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Abstract. The field of Distributed Constraint Optimization (DCOP)
has gained momentum in recent years, thanks to its ability to address
various applications related to multi-agent coordination. Nevertheless,
solving DCOPs is computationally challenging. Thus, in large scale, com-
plex applications, incomplete DCOP algorithms are necessary. Recently,
researchers have introduced a promising class of incomplete DCOP algo-
rithms, based on sampling. However, this paradigm requires a multi-
tude of samples to ensure convergence. This paper exploits the property
that sampling is amenable to parallelization, and introduces a general
framework, called Distributed MCMC (DMCMC), that is based on a
dynamic programming procedure and uses Markov Chain Monte Carlo
(MCMC) sampling algorithms to solve DCOPs. Additionally, DMCMC
harnesses the parallel computing power of Graphical Processing Units
(GPUs) to speed-up the sampling process. The experimental results show
that DMCMC can find good solutions up to two order of magnitude faster
than other incomplete DCOP algorithms.

1 Introduction

In a Distributed Constraint Optimization Problem (DCOP), multiple agents
coordinate assignments of values to their variables to maximize the sum of the
resulting constraint utilities [18,32]. DCOP is a powerful paradigm to describe
and solve many practical problems in a variety of application domains, such
as distributed scheduling, coordination of unmanned air vehicles, smart grid
electrical networks, and sensor networks [10,24,28,34]. DCOP researchers have
proposed a wide variety of solution approaches, from distributed search-based
algorithms [15,18,31] to distributed inference-based algorithms [21,30], as well
as solvers that use GPUs [3,4] and logic programming [12,13] formulations. Com-
plete DCOP algorithms find optimal solutions at the cost of large runtimes, while
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incomplete approaches trade optimality for faster execution. Since finding opti-
mal DCOP solutions is NP-hard, incomplete algorithms are often necessary to
solve larger problems. A further challenge to the applicability of DCOPs to more
general classes of problems is the common assumption that each agent controls
exactly one variable during problem resolution, which is often unrealistic. To
cope with such restrictions, reformulation techniques are commonly adopted to
transform a general DCOP into one where each (pseudo-)agent controls exclu-
sively one variable [1,33]. This transformation can be inefficient in terms of agent
computation and coordination, as it may limit the agents’ ability to interact in
pruning the search space [5]. While one can trivially extend existing algorithms
to allow each agent to solve its local sub-problem (i.e., the value assignment of its
local variables) in a centralized fashion, each sub-problem is still NP-hard, and
can require a large amount of time if solved naively. This concern is true espe-
cially for application domains where agents may control a large number of local
variables with large numbers of local constraints. We explore meeting scheduling
problems as one such application domain in our experimental evaluations.

In this paper, we introduce a general framework, called Distributed MCMC
(DMCMC), which is based on a Dynamic Programming-based DCOP proce-
dure [21]; the framework allows each agent to solve its local sub-problem using
Markov Chain Monte Carlo (MCMC) sampling algorithms and uses general-
purpose Graphical Processing Units (GPUs) to parallelize and speed up this
process. We demonstrate the generality of this framework using two popular
MCMC algorithms, the Gibbs [6] and Metropolis-Hastings [8,17] algorithms.
Our experiments show that our framework is able to find better solutions up to
two orders of magnitude faster than MGM and MGM2 (two incomplete DCOP
algorithms). Additionally, it finds solutions that are within a 5 % error of the
optimum for problems that can be solved optimally. While the description of
our solution focuses on DCOPs, our approach is also suitable to solve Weighted
Constraint Satisfaction Problems (WCSPs).

2 Background

WCSPs: A Weighted Constraint Satisfaction Problem (WCSP) [11,27] is a tuple
〈X ,D,F〉, where X = {x1, . . . , xn} is a finite set of variables, D = {D1, . . . , Dn}
is a set of finite domains for the variables in X , with Di being the set of possible
values for the variable xi, F is a set of weighted constraints (or utility functions).
A weighted constraint fi ∈ F is a function, fi :

Ś

xj∈xfi Di → R
+∪{−∞}, where

xfi ⊆X is the set of variables relevant to fi, referred to as the scope of fi. A
solution σ is a value assignment to a set of variables Xσ ⊆X that is consistent
with the variables’ domains. The utility U(σ)=

∑
f∈F,xf⊆Xσ

f(σ) is the sum of
the utilities of all the applicable utility functions in σ. A solution is said complete
if Xσ =X . The goal is to find an optimal complete solution σ∗=argmaxσ U(σ).

DCOPs: When the elements of a WCSP are distributed among a set of
autonomous agents, we refer to it as a Distributed Constraint Optimiza-
tion Problem (DCOP) [18,21,32]. Formally, a DCOP is described by a tuple
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〈X ,D,F ,A, α〉, where X , D and F are the set of variables, their domains, and
the set of utility functions, defined as in a classical WCSP, A = {a1, . . . , am}
(m ≤ n) is a set of autonomous agents, and α : X → A is a surjective function,
from variables to agents, which assigns the control of each variable x ∈ X to an
agent α(x). The goal in a DCOP is to find a complete solution that maximizes
its utility: σ∗=argmaxσ U(σ).

