
Multi-Variable Agents Decomposition for DCOPs
to Exploit Multi-Level Parallelism∗

(Extended Abstract)
Ferdinando Fioretto

Computer Science Department
New Mexico State University
Las Cruces, NM 88003, USA

ffiorett@cs.nmsu.edu

William Yeoh
Computer Science Department

New Mexico State University
Las Cruces, NM 88003, USA

wyeoh@cs.nmsu.edu

Enrico Pontelli
Computer Science Department

New Mexico State University
Las Cruces, NM 88003, USA
epontell@cs.nmsu.edu

ABSTRACT
Current DCOP algorithms suffer from a major limiting
assumption—each agent can handle only a single variable of
the problem—which limits their scalability. This paper proposes a
novel Multi-Variable Agent (MVA) DCOP decomposition, which:
(i) Exploits co-locality of an agent’s variables, allowing us to
adopt efficient centralized techniques; (ii) Enables the use of
hierarchical parallel models, such us those based on GPGPUs; and
(iii) Empirically reduces the amount of communication required in
several classes of DCOP algorithms. Experimental results show
that our MVA decomposition outperforms non-decomposed DCOP
algorithms, in terms of network load and scalability.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed AI

Keywords
Distributed Constraint Optimization; DCOP; GPGPU

1. INTRODUCTION
Distributed Constraint Optimization (DCOP) [6] is an elegant

formalism to model cooperative multi-agent problems and has been
applied to solve coordination and resource allocation problems.
However, the applicability of DCOPs in large problems faces a
main limitation due to the common assumption that each agent
controls exclusively one variable. To cope with such restriction, re-
formulation techniques are used to transform a general DCOP into
one where each agent controls exclusively one variable. There are
two commonly used reformulation techniques [1, 7]: (i) Compila-
tion, where each agent creates a new pseudo-variable, whose do-
main is the Cartesian product of the domains of all variables of the
agent; and (ii) Decomposition, where each agent creates a pseudo-
agent for each of its variables. While both techniques are rela-
tively straightforward, they can be inefficient. In compilation, the

∗This research is partially supported by NSF grant HRD-1345232.
The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the offi-
cial policies, either expressed or implied, of the sponsoring organi-
zations, agencies, or the U.S. government.
Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

memory requirement of each agent grows exponentially with the
number of variables that it controls. In decomposition, the DCOP
algorithms will treat two pseudo-agents as independent entities, re-
sulting in unnecessary computation costs. This paper aims at over-
coming these limitations by proposing a new Multi-Variable Agent
(MVA) DCOP decomposition, which enables a separation between
the agents local subproblems, which can be solved independently
using centralized solvers and GPGPUs, and the DCOP global prob-
lem, which requires coordination of the agents.

2. BACKGROUND
DCOP: A DCOP is defined by 〈X ,D,F ,A, α〉, where: X =
{x1, . . . , xn} is a set of variables, D = {D1, . . . , Dn} is a set
of finite domains, where Di is the domain of variable xi, F =
{f1, . . . , fm} is a set of cost functions (also called constraints),
where each k-ary cost function fi : Di1 × Di2 × . . . × Dik 7→
N∪{0,∞} specifies the cost of each combination of values of vari-
ables in its scope xi=〈xi1 , . . . , xik 〉, A={a1, . . . , ap} is a set of
agents; and α : X → A maps each variable to one agent. Given
a DCOP P , GP = (X , EF) is the constraint graph of P , where
{x, y} ∈ EF iff ∃fi ∈ F s.t. {x, y} ⊆ xi. A solution σ is a value
assignment for a set Xσ ⊆ X of variables that is consistent with
their respective domains. The utility F (σ) =

∑
fi∈F,xi⊆Xσ f(σ)

is the sum of the utilities across all the applicable utility functions
in σ. A solution σ is complete if Xσ =X . The goal is to find an
optimal complete solution x∗=argminx F (x).
GPGPU: General Purpose Graphics Processing Units (GPGPUs)
are multiprocessor devices, offering hundreds of computing cores
and a rich memory hierarchy. A parallel computation is executed
by several threads and can be substantially faster than its sequential
(i.e., ran on CPU) counterpart. GPGPUs support Single-Instruction
Multiple-Thread (SIMT) processing. In SIMT the same instruction
is executed by different threads, while handling different data.

