
A Filtering Technique for Fragment Assembly-
based Proteins Loop Modeling with Constraints

F. Campeotto1,2, A. Dal Palù3, A. Dovier2, F. Fioretto1, and E. Pontelli1

1 Dept. Computer Science, New Mexico State University
2 Depts. Math. & Computer Science, University of Udine

3 Dept. Mathematics, University of Parma

Abstract. Methods to predict the structure of a protein often rely on
the knowledge of macro sub-structures and their exact or approximated
relative positions in space. The parts connecting these sub-structures are
called loops and, in general, they are characterized by a high degree of
freedom. The modeling of loops is a critical problem in predicting pro-
tein conformations that are biologically realistic. This paper introduces a
class of constraints that models a general multi-body system; we present
a proof of NP-completeness and provide filtering techniques, inspired by
inverse kinematics, that can drastically reduce the search space of poten-
tial conformations. The paper shows the application of the constraint in
solving the protein loop modeling problem, based on fragments assembly.

1 Introduction

Proteins are macro-molecules of fundamental importance in the way they regu-
late vital functions in all biological processes. In general, there is a direct cor-
respondence between a protein function and its 3D structure—as the structure
guides the interactions among molecules. Thus, proteins structure analysis is
essential for biomedical investigations, e.g., drug design and protein engineering.

The natural approach of investigating protein conformations through simu-
lations of physical movements of atoms and molecules is, unfortunately, beyond
the current computational capabilities [23, 3, 26]. This has originated a variety of
alternative approaches, many based on comparative modeling—i.e., small struc-
tures from related protein family members are used as templates to model the
global structure of the protein of interest [24, 19, 34, 28, 25]. In these methods,
named fragments assembly, a protein structure is assembled by using small pro-
tein subunits as templates that present similarities (homologous affinity) w.r.t.
the target sequence. The literature has also demonstrated the strength of Con-
straint Programming (CP) techniques in investigating the problem of protein
structure prediction—where constraints are used to model the structural vari-
ability of a protein [1, 2, 8, 9].

In this paper, we model the problem of assembling rigid fragments as a global
constraint. We abstract the problem as a general multi-body system, where each
composing body is constrained by means of geometric properties and it is re-
lated to other bodies through joint relationships. This model leads to the Joined-

Multibody (JM) constraint, whose satisfaction we prove to be NP-complete. Real-
istic protein models require the assembly of hundreds of different body versions,
making the problem intractable. We study an efficient approximated propaga-
tor, called JM filtering (JMf), that allows us to efficiently compute classes of
solutions, partitioned by structural similarity and controlled tolerance for error.

We implement and test the constraint and its propagator in the FIASCO
framework [10]. We demonstrate our approach in addressing the loop modeling
problem, which is a special case of the JM constraint. The goal is to connect
two bodies that have fixed positions in space and that are connected by a se-
quence of highly variable bodies. The loop is characterized by a high degree of
freedom and resembles the inverse-kinematic problem found in robotics, with
some spatial constraints. We demonstrate the strength of the filtering algorithm
in significantly reducing the search space and in aiding the selection of represen-
tative solutions. We compare our results, based on popular benchmark suites, to
other programs specialized on loop modeling, with very encouraging results.

2 Related Work and Background

Loop modeling can be described as a special case of the protein structure pre-
diction problem, where CP has been extensively employed. CP has been used
to provide approximated solutions for ab-initio lattice-based modeling of pro-
tein structures, using local search and large neighboring search [33, 15]; exact
resolution of the problem on lattice spaces using CP, along with with clever
symmetry breaking techniques, has also been investigated [1]. These approaches
solve a constraint optimization problem based on a simple energy function
(HP). A more precise energy function has been used in [8, 11], where infor-
mation on secondary structures (helices, sheets) are taken into consideration.

Fig. 1: Helices with a
loop

Due to the approximation errors introduced by lat-
tice discretization, these approaches do not scale to
medium-size proteins. Off-lattice models, based on the
idea of fragment assembly, and implemented using
Constraint Logic Programming over Finite Domains,
have been presented in [9, 10] and applied not only to
structure prediction but also to other structural anal-
ysis problems—e.g., the tool developed in [9] has been
used to to generate sets of feasible conformations for
studies of protein flexibility [13]. The use of CP to an-
alyze NMR data and the related problem of protein
docking has been studied in [2].

Even when protein structure prediction is realized
using homologous templates, the final conformation
may present aperiodic structures (loops) connecting the known protein segments
on the outer region of the protein, where the presence of the solvent lessens the
restrictions on the possible movements of the structure. These protein regions are
in general not conserved during evolution, and therefore templates provide very

limited statistical structural information. The length of a protein loop is typically
in the range of 2 to 20 amino acids; nevertheless, the flexibility of loops produces
very large, physically consistent, conformation search spaces. Figure 1 depicts
a possible scenario where two macro-structures (two helices) are connected by
a loop—the loop anchors are colored in orange. The loop constraint is satisfied
by the loops connecting the two anchor points. Modeling a protein loop often
imposes constraints in the way of connecting two protein segments. Restrictions
on the mutual positions and orientations (dihedral angles) of the loop anchors
are often present. Such restrictions are defined as the loop closure constraints.

A procedure for protein loop modeling (e.g., [22]) typically consists of 3
phases: sampling, filtering, and ranking. In sampling, a set of possible loop con-
formations is proposed. Ab initio methods (e.g., [31, 17, 21, 35, 14, 16, 36]) and
methods based on templates extracted from structural databases (e.g., [7]) have
been explored. These conformations are checked w.r.t. the loop constraints and
the geometries from the rest of the structure, and the loops that are detected as
physically infeasible, e.g., causing steric clashes, are discarded by a filtering pro-
cedure. Finally, a ranking step—e.g., based on statistical potential energy (e.g.,
DOPE [32], DFIRE [37], or [18])—is used to select the best loop candidate(s).