Fig. 1. Example DCOP

Given a DCOP P , G =
(A, E) is the constraint
graph of P , where (i, j)∈E
iff ∃f ∈F , where ∃xi, xj ∈X
with α(xi)=ai and α(xj)=
aj s.t. {xi, xj}⊆xf . A DFS
pseudo-tree arrangement for
G is a spanning tree T =
〈A, ET 〉 of G s.t. if f ∈
F and ∃xi, xj ∈ X with
α(xi) = ai and α(xj) = aj

s.t. {xi, xj} ⊆ xf , then x
and y appear in the same
branch of T . Edges of G that are in (resp. out of) ET are called tree edges
(resp. backedges). Tree edges connect a node with its parent and its children,
while backedges connect a node with its pseudo-parents and its pseudo-children.
We write ai �T

aj if agent ai is an ancestor of aj in the pseudo-tree T . We use
Ci, Pi, and sep(ai) to refer to, respectively, the set of child agents, the parent
agent, and to the separator of agent ai in the pseudo-tree. The latter is the set of
variables owned by the ai’s ancestor agents that are constrained with variables
owned by ai or by its descendant agents.

Definition 1. For each agent ai∈A, Li ={xj ∈ X | α(xj)=ai} is the set of its
local variables. Bi ={xj ∈Li | ∃xk ∈X ∧ ∃fs ∈F : α(xk) = ai ∧ {xj , xk}⊆xfs}
is the set of its interface variables.

Definition 2. For each agent ai ∈A, its local constraint graph Gi = (Li, EFi
)

is a subgraph of the constraint graph, where Fi ={fj ∈F | xfj ⊆Li}.

Figure 1(a) shows the constraint graph of a sample DCOP with 3 agents a1, a2,
and a3, where L1 = {x1, x2}, L2 = {x3, x4}, L3 = {x5, x6}, B1 = {x2}, B2 =
{x4}, and B3 = {x6}. The domains are D1 = · · · = D6 = {0, 1}. Figure 1(b)
shows one possible pseudo-tree (the dotted line is a backedge). Figure 1(c) shows
the constraints.

DPOP: Distributed Pseudo-tree Optimization Procedure (DPOP) [21] is a com-
plete DCOP algorithm. composed of three phases:1

[Phase 1] Pseudo-tree Generation: DPOP agents constructs a pseudo-tree
using existing distributed pseudo-tree construction methods [7].
1 It is a distributed variant of Bucket Elimination [2].
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Fig. 2. Example UTIL phase computations

Algorithm 1. Metropolis-Hasting(z)

1 z(0) ← Initialize(z)
2 for t = 1 to T do

3 z∗ ← Sample(q(z∗ | z(t−1)))

4 z(t)←
{

z∗ with p=min(1, π̃(z∗)q(z(t−1),z∗)
π̃(z(t−1))q(z∗,z(t−1))

)

z(t−1) with 1−p

5 for i = 1 to n do
6 zt

i ← Sample( 1
Zπ

π̃(zi | zt
1, . . . , z

t
i−1, z

t−1
i+1 , . . . , zt−1

n ))

[Phase 2] Utility Propagation: Each agent, starting from the leafs of the
pseudo-tree, computes the optimal sum of utilities in its subtree for each value com-
bination of variables in its separator. The agent does so by summing the utilities of
its constraints with the variables in its separator and the utilities in the UTIL mes-
sages received from its children agents, and then projecting out its own variables
by optimizing over them. In our example problem, agent a3 computes the optimal
utility for each value combination of variables x2 and x4 (see Fig. 2(a)), and sends
the utilities to its parent agent a2 in a UTIL message. Agent a2 then computes the
optimalutility for eachvalue of thevariablex2 (seeFig. 2(b)), and sends theutilities
to its parent agent a1 in a UTIL message. Finally, agent a1 computes the optimal
utility of the entire problem (see Fig. 2(c)).

[Phase 3] Value Propagation: Each agent, starting from the root of the
pseudo-tree, determines the optimal value for its variables. The root agent does so
by choosing the values of its variables from its UTIL computation. In our exam-
ple, agent a1 determines that the values for both its variables leading to the largest
utility are both 0 (with a overall utility of 120). It then sends the value of variable
x2 to its child agent a2 in a VALUE message. Upon receiving the VALUE message
from its parent agent, agent a2 determines that the value with the largest utility
for both its variables, assuming that x2 = 0, is 0, with a utility of 100. In turn, it
sends the value of variables x2 and x4 to its child agent a3 in another VALUE mes-
sage. Finally, upon receiving the VALUE message from its parent agent, agent a3

determines that the value with the largest utility for both its variables, assuming
that x2 = 0 and x4 = 0, is 0, with a utility of 60.
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MCMC Sampling Algorithms: Markov Chain Monte Carlo (MCMC) sam-
pling algorithms are commonly used to solve the Maximum A Posteriori (MAP)
estimation problem. Recently, Nguyen et al. [19] have shown that DCOPs can
be mapped to MAP estimation problems, allowing the use of MCMC algorithms
to solve DCOPs. However, this mapping assumes that the constraint utilities
are bounded, as they are normalized into distribution functions that MCMC
algorithms aim to approximate. Therefore, MCMC algorithms cannot be used
to solve DCOPs with hard constraints. Let us describe two popular MCMC
algorithm—Gibbs [6] and Metropolis-Hastings [8,17].

