy the limitations identified in the previous section. It considers an optimization
problem OpDq:

minimizexPRn fpD,xq

subject to gipD,xq ď 0, i “ 1, . . . , p

where f : DˆRn Ñ R is the objective function to minimize over variables x and
gipD,xq ď 0 pi “ 1, . . . , pq are the problem constraints.

This paper studies the following setting. The data owner desires to release
a private data set D̂ such that the optimization problems OpDq and OpD̂q are
closely related. In particular, the optimal objective value of OpD̂q must be close
to the optimal value of the original problem fpD,x˚q (which is a public informa-
tion), where x˚ P Rn is the optimal solution of the original optimization problem.
Hence the private data set must satisfy the following desiderata: (1) data pri-
vacy : The data set to be released must be private; (2) faithfulness: The private
data must be faithful to the objective function; (3) consistency : The private data
must satisfy the constraints arising from the data and/or from the problem of
interest. To address such challenges the following definition is introduced.

Definition 3 ((ε, β)-CBDP). Given ε ą 0, β ě 0, a DP-data-release mecha-
nism M : D Ñ D is pε, βq-CBDP iff, for each private database D̂ “ MpDq,
there exists a solution x such that

1. ε-privacy: M satisfies ε-DP;

2. β-faithfulness: |fpD̂,xq ´ fpD,x˚q| ď β;

3. Consistency: Constraints gipD̂,xq ď 0 (i “ 1, . . . , p) are satisfied.

The Input To balance between utility and privacy, the mechanism takes as
input the data set D, as well as two non-negative real numbers: ε which deter-
mines the privacy value of the private data and β which determines the required
faithfulness of the optimization problem over the private data. Additionally, the
data owner provides the optimization problem and the optimal objective value
f˚ “ fpD,x˚q, which are typically considered public information in competi-
tions. For simplicity, this section assumes that D “ Rn.
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minimizeD̂,xPRn}D̂ ´ D̃}
2
2 (O1)

subject to |fpD̂,xq ´ f˚| ď β (O2)

gipD̂,xq ď 0, i “ 1, . . . , p (O3)

Fig. 2. The CBDP Post-Processing Step.

The Mechanism The CBDP mechanism first injects Laplace noise with privacy
parameter ε to each query on each dimension of the dataset:

MLappD,Q, εq “ D̃ “ D ` Lapp1{εqn,

where D̃ “ pc̃1, . . . , c̃nq is the vector of noisy values. These values are then post-
processed by the optimization algorithm specified in Figure 2 to obtain a value
vector D̂ “ px̂1, . . . , x̂nq P Rn. Finally, the CBDP mechanism outputs D̂.

The CBDP mechanism thus solves a constrained optimization problem whose
decision variables include vectors of the form D̂ “ px̂1, . . . , x̂nq that correspond
to the post-processed result of the private query on each dimension of the uni-
verse. In other words, each original data (that must remain private) is replaced
by a decision variable representing its post-processed private counterpart. The
objective (O1) minimizes the L2-norm between the private query result D̃ and
its post-processed version D̂. Constraint (O2) forces the post-processed values
to be β-faithful with the respect to the objective value, and Constraints (O3)
enforce the optimization constraints of the original model.

Additional constraints capturing auxiliary public information about the data
can be integrated in this model. For instance, in the OPF problem, the total
power load is public. Thus, an additional constraint on the sum of values of the
variables px̂1, . . . x̂nq can be enforced to be equal to this public information.

The CBDP post-processing can be thought as redistributing the noise of the
Laplace mechanism to obtain a data set which is consistent with the problem
constraints and objective. It searches for a feasible solution that satisfies the
problem constraints gipD̂,xq ď 0 and the β-faithfulness constraint. A feasible
solution always exists, since the original values D trivially satisfy all constraints.

It is important to notice that the post-processing step of CBDP uses ex-
clusively the private data set D̃ and additional public information (i.e., the
optimization problem and its optimal solution value). Its privacy guarantees are
discussed below.

5.1 Theoretical Properties

Theorem 4. The mechanism above is pε, βq-CBDP.

