
Privacy-Preserving Deep Learning with SPDZ
Shreya Sharma1, Chaoping Xing2, Yang Liu3

1Department of Electronics Engineering, Indian Institute of Technology (BHU) Varanasi, India
Email: shreyas.cd.ece17@iitbhu.ac.in

2School of Electronics, Information & Electrical Engineering, Shanghai Jiao Tong University, China
School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore

Email: xingcp@ntu.edu.sg
3 Webank, Shenzhen, China

Email: yangliu@webank.com

Abstract

Neural Networks (NN) are powerful tools for super-
vised machine learning. However, extensive data col-
lection from different sources for accurate training risks
privacy. Most privacy-preserving solutions for secure
Machine Learning either don’t guarantee active secu-
rity for a dishonest majority or do so for linear models
only. In this work, we explore the practicality of Neu-
ral Network training and evaluation using SPDZ, a fam-
ily of secret-sharing based MPC protocols that provide
active security against a dishonest majority. We investi-
gate different intricacies of Machine Learning suitable
for the setting, benchmark the models in fields, and ex-
trapolate various results of previous benchmarks to ex-
plore promising improvements in rings. A single infer-
ence by our implementation takes 0.11 seconds for FNN
and 0.16 seconds for CNN in the online phase.

Introduction
Machine learning as a service (MLaaS) is a cloud-based ser-
vice paradigm that enables clients to train machine learning
models and perform online inference on the already trained
ones. While this has clear benefits, it puts the privacy of the
clients at risk because the clients’ input-data submitted to
the cloud service may contain sensitive private information,
such as, medical records, financial data, or location; which
in-turn hinders the applicability of Deep Learning models. In
order to protect inference input data, one solution can be to
make the model available for public use. However, this can
lead to leakage of the data on which the model was trained.
Moreover, the trained model itself may require confidential-
ity because it constitutes a competitive or monetary advan-
tage for the parties that performed the training. Thus arises
the need for models that can train and predict in such a way
that the server learns nothing about clients’ input, and clients
learn nothing about the model except the prediction results.

This work focuses on providing a solution for the above
problem by enabling M data owners to train a deep learning
model on their joint data usingN servers. Secure Multiparty
Computation (MPC) allows this to be achieved in the client-
server setting by letting the data owners and the model own-
ers secret-share their input and then a set of servers run the
computation over these shares. More specifically, these M
parties send secret shares of their input data to the N servers.

An interactive protocol to train a neural network over the
received data is run by the servers collectively to produce
a trained model that can be used for inference. The trained
model can be kept hidden from any single party and retained
as secret shares between the servers or reconstructed to ob-
tain the model in the clear. Predictions on any new input can
be made using the trained model even if the model is retained
as secret shares between the N servers. Both M and N can be
arbitrarily chosen; for simplicity, we focus on the case where
N=2. We would like to stress on how prevalent a two-party
setting is on the Internet in the form of client-server models,
and since our work supports a dishonest majority(number of
corrupt parties ≥ N/2), it stands relevant to the case where
one party trains the model while the other party performs
inference on it.

However, theoretical MPC protocols over low-level cir-
cuits often do not scale efficiently to real-world data for
complex tasks such as neural network training and lead
to highly inefficient implementation. One reason for this
fact is that Neural Network evaluation involves perform-
ing floating-point arithmetic, whereas secret-sharing based
MPC protocols are better suited for modular integer-based
arithmetic. Moreover, Neural Networks include non-linear
activation functions which are typically evaluated by expen-
sively converting to different sharing and the use of Garbled
Circuits (Rotaru and Wood 2019) or by using a polynomial
approximation of the function which leads to loss of accu-
racy, as in SecureML (Mohassel and Zhang 2017).

Implementation using MPC protocols with active secu-
rity against a dishonest majority tend to be much more com-
plicated. These protocols are typically field-based, i.e. they
support arithmetic modulo p, where p is a large prime. This
restriction makes it much more difficult to convert between
Zp sharings and binary sharings, resulting in operations such
as truncation (which is necessary for operating on floating-
point numbers in arithmetic circuits), and comparison being
expensive in fields. Thus, such protocols are rendered in-
competent for this particular application.

