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Abstract

Generative Adversarial Networks (GANs) have demonstrated
the potential to learn the distribution of training data and
generate high quality synthetic data. But recent research has
shown that machine learning models, including GANs, may
leak sensitive information about training samples. To pro-
tect the privacy of training samples, several approaches have
been proposed to adopt differential privacy in the training of
GANs. Moreover, as the winner of the NIST 2018 Unlink-
able Data Challenge, differentially private GANs provide a
promising direction for generating private synthetic data. In
this paper, we survey the existing approaches for differen-
tially private GANs, in order to facilitate the understanding of
the current state of research. Specifically, we aim to provide
the workshop audience with a comprehensive review of pre-
liminaries, summaries of the approaches, characterization of
evaluation criteria, as well as discussions around challenges.
In addition, the existing approaches are analyzed with an em-
phasis on their key innovations and application domains, to
facilitate the adoption of the research results. This survey will
serve as a reference for future research and point out oppor-
tunities for the further development on this important topic.

Introduction
Sharing individual-level data is critical to data analysis tasks,
e.g., for propensity score matching and subgroup analy-
ses in clinical studies (Beaulieu-Jones et al. 2019), and for
model training and validation in machine learning (Yoon,
Jordon, and van der Schaar 2019). However, publicly avail-
able individual-level data is often scarce. For data collected
from private individuals, there are privacy concerns regard-
ing sharing their data widely. In fact, “anonymized” data
can often be re-identified by linking external databases, e.g.,
(Sweeney 2002), or by examining unique behaviors, e.g.,
(Barbaro and Jr. 2006) and (De Montjoye et al. 2013). Re-
cently, generative models have received an increasing at-
tention for learning the data distribution from training sam-
ples. Those models provide a promising direction for shar-
ing individual-level data, as samples can be drawn from the
learned distributions for other analysis tasks.

Generative Adversarial Networks (GANs) (Goodfellow et
al. 2014) and variants have demonstrated superior perfor-
mance in capturing the underlying data distribution. Benefit-
ing from deep neural networks and game theory, GANs can

produce high quality generated samples which are hard to
distinguish from real ones. However, recent research shows
that machine learning models may leak sensitive informa-
tion about training samples. Attacks can be launched against
target models to infer membership in the training set (Shokri
et al. 2017) or to reconstruct training data (Fredrikson, Jha,
and Ristenpart 2015). Similarly, GAN models do not pro-
vide guarantees on what the generated data may reveal about
real, sensitive training data, e.g., real participants in a clin-
ical study. In fact, (Hayes et al. 2019) successfully devised
membership inference attacks against GANs in both white-
box and black-box access settings.

To protect the privacy of training samples, many ap-
proaches adopted differential privacy (Dwork et al. 2006b),
such as for data release (Zhang et al. 2017), clustering (Su
et al. 2016), classification (Chaudhuri, Monteleoni, and Sar-
wate 2011), hypothesis testing (Gaboardi et al. 2016), and
deep learning (Abadi et al. 2016). Differential privacy en-
sures that an adversary cannot effectively infer whether one
record is present or absent in the input data, thus provid-
ing rigorous privacy guarantees to samples used to train
models. Several recent approaches, such as DPGAN (Xie et
al. 2018) and DP-CGAN (Torkzadehmahani, Kairouz, and
Paten 2019), have been proposed to train GANs in a differ-
entially private manner, in hopes of learning the data distri-
butions without disclosing too much information about in-
dividual samples. Furthermore, differentially private GANs
won the first place in the NIST Unlinkable Data Chal-
lenge (Boob et al. 2018), proving to be a promising direction
for private synthetic data generation.

In this paper, we survey existing differentially private ap-
proaches for learning GANs which can serve as a reference
for future research. First, we provide comprehensive prelim-
inaries in order to facilitate the understanding of the funda-
mental building blocks, including GANs and variants, the
definition and properties of differential privacy, and com-
monly used differentially private training procedures. Sec-
ond, we summarize 8 previously proposed approaches on
differentially private GANs while emphasizing their novelty
and application domains, in order to facilitate the dissemina-
tion and adoption of the research results. Third, we present
the evaluation metrics adopted by the surveyed approaches
regarding quality and privacy. Although most approaches
are not directly comparable to each other, we categorize the



Figure 1: GAN Illustration (Zhang, Ji, and Wang 2018)

adopted quality metrics into the evaluation of generated data
vs. methods trained on generated data. In doing so, we hope
to provide future research with a framework for assessment.
Last but not least, we identify challenges in learning differ-
entially private GANs and present lessons learned from the
surveyed approaches as well as possible avenues for future
research.