Proof. Each c̃i obtained from the Laplace mechanism is ε-differentially-private
by Theorem 3. The combination of these results pc̃1, . . . , c̃nq is ε-differentially-
private by Theorem 1. The β-faithfulness and the consistency properties is sat-
isfied by constraint (O2) and (O3) respectively. The result follows from post-
processing immunity (Theorem 2).
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Model 5 The CBDP mechanism for the AC-OPF

variables: Sgi , Vi,
9Sli @i P N, Sij @pi, jq P E Y E

R

minimize: } 9Sl ´ S̃l}22 (sl1)

subject to: (3)´ (9)

|
ÿ

iPN

c2ip<pSgi qq
2
` c1i<pSgi q ` c0i ´ f

˚
| ď β (s2)

ÿ

iPN

9Sli “ L (s3)

As mentioned earlier, additional constraints can be enforced, e.g., to ensure
the consistency that the sums of individual quantities equals their associated
aggregated quantity. In this case, the aggregated quantities must return private
counts and a portion of the privacy budget must be used to answer such queries.

Theorem 5. The optimal solution xD̂`,x`y to the optimization model (O1–
O3) satisfies }D̂` ´D}2 ď 2}D̃ ´D}2,

Proof. We have

}D̂` ´D}2 ď }D̂
` ´ D̃}2 ` }D̃ ´D}2 (27)

ď 2}D̃ ´D}2. (28)

where the first inequality follows from the triangle inequality on norms and the
second inequality follows from

}D̂` ´ D̃}2 ď }D̃ ´D}2

by optimality of xD̂`,x`y and the fact that xD,x˚y is a feasible solution to
constraints (O2) and (O3).

The following result follows from the optimality of the Laplace mechanism [16].

Corollary 1. The CBDP mehanism is at most a factor 2 away from optimality.

6 Application to the Optimal Power Flow

The CBDP optimization model for the (AC-OPF) is presented in Model 5. In ad-
dition to the variables of Model 5, it takes as inputs the variables 9Sli representing
the post-processed values of the loads for each bus in i P N . The optimization
model minimizes the L2-norm between the variables 9Sl P Rn and the noisy loads
S̃l P Rn resulting from the application of the Laplace mechanism to the original
load values. Model 5 is subject to the same constraint of Model 1, with the addi-
tion of the β-faithfulness constraint (s2) and the constraint enforcing consistency
of the aggregated load values L P R (s3), which is typically public knowledge.
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7 Experimental Results

This section presents an evaluation of the CBDP mechanism on the case study. It
first presents the experimental setup and then compares the CBDP mechanism
with the Laplace mechanism.

Data sets and Experimental Setup The experimental results concern the
NESTA power network test cases (https://gdg.engin.umich.edu). The test
cases comprise 44 networks whose number of buses ranges from 3 to 9241. This
section categorizes them in small (networks with up to 100 buses), medium
(networks with more than 100 buses and up to 2000 buses) and large (networks
with more than 2000 buses).

In the following,D denotes the original data set and D̃ its private version (i.e.,
the data set resulting through the application of a DP mechanism). Moreover,
cmpDq and cmpD̃q denote the cost of the dispatch obtained by an OPF given
model m (i.e., AC, QC, SOC, or DC) on the original data set D and on its
private version D̃, respectively.

The results obtained by the AC-OPF and its relaxations/approximations
(QC, SOC, and DC) are evaluated using both the original and the private
data sets, analyzing the dispatch cost (c) and the optimality gap, i.e., the ra-

tio GRpDq “
|cRpDq´cACpDq|

cACpDq
, where cACpDq and cRpDq denote the best-known

solution cost of the problem instance and of the relaxation R over data set D.
The baseline MLap is the Laplace mechanism applied to each load of the

network. To obtain a private version of the loads, MLap is first used to construct
a private value for the active loads pli “ <pSliq as p̃li “ pli ` Lapp100{εq, (@i P
N) where 100 is the change in MWs protected by Lipschitz DP. The reactive
load qli “ =pSliq is set as q̃li “ p̃li ri, with ri “ qli{p

l
i is the power load factor

and is considered to be public knowledge, as is natural in power systems. The
CBDP mechanism MC uses the output of the Laplace mechanism and the post-
processing step to obtain the private loads 9Sli for all i P N .

The mechanisms are evaluated for privacy budgets ε P t0.1, 1.0, 10.0u and
faithfulness parameter β P t0.01, 1.0, 100.0u. Smaller values for ε increase privacy
guarantees at the expense of more noise introduced by the Laplace mechanism.
All experimental results are reported as the average of 30 runs. This gives a total
of 47,520 experiments, which are analyzed below.