Loop sampling plays an important role: it should produce structurally di-
verse loop conformations, in order to maximize the probability of finding one
close to the native conformation. Sampling is commonly implemented as a two-
step approach. First, a possible loop candidate is generated, without taking into
account geometric or steric feasibility restrictions—this step usually employs
dihedral angles sampled from structural databases [16]. Afterwards, the initial
structure is altered into a structure that satisfies the loop closure constraints.
Popular methods include the Cyclic Coordinate Descent (CCD) [6], the Self-
Organizing (SOS) algorithm [30], and Wriggling [5]. Multi-method approaches
have also been proposed—e.g., [29] proposes a loop sampling method which com-
bines fragment assembly and analytical loop closure, based on a set of torsion
angles satisfying the imposed constraints.

3 The Joined-Multibody Constraint

A rigid block B is composed of an ordered list of at least three (distinct) 3D
points, denoted by points(B). The anchors and end-effectors of a rigid block B,
denoted by start(B) and end(B), are the two lists containing the first three and
the last three points of points(B). With B(i) we denote the i-th point of the rigid
block B. For two ordered lists of points p and q, we write p_ q if they can be
perfectly overlapped by a rigid translation/rotation (i.e., a roto-translation).

Definition 1 (Multi-body). A multi-body is a sequence S1, . . . , Sn of non-
empty sets of rigid blocks. A sequence of rigid blocks B1, . . . , Bn, is called a rigid
body if, for all i = 1, . . . , n − 1, end(Bi) _ start(Bi+1). A compatible multi-
body is a multi-body where for all pairs of rigid blocks B,B′ ∈

⋃n
i=1 Si and for

all p, q ∈ {start(B), start(B′), end(B), end(B′)} it holds that p_ q.

A rigid body can be seen as one instance of a multi-body that guarantees
the partial overlapping of each two consecutive blocks. The overlapped points
end(Bi) and start(Bi+1) constitute the i-th joint of the rigid body. The number
of rigid bodies “encoded” by a single multi-body is bounded by Πn

i=1|Si|.
Figure 2 provides a schematic representation of a rigid body. The joints

connecting two adjacent rigid blocks are marked by orange rectangles and grey
circles. The points in points(B) of each rigid block are represented by circles.
Each rigid block extends from the first point of a joint to the last point of the
successive joint.

Fig. 2: A schematic representation of a rigid body

A rigid body is defined by the overlap of joints, and relies on a chain of
relative roto-translations of its blocks. Each points(Bi) is therefore positioned
according to the (homogeneous) coordinate system associated to a rigid block
Bi−1. Note that once the reference system for B1 is defined, the whole rigid body
is completely positioned.4 The relative positions of two consecutive rigid blocks
Bi−1 and Bi of a rigid body (2 ≤ i ≤ n) can be defined by a transformation
matrix Ti ∈ R4×4. Each matrix depends on the standard Denavit-Hartenberg
parameters [20] obtained from the start and end of the blocks (c.f., [27] for
details). We denote the product T1 · T2 · . . . · Ti · (x, y, z, 1)T by ∇i(x, y, z).

Let us focus on the matrix T1. The block B1 can be rigidly moved in a
desired position and orientation on the basis of additional spatial constraints
(e.g., the sets A1,A2,A3, E1, E2, E3 in the Def. 2). T1 is a matrix that allows a
roto-translation of B1 in a position fulfilling the additional constraints.

For i = 1, . . . , n, the coordinate system conversion (x′, y′, z′), for a point
(x, y, z) ∈ points(Bi) into the coordinate system of B1, is obtained by:

(x′, y′, z′, 1)T = T1 · T2 · . . . · Ti · (x, y, z, 1)T = ∇i(x, y, z) (1)

Homogeneous transformations are such that the last value of a tuple is always 1.
Note that a modification of the matrix T1 is a sufficient step to place the whole
rigid body into a different start position.

Definition 2 (JM-constraint). The joined-multibody (JM) constraint is de-
scribed by a tuple: J = 〈S,V ,A,E, δ〉, where:

• S = S1, . . . , Sn is a multi-body. Let B = {B1, . . . , Bk} be the set of all rigid
blocks in S, i.e., B =

⋃n
i=1 Si.

• V = V1, . . . , Vn is a list of finite-domain variables. For i = 1, . . . , n, the
variable Vi is associated to a domain dom(Vi) = {j : Bj ∈ Si}.
• A = A1,A2,A3, and E = E1, . . . , E3n are lists of sets of 3D points such that:

4 With the exception of the case where the all points of a joint are collinear.

◦ A1 ×A2 ×A3 is the set of admissible points for start(B), with B ∈ S1;

◦ E3i−2 × E3i−1 × E3i is the set of admissible points for end(B), with B ∈ Si,
i = 1, . . . , n;

• δ is a constant, used to express a minimal distance constraint between dif-
ferent points. Let us assume that for all B ∈ B and for all a, b ∈ points(B), if
a 6= b then ‖a− b‖ ≥ δ (where ‖ · ‖ is the Euclidean norm).

A solution for the JM constraint J is an assignment σ : V −→ {1, . . . , |B|} s.t.
there exist matrixes T1, . . . , Tn (used in ∇) with the following properties:

Domain: For all i = 1, . . . , n, σ(Vi) ∈ dom(Vi).

Joint: For all i = 1, . . . , n− 1, let (a1, a2, a3) = end(Bσ(Vi)) and (b1, b2, b3) =
start(Bσ(Vi+1)), then it holds that (for j = 1, 2, 3):

∇i(ajx, ajy, ajz) = ∇i+1(bjx, b
j
y, b

j
z)

Spatial Domain: Let (a1, a2, a3) = start(Bσ(V1)), then T1 · aj ∈ Aj × {1}.
For all i = 1, . . . , n, let (e1, e2, e3) = end(Bσ(Vi)) then

∇i(ejx, ejy, ejz) ∈ E3(i−1)+j × {1}
where 1 ≤ j ≤ 3 and T2, . . . , Ti (in ∇i) are the matrices that overlap Bσ(Vi−1)

and Bσ(Vi) (the product ×{1} is due since we use homogeneous coordinates).