Preliminary
In this section, we review Generative Adversarial Networks
(GANs) and variants, differential privacy concepts and prop-
erties, and private training procedures adopted by the sur-
veyed approaches.

GANs and Variants
There has been an increasing interest in generative models as
they can produce synthetic data that have similar character-
istics as real data. Generative Adversarial Networks (GANs)
proposed by Goodfellow et. al (Goodfellow et al. 2014) has
been the state-of-the-art method to learn generative models.
An illustration of the typical architecture of GANs is de-
picted by (Zhang, Ji, and Wang 2018) in Figure 1. Essen-
tially, GANs consist of two components, i.e., a generator G
and a discriminatorD. The generatorG learns to capture the
original data distribution pdata by mapping a latent distribu-
tion pz . Specifically, G takes as input a random noise z and
generates synthetic data. On the other hand, the discrimina-
tor D learns to discriminate between samples drawn from
pdata, i.e., x, and those generated by G, i.e., G(z). D takes
a sample as input and returns a score representing whether
it is real or synthetic. By generating samples that appear to
come from the original data distribution, the goal of the gen-
erator is to fool the discriminator. The generator and dis-
criminator are trained simultaneously through an adversar-
ial process: the more the generator improves the quality of
synthetic data, the harder it is for the discriminator to distin-
guish between original and synthetic samples.

The problem is formulated as a minimax two-player game
with the following objective (Goodfellow et al. 2014):

min
G

max
D

Ex∼pdata
[logD(x)] + Ez∼pz [log(1−D(G(z)))].

(1)

Variants of the original GAN formulation have been pro-
posed to improve training and incorporate auxiliary informa-
tion. Several of them have been adopted by the differentially
private approaches.

Conditional GAN (CGAN) (Mirza and Osindero 2014) al-
lows both the generator and discriminator to be conditional

on some side information, denoted by y, such as class labels.
As a result, CGAN can generate synthetic data for a given
class. The objective for CGAN is given by:

min
G

max
D

E(x,y)∼pxy
[logD(x, y)]

+ Ez∼pz,y∼py [log(1−D(G(z, y), y))] (2)
where pxy represents a joint distribution for real samples x
and labels y, and py denotes the label distribution.

Auxiliary Classifier GAN (AC-GAN), proposed re-
cently (Odena, Olah, and Shlens 2017), is an extension of
the CGAN that introduces a new player C which is a clas-
sifier. In practice, the classifier C can be learned with the
discriminator as an additional output. The AC-GAN objec-
tive combines the original GAN loss with the classification
loss on real and synthetic data:

min
G,C

max
D

Ex∼px [logD(x)]

+ Ez∼pz,y∼py [log(1−D(G(z, y)))]

− λcE(x,y)∼pxy
[logC(x, y)]

− λcEz∼pz,y∼py [log(C(G(z, y), y))] (3)
where λc is a hyper-parameter balancing GAN loss and aux-
iliary classification loss. As can be seen, the discriminatorD
no longer receives the label as input, which allows AC-GAN
to learn a representation in the latent space pz , independent
of the class label.

Wasserstein GAN (WGAN) was proposed by Arjovsky et.
al (Arjovsky, Chintala, and Bottou 2017) to improve train-
ing stability by minimizing the earth-mover distance (a.k.a.,
Wasserstein-1 distance) between pz and pdata, as opposed
to the Jensen-Shannon divergence (Goodfellow et al. 2014).
Specifically, the objective of WGAN is given by:

min
G

max
w∈W

Ex∼pdata
[fw(x)]− Ez∼pz [fw(G(z))] (4)

where {fw}w∈W are a family of K-Lipschitz functions for
some constant K, i.e., ‖f‖Lip ≤ K. To find functions {fw}
for Equation 4, the study (Arjovsky, Chintala, and Bottou
2017) shows that it is sufficient to train a neural network as
a typical GAN, while clamping the weights w to a fixed box
(e.g., [−0.01, 0.01]) after each gradient update. As we will
see later, this operation coincides with gradient clipping in
the differentially private stochastic gradient descent, for a
different purpose.

Differential Privacy (DP)
Differential privacy (Dwork et al. 2006b; 2006a) has be-
come the state-of-the-art paradigm for protecting individ-
ual privacy in statistical databases. Intuitively, it guarantees
that an algorithm’s output distribution will not be signifi-
cantly changed by the presence (or absence) of any indi-
vidual record. By observing the output, an adversary cannot
learn more about individuals; therefore privacy is protected.
In the context of GANs, differential privacy shows promise
to enable accurate learning of the data distribution, despite
adding or removing any training sample.