Suppose we have a joint probability distribution π(z) over n variables, z=
z1, z2, . . . , zn, that we would like to approximate. Moreover, suppose that it is
easy to evaluate π(z) for any given z up to some normalizing constant Zπ,
such that: π(z) = 1

Zπ
π̃(z), where π̃(z) can be easily computed but Zπ may be

unknown. In order to draw the samples z to be fed to π̃(·), we use a proposal
distribution q(z|z(τ)), from which we can easily generate samples, each depending
on the current state z(τ) of the process. The latter can be interpreted as saying
that when the process is in the state z(τ), we can generate a new state z from
q(z | z(τ)). The proposal distribution is thus used to generate a sequence of
samples z(1), z(2), . . ., which forms a Markov chain.

Algorithm 1 shows the pseudocode of the Metropolis-Hastings algorithm. It
first initializes z(0) to any arbitrary value of the variables z1, . . . , zn (Line 1).
Then, it iteratively generates a candidate z∗ for z(t) by sampling from the pro-
posal distribution q(z∗ | z(t−1)) (Line 3). The candidate sample is then accepted
with probability p (Line 4). If the sample is accepted, then z(t) = z∗, otherwise
z(t−1) is left unchanged. This process continues for a fixed number of iterations
or until convergence [25] is achieved.

The Gibbs sampling algorithm is a special case of the Metropolis-Hastings
algorithm, where Line 3 is replaced by Lines 5–6. Additionally, note that Gibbs
requires the computation of the normalizing constant Zπ while Metropolis-
Hasting does not, as the calculation of the proposal distribution does not require
that information. This is desirable when the computation of the normalizing con-
stant becomes prohibitive (e.g., with increasing problem dimensionality). In this
paper, we describe how one could parallelize the operations of MCMC sampling
algorithms using GPU hardware.

GPUs: Modern Graphics Processing Units (GPUs) are multiprocessor devices,
offering thousands of computing cores to support graphical processing. In this
paper, we use the Compute Unified Device Architecture (CUDA) programming
model proposed by NVIDIA [26], which enables the use of the multiple cores of
a graphic card to accelerate general (non-graphical) applications by providing
programming models and APIs that enable the full programmability of the GPU.
The underlying model of parallelism supported by CUDA is Single-Instruction
Multiple-Thread (SIMT), where the same instruction is executed by different
threads that run on identical cores, while data and operands may differ from
thread to thread.
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A typical CUDA program is a C/C++ program that includes parts meant
for execution on the CPU (referred to as the host) and parts meant for par-
allel execution on the GPU (referred as the device). A parallel computation is
described by a collection of kernels, where each kernel is a function to be exe-
cuted by several threads. To facilitate the mapping of the threads to the data
structures being processed, threads are grouped in blocks, and have access to
several memory levels, each with different properties in terms of speed, organi-
zation (e.g., multiple banks that can be concurrently accessed), and capacity.
Each thread stores its private variables in very fast registers. Threads within a
block can communicate by reading and writing a common area of memory (called
shared memory). Communication between blocks and communication between
blocks and the host (i.e., the CPU) is realized through a large (but slow) global
memory.

3 Distributed MCMC Framework

We now describe our Distributed MCMC (DMCMC) framework, which extends
centralized MCMC sampling algorithms and DPOP. At a high level, its opera-
tions are similar to those of DPOP, except that the computation of the utility
tables sent by agents during the UTIL phase is done by sampling with GPUs.
Notice that the computation of each row in a utility table is independent of the
computations in the other rows. Thus, DMCMC exploits this independence and
samples the values in each row in parallel.

Algorithm 2 shows the pseudocode of DMCMC for an agent ai. It takes as
inputs R, the number of sampling runs to perform from different initial value
assignments, and S, the number of sampling trials. Like DPOP, DMCMC also
exhibits three phases. The first phase is identical to that of DPOP (Line 7). In
the second phase:

• Each agent ai calls GPU-Initialize() to set up the GPU kernel specifics (e.g.,
number of threads and amount of shared memory to be assigned to each block,
and to initialize the data structures on the GPU device memory) (Line 8). The
GPU kernel settings are decided according to the shared memory requirements
and the number of registers used by the successive function call, in order to
maximize the number of blocks that can run in parallel—this step can be
automated.

• Each agent ai, in parallel, calls GPU-MCMC-Sample() which performs the
local MCMC sampling process to compute the best utility and the correspond-
ing solution (value assignments for all non-interface local variables xj

i ∈ Li\Bi)
for each combination of values of the interface variables xk

i ∈ Bi (Line 9). This
computation process is done via sampling with GPUs and the results are then
transferred from the device to the host (Line 10). In our example in Fig. 1,
agent a3 determines that its best utility is 20 if its interface variable x6 = 0,
and 8 if x6 = 1. This utility table is stored in UTILai

. Note that all the
agents call this procedure immediately after the pseudo-tree is constructed. In
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Algorithm 2. DMCMC(R,S)
7 Generate pseudo-tree
8 GPU-Initialize( )

9 〈M1
i , U1

i 〉, . . . ,〈MR
i , UR

i 〉←GPU-MCMC-Sample(R, S)