Minimal Distance: For all j, ` = 1, . . . , n, j < `, and for all points a ∈
points(Bσ(Vj)) and b ∈ points(Bσ(V`)), it holds that:

‖∇j(ax, ay, az)−∇`(bx, by, bz)‖ ≥ δ
A JM constraint is said to be compatible if S1, . . . , Sn is a compatible multi-body.

If there are no joints with the three points aligned, T2, . . . , Tn depend determin-
istically from T1 and σ. Compatible JM constraints are interesting for our target
application. Nevertheless, the additional restriction does not simplify constraint
solving, as we discuss below.

Complexity Analysis. The problem of determining consistency of JM con-
straints (i.e., the existence of a solution) is NP-complete. To prove this fact,
we start from the NP-completeness of the consistency problem of the constraint
Self-Avoiding-Walk (SAW-constraint) in a discrete lattice, proved in [12]. In par-
ticular, we will use the 3D cubic lattice for this problem. Let X = X1, . . . , Xn be
a list of variables. Each variable has a finite domain dom(Xi) ⊆ Z3. σ : X −→ Z3

is a solution of the SAW constraint if:

• For all i = 1, . . . , n: σ(Xi) ∈ dom(Xi),

• For all i = 1, . . . , n− 1: ‖σ(Xi)− σ(Xi+1)‖ = 1,

• For all i, j = 1, . . . , n, i < j, it holds that ‖σ(Xi)− σ(Xj)‖ ≥ 1.

As emerges from the proof in [12], the problem of determine the consistency of a
SAW constraint is NP complete even if the domains of dom(X1) and dom(X2) are
singleton sets. Without loss of generality, we can concentrate on SAW problems
where dom(X1) = {(0, 0, 0)} and dom(X2) = {(0, 1, 0)}—the other cases can be
reduced to this one using a roto-translation.

Theorem 1. The consistency problem for the JM constraint is NP-complete.

Proof (sketch). The proof of membership in NP is trivial; given a tentative solu-
tion, it is easy to test it in polynomial time—the most complex task is building
the rotation matrixes.

(0,0,0)

(0,1,0)

(0,2,0)

(0,3,0)

(0,0,0)

(0,1,0)

(0,2,0)

(0,0,0)

(0,1,0)

(1
,2
,0
)

(2
,1
,0
)

(1
,1
,0
)

(0,0,0)

(0,1,0)

(1
,1
,0
)

(1,0,0) (0,0,0)

(0,1,0) (1,1,0)

(1,2,0)

(0,0,0)

(0,1,0) (1,1,0)

(1,1,1)

(0,0,0)

(0,1,0) (1,1,0)

(1,1,-1)

Fig. 3: Rigid blocks for SAW (from left to right, block 1, . . . , 7)

To prove completeness, let us reduce SAW, with the further hypothesis on
dom(X1) and dom(X2) to JM. Let us consider an instance A = 〈X, dom(X)〉
of SAW with n (n > 3) variables. We define a equi-satisfiable instance B =
〈S,V ,A,E, δ〉 of JM as follows. Let us choose V = V1, . . . , Vn−3. We select
the sets Si of rigid blocks of the multi-body to be all identical, and consisting
of all the (non overlapping) fragments of three contiguous unitary segments of
length 1, starting from (0, 0, 0) and with bends of 0 or 90 degrees. A filtering using
symmetries is made and the blocks are indicated in Fig. 3. For all i = 1, . . . , n−3
we assign the following sets of 3D points to the end-effectors:

E3i−2 = dom(Xi+1) ∩ Z3, E3i−1 = dom(Xi+2) ∩ Z3, E3i = dom(Xi+3) ∩ Z3

Moreover, let A1 = {(0, 0, 0)},A2 = {(0, 1, 0)},A3 = {(0, 2, 0), (1, 1, 0)}. Observe
that all these sets are subsets of Z3 and therefore points of the same lattice of
the SAW problem. Assigning δ = 1, the reduction is complete. It is immediate
to check that SAWs in the 3D lattice and the solutions of the JM constraint
defined via reduction are essentially the same 3D polygonal chain. ut

We have a proof for the NP-completeness of the compatible JM constraint
(in particular, it does not make use of joints made by collinear points), by
reduction from the Hamiltonian path problem in special planar graphs. The
proof is omitted due to lack of space. The interested reader can find it at
http://www.cs.nmsu.edu/fiasco.

4 Filtering algorithm for the joined-multibody constraint

Since checking the satisfiability (and hyper-arc consistency) of the JM constraint
is NP-complete, we studied an approximated polynomial time filtering algorithm.
When dealing with multi-bodies, the computation of the end-effectors’ spatial
domains provides limited filtering information, since it identifies a large volume.

We designed an algorithm (JMf, Algorithm 1) that is inspired by bound-
consistency on the 3D positions of end-effectors. The algorithm uses an equiva-
lence (clustering) relation over these bounds, in order to retain precise informa-
tion about classes of domain variable assignments that produce similar spatial
results. This allows a compact handling of the combinatorics of the multi-body,

while a controlled error threshold allows us to select the precision of the filter-
ing. The equivalence relation captures those rigid bodies that are geometrically
similar and thus compacts small differences among them; relevant gains in com-
putation time can be derived when some errors are tolerated.

Algorithm 1 The JMf algorithm.