Error Analysis on the OPF Cost The first experimental result measure
the error introduced by a mechanism as the average distance, in percentage,
between the exact and the private costs of the OPF dispatches. The reported

error is expressed as |cmpDq´cmpD̃q|
cmpDq

¨ 100, for m “ tAC,QC, SOC,DCu.

Figure 3 illustrates the error of the private mechanisms for varying privacy
budgets. Rows show the results for the different network sizes (small, medium,
and large), while columns show the results for the different faithfulness level
values (β “ 0.01, 1.0, 100.0). The results are shown in log scale. Each sub-figure
also presents the results for three privacy budgets (10, 1, 0.1).

https://gdg.engin.umich.edu


12 Ferdinando Fioretto and Pascal Van Hentenryck

MC

AC QC SOC DP
MLap

AC QC SOC DP

privacy budget ( )0

100

101

102
OP

F 
va

lu
e 

di
ffe

re
nc

e 
(%

)

size = small |  = 0.01

privacy budget ( )

OP
F 

va
lu

e 
di

ffe
re

nc
e 

(%
)

size = small |  = 1.0

privacy budget ( )

OP
F 

va
lu

e 
di

ffe
re

nc
e 

(%
)

size = small |  = 100.0

privacy budget ( )0

100

101

102

OP
F 

va
lu

e 
di

ffe
re

nc
e 

(%
)

size = medium |  = 0.01

privacy budget ( )

OP
F 

va
lu

e 
di

ffe
re

nc
e 

(%
)

size = medium |  = 1.0

privacy budget ( )

OP
F 

va
lu

e 
di

ffe
re

nc
e 

(%
)

size = medium |  = 100.0

10 1 0.1
privacy budget ( )

0

100

101

102

OP
F 

va
lu

e 
di

ffe
re

nc
e 

(%
)

size = large |  = 0.01

10 1 0.1
privacy budget ( )

OP
F 

va
lu

e 
di

ffe
re

nc
e 

(%
)

size = large |  = 1.0

10 1 0.1
privacy budget ( )

OP
F 

va
lu

e 
di

ffe
re

nc
e 

(%
)

size = large |  = 100.0

Fig. 3. Average OPF Objective Differences for the CBDP Mechanism (light colors)
and the Laplace Mechanism (dark colors).

For all privacy budgets and all faithfulness-levels, the CBDC mechanism
outperforms the Laplace mechanism by one to two orders of magnitude. For
every OPF model, the Laplace mechanism produces OPF values which are, in
general, more than 10% away (and exceeding 100% in many instances) from the
values reported by the model ran on the original data, with the exception for the
largest privacy budget, whose results produces differences slightly below 10%. In
contrast, CBDP produces OPF values close (within 10%) to those produced on
the original data, with all the OPF models adopted.

The errors reported by the Laplace mechanism on small networks are larger
than those reported on medium and large networks. This is due to the fact that
the dispatch costs of larger networks are typically much higher than those of
small networks, and thus the relative distance of the error accumulated by the
DP mechanism is more pronounced for the smaller test cases. Despite this, the
CBDP mechanism produces solutions with small error costs, even for the small
network instances.
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M5 M5+g M5�� M5+g,��

Fig. 4. Optimality GAP error for the QC, SOC, and DC, relaxations of the AC-OPF,
on different CBDP post-processing models.

The CBDP mechanism preserves the objectives of the AC OPF problems
accurately (within 1%), demonstrating its benefits for small beta values. The
OPF value differences increase as the faithfulness parameter β increases.

Analysis of the Optimality Gap In a competition setting, it is also critical
to preserve the computational difficulty of the original test case. The next set of
results show how well CBDP preserves the optimality gap of the instance and
its relationship to well-known approximations such as the DC model.

Figure 4 shows the differences GRpD̃q ´ GRpDq, for the AC OPF relax-
ation/approximation models R “ tQC,SOC,DCu, where the private data set
D̃ is produced by the CBDP mechanism. It compares four CBDP post-processing
models: M5, which solves the CBDP of Model 5; M5`g, which extends the Model
5 by modifying the objective (sl1) by adding the terms }Sg´Sg}22 to minimize the
distance from the generator setpoints; M5´β , which solves the Model 5without
the beta faithfulness constraint (s2); and M5`g,´β , which excludes constraint
(s2) but includes the terms }Sg ´Sg}22 into its objective. Rows show the results
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Fig. 5. Percentage of load increase in the 4-bus (left) 73-bus (center), and 300-bus
(right) NESTA test cases.

for the different privacy faithfulness levels (β “ 0.01, 1.0, 100.0), while columns
show the results for the different privacy budgets (10, 1, 0.1). The results are
shown in log scale.