Specifically, two databases D and D′ are neighboring
databases if

∃ x ∈ D, s.t.D \ {x} = D′. (5)



Definition 1 (Differential Privacy(Dwork et al. 2006a))
A randomized mechanism M is (ε, δ)-differentially private
if for any output set S and any neighboring databases D
and D′

P(M(D) ∈ S) ≤ eε P(M(D′) ∈ S) + δ. (6)

where parameters ε and δ are non-negative real numbers.
When δ = 0, the definition is equivalent to ε-DP (Dwork
et al. 2006b), where ε bounds the difference in M’s out-
put probabilities using D and D′ everywhere. Small ε indi-
cates strong privacy, and vice versa. With δ > 0, (ε, δ)-DP
allows pure ε-DP to fail for a small probability δ. To pro-
vide individual privacy in case of ε-DP failure, the recom-
mended value for δ should be smaller than the inverse of the
database size, i.e., 1

|D| . Recently, another relaxation of ε-DP,
Rényi Differential Privacy (RDP) has been proposed. The
study (Mironov 2017) shows that RDP is a strictly stronger
privacy notion than (ε, δ)-DP, and is well-suited for express-
ing algorithmic privacy guarantees.

Mechanisms Gaussian mechanism has been widely-
adopted to achieve (ε, δ)-DP. Specifically, for a given func-
tion f : D → R, its L2 sensitivity is defined as ∆2f =
maxD,D′ ‖f(D) − f(D′)‖2. By adding Gaussian noise to
f ’s output, i.e., M(D) = f(D) + N (0, (σ∆2f)2), sat-
isfies (ε, δ)-DP for ε < 1 and σ >

√
2 ln 1.25/δ/ε. To

achieve pure ε-DP, the Laplace mechanism has been widely
adopted for database queries as well as learning models. Let
∆1f = maxD,D′ ‖f(D) − f(D′)‖1 denote the L1 sensitiv-
ity of function f . Adding Laplacian noise to f ’s output, i.e.,
M(D) = f(D)+Lap(0, λ∆1f), satisfies ε-DP for λ = 1/ε.
One advantage of differential privacy is that it is resistant to
post-processing. Given an arbitrary mapping f : R → R′

and an (ε, δ)-differentially private mechanismM : D → R,
f ◦M : D → R′ is (ε, δ)-differentially private.

Privacy Accounting It is possible to combine multiple
differentially private mechanisms. The composition of k
mechanisms that each of them are (ε, δ)-differentially pri-
vate, is at least (kε, kδ)-differentially private (Dwork et al.
2006a). The concept of privacy accountant (McSherry 2009;
Abadi et al. 2016) has been proposed to keep track of the
accumulated privacy loss in repeated execution of differen-
tially private mechanisms.

The Moment Accountant (MA) technique (Abadi et al.
2016) has been widely adopted to account for differential
privacy in composition of multiple mechanisms, which pro-
vides strong estimates of privacy loss compared to other
composition theorems (Dwork et al. 2006a; Dwork, Roth-
blum, and Vadhan 2010). Specifically, MA (Abadi et al.
2016) tracks the overall privacy budget spent, i.e., (ε, δ), for
composing Gaussian mechanisms with random sampling. It
computes the log moments of the random variable for pri-
vacy loss and calculates the tail bound using moments bound
and standard Markov inequality. On the other hand, RDP
Accountant (Mironov 2017) has been shown to provide a
tighter bound for privacy loss compared to MA (Abadi et al.
2016). In addition, RDP analysis of the Gaussian mechanism
is straight-forward and the privacy budget curve for a com-
posite mechanism is simply the sum of base mechanisms.

As a result, it has been adopted by one surveyed approach
DP-CGAN as well as Google’s TensorFlow Privacy.

Training with Differential Privacy
DPSGD The differentially private stochastic gradient de-
scent method (DPSGD) developed by (Abadi et al. 2016) is
a general method to minimize loss functions empirically for
complex networks with differential privacy. In order to ob-
fuscate the influence of individual training samples on the
final model, the computed gradients are clipped and random
noise is added. The basic training procedure of DPSGD iter-
ates as follows:

• A batch of samples are processed and the empirical loss
is computed.

• Gradients for model weights are calculated from the loss.

• Per sample gradient is clipped to the minimum value be-
tween its L2 norm and a clipping bound given as a hyper-
parameter.

• A Gaussian noise is drawn with a variance proportional to
the clipping bound and is added to the clipped gradients.