Require: S,V ,A,E,G, δ,∼
1: n← |V |

2: R1 ←

B ∈ S1 ∃T1

T1 · start(B) ∈ A1 ×A2 ×A3 ∧
T1 · end(B) ∈ E1 × E2 × E3 ∧
∀p ∈ points(B).∀q ∈ G. ‖(T1 · p)− q‖ ≥ δ)

3: P1 ← {T1 · end(B) | B ∈ R1, T1 as in the line above }
4: dom(V1)← {label(B) | B ∈ R1}
5: for all i = 2, . . . , n do
6: Pi = ∅; Ri = ∅;
7: for all E ∈ Pi−1 do

8: Ri ←Ri ∪

B ∈ Si

T = M(E, start(B)) ∧ T 6= fail ∧
T · end(B) ∈ E3i−2 × E3i−1 × E3i ∧
∀p ∈ points(B).∀q ∈ G. ‖(T · p)− q‖ ≥ δ

9: Pi ← {M(E, start(B)) · end(B) | B ∈ Ri}

10: end for
11: compute Pi/∼ and filter Ri accordingly
12: dom(Vi)← {label(B) | B ∈ Ri}
13: end for

The JMf algorithm receives as input a JM-constraint 〈S,V ,A,E, δ〉, along
with a set G of points that are not available for the placement of bodies (e.g.,
points of other parts of the protein we are studying, points of the loop non-
deterministically assigned by previous calls of the algorithm itself) and an equiv-
alence relation ∼ on the space of triples of 3D points. The algorithm makes use
of a function M (line 8); this function takes as input two lists a and b of 3D
points, and computes the homogeneous transformation to overlap b on a. A call
to this function will fail if a 6_ b. For simplicity, the fourth component (always
1) of the homogeneous transformation is not explicitly reported in the algorithm.

For i = 1, . . . , n, the algorithm computes the sets Ri and Pi, that will re-
spectively contain the blocks from Si that can still lead to a solution, and the
corresponding allowed 3D positions of their end-effectors. These two sets are
strongly related: a data structure linking each block B ∈ Si with the list of
its corresponding possible end-effectors (and vice versa) is used at the imple-
mentation level. For each block B ∈ B, we denote with label(B) a unique label
identifying it; dom(Vi) is therefore the set of the blocks’ labels that can be used
for the variable Vi. The setsRi and Pi are used to determine the domain dom(Vi)
of the variable Vi (lines 4 and 12). In computing/updatingRi and Pi, only blocks
that have end-effectors contained in the bounds E3i−2, E3i−1, E3i are kept. Frag-
ments that would cause points to collapse—i.e., due to a distance smaller than
δ from previously placed points—are filtered out (lines 2 and 8). Moreover, the
spatial positions of the points of the first block are validated against A (line 2).

Fig. 4: Fragments are assembled by overlapping the plane βR, described by the right-
most C′, O,N atoms of the first fragment (left), with the plane βL, described by the
leftmost C′, O,N atoms of the second fragment (right), on the common nitrogen atom

The algorithm performs |V | − 1 iterations (lines 5–13). First Ri and Pi are
computed on the basis of the sets of end-effectors of the previous level Pi−1
and the starting point of a selected block B, filtering out those that are not
overlapping and those that lead to wrong portions of space (lines 8–9). Then,
the ∼-based clustering filtering is applied (line 11). During this step, the set of
triples of 3D points Pi is clustered using ∼. A representative of each equivalence
class is chosen (within Pi). The corresponding block in Ri is marked. All non
marked blocks are filtered out from Ri. Let us also note that the filtering based
on clustering is not performed for the initial step P1, as typically this is already
captured by the restrictions imposed by A.

In our tests, the initial domains A1,A2,A3 are singleton sets (we start from
a rigid block with known end-effectors). Moreover, w.l.o.g., all initial fragments
matching with those three points are rotated in the same reference in our
database, allowing to use a unique T1 for all blocks (lines 2 and 3). We ex-
perimentally verified that avoiding clustering in the first stage allows to sensibly
reduce approximation errors. The filtering algorithm is similar to a directional
arc-consistency, where the global constraint is viewed as a conjunction of bi-
nary constraints between adjacent blocks. Its peculiarity, however, is the use of
representative clustered triples to compactly store the domains.

5 Loop modeling by the joined-multibody constraint

In this section, we use the joined-multibody constraint to model the protein loop
problem. We have implemented the proposed encoding and the constraint solving
procedure, based on filtering Algorithm 1, within FIASCO (Fragment-based
Interactive Assembly for protein Structure prediction with COnstraints) [4].

FIASCO is a C++ tool that provides a flexible environment that allows us to
easily manipulate constraints targeted at protein modeling. These constraints do
not only concern geometric and energetic aspects but, in general, they allow one
to model particular portions of the target protein using arbitrarily long homolog
structures. A protein is modeled through the sequence of its amino acids. The
backbone of each amino acid is represented by all its atoms: N,Cα,C ′, O. A
single point CG is used for representing the side chain, namely the set of atoms
characteristic of each amino acid (Fig. 4). fragment assembly is used to restrict

the allowed spatial positions of consecutive backbone atoms. The final protein
conformation is built by combining fragments, treated as basic assembly units.
A fragment with h ≥ 1 amino acids is the concatenation of 4h + 3 atoms,
represented by the regular expression C ′ O (N Cα C ′ O)h N . The assembling of
two fragments is performed by overlapping the planes βR and βL, determined by
the atoms C ′, O,N ending the first fragment and starting the second fragment
(Fig. 4). The overlapping is made in the N atom in order to best preserve the
torsion angle φ characteristic of the first amino acid of the second fragment. Each
backbone atom is represented by a Point variable, whose initial domain can be
described by a 3D interval [L,U], that identifies the lower and the upper bounds
of a 3D box enclosing the set of possible positions for the atom.5 A second set of
variables (Fragment) is used to maintain the sets of possible fragments that can
be used to model different segments of the protein. The respective domains are
the sets of elements that link the specific protein region modeled by a Fragment

variable to the related Point variables for the atoms in such region. Constraints
are introduced to link the domains of Fragment variables with those of related
Point variables.

Loop Modeling. Let us now build on the core constraints of FIASCO and on
the JM constraint to address the loop modeling problem. The starting point
is a given protein with two known (large) blocks. The model will account for
them in the definitions of sets E (they also allow us to build the set G—see
Algorithm 1). The start of the first block and the end of the last block, namely a
sequence C ′ON (initial anchor) of coordinates a = (a1, a2, a3), and a sequence
C ′ON (final anchor) of coordinates e = (e1, e2, e3) are known, as well as the
sequence x1, . . . , xn of amino acids connecting these two points. Each amino
acid can have different 3D forms, depending on the angles Ψ , Φ and the position
of CG; a statistically pre-computed set of these forms is loaded from a repository
(e.g. www.pdb.org) and a weight depending on its frequency is assigned to each
fragment. Each fragment is identified by an integer label. Loop modeling can be
realized using the joined-multibody constraint J = 〈S,V ,A,E, δ〉 where:

• For i = 1, . . . , n the set Si contains all the fragments associated with the
amino acid xi.