10 UTILai ← Get-Best-Sample(〈M1
i , U1

i 〉, . . . , 〈MR
i , UR

i 〉)
11 if Ci = ∅ then
12 UTILai ← CalcUtils( )
13 Send UTIL message (ai,UTILai) to Pi

14 Activate UTILMessageHandler(·)
15 Activate VALUEMessageHandler(·)
Procedure VALUEMessageHandler(ak,VALUEak

)
16 VALUEai ← VALUEak

17 for xj
i ∈ Li do dj∗

i ← ChooseBestValue(VALUEai) ;
18 for ac ∈ Ci do

19 VALUEai ← {(xj
i , d

j∗
i ) | xj

i ∈ sep(ac)} ∪ {(xk, d∗
k) ∈ VALUEak | xk ∈ sep(ac)}

20 Send VALUE message (ai,VALUEai) to ac

contrast, agents in DPOP compute the best utility only after receiving UTIL
messages from all children agents.

• Each agent ai computes the utilities for the constraints between its interface
variables and variables in its separator, joins them with the sampled utilities
(Line 12), and sends them to its parent (Line 13). The agent repeats this
process each time it receives a UTIL message from a child (Lines 20–27).

At the end of the second phase (Line 23), like in DPOP, the root agent will
know the overall utility for each combination of values of its variables xj

i ∈
Bi. It chooses its best value combination that results in the maximum utility
(Line 25), and starts the third phase by sending to each child agent ac the values
of variables xj

i ∈ sep(ac) that are in the separator of the child (Lines 26–28).
The MessageHandlers of Lines 14 and 15 are activated for any new incoming
message.

3.1 GPU Data Structures

In order to fully capitalize on the parallel computational power of GPUs, the data
structures need to be designed in such a way to limit the amount of information
exchanged between the CPU host and the GPU devices. Each DMCMC agent
stores all the information it needs in the GPU global memory. This allows each
agent running on a GPU device to communicate with the CPU host only once,
which is at the end of the sampling process, to transfer the results. Each agent
ai maintains the following information:

• Its local variables Li ⊆ X (including its interface variables Bi ⊆ Li).
• The domains of its local variables, Di (assumed to have all equal size for

simplicity).
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Procedure UTILMessageHandler(ak,UTILak
)

21 Store UTILak

22 if received UTIL message from each child ac ∈ Ci then
23 UTILai ← CalcUtils( )
24 if Pi = NULL then

25 for xj
i ∈ Li do dj∗

i ← ChooseBestValue(∅) ;
26 for ac ∈ Ci do

27 VALUEai ← {(xj
i , d

j∗
i ) | xj

i ∈ sep(ac)}
28 Send VALUE message (ai,VALUEai) to ac

29 else Send UTIL message (ai,UTILai) to Pi ;

Function CalcUtils( )
30 UTILsep ← utilities for all value comb. of xi ∈ Bi ∪ sep(ai)
31 UTILai ← Join(UTILai ,UTILsep,UTILac) for all ac ∈ Ci

32 UTILai ← Project(ai,UTILai)
33 return UTILai

• A matrix Mi of size |Di||Bi| × |Li|, where the j-th row is associated with
the j-th permutation of the interface variable values, in lexicographic order,
and the k-th column is associated with the k-th variable in Li. The matrix
columns associated with the local variables in Li are initialized with random
value assignments in [0, |Di|−1]. At the end of the sampling process it contains
the converged domain values of the local variables for each value combination
of the interface variables.

• A vector Ui of size |Di||Bi|, which stores the utilities of the solutions in Mi.
• The local constraint graph Gi, which includes the constraints in Fi.

The GPU-Initialize() procedure of Line 8 stores the data structures above for
each agent on its CUDA device. All the data stored on the GPU devices is orga-
nized in mono-dimensional arrays, so as to facilitate coalesced memory accesses.
The set of local variables Li are ordered, for convenience, in lexicographic order
and so that the interface variables Bi are listed first.

3.2 Local Sampling Process

The GPU-MCMC-Sample procedure of Line 9 is the core of the local sampling
algorithm, and can be performed by any MCMC sampling method. It executes
S sampling trials for the subset of non-interface local variables Li \ Bi of agent
ai. Since the MCMC sampling procedure is stochastic, we can run R parallel
sampling processes with different initial value assignments and take the best
utility and corresponding solution across all runs. Each parallel run is executed
by a group of CUDA blocks. Independent operations within each sample are also
exploited in parallel using groups of threads within each block. For example, the
proposal distribution adopted by Gibbs is computed using |Di| parallel threads.
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Procedure GPU-MCMC-Sample(R,S)
34 〈z, z∗, [q, Zπ], Gi〉 ← AssignSharedMem()
35 rid ← the thread’s row index of Mi

36 z
|Li|
⇔ Mi[rid]

37 〈z∗, util∗〉 ← 〈z, ∑fj∈Fi
fj(z|xfj )〉

38 for t = 1 to S do

39 z
k

⇔ sample(q(z | z(t−1))) w/ prob. min{1, π̃(z)

π̃(z(t−1))
}

40 util ← ∑
fj∈Fi

fj(z|xfj )

41 if util > util∗ then 〈z∗, util∗〉 ← 〈z, util〉 ;

42 〈MR
i [rid], UR

i [rid]〉 ← 〈z∗, util∗〉

Figure 3 illustrates the different parallelizations performed by the GPU-MCMC-
Sample process with Gibbs.