• The model is updated.

• Cumulative privacy loss is computed using a privacy ac-
countant and the training process terminates if the differ-
ential privacy budget is exhausted.

In order to learn differentially private GANs, most surveyed
approaches (except for PATE-GAN) utilize the DPSGD
method to train the discriminator network. Considering DP’s
resistance to post-processing and the fact that the genera-
tor does not access real data, the generator network trained
with a differentially private discriminator is also differen-
tially private.

PATE PATE (Papernot et al. 2016) provides a differen-
tially private mechanism for learning classification models,
while protecting the privacy of training samples. One sur-
veyed approach, i.e., PATE-GAN (Yoon, Jordon, and van der
Schaar 2019), adopts the PATE method to learn GANs pri-
vately. In PATE, the training set is partitioned into k disjoint
subsets, i.e., D1, ...Dk, and k classifiers, i.e., T1, ..., Tk, also
called teachers, are trained separately on the k partitions. To
classify a new instance x, a differentially private output is
obtained by performing a noisy aggregation of teacher out-
puts.

PATEλ(x) = arg max
j∈{1,..,m}

(nj(x) + Lap(λ)) (7)

where m is the number of possible classes, and nj(x) de-
notes the number of teachers that output class j for x. Natu-
rally, each query answered by PATEλ satisfies 1/λ-DP. An
extension of PATE introduced in (Papernot et al. 2016) is to
train a student model using a public dataset labeled through
the PATE method. The student model itself is differentially
private, and its internal parameters can be accessed freely, in
terms of privacy.

Note that both DPSGD and PATE are compatible with op-
timization algorithms for training, such as Adam (Kingma



and Ba 2014) and RMSProp (Hinton, Srivastava, and Swer-
sky 2012), which can operate on the clipped and perturbed
gradients in DPSGD and the gradients of the student model
in PATE.

Differentially Private Algorithms
This section briefly describes each surveyed approach, while
highlighting their key innovations and application domains.
A comparative summary of the differentially private ap-
proaches is provided in Table 1.

DPGAN, dp-GAN, GANobfuscator
DPGAN (Xie et al. 2018) and dp-GAN (Zhang, Ji, and Wang
2018) are two earlier approaches proposed to learn differ-
entially private GANs. DPGAN has been applied to gener-
ating image and EHR data, e.g., MNIST and MIMIC III,
while dp-GAN has a focus on generating image data, such
as MNIST and CelebA. As for training, both DPGAN and
dp-GAN follow the DPSGD method for the discrimina-
tor. DPGAN adopts the WGAN objective as in Equation 4,
while dp-GAN adopts the method proposed by (Gulrajani
et al. 2017), aka improved WGAN, which is an alternative
to weight clipping (Arjovsky, Chintala, and Bottou 2017) in
order to enforce the Lipschitz constraint.
DPGAN clips the model weights w, as suggested in (Ar-

jovsky, Chintala, and Bottou 2017), to ensure discrimina-
tor network fw is Lipschitz. Although the method does not
have an explicit step that clips the gradients as in DPSGD,
the authors (Xie et al. 2018) show that by clipping w to
a bounded box [−cp, cp], the gradients are automatically
bounded by some constant cg . dp-GAN explicitly clips the
gradients and has proposed several optimization strategies
to improve the training stability and convergence rate, in-
cluding: adaptive clipping adjusts the parameters’ clipping
bounds during training by accessing a small set of public
data; parameter grouping is to cluster those parameters with
similar clipping bounds, and to achieve a trade-off between
privacy loss and convergence with a uniform clipping bound
for each cluster; warm starting initializes the model with a
small set of public data to boost the convergence. Similarly,
GANobfuscator (Xu et al. 2019) builds on the improved
WGAN and adopts adaptive clipping as in dp-GAN.

dp-GAN-TSCD
We denote the approached proposed in (Frigerio et al. 2019)
as dp-GAN-TSCD, where TSCD stands for “time series,
continuous, and discrete” data. This approach aims to gen-
erate time series, e.g., from IoT systems, and multi-variate
tabular data, such as UCI Adult and Mushroom, by es-
tablishing a flexible architecture for the generator network.
Specifically, the authors adopt Long Short-Term Memories
(LSTM) for time series. As for discrete variables in tabular
data, a softmax layer is added which represents the probabil-
ity distribution of each variable. dp-GAN-TSCD builds on
the improved WGAN (Gulrajani et al. 2017) and performs
training with the DPSGD method. In order to reduce the
DP noise in parallel with the decreasing trend of the gra-
dients, the authors propose a clipping decay strategy where

the clipping bound decreases exponentially with each gen-
erator update. Empirical evaluation in (Frigerio et al. 2019)
has shown improved utility as a result of the clipping decay
strategy. It is worthy noting that dp-GAN-TSCD adopts a
universal clipping bound for all gradients.