3. MVA DECOMPOSITION
For each agent ai ∈ A, we define the set of its local variables:

Li = {xj ∈ X | α(xj) = ai}; the set of its boundary variables:
Bi={xj ∈Li |∃xk∈X∧∃fs∈F : α(xk) 6= ai∧{xj , xk}⊆xs};
and its local constraint graph: Gi=(Li, EFi), where Fi={fj ∈
F | xj ⊆ Li}. In the MVA decomposition, a DCOP problem P
is decomposed into |A| sub-problems Pi = (Li, Bi,Fi). In addi-
tion to the decomposed problem Pi, each agent receives the global
DCOP algorithm PG, which is common to all agents in the prob-
lem and defines the agent’s coordination protocol and the behavior
associated to the receipt of a message, and the local algorithm PL,
which can differ between agents and is used to solve the agent’s

Compilation Decomposition MVA Decomposition

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

2 4 6 8 10 12 14 16 18 20
1

10

100

1000

10000

1e+05

1e+061e+06

1e+07

1e+08

1

10

100

1000

10000

1e+05

TO

N
um

be
r

of
 M

es
sa

ge
s

S
im

ul
at

ed
 T

im
e

(m
s)

Agents

●

●

●

● ●

●

●

●

● ● ●

●

●

●

●

2 4 6 8 10 12 14 16 18 20
1

10

100

1000

10000

1e+05

1e+061e+06

1

10

100

1000

10000

1e+05

TO

N
um

be
r

of
 M

es
sa

ge
s

S
im

ul
at

ed
 T

im
e

(m
s)

Agents

DPOP-DFBnB DPOP-Gibbs
CPU GPGPU CPU GPGPU

|Li|

6 17000 2000 45 3
12 timeout 2.28 ·107 211 4
18 timeout timeout 447 6
24 timeout timeout 1271 17
30 timeout timeout 2275 36

|Di|

6 3400 450 44 8
12 61000 5000 315 22
18 129000 30000 836 80
24 437000 48000 1946 204
30 988000 94500 5853 432

simulated time (ms)

Figure 1: Random Graph Instances with CPUs: AFB-DFBnB (left), DPOP-DFBnB (middle), and CPU vs. GPGPUs (right)

subproblem. The execution of the MVA framework for each agent
ai has the following conceptual phases:
1. Wait: The agent waits for incoming messages. If the received
message results in a new value assignment σ(xr, k) for a boundary
variable xr of Bi, then the agent will proceed to Phase 2. If not, it
will proceed to Phase 4.
2. Check: The agent checks if it has performed a complete new
assignment for all its boundary variables, indexed by the number
k, which establishes an enumeration for the boundary variables’
assignments. If it has, then the agent will proceed to Phase 3, oth-
erwise it will return to Phase 1.
3. Local Optimization: When a complete assignment is given, the
agent passes the control to a local solver, which solves the follow-
ing problem:

min
∑
fj∈Fi

fj(x
j) subject to: xr = σ(xr, k) ∀xr ∈ Bi (1)

Solving this problem results in finding the best assignment for
the agent’s local variables given the particular assignment for its
boundary variables. Notice that the local solver PL is independent
from the DCOP structure and it can be customized based on the
agent’s local requirements. Once the agent solves its subproblem,
it proceeds to Phase 4.
4. Global Optimization: The agent processes the new assignment
as established by the DCOP algorithm PG, executes the necessary
communications, and returns to Phase 1.