Fig. 3. Parallelization illustration

The general GPU-MCMC-Sample
procedure is shown in Lines 34–42 and

we use the symbols ← and
k

⇔ to denote
sequential (single thread) and paral-
lel (k threads) operations, respectively.
We also denote with n the size of the
state z being sampled, with n = |Li|−
|Bi|. The function takes in as inputs
the number of desired sampling tri-
als S and the number of parallel sam-
pling runs R. It first assigns the shared
memory allocated to the arrays z and z∗, which are used to store the current and
best sample of value assignments for all local variables, respectively; the local
constraint graph Gi; and, if the MCMC sampling algorithm requires computing
the normalization constant of the proposal distribution explicitly, the array q and
Zπ, which are used to store the probabilities for each value of the non-interface
local variables and the normalization constant, respectively (Line 34).

Each thread identifies its row index rid of the matrix Mi, initializes its sample
with the values stored in Mi[rid], calculates the utility for that sample, and
stores the initial sample and utility as the best sample and utility found so far
(Lines 35–37). It then runs S sampling trials, where in each trial, it samples
a new state z from a proposal distribution q(z | z(t−1)) and updates that state
according to the accept/reject probabilities described in the MCMC background
(Line 39).

The proposal distribution q and the accept/reject probabilities depend on
the choice of MCMC algorithm. We now describe them for Metropolis-Hasting
and Gibbs.

• Metropolis-Hastings: The proposal distribution that we adopt is a multi-
variate normal distribution q∼N (μ,Σ), with μ being a n-dimensional vector
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Procedure CUDA Gibbs Proposal Distribution Calculation
43 did ← the thread’s value index of Di

44 for k = |Bi| to |Li| − 1 do

45 q[did]
|Di|
⇔ exp

[∑
fj∈Fi

fj(z|xfj )
]

46 Zπ ← ∑|Di|−1
i=0 q[i]

47 q[did]
|Di|
⇔ q[did] · 1

Zπ

48 z ← sample(q(z | z(t−1)))

of mean values, whose elements μ
(t)
j have the value of the corresponding com-

ponent in the previous sample z
(t−1)
j and Σ is the covariance matrix defined

with the only non-zero elements being their diagonal ones and set to be all
equal to

√
Di. We compute the proposal distribution q using n parallel threads.

The proposal distribution for Metropolis-Hastings is symmetric and, thus, the
accept/reject probabilities are simplified as shown in Line 39.

• Gibbs: For Gibbs, Line 39 needs to be replaced with Lines 43–48. Gibbs
sequentially iterates through all the non-interface local variable xk ∈ Li \ Bi

and computes in parallel the probability q[did] of each value did according to
the equation:

q(xk =did | xl ∈ Li \ {xk}) =
1

Zπ
exp

∑

fj∈Fi

fj(z|xfj )

where z|xfj is the set of value assignments for the variables in the scope of
constraint fj , and Zπ is the normalizing constant. We compute q using |Di|
parallel threads.

To ensure that the procedure returns the best sample found, we verify whether
there is an improvement on the best utility (Lines 40–41). At the end of the
sampling trials, it stores its best sample and utility in the rid-th row in the
matrix Mi and vector Ui, respectively (Line 42).

4 Theoretical Properties

We now relate the quality of DCOP solutions to MCMC sampling strategies,
and provide some complexity analyses of the DMCMC algorithms.

Let us first introduce some background on Markov Chains and on the struc-
tural properties that they need to satisfy to guarantee convergence to a station-
ary distribution.

Let Z=(z0, z1, . . . , zt, . . .), with zt ∈ D ⊆ R be a Markov chain with finite
state space S= {s1, s2, . . . , sL} and a L × L transition matrix T whose entries
define the probability of transitioning from one state to another as P (zt+1 =
sj | zt = si) = Tij .

The Markov chain Z converges to a stationary distribution if it is irreducible
and aperiodic. These two concepts are introduced as follows.
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Definition 3 (Irreducibility). A Markov chain is irreducible if it is possible to
reach any state from any other state using only transitions of positive probability.
That is, ∀si, sj ∈ S,∃m < ∞ : P (zt+m = sj |zt = si) > 0 for a given instance t.

Definition 4 (Periodicy). A state si ∈ S has a period k if any return of the
chain in it is possible with multiple of k time steps. The period of a state is
defined as k = gcd{t : P (zt = si | z0 = si) > 0}, where gcd is the greatest
common divisor. A state is said to be aperiodic if k = 1, that is, visits of the
Markov chain to such state (i.e., P (zt = si | z0 = si) > 0) can occur at irregular
times. A Markov chain is said to be aperiodic if every state in S is aperiodic.

Note that for an irreducible Markov chain, if at least one state is aperiodic, then
the whole Markov chain is aperiodic.

We now provide bounds on convergence rates for the DMCMC algorithms
based on MCMC sampling.

Definition 5 (Top αi-Percentile Solutions). For an agent ai the top αi-
percentile solutions Sαi

is a set containing solutions for the local variables Li

that are no worse than any solution in the supplementary set Di \ Sαi
, and

|Sαi|
|Di| = αi. Given a list of agents a1, . . . , am, the top ᾱ-percentile solutions Sᾱ

is defined as Sᾱ = Sα1 × . . . × Sαm
.