PATE-GAN
PATE-GAN (Yoon, Jordon, and van der Schaar 2019) was
proposed to generate synthetic multi-variate tabular data
without compromising the privacy of training data. Many
datasets adopted in (Yoon, Jordon, and van der Schaar 2019)
are from health domain, e.g., MAGGIC (Pocock et al. 2012),
Unite Network for Organ Transplant (Cecka and Terasaki
1993), and UCI Epileptic Seizure Recognition. PATE-GAN
provides an interesting approach to learning differentially
private GANs. On one hand, it adopts the PATE method
to achieve differential privacy, as opposed to the general
DPSGD method. On the other hand, the authors proposed
a novel method to train the student discriminator, without
requiring publicly available dataset, as opposed to (Papernot
et al. 2016). Specifically, a set of teacher discriminators are
trained separately as vanilla models on disjoint partitions of
the training set. In other words, each teacher is trained as in a
standard GAN network, except the teacher only sees its own
partition of the real data. A student discriminator is trained
with generated samples, labeled by the teachers using the
PATE method. The generator is trained to minimize its loss
with respect to the student discriminator. As a result, the stu-
dent model can be trained privately without public data and
the generator can utilize the process to improve the gener-
ated samples.

DP-CGAN
DP-CGAN was recently proposed by (Torkzadehmahani,
Kairouz, and Paten 2019) to generate synthetic data as well
as corresponding labels. It adopts the CGAN objective as in
Equation 2 and the DPSGD framework for training the dis-
criminator privately. There are two key innovations of the
DP-CGAN approach. First, the proposed training procedure
splits the discriminator loss between real data, logD(x, y),
and generated data, log(1 − D(G(z, y), y)): gradients for
two losses are clipped separately and then summed. This
strategy would preserve more useful information from the
discriminator loss on real instances, as opposed to clip-
ping gradients from the summed loss. Second, DP-CGAN
proposes to use RDP accountant to obtain a tighter es-
timation on the differential privacy guarantees compared
to MA (Abadi et al. 2016). The authors have applied to
generating visual data, i.e., MNIST. The evaluation shows
DP-CGAN outperforms the baseline DP approach, i.e., with-
out loss separation and RDP accountant, on classification
tasks. The summed gradients are perturbed based on the split
loss for real data, which results in lower noise and higher
quality results.

SPRINT-gan
SPRINT-gan (Beaulieu-Jones et al. 2019) has a focus on
sharing patient-level clinical trial data with differential pri-
vacy, such that the participants in the trial could not be



identified by accessing the synthetic data. Specifically, the
study was motivated by the SPRINT (Systolic Blood Pres-
sure Trial) trial with participants divided to intensive and
standard treatment groups. The proposed approach adopts
the AC-GAN objective as in Equation 3, where the gener-
ator learns to produce samples given the class label, i.e.,
normal or intensive treatment group, and the discriminator
learns to classify real or generated samples and the class
label for treatment groups. The SPRINT-gan method fol-
lows DPSGD framework for training the discriminator; the
Adam method is applied to update the discriminator model
with the clipped and perturbed gradients. Each training sam-
ple contains a participant’s measurements for systolic blood
pressure, diastolic blood pressure, and the number of med-
ications prescribed, assessed at the first 12 time points in
the SPRINT trial. Beside quantitative evaluation, clinicians
were asked to score the realism of samples considering both
blood pressure measurements and medication counts. The
results show that the clinicians’ scores for real data and gen-
erated data are similar, indicating the proposed method can
preserve characteristics of the training data without compro-
mising participant privacy.

DP-FedAvg-GAN
(Augenstein et al. 2019) proposed to train differentially pri-
vate generative models with federated learning, where raw
data is distributed across user devices and a central server
coordinates the training of a shared global model. By in-
specting the output of private models, the goal of (Augen-
stein et al. 2019) is to develop intuition of potential bugs
in the training pipeline. The DP-FedAvg-GAN method has
been applied to identify image pre-processing bugs (e.g.,
flipping pixel intensities in MNIST-like data), by examin-
ing generated examples from two user subpopulations, i.e.,
where the performance of a target image classification task
is high vs. low. The training of DP-FedAvg-GAN differs
from the centralized setting in the discriminator update step:
in each round, the server provides the generator and discrim-
inator models to a subset of devices; each device computes
the discriminator update with its local private data and clips
it, and the clipped updates are sent to the server where they
are aggregated and perturbed. As privacy protection is crit-
ical in federated learning, the proposed method guarantees
user-level differential privacy, and data from individual de-
vices is protected from the central server as well as from
other participating devices. However, the differential private
models may produce low-fidelity data, and quantitative qual-
ity evaluation was omitted from the study, as the authors ar-
gue that high-fidelity data is not necessary for bug detection.