For all settings, M5 produces instances whose optimality gaps are close to
those of the original ones (their distance is ă 1 for ε “ 10.0, and 1.0, and ă 3 for
ε “ 0.1). M5`g produces very similar optimality gaps, showing that the CBDP
mechanism does not need to take into account the generator setpoint values. For
the relaxations, both M5´β and M5`g,´β produce quite similar results to M5.
It is only for the DC-approximation that the faithfulness constraint is important.
Moreover, note that the faithfulness constraint must be relatively tight even for
M5 to preserve the result of the DC model. The DC model ignores many aspects
of the power systems and hence it is not a surprise that it is more brittle. These
results indicate that the CBDP mechanism is capable of preserving the optimality
gap of relaxations (and the quality of the DC approximation) with high fidelity.

Analysis of the Private Network Loads The last set of results reports the
effect of the CBDP mechanism on the network load profiles. Figure 5 depicts
the percentage of load increase when applying the CBDP mechanism on three
example networks with 4-buses (left), 73 buses (center), and 300 buses (right)
for various privacy budgets. The results illustrate that load variation is often
significant for a portion of the loads, although the CBDP mechanism preserves
the problem structure accurately. Moreover, some of the loads exhibit a positive
or negative bias. A detailed examination of these test cases reveals that this is
due to the underlying network characteristics. For example, in the 4-bus test
case case (Figure 5(left)), the first load (load 1) tends to be higher than its
original value. This is explained by the fact that such load resides on the same
bus as the cheaper generator which also has a very high generation capacity
[9](pp. 337–338). As a result, the CBDP mechanism has significant flexibility to
increase this load to redistribute the noise appropriately.

8 Related Work

There is rich literature on theoretical results of DP (see e.g., [6, 22]). The liter-
ature on DP applied to energy systems includes considerably fewer efforts. Ács
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and Castelluccia [2] exploited a direct application of the Laplace mechanism to
hide user participation in smart meter data sets, achieving ε-DP. Zhao et al. [25]
studied a DP schema that exploits the ability of households to charge/discharge
a battery to hide the real energy consumption of their appliances. Liao et al. [18]
introduce Di-PriDA, a privacy-preserving mechanism for appliance-level peak-
time load balancing control in the smart grid, aimed at masking the consumption
of the top-k appliances of a household.

Karapetyan et al. [15] conduct an empirical study on quantifying the trade-off
between privacy and utility in demand response systems. The authors analyze
the effects of a simple Laplace mechanism on the objective value of the demand
response optimization problem. Their experiments on a 4-bus micro-grid show
drastic results: the optimality gap approaches nearly 90% in some cases.

A DP schema that uses constrained post-processing was recently introduced
by Fioretto et al. [8] and adopted to release private mobility data. In contrast,
the proposed CBDP schema proposed in this work releases the private data set
through a mechanism that imposes constraints to ensure the problem solution
cost is close to the solution cost of the original problem, and that the underlying
optimal power flow constraints are satisfiable.

9 Conclusions

This paper introduced the Constraint-Based Differential Privacy (CBDP) mech-
anism, an approach to Differential Privacy (DP) which aims at releasing optimal
power flow benchmarks that retain the privacy of the customers (loads). CBDP
leverages the post-processing immunity of DP to cast the production of a private
data set as an optimization problem that redistributes the noise introduced by
a randomized mechanism to satisfy problem-specific constraints.

The proposed mechanism enjoys desirable theoretical properties: It achieves
ε-DP, ensures that the released data set can produce feasible solutions for the
optimization problem of interest, and is a constant factor away from optimality.
CBDP has been evaluated on the largest collection of OPF test cases available.
Experimental results show that CBDP improves the accuracy of traditional ap-
proaches (e.g., the Laplace mechanism) by orders of magnitude and preserves
some salient computational features of the test cases, such as the optimality
gap. These results are significant and indicate that CBDP has the potential to
become an important tool to release data sets for competition settings.

Although the paper focused on the applicability of CBDP to OPF problems,
the proposed mechanism is general and can be used for other applications where
a private data set is the input to a complex optimization problem.
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