Property 1. After Ni = 1
αiεi

samples with an MCMC algorithm T , the probability
that the best solution found thus far zNi

is in the top αi for an agent ai is at
least 1 − εi:

PT

(

zNi
∈ Sαi

| Ni =
1

αi · εi

)

≥ 1 − εi.

Definition 5 and Property 1 are introduced by Nguyen et al. [19] and can be
generalized to any MCMC sampling algorithm whose Markov chain generated
is irreducible and aperiodic as convergence is guaranteed in a finite number of
time steps.

Theorem 1. Given m agents a1, . . . , am ∈ A, and a number of samples Ni =
1

αi·εi
(i = 1, . . . , m), the probability that the best complete solution found thus

far zN is in the top ᾱ-percentile is greater than or equal to
∏m

i=1(1 − εi), where
N =

∧m
i=1 Ni. In other words,

PT (zN ∈ Sᾱ |N) ≥
m∏

i=1

(1 − εi).

Proof. Let zN denote the best solution found so far in the process resolution and
zNi

denote the best partial assignment over the variables held by agent ai found
after Ni samples. Let Si be a random variable describing whether zNi

∈ Sαi
.

Thus:
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PT(zN ∈ Sᾱ |N) (1a)
= PT(zN ∈ Sᾱ |N1, . . . ,Nm) (1b)
= PT(zN ∈ Sα1 × . . . × Sαm

|N1, . . . ,Nm) (1c)
= PT(S1, . . . ,Sm |B1, . . . ,Bm,N1, . . . ,Nm) (1d)

where each Bi (i=1, . . . , m) is a random variable describing a particular value
assignment associated to the interface variables Bi for the agent ai. They are
introduced to relate each of the zNi

to each other, which are sampled indepen-
dently.

Since the values sampled in the local variable of ai are dependent only of the
values of the interface values Bi, it follows that Si is conditionally dependent of
Bi but conditionally independent of all other Bj , with j = i:

Si ⊥⊥ Bj | Bi

for all j = 1 . . . m and j = i. Noticing that, given random variables a, b, c,
whenever a ⊥⊥ b | c we can write: P (a | b, c) = P (a | c), and that P (a, b | c) =
P (a | b, c), it follows that Eq. (1d) can be rewritten as:

PT(S1 |B1,N1) · . . . · PT(Sm |Bm,Nm)
= PT(zN1 ∈ Sα1 |B,N) · . . . · PT(zNm ∈ Sαm

|B,N) (2a)
≥ (1 − ε1) · . . . · (1 − εm) (2b)

=
m∏

i=1

(1 − εi). (2c)

for any of the assignments of the variables in Bi, as the utility functions involving
variables in the interface of any two agents are solved optimally. �

Theorem 2. The number of messages required by DMCMC is O(|A|).
Proof. DMCMC agents exchange |A|−1 UTIL messages (one through each tree-
edge) and |A|−1 VALUE messages. Thus, the total number of messages required
by the algorithm is O(|A|). �

Note that, unlike DPOP, which requires O(|X |) messages, no message exchange
is required to solve the constraints defined over the scope of the local variables
each agent, which is achieved via local sampling.

Theorem 3. The memory complexity of each DMCMC agent ai ∈ A is
O(|Di||Si\Bi|), where Si = {x|x ∈ sep(ai) ∧ α(x) �

T
ai ∧ ∃f ∈ F .x ∈

xf ∧ xf ∩ Bi = ∅}, is the set of the ancestors agent’s variables in its separa-
tor which are involved in a constraint with some variable in Bi.

Proof. Each agent ai ∈ A needs to store its own utilities and the corresponding
solution (value assignment for all non-interface local variables xj

i ∈ Li \ Bi) for
each combination of values of the interface variables xk

i ∈ Bi, thus requiring
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O(|Di||Bi|) space. Moreover during the UTIL propagation phase, each agent
ai stores the UTIL messages of each of its children ac ∈ Ci, which also sends
messages of size O(|Di||Sc\Bc|). Joint and projection operations can be performed
efficiently within O(|Di||Si\Bi|) space. Thus the memory complexity of each agent
is exponential in its induced width, O(|Di||Si\Bi|). �

One can bound the maximum message size and serialize large messages by
letting the backedge handlers ask explicitly for solutions and utilities for a subset
of their values sequentially. Moreover, one could reduce the memory requirements
at cost of sacrificing completeness, by propagating solutions for a bounded set
of value combinations rather than all combination of values of the interface vari-
ables. Several approaches have been proposed to reduce the memory requirement
of DPOP [3,22,23].

5 Related Work

To the best of our knowledge, there are only two sampling algorithms developed
to solve DCOPs thus far, namely DUCT [20] and Distributed Gibbs [19]. DUCT
is a distributed version of the UCT algorithm [9]. It maintains and uses upper
confidence bounds on each value of a variable to determine which value to choose
during the sampling process. It updates the bounds to make them more informed
after each sampling trial.

Like DMCMC (with Gibbs as the MCMC algorithm), Distributed Gibbs is
also a distributed version of Gibbs. However, Distributed Gibbs uses different
communication protocols and computation procedures, which results in slow
convergence due to high network load requirements [19]. More specifically, Dis-
tributed Gibbs performs the Gibbs sampling process on the entire space of all
variables (i.e., in each sampling trial, it assigns a value to each variable sequen-
tially until all variables are assigned a value), while DMCMC performs multiple
sampling processes in parallel, one for each subset of local variables of an agent.
As a result, DMCMC is able to better exploit the parallel processes with the use
of GPUs.