Evaluating DP Approaches
In this section, we discuss how the differentially private ap-
proaches are evaluated in terms of quality and privacy.

Quality Evaluation
As seen in Table 1, the DP approaches proposed so far have
been applied to different domains, thus difficult to compare

directly in quality. However, we consider it valuable to re-
view and categorize the quality metrics adopted by the DP
approaches. In general, metrics for DP approaches largely
overlap with those used to assess vanilla GAN models; a
metric is often applied to both vanilla GAN models and
differentially private models followed by a comparison be-
tween the results.

Generated Data The quality of generated data are ex-
amined by many DP approaches. With a focus on vi-
sual data, dp-GAN and GANobfuscator adopted met-
rics that quantify the realism and diversity of the gener-
ated data, e.g., via the Jensen-Shannon divergence and In-
ception score. Other approaches evaluated the quality of
the learned distributions, e.g., the distribution of each di-
mension as well as the relationship between dimensions.
Specifically, SPRINT-gan computed summary statistics,
e.g., mean and standard deviation, for three measurements;
the study further evaluated pairwise Pearson correlation be-
tween measurements and compared the correlation struc-
tures of real data, synthetic data generated by vanilla models,
and synthetic data generated by differentially private mod-
els. DPGAN adopted two metrics, i.e., DWP and DWPre first
proposed in (Choi et al. 2017), to evaluate the learned dis-
tributions for each dimension and between dimensions, re-
spectively. It is worth noting that human experts, i.e., clin-
icians, were asked to judge whether data samples are real
or generated by SPRINT-gan, which incorporates domain
knowledge into evaluating the quality of the generated data.

Methods Trained with Generated Data The second
school of metrics examine the methods trained with gen-
erated data. The authors of PATE-GAN outlined scenarios
where the synthetically generated data can be used differ-
ently by real applications. In one scenario, synthetic data is
used to train methods and the performance of those meth-
ods on real data are evaluated and compared with the meth-
ods trained on real data. Such metrics include AUROC (area
under the receiver operation characteristics curve), AUPRC
(area under the precision recall curve), and accuracy. In an-
other scenario, synthetic data is used to identify the best
method(s) to be used on read data, and the performance
ranking of the methods trained on synthetic data is compared
to that of the methods trained on real data. Similarly, other
approaches evaluated the performance of methods trained
on generated data, e.g., for classification tasks, including
DPGAN, dp-GAN-TSCD, DP-CGAN, and SPRINT-gan.
In addition, SPRINT-gan proposed to evaluate similarity
between models trained on synthetic data and real data, e.g.,
the variable importance scores for Random Forest and model
coefficients for SVM and Logistic Regression. Moreover,
dp-GAN and GANobfuscator used the unlabeled syn-
thetic data to augment limited labeled real data for training
semi-supervised models. In this setting, the performance of
semi-supervised models is compared to that of the super-
vised models trained with limited real data.

Privacy Evaluation
Another important evaluation is conducted on the privacy
offered by the differentially private approaches. While all



Method Application Domains Training Procedure Evaluation Metrics
Computer Vision Health Others DPSGD PATE Data Methods Attacks

DPGAN X X X X X
dp-GAN X X X X
GANobfuscator X X X X X
dp-GAN-TSCD X X X X X
PATE-GAN X X X X
DP-CGAN X X X
SPRINT-gan X X X X
DP-FedAvg-GAN X X

Table 1: Summarizing DP Generative Adversarial Networks

surveyed approaches provide the trade-off analysis between
selected quality metrics and the differential privacy param-
eters, i.e., ε and δ, a few demonstrate the defense put up by
the differentially private approaches against known inference
attacks. Specifically, membership inference attacks (Shokri
et al. 2017) predict whether a given record was used to
train a target model, which might leak additional informa-
tion about the record. GANobfuscator assessed the ac-
curacy of membership inference attacks with different DP
budgets and data sizes. The results show that differentially
private GANs effectively reduce the precision of attacks,
compared to vanilla GANs; the attack precision is reduced
further for larger training sets. Similarly, dp-GAN-TSCD
plotted the ROC curves for the membership inference at-
tacks which demonstrate the privacy protection for smaller
datasets, e.g., 300 samples. In addition, the study further an-
alyzed the attack accuracy at different training epochs: the
attack accuracy rapidly increases with more epochs for the
vanilla model, while staying around 50% with differential
privacy throughout the training process.