• For i = 1, . . . , n, dom(Vi) is the set of the labels of the fragments in Si.

• The constant δ (now δ = 1.5Å) asserts a minimum distance between atoms.

• For the spatial domains, for j = 1, . . . , 3, we set Aj = {aj} and E3(n−1)+j
is the 3D interval [ej − (dj , dj , dj), e

j + (dj , dj , dj)], where the values dj are
derived from the covalent radii bond distances εN , εO, εC of the specific types
of atoms (specifically, d1 = εN , d2 = d1 + εO, d3 = d2 + εC). We use this slack
for the last 3 points of the loop in order to cushion the error produced during
the clustering step, still obtaining solutions that are geometrically eligible.
For E1, . . . , E3(n−1) we allow a “sufficiently large” box of spatial points. Pre-

cisely, each Ei is the box obtained by enlarging by 4nÅ in all the directions,

5 In the current implementation of FIASCO initial domains can be just boxes.

the box identified by the two points [a, e] (or [e,a]) — 4Å is a rough upper
bound to the distance between two consecutive C ′ in a protein.6

Let us observe that the fragments considered lead to a compatible multi-body
(Def. 1)—thanks to the use of a full-atom description of fragments. A different
level of description of the fragments (e.g., the Cα–Cα modeling used in [9] for
the fragment-assembly approach to the complete protein folding) would not lead
us to a compatible multi-body. Moreover, known larger rigid blocks can be easily
inserted in the modeling in an explicit way in some Si. More loops can be also
modeled simultaneously in this way.

Clustering. The JMf algorithm is parametric w.r.t. the clustering relation and
the function selecting the representative; they both express the degree of approx-
imation of the rigid bodies to be built. The proposed clustering relation for loop
modeling takes into account two factors: (a) The positions of the end-effectors
in the 3D space and (b) The orientation of the planes formed by the fragment’s
anchor βL and end-effector βR (Fig. 4). This combination of clusterings allows to
capture local geometrical similarities, since both spatial and rotational features
are taken into account.

The spatial clustering (a) used is the following. Given a set of fragments, the
three end points C ′ON (end effectors) of each cluster are considered, and the cen-
troid of the triangle C ′ON is computed. We use three parameters: kmin, kmax ∈
N, kmin ≤ kmax, and r ∈ R, r ≥ 0. We start by selecting a set of kmin fragments,
pairwise distant at least 2r. These fragments are selected as representatives of
an equivalence class for other fragments that fall within a sphere of radius r
centered in the centroid of the representative. This clustering ensures a rather
even initial distribution of clusters, however some fragments may not fall within
the kmin clusters. We allow to create up to kmax − kmin new clusters, each of
them covering a sphere of radius r. Remaining fragments are then assigned to
the closest cluster. Other techniques can be employed, the one used allows a fast
implementation and acceptable results.

The orientation clustering (b) partitions the fragments according to their
relative orientation of planes βR, βL (and it can be pre-computed, being inde-
pendent on the roto-translation the fragment will be subject to). Let us observe
that here we consider all four points of a fragment. All fragments are charac-
terized by the normal to the plane βR, assuming that each fragment is already
joined to the previous one. The clustering algorithm guarantees that each cluster
contains fragments that pair-wise have normals with a deviation of at most a
threshold β degrees. This algorithm produces a variable number of partitions
depending on β.

The final cluster is the intersection of the two partitioning algorithms. This
defines an equivalence relation ∼ depending on kmin, kmax, r, and β. The rep-

6 Ei should be intersected with the complement of G (the region of space occupied by
the two known rigid blocks). This kind of domain operation is not yet supported by
FIASCO and therefore the control of this part is handled by Algorithm 1.

resentative selection function selects the fragment for each partition according
to some preferences (e.g., most frequent fragment, closest to the center, etc.).

Note that for r = 0, β = 0, and kmax unbounded, no clustering is performed
and this would cause the combinatorial explosion of every possible end-effector
on the whole problem. The spatial error introduced depends on r and β. With
β = 0, the error introduced at each step can be bound by 2r for each dimension.
At each iteration the errors are linearly increased, since a new fragment is placed
with an initial error gathered from previous iterations, thus resulting in a 2nr
bound for the last end-effector. Clearly this bound is very coarse, and on average
the experimental results show better performances. Similar considerations can
be argued for rotational errors, however the intersection of the two clusterings,
provide, in general, a much tighter bound.

Implementation Details. A pre-processing step clusters “a-priori” the variables’
domains (by means of a first call of the JMf algorithm with G = ∅). The rotational
clustering is made while the fragment databases is computed. This speeds-up the
clustering algorithm during the search, since at that time the spatial clusters can
only be intersected with the ones already computed.

As soon as the domain for the variables related to the initial anchor of a
JM constraint is instantiated, the corresponding constraint is woken up. The
algorithm JMf is invoked with the parameters described above. If there are no
empty domains after this stage, the search proceeds by selecting the leftmost
variable and assigning it a fragment (block) in a leftmost order. All domains are
pre-sorted from the most likely to the least likely for each variable (the previous
stage of filtering preserves the ordering).

6 Experimental Results

We report on the experimental results obtained from a prototype implementation
of the JM constraint, along with its Joined-Multibody filtering algorithm, in the
FIASCO system. The system, protein lists, and some examples are available
at http://www.cs.nmsu.edu/fiasco. Experiments are conducted on a Linux
Intel Core i7 860, 2.5 GHz, memory 8 GB, machine. The proposed method
has been applied to a data set of 10 loop targets for each of the lengths 4,
8, and 12 residues. The targets are chosen from a set of non-redundant X-ray
crystallography structures [6].