6 Experimental Results

We implemented CPU and GPU versions of the DMCMC framework with Gibbs
(Gibbs) and Metropolis-Hastings (MH) as the MCMC sampling algorithms. The
CPU versions sample sequentially, while the GPU versions sample in parallel
with GPUs. We compare them against DPOP [21] (an optimal algorithm), MGM
and MGM2 [15] (sub-optimal algorithms). We use publicly-available implementa-
tions of these algorithms, which are implemented in the FRODO framework [14].
We run our experiments on a Intel(R) Xeon(R) CPU, 2.4 GHz, 32 GB of RAM,
Linux x86 64, equipped with a Tesla C2075, 14SM, 448-core, 1.15 clock rate,
CUDA 2.0. Note that we do not parallelize at the level of CPU cores, thus the
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number of cores in the CPU is immaterial. We measure the algorithms’ run-
time using the wall clock (wct) and the simulated time (st) [29] metrics, and
perform evaluations on random graphs and meeting scheduling problems. All
reported results are averaged among 100 runs. The underlying constraint graphs
are generated as follows: We create an n-node network, whose local constraint
graphs density p�

1 produces �|Li|(|Li| − 1)p�
1� edges among the local variables of

each agent ai, and whose (global) density pg
1 produces �b(b− 1)pg

1� edges among
non-local interface variables, where b is the total number of interface variables
of the problem. All constraints utilities are randomly chosen from the interval
[1, 1000].

We first evaluate the effect of the initial parameters R and S for our DMCMC
algorithms in a setting in which DPOP could terminate its execution, and thus
report its (optimal) solution. We fix the number of agents to 5, the number of
local variables for each agent to 10, their domain sizes to 10, and the graph
densities pg

1 = p�
1 = 0.5. Figure 4(left) illustrates the runtime (in seconds) for

the CPU and GPU implementations of our DMCMC algorithms for a range
of the initial parameters R ∈ [1, 100] and S ∈ [10, 10000]. These results shows
that there is a clear benefit to parallelize the sampling operations with GPUs,
exhibiting more than one order of magnitude speed up.

In the rest of the experiment, we show the GPU version only. Figure 4(right)
reports the ratio of the quality of the solutions returned by Gibbs and MH at
varying of the parameters S and R, over that returned by DPOP. Additionally,
we report the average (solid line) and variance (dotted lines) solution qual-
ity returned by MGM2. We observe that the prediction quality increases with
increasing R and T . Gibbs is slower than MH, as it requires the computation
of the normalization constants, which are computationally expensive even when
parallelized. However, Gibbs finds better solutions than MH. Additionally, Gibbs
finds better solutions than MGM2 for S > 20, and MH finds solutions whose
quality is comparable to those returned by MGM2.

Next, we evaluate our algorithms at varying of several problem parameters
on meeting scheduling problems. In these problems, meetings need to be sched-
uled between members of a hierarchical organization, (e.g., employees of a com-
pany; students, faculty members, and staff of a university), taking restrictions
in their availability as well as their priorities into account. We used the Private
Events as Variables (PEAV) problem formulation, which is commonly used in
the literature, where the variables model the meetings, their domains are the
time slots when they can be held, and the constraints are between meetings
that share participants [16]. In our experiments, we vary the number of agents
|A| = {5, 10, 25, 50}, the number of variables |Xi| = {5, 10, 25, 50} of each agent
ai, the domain size |Di| = {12, 24, 48, 96} of each variable xi, the density of
the local constraint graph p�

1 = {0.25, 0.5, 0.75, 1.0} of each agent ai. For each
of the experiments below, we vary only one parameter and fix the rest in their
“default” values: |A| = 10, |Xi| = 10, |Di| = 24, p�

1 = 0.5. We set the number of
samples for the D-MCMC algorithms to 100.
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Fig. 4. Experimental results: random graph instances

Table 1 reports the runtime (in seconds) and solution qualities for all algo-
rithms, where oot indicates that the algorithm timed out after 5 min of wall-clock
time. The best runtimes and solution qualities are shown in bold. We make the
following observations:

• In all parameter settings, DMCMC with Gibbs finds better solutions than
MGM and MGM2. Additionally, while the runtime for GibbsCPU are compa-
rable to those of MGM and MGM2, GibbsGPU found those solutions by one
order of magnitude faster than MGM and MGM2.

• The solutions quality reported by DMCMC with MH are comparable to those
reported by MGM and MGM2, and MHGPU is at least one, and up to two
order of magnitude times faster than MGM and MGM2.

• The GPU versions of our DMCMC algorithms are in general up to one order
of magnitude faster than their CPU counterparts, and up to two orders when
the local problem size increases. This result indicates that the GPUs can take
advantage of the inherent parallelism present in the algorithm as a result of
the partitioning of the problem into independent subproblems.

• Finally, for the problems for which DPOP successfully terminated within the
time limit, we could measure the error in the quality of solutions found by
DMCMC with Gibbs, which is only up to 5 %.