Discussion
In this section we discuss challenges in training GANs with
differential privacy, summarize lessons learned from the sur-
vey approaches, and point out possible avenues for future
research.

Utility Loss Due to gradient clipping and perturbation,
GANs trained with differential privacy often exhibit util-
ity loss compared to the vanilla models. Several approaches
proposed techniques to overcome the loss of information
during the private training process. dp-GAN proposed to
separate gradients of weights and biases, and with access
to some public data, to adapt the clipping bounds, cluster
weight gradients, and warm starting the models without DP
constraints. Similarly, dp-GAN-TSCD noted the effect of
clipping bounds on utility and proposed a clipping decay
technique which reduces the bounds overtime. DP-CGAN
separated the discriminator loss on real and generated data
to preserve useful information from the real samples and
adopted RDP accountant for a tighter estimate of the privacy
loss.

Utility Evaluation As presented in the previous section,
the utility evaluation of the differentially private GANs

adopts quality metrics for the generated data and the meth-
ods trained with the generated data. It is not straight-forward
to compare all surveyed approaches directly as they were
designed for different domains, e.g., computer vision vs.
health, and for different tasks, e.g., labeled data vs. unla-
beled data. Human experts were brought into the evaluation
process by SPRINT-gan authors, to judge the realism of
the generated clinical data. We note that the challenge re-
mains to quantitatively evaluate the generated non-image
data, e.g., for time series as mentioned by the authors of
dp-GAN-TSCD.

Non-Convergence There is a chance that the generator
and discriminator may not converge or converge to a noisy
equilibrium, as a result of the differentially private train-
ing process. Several surveyed approaches studied the train-
ing loss over epochs, e.g., DPGAN, GANobfuscator,
dp-GAN-TSCD, and SPRINT-gan. While the utility im-
proving techniques mentioned previously may boost conver-
gence by reducing the amount of noise introduced, they do
not eliminate non-convergence as the training process must
stop when the pre-defined DP budget has been exhausted. To
this end, the authors of SPRINT-gan proposed to repeat-
edly re-run the training process and to account for the total
privacy loss from all the runs, until the model converges or
the privacy budget is exhausted. Furthermore, they proposed
to save the generative models from all epochs and to perform
model selection. This strategy was shown in (Beaulieu-Jones
et al. 2019) to provide a more diverse set of models.

Privacy Risks Due to the complexity of the models, most
DP approaches were evaluated with single-digit ε values
up to 10, although for some tasks higher ε values were
adopted, e.g., ≥ 96.5 for DWpre evaluation of DPGAN. As
for known attacks, very few approaches were evaluated, e.g.,
in the presence of membership inference (Shokri et al. 2017)
and model inversion (Fredrikson, Jha, and Ristenpart 2015).
Furthermore, attacks specifically targeting GANs were pro-
posed recently (Hayes et al. 2019) and could be studied for
the differentially private approaches. In general, privacy is
still an open issue regarding the adoption of differential pri-
vacy in machine learning. The reason is that the standard
differential privacy, provided in DPSGD and PATE, protects
individual samples in the training set, while in real appli-
cations a user may supply multiple samples e.g., for face



recognition (Fredrikson, Jha, and Ristenpart 2015), or a sen-
sitive class as in (Hitaj, Ateniese, and Perez-Cruz 2017). As
a result, it is possible to launch attacks on the privacy of the
user or the class.

Hyper-parameter Tuning Beside the privacy parameters,
e.g., ε and δ, other parameters may affect the utility of the
differentially private approaches, such as batch size, learn-
ing rate, number of discriminator or generator iterations, etc.
(Abadi et al. 2016) observed that the accuracy of DPSGD is
more sensitive to training parameters than to the neural net-
work structure. They suggested to choose a batch size of the
same order of the number of epochs. Furthermore, it is ben-
eficial to start with a a relatively large learning rate, decay
it linearly for a few epochs, and keep it constant afterwards.
While the surveyed approaches made their parameter set-
tings available, little discussion or comparative evaluation
was present to offer readers insights on how the parameters
should be chosen. It may be common to tune the parameters
empirically: for instance, (Yoon, Jordon, and van der Schaar
2019) reported that the number of teachers in PATE-GAN
were selected using cross-validation; DP-CGAN followed
the adaptive strategy for learning rate as in DPSGD with
handpicked initial and final values. However, it is unclear
whether the privacy loss during parameter tuning has been
accounted for in all the surveyed approaches.