We first analyze the performances of JMf filtering by examining the fraction
of the search space explored during solution search. Next, we compare the qual-
ities of the loop conformations generated, by measuring the root mean square
deviation (RMSD) of the proposed loop with respect to the native conformation.
RMSD captures the overall similarity in space of corresponding atoms.

6.1 Filtered search space and performances

For each of the 10 selected proteins with a loop of length n = 4 we compare two
CSPs. The first one enables the JM constraint and the second one disables it

0.05

0.10

0.15

0.20

0.25

●

●

●

●

●

●

●●

●●

●●

●
●

●
●

5 15 30 45 60
β angles

R
so

l

 r
●

●

●

●

0.1 A

1.0 A

5.0 A

10.0 A

●

R
M

S
D

 (
A

n
g

s
tr

ö
m

)

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

NC JMf NC JMf NC JMf

Length 4 Length 8 Length 12

Fig. 5: Ratio of the solutions (left) and RMSD comparison (right)

(simple combinatorial fragment assembly). For both problems we have exhaus-
tively generated (without timeout) all the solutions by means of a constraint-
based search using a classical propagate-labeling schema

The number of fragments in each variable domain is 60—this is an adequate
sampling to describe a reasonable amino-acid flexibility. This increases the like-
lihood to generate a loop structure that is similar to the native one. A loop of
length n generates an exponential search space of size roughly 60n (∼ 1.3 ·107 in
this example). The selected variable is the leftmost one. Fragments are selected
in descending frequency order. We have used different values for r and β, while
kmin and kmax are set to 20 and 100, respectively. In Fig. 5 (left) we show,
for different combinations of clustering parameters, the ratio (Rsol) between the
number of solutions to the CSPs with JM constraint and without it. The size of
the prop-labeling tree and running times decrease with a similar trend.

The adopted parameters for the β angles are reported in the x-axes, while
the r values for the clustering distances are plotted in different colors (10Å is
the lightest color). The white dots represent the average values of all the trials
and the vertical bars illustrate the standard error of the mean: σ√

N
, where σ is

the standard deviation and N is the number of samples. It can be observed that
the number of the solutions generated by the JM constraint decreases as the β
and r values increase, as one can expect.

When the clustering is too inaccurate, for some loop targets no solutions are
found by the JM constraint (e.g., with β = 60 and r = 10.0 for 6 loops out of
10). In Section 6.2 we show that the reduced number of solutions does not affect
the approximate completeness of the search.

Let us analyze the case with longer loops (10 proteins of lengths 8 and 10
of lengths 12) where the set of all possible solutions without using JMf cannot
be computed in reasonable time. In order to estimate the filtering capability, we
build an approximation based on the following algorithm. For i = 1, . . . , n:

• Let us assume we have non-deterministically assigned the variable Vi.

• The variables Vi+1, . . . , Vn have the domains dom(Vj) = dj , for j = i+1, . . . , n.

• We apply the JM filtering algorithm obtaining the new values d′i+1, . . . , d
′
n

• An approximation to the portion of the search space removed at this stage is
computed as:

∏n
j=i+1 dj −

∏n
j=i+1 d

′
j (2).

To compute the search space ξ removed by the propagation of the JM constraint
we sum the values (2) for every node of the search tree visited within the timeout.

Let % = 1 +
∑n
i=1

∏i
j=1 dom(Vj) be the size of the search tree in absence of

constraint propagation. In Figure 6 we report the behavior of %−ξ
% for targets

loops of length 8 and 12, depending on r and β. Let us observe that % is a rough
upper bound of the nodes that really need to be visited (several fragments can
immediately lead to a failure due to spatial constraints) and that allotting more
time for the computations allows further pruning, thus increasing ξ.

10%

20%

30%

40%

50% ●
●

●

●

●

●

●

●
●

●

●
●
●●

●●

5 15 30 45 60
β angles

S
pa

ce
 T

o
E

xp
lo

re
 (

%
)

 r
●

●

●

●

0.1 A

1.0 A

5.0 A

10.0 A

10%

20%

30%

40%

50%

●

●

●

●

●

●
●

●

●

●

●

●

●●

5 15 30 45 60
β angles

S
pa

ce
 T

o
E

xp
lo

re
 (

%
)

 r
●

●

●

●

0.1 A

1.0 A

5.0 A

10.0 A

Fig. 6: Ratio of the search space explored using JMf for 8-loops (left) and 12-loops.

We have set two timeouts: one involving solely the exploration of the prop-
labeling tree, fixed to 600 seconds, and another over the total computation
(search tree exploration and JM propagation), fixed to 2 hours. In every trial
carried out we abort the search due to timeout in exploring the prop-labeling
tree. The space filtered by the JM constraint rises according to the increasing
values of r and β. In the settings proposed, fixing the values of r and β to 10.0
and 60 respectively, the propagation of the JM constraint produces a filtering
over the search space that allows the rest of the search to be carried out merely
on about the 10 % of the original prop-labeling tree. However, as stated above,
this is just an under-estimation of the pruning capability.

6.2 Loop Conformations quality

This section provides some insight about the quality of the solutions that are
retrieved when using the JM constraint. In particular, we show that the quality
in terms of RMSD is not significantly degraded by the large filtering performed
by the propagator. As in the previous subsection, we use as reference for the
comparisons the results from the search with no JM constraint (named NC).
The experiments were carried on with kmin = 20 and kmax = 100, while r and β
are set respectively to 1.0 and 15 for loops of length 4, and 2.5 and 60 for loops of

length 8 and 12. In our analysis, such parameters guarantee a good compromise
between filtering power and accuracy of the results.