Due to the unavailability of a public implementation, we did not compare
our approaches against DUCT, however, Nguyen et al. [19] showed that DPOP
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Table 1. Experimental results: meeting scheduling problems

|A| 5 10 25 50

wct st quality wct st quality wct st quality wct st quality

DPOP 125.39 94.98 1661 oot oot - oot oot - oot oot -

MGM 7.435 0.435 1379 11.910 0.446 2766 24.211 0.417 6692 45.771 0.462 13802

MGM2 8.939 0.979 1389 23.903 1.526 2783 56.035 1.629 7116 112.54 1.788 14145

GibbsCPU 6.146 1.101 1638 12.093 1.190 3.319 31.031 1.347 8344 62.411 1.489 16577

GibbsGPU 0.162 0.033 1635 0.301 0.034 3338 0.708 0.041 8344 1.416 0.048 16550

MHCPU 0.561 0.113 1131 1.091 0.121 2775 2.281 0.176 6921 3.921 0.185 12112

MHGPU 0.047 0.014 1143 0.102 0.016 2663 0.196 0.017 6925 0.360 0.022 11856

|Xi| 5 10 25 50

wct st quality wct st quality wct st quality wct st quality

DPOP 6.720 0.668 1136 oot oot - oot oot - oot oot -

MGM 5.260 0.242 947 11.910 0.446 2766 46.861 1.581 11652 180.05 5.749 35972

MGM2 8.701 0.602 941 23.903 1.526 2783 184.63 9.477 11889 oot oot -

GibbsCPU 2.336 0.489 1115 12.093 1.190 3319 182.68 2.446 13811 oot oot -

GibbsGPU 0.098 0.014 1104 0.301 0.34 3338 1.896 0.368 13874 12.707 1.384 42124

MHCPU 0.351 0.048 986 1.091 0.121 2775 4.982 0.879 9850 56.077 6.506 33114

MHGPU 0.050 0.011 972 0.102 0.016 2663 0.146 0.022 9716 0.489 0.046 32405

|Di| 12 24 48 96

wct st quality wct st quality wct st quality wct st quality

DPOP 22.230 9.996 1332 oot oot - oot oot - oot oot -

MGM 11.300 0.222 1077 11.910 0.446 2766 13.317 0.560 6133 18.177 1.106 13058

MGM2 19.723 0.541 1134 23.903 1.526 2783 53.972 5.314 6660 148.40 10.954 13866

GibbsCPU 3.348 0.530 1323 12.093 1.190 3319 51.669 5.716 7343 200.53 21.546 16769

GibbsGPU 0.214 0.029 1319 0.301 0.034 3338 0.763 0.090 7357 3.149 0.364 16278

MHCPU 0.321 0.047 1086 1.091 0.321 2775 2.030 0.712 6135 6.081 1.306 12277

MHGPU 0.051 0.010 1102 0.102 0.016 2663 0.159 0.041 6147 0.218 0.146 12189

p�
1 0.25 0.50 0.75 1.00

wct st quality wct st quality wct st quality wct st quality

DPOP 10.850 0.885 2305 oot oot - oot oot - oot oot -

MGM 8.037 0.231 1835 11.910 0.446 2766 16.124 0.435 3342 19.832 0.605 3974

MGM2 12.908 0.708 1906 23.903 1.526 2783 47.258 2.554 3364 46.270 3.035 4091

GibbsCPU 7.991 0.981 2.269 12.093 1.190 3319 19.004 2.347 4032 25.691 2.821 4751

GibbsGPU 0.216 0.024 2300 0.301 0.034 3338 0.389 0.043 4074 0.451 0.053 4706

MHCPU 0.775 0.101 1983 1.091 0.121 2775 1.225 0.135 3454 1.491 0.179 3921

MHGPU 0.090 0.013 1931 0.102 0.016 2663 0.170 0.021 3458 0.215 0.027 3814

outperforms DUCT especially when the problem sizes are small. In contrast, our
approach consistently outperforms DPOP even on small problems. Additionally,
they show that Distributed Gibbs [19] requires a large number of iterations to
converge since it is estimating the joint distribution of the entire problem. In
contrast, our MCMC framework with Gibbs requires a much smaller number
of iterations, since it is only estimating the joint distribution of agent’s local
variables.
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7 Conclusions

Our work is motivated by several factors: (i) the assumption in most DCOP
algorithms that each agents owns exactly one variable; (ii) the recent introduc-
tion of sampling-based DCOP algorithms, which have been shown to outperform
existing incomplete DCOP algorithms; and (iii) the advances in GPUs. These
combination of factors provides a unique opportunity for us to harness the power
of parallel computation of GPUs to solve general DCOPs with multiple variables
per agent. In this paper, we introduce the Distributed MCMC framework, which
decomposes a DCOP into independent sub-problems that can each be sampled
in parallel by GPUs. Our experimental results show that it can find good solu-
tions up to one order of magnitude faster than MGM and MGM2. These results
demonstrate the potential for using GPUs to scale up DCOP algorithms, which
is exciting as GPUs provide access to thousands of computing cores at a very
affordable cost. While the description of our solution focuses on DCOPs, our
approach is also suitable to solve WCSPs. In the future, we plan to explore this
direction, as well as extending the proposed framework to reduce its memory
requirement similar to MB-DPOP [23].
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