Future Work Several directions are open for future re-
search on differentially private GANs. First, researchers may
consider the adoption of RDP accountant to tightly bound
the privacy loss. For instance, (Beaulieu-Jones et al. 2019)
reported that RDP would inflict roughly one fourth of the
privacy budget used in their SPRINT-gan approach with
MA. The reported saving can be significant for utility crit-
ical applications. Second, future research could study the
non-convergence issues in private GANs theoretically, by
considering recent results from the machine learning com-
munity, and empirically, e.g., private model selection seems
to provide better utility in (Boob et al. 2018; Beaulieu-Jones
et al. 2019). Third, the definition of classic DP protects in-
dividual instances which may fail to mitigate model inver-
sion attacks. The notion of group privacy (Dwork 2006)
can be considered by future research to protect a set of
instances with a given size c. Last but not least, the tun-
ing of the hyper-parameters poses a significant challenge
for wide applications of differentially private GANs. It can
be seen in (Zhang, Ji, and Wang 2018; Xu et al. 2019;
Boob et al. 2018) that having access to a small set of pub-
lic data helps with estimating the hyper-parameters. Future
research is also encouraged to explore the suggestions pro-
vided in (Abadi et al. 2016; Frigerio et al. 2019) as well as
recent results on private hyper-parameter selection (Liu and
Talwar 2019).
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Mironov, I. 2017. Rényi differential privacy. In 2017 IEEE
30th Computer Security Foundations Symposium (CSF),
263–275. IEEE.
Mirza, M., and Osindero, S. 2014. Conditional generative
adversarial nets. arXiv preprint arXiv:1411.1784.
Odena, A.; Olah, C.; and Shlens, J. 2017. Conditional im-
age synthesis with auxiliary classifier gans. In Proceedings
of the 34th International Conference on Machine Learning-
Volume 70, 2642–2651. JMLR. org.

Papernot, N.; Abadi, M.; Erlingsson, U.; Goodfellow, I.; and
Talwar, K. 2016. Semi-supervised knowledge transfer for
deep learning from private training data. arXiv preprint
arXiv:1610.05755.
Pocock, S. J.; Ariti, C. A.; McMurray, J. J.; Maggioni, A.;
Køber, L.; Squire, I. B.; Swedberg, K.; Dobson, J.; Poppe,
K. K.; Whalley, G. A.; et al. 2012. Predicting survival in
heart failure: a risk score based on 39 372 patients from 30
studies. European heart journal 34(19):1404–1413.
Shokri, R.; Stronati, M.; Song, C.; and Shmatikov, V. 2017.
Membership inference attacks against machine learning
models. In 2017 IEEE Symposium on Security and Privacy
(SP), 3–18.
Su, D.; Cao, J.; Li, N.; Bertino, E.; and Jin, H. 2016. Dif-
ferentially private k-means clustering. In Proceedings of the
sixth ACM conference on data and application security and
privacy, 26–37. ACM.
Sweeney, L. 2002. k-anonymity: A model for protecting
privacy. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 10(05):557–570.
Torkzadehmahani, R.; Kairouz, P.; and Paten, B. 2019. Dp-
cgan: Differentially private synthetic data and label gener-
ation. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops.
Xie, L.; Lin, K.; Wang, S.; Wang, F.; and Zhou, J. 2018.
Differentially private generative adversarial network. arXiv
preprint arXiv:1802.06739.
Xu, C.; Ren, J.; Zhang, D.; Zhang, Y.; Qin, Z.; and Ren,
K. 2019. Ganobfuscator: Mitigating information leakage
under gan via differential privacy. IEEE Transactions on
Information Forensics and Security 14(9):2358–2371.
Yoon, J.; Jordon, J.; and van der Schaar, M. 2019. PATE-
GAN: Generating synthetic data with differential privacy
guarantees. In International Conference on Learning Rep-
resentations.
Zhang, J.; Cormode, G.; Procopiuc, C. M.; Srivastava, D.;
and Xiao, X. 2017. Privbayes: Private data release via
bayesian networks. ACM Transactions on Database Systems
(TODS) 42(4):25.
Zhang, X.; Ji, S.; and Wang, T. 2018. Differentially private
releasing via deep generative model (technical report). arXiv
preprint arXiv:1801.01594.