In Figure 5 (right), the bottom and top point of each vertical line show the
RMSD of the best and worst prediction, respectively, within the group of targets
analyzed. The results are biased by the fragment database in use: we excluded
from it the fragments that belong to the deposited protein targets. Therefore it
is not possible to reconstruct the original target loop and none of the searched
are expected to reach a RMSD equal to 0. The bottom and top horizontal lines
on each box shows the RMSD of the 25th and 75th percentile prediction, re-
spectively, while the line through the middle shows the median. We observe
no substantial difference in the distributions related to short loop predictions
(length 4), and an improvement for targets of greater size due to time-out. Such
results experimentally show the strength of our method: JM filtering algorithm
removes successfully redundant conformations; moreover, it quickly direct the
search space exploration through predictions that are biologically meaningful.

In Figure 7, we analyze the impact of the kmax on computational times
(left) and precision (right) of the filtering of the JM constraint. The tests are
performed over the protein loops of length 4 adopting as cluster parameters,
r = 1.0, β = 30, kmin = 20. We ignore minimum and maximum values from
each data set to smooth out fluctuations and highlight average trends. Each
dot in the plot represents the outcome of a trial and the grey area denote the
standard error of the mean associated to a particular value of kmax. The RMSD
values tend to decrease as the number of clusters increase, and it stabilizes when
kmax ≥ 500 clusters with a good average value of 0.4Å. As one might expect,
instead, the filtering time increases as kmax increases.

0.4

0.6

0.8

1.0

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

40 100 250 500 750 900
kmax

B
es

t R
M

S
D

 (
A

ng
st

rö
m

)

Best RMSD

●

●

●

●

0.4 A

0.6 A

0.8 A

1.0 A

100

200

300

400

500

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

40 100 250 500 750 900
kmax

JM
f T

im
e

(s
ec

.)

JMf Time

●

●

●

●

●

100 sec.

200 sec.

300 sec.

400 sec.

500 sec.

Fig. 7: Comparison of the best RMSD values (left) and JMf computation times (right)
at varying of the kmax clustering parameter.

6.3 Comparison with other state-of-the-art loop samplers

We also compare our method to three other state-of-the-art loop samplers: the
Cyclic Coordinate Descent (CCD) algorithm [6], the self-organizing algorithm

(SOS) [30], and the FALCm method [29]. Note that our solution does not in-
clude specific heuristics and additional information that are used in the other
programs. Moreover, our database is not tuned for loop prediction: it is built from
any fragment that may appear on a protein (e.g. including helices, β-strands).

Table 1 shows the average RMSD for the benchmarks of length 4, 8 and 12 as
computed by the four programs. We report the results as given in Table 2 of [6]
for the CCD, Table 1 of [30] for SOS, and Table II of [29] for FALCm method,
and the RMSD’s obtained adopting the best settings for JMf. We do not compare
the computational time as they are not provided in the above references. It can
be noted that our results are in line with those produced by the other systems,
even if a general fragment database has been used in our system.

Loop Average RMSD
Length CCD SOS FALCm JMf

4 0.56 0.20 0.22 0.30
8 1.59 1.19 0.72 1.31
12 3.05 2.25 1.81 1.97

Table 1: Comparison of loop sampling methods

7 Conclusions

In this paper, we presented a novel constraint (joined-multibody) to model rigid
bodies connected by joints, with constrained degrees of freedom in the 3D space.
We presented a proof of NP-completeness of the joined-multibody constraint, a
filtering algorithm that exploits the geometrical features of the rigid bodies and
showed its application in sampling protein loop conformations. Feasibility of the
method is shown by performing loop reconstruction tests on a set of loop targets,
with lengths ranging from 4 to 12 amino acids. The search space of the protein
loop conformations generated is reduced with a controlled loss of quality.

The propagator has been presented as a filtering algorithm based on a di-
rectional growth of the rigid body. As future work, we plan to develop a “bi-
directional” search that starts from both end anchors. A preliminary study shows
that the error propagation, due to the clustering relation, can be bounded with
greater accuracy. On the theoretical side, we are interested in proving the NP-
hardness in the case of JM constraint based on compatible multi-bodies.

Following the loop conformation direction, we also plan to tune the fragment
database and to integrate our filtering algorithm method with other refinements
strategies to eliminate infeasible physical loop conformations, (e.g. DFIRE po-
tential [37]), to increase the quality of the loop predictions.

As future work, we also plan to apply our filtering method to other related
applications: protein-protein interaction, protein flexibility and docking studies.
Those systems can be modeled by a set of joined-multibodyconstraints and it
appears promising the possibility to explore a large set of conformations by
representatives enumeration only.

Acknowledgments. The research has been partially supported by a grant from
the Army High Performance Computing Research Center, NSF grants CBET-
0754525 and IIS-0812267, and PRIN 2008 (20089M932N).

References

1. R. Backofen and S. Will. A Constraint-Based Approach to Fast and Exact Struc-
ture Prediction in 3-Dimensional Protein Models. Constraints, 11(1):5–30, 2006.

2. P. Barahona and L. Krippahl. Constraint programming in structural bioinformat-
ics. Constraints, 13(1-2):3–20, 2008.

3. M. Ben-David, O. Noivirt-Brik, A. Paz, J. Prilusky, J. L. Sussman, and Y. Levy.
Assessment of CASP8 structure predictions for template free targets. Proteins,
77:50–65, 2009.

4. M. Best, K. Bhattarai, F. Campeotto, A. D. Palú, H. Dang, A. Dovier, F. Fioretto,
F. Fogolari, T. Le, and E. Pontelli. Introducing FIASCO: Fragment-based In-
teractive Assembly for protein Structure prediction with COnstraints. In Proc.
of Workshop on Constraint Based Methods for Bioinformatics. http://www.dmi.
unipg.it/WCB11/wcb11proc.pdf, 2011.

5. S. Cahill, M. Cahill, and K. Cahill. On the kinematics of protein folding. Journal
of Computational Chemistry, 24(11):1364–1370, 2003.

6. A. Canutescu and R. Dunbrack. Cyclic coordinate descent: a robotics algorithm
for protein loop closure. Protein Sci, 12:963–972, 2003.

7. Y. Choi and C. M. Deane. FREAD revisited: Accurate loop structure prediction
using a database search algorithm. Proteins, 78(6):1431–40, May 2010.