The agents can execute these phases independently of one an-
other because they exploit the co-locality of their local variables
without any additional privacy loss. In addition, the local opti-
mization process can operate on m > 1 combinations of value
assignments of the boundary variables, before passing control to
the next phase. This is the case when the agent explores m dif-
ferent assignments for its boundary variables in Phases 2 and 3.
These operations are performed by storing the best local solution
and their corresponding costs in a cost table of size m, which we
call MVA_TABLE. Using the MVA decomposition, each agent
computes only the necessary rows of the table on demand.

For the local optimization process within each agent we use DF-
BnB and Gibbs sampling [2] as representative complete and incom-
plete algorithms. The use of hierarchical parallel solutions is moti-
vated by the observation that the search for the best local solution
for each row of the MVA_TABLE is independent of the search for
another row and, as such, they can be performed in parallel. This
observation finds a natural fit for SIMT processing and, therefore,
in addition to the CPU versions of DFBnB and Gibbs, we provide
their GPGPU counterparts. The use of GPGPUs allows us to speed
up the local optimization process and, consequently, reduces the
overall DCOP solving time.

4. EXPERIMENTAL RESULTS
We evaluate our MVA decomposition with two global DCOP al-

gorithms (AFB [3] and DPOP [4]) and two local centralized solvers
(DFBnB and Gibbs) implemented on CPUs and GPGPUs, and
compare it against the Compilation and the Decomposition pre-
processing techniques on random graphs. We report the simulated
time [5] as well as the network load, averaged over 50 instances
and impose a timeout of 600s. Figure 1 shows the results, where
AFB and DPOP uses DFBnB as local solver. Dark (light) bars in-
dicate the number of external (internal) agent-to-agent messages,
and lines indicate runtime, all in logarithmic scale (the smaller, the
better). We vary the number of agents and fix the number of lo-
cal variables, their domain size, the density of the local and global
constraint graphs, and the constraint tightness to 6, 4, 0.6, 0.4, and
0.4, respectively. Figure 1 (right) illustrates the speedup obtained
by parallelizing DFBnB and Gibbs on GPGPUs, using DPOP as
the global algorithm. We fix |A|=4 and vary |Li| and |Di|. Un-
like Decomposition, MVA and Compilation do not need internal
agent communication since agent subproblems are solved locally
within each agent. The number of external messages required by
each framework is similar for DPOP because they are linear in the
number of agents, and in turn independent of the number of local
variables. AFB on MVA requires up to one order of magnitude
fewer messages compared to Compilation, and several orders of
magnitude fewer compared to Decomposition. The reason is that
AFB agents uses messages to request for cost estimates and an-
nounce complete solutions. These requests occur more regularly
with Decomposition and Compilation than with the MVA decom-
position. All the algorithms are fastest on the MVA framework
followed by with Decomposition and Compilation. Finally, the
speedup obtained by parallelizing the MVA algorithms on GPG-
PUs is at least one order of magnitude in most configurations.

REFERENCES
[1] D. Burke and K. Brown. Efficiently handling complex local problems

in distributed constraint optimisation. In ECAI, pages 701–702, 2006.
[2] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions,

and the Bayesian restoration of images. IEEE TPAMI, 6(6):721–741,
1984.

[3] A. Gershman, A. Meisels, and R. Zivan. Asynchronous
Forward-Bounding for distributed COPs. JAIR, 34:61–88, 2009.

[4] A. Petcu and B. Faltings. A scalable method for multiagent constraint
optimization. In IJCAI, pages 1413–1420, 2005.

[5] E. Sultanik, P. J. Modi, and W. C. Regli. On modeling multiagent task
scheduling as a distributed constraint optimization problem. In IJCAI,
pages 1531–1536, 2007.

[6] W. Yeoh and M. Yokoo. Distributed problem solving. AI Magazine,
33(3):53–65, 2012.

[7] M. Yokoo, editor. Distributed Constraint Satisfaction: Foundation of
Cooperation in Multi-agent Systems. Springer, 2001.