8. A. Dal Palù, A. Dovier, and F. Fogolari. Constraint logic programming approach
to protein structure prediction. BMC Bioinformatics, 5:186, 2004.

9. A. Dal Palù, A. Dovier, F. Fogolari, and E. Pontelli. CLP-based protein fragment
assembly. TPLP, 10(4-6):709–724, 2010.

10. A. Dal Palù, A. Dovier, F. Fogolari, and E. Pontelli. Exploring Protein Fragment
Assembly Using CLP. In T. Walsh, editor, IJCAI, pages 2590–2595. IJCAI/AAAI,
2011.

11. A. Dal Palù, A. Dovier, and E. Pontelli. A constraint solver for discrete lattices,
its parallelization, and application to protein structure prediction. Softw., Pract.
Exper., 37(13):1405–1449, 2007.

12. A. Dal Palù, A. Dovier, and E. Pontelli. Computing approximate solutions of
the protein structure determination problem using global constraints on discrete
crystal lattices. IJDMB, 4(1):1–20, 2010.

13. A. Dal Palú, F. Spyrakis, and P. Cozzini. A new approach for investigating protein
flexibility based on Constraint Logic Programming: The first application in the case
of the estrogen receptor. European Journal of Medicinal Chemistry, 49:127–140,
2012.

14. C. Deane and T. Blundell. CODA. A combined algorithm for predicting the struc-
turally variable regions of protein models. Protein Sci, 10:599–612, 2001.

15. I. Dotú, M. Cebrián, P. Van Hentenryck, and P. Clote. On Lattice Protein Structure
Prediction Revisited. IEEE/ACM Trans. Comput. Biology Bioinform, 8(6):1620–
1632, 2011.

16. A. Felts, E. Gallicchio, D. Chekmarev, K. Paris, R. Friesner, and R. Levy. Pre-
diction of protein loop conformations using AGBNP implicit solvent model and
torsion angle sampling. J Chem Theory Comput, 4:855–868, 2008.

17. A. Fiser, R. Do, and A. Sali. Modeling of loops in protein structures. Protein Sci,
9:1753–1773, 2000.

18. F. Fogolari, L. Pieri, A. Dovier, L. Bortolussi, G. Giugliarelli, A. Corazza, G. Es-
posito, and P. Viglino. Scoring predictive models using a reduced representation of
proteins: model and energy definition. BMC Structural Biology, 7(15):1–17, 2007.

19. Y. Fujitsuka, G. Chikenji, and S. Takada. SimFold energy function for de novo
protein structure prediction: consensus with Rosetta. Proteins, 62:381–398, 2006.

20. R. Hartenberg and J. Denavit. A kinematic notation for lower pair mechanisms
based on matrices. Journal of applied Mechanics, 77:215–221, 1995.

21. M. Jacobson, D. Pincus, C. Rapp, T. Day, B. Honig, D. Shaw, and R. Friesner.
A hierarchical approach to all-atom protein loop prediction. Proteins, 55:351–367,
2004.

22. M. Jamroz and A. Kolinski. Modeling of loops in proteins: a multi-method ap-
proach. BMC Struct. Biol., 10(5), 2010.

23. R. Jauch, H. Yeo, P. R. Kolatkar, and N. D. Clarke. Assessment of CASP7 structure
predictions for template free targets. Proteins, 69:57–67, 2007.

24. D. Jones. Predicting novel protein folds by using FRAGFOLD. Proteins, 45:127–
132, 2006.

25. K. Karplus, R. Karchin, J. Draper, J. Casper, Y. Mandel-Gutfreund, M. Diekhans,
and R. H. Source. Combining local structure, fold-recognition, and new fold meth-
ods for protein structure prediction. Proteins, 53(6):491–497, 2003.

26. L. Kinch, S. Yong Shi, Q. Cong, H. Cheng, Y. Liao, and N. V. Grishin. CASP9
assessment of free modeling target predictions. Proteins, 79:59–73, 2011.

27. S. LaValle. Planning Algorithms. Cambridge University Press, 2006.
28. J. Lee, S. Kim, K. Joo, I. Kim, and J. Lee. Prediction of protein tertiary structure

using profesy, a novel method based on fragment assembly and conformational
space annealing. Proteins, 56(4):704–714, 2004.

29. J. Lee, D. Lee, H. Park, E. Coutsias, and C. Seok. Protein Loop Modeling by
Using Fragment Assembly and Analytical Loop Closure. Proteins, 78(16):3428–
3436, 2010.

30. P. Liu, F. Zhu, D. Rassokhin, and D. Agrafiotis. A self-organizing algorithm for
modeling protein loops. PLOS Comput Biol, 5(8), 2009.

31. C. S. Rapp and R. A. Friesner. Prediction of loop geometries using a generalized
born model of solvation effects. Proteins, 35:173–183, 1999.

32. M. Shen and A. Sali. Statistical potential for assessment and prediction of protein
structures. Protein Sci, 15:2507–2524, 2006.

33. A. Shmygelska and H. Hoos. An ant colony optimisation algorithm for the 2D and
3D hydrophobic polar protein folding problem. BMC Bioinformatics, 6, 2005.

34. K. Simons, C. Kooperberg, E. Huang, and D. Baker. Assembly of protein tertiary
structures from fragments with similar local sequences using simulated annealing
and bayesian scoring functions. J. Mol. Biol., 268:209–225, 1997.

35. V. Spassov, P. Flook, and L. Yan. LOOPER: a molecular mechanics-based algo-
rithm for protein loop prediction. Protein Eng, 21:91–100, 2008.

36. Z. Xiang, C. Soto, and B. Honig. Evaluating conformal energies: the colony energy
and its application to the problem of loop prediction. PNAS, 99:7432–7437, 2002.

37. H. Zhou and Y. Zhou. Distance-scaled, finite ideal-gas reference state improves
structure-derived potentials of mean force for structure selection and stability pre-
diction. Protein Sci, 11:2714–2726, 2002.