Our Contribution
• Our work aims to calibrate the practicality of Deep Learn-

ing with malicious security in both fields and rings. It is
the first to give experimental results for both training and
inference of NN in the field-based actively secure setting



involving a dishonest majority.
• We present Fully Connected Neural Network (FNN) and

Convolutional Neural Network (CNN) models that best
suit the SPDZ framework, involving activation functions
that avoid the switch to garbled circuits for division (as
necessary in case of many functions such as softmax), and
using initialization techniques such as Xavier Initializa-
tion in order to keep the range of values obtained in check
for accurate results. Further, we investigate the impact of
all such changes on accuracy of the model.

• We also provide a sound and promising extrapolation of
our experimental results in fields to a ring-based actively-
secure setting.

Our techniques are powerful enough to train CNNs that pro-
duce an accuracy of 99% and FNNs that produce an accu-
racy greater than 97% on the MNIST dataset.

Related Work
The work on secure Neural Networks evaluation started with
Homomorphic Encryption based techniques (Barni, Orlandi,
and Piva 2006; Orlandi, Piva, and Barni 2007). Microsoft
proposed CryptoNets (Gilad-Bachrach et al. 2016) based on
Leveled Homomorphic Encryption (LHE), which assumes
that training has been done on plain-text and the model is
known to one party who evaluates it on encrypted inputs of
the other party. Apart from the high computational overhead,
it uses the polynomial approximation of non-linear activa-
tion functions, and as LHE restricts the degree of the poly-
nomial used, the model was not accurate enough.

SecureML (Mohassel and Zhang 2017) focuses on private
training and inference of various ML models like Linear re-
gression, Logistic Regression and Neural Networks. How-
ever, this ring-based work does not guarantee active secu-
rity, and for the evaluation of certain non-linear activation
functions like softmax, it proposes an expensive switching
between arithmetic secret shares and Garbled circuits. This
work manages to achieve an accuracy of 93.7% through a
Fully-Connected Neural Network with two hidden layers
while incurring around a 1% accuracy loss as compared to
the plain-text model.

MiniONN (Liu et al. 2017) is the first work to talk about
building on top of existing Neural Network models to obtain
security in a passively secure model. It equipped a combi-
nation of Garbled Circuits and Homomorphic encryption to
do so in a 2-party setting. The use of Yao’s Garbled Circuits
for the computation renders the scalability of this work to
more than two parties very difficult. Chameleon Framework
(Riaz et al. 2018) for secure Neural Network evaluation re-
lies on a third-party trusted dealer, but the existence of such
a trusted third-party seems quite impractical. It presents re-
sults based on fixed-point arithmetic and suggests extension
of their techniques to floating-point arithmetic for better co-
herence with the plain-text version of the model. Gazelle
(Juvekar, Vaikuntanathan, and Chandrakasan 2018) presents
a field-based hybrid combination of packed additively homo-
morphic encryption (PAHE) along with Garbled circuits. It
achieves improvement by a factor of 20 and 30 with respect
to MiniONN and Chameleon, assuming passive corruptions.

DeepSecure (Rouhani, Riazi, and Koushanfar 2018) is a
work entirely based on Garbled Circuits. They implement a
library that supports fixed-point arithmetic, introduces op-
timized Garbled Circuit protocols directed towards secure
Neural Network evaluation. They show results for security
against a passive adversary.

SecureNN (Wagh, Gupta, and Chandran 2018) is the
state-of-the-art protocol for secure training and inference of
Neural Networks. Its efficiency partly results from eliminat-
ing Oblivious Transfer from the preprocessing phase and in-
volving a third party that acts as a source of randomness
on top of participating in real computation of the protocol.
Since the parties are likely to collude, the security provided
for the case of honest majority restricts applicability to prac-
tical scenarios.

ABY3 (Mohassel and Rindal 2018) presents three-party
based protocols that enable faster conversion between Arith-
metic, Boolean and Yao shares. This paper is ring-based but
shows experimental numbers for passive settings only. They
also show how to convert their protocols into actively secure
in case of honest majority.

One of the more recent works that talks about secure eval-
uation of NN is (Barak et al. 2019), which introduces a
Machine Learning technique called quantization to privacy-
preserving deep learning. It is the first work that provides
results for actively secure NN inferencing with honest ma-
jority. This is achieved in fields using MP-SPDZ framework
(MPS N1 Analytics). It also explores a ring-based approach
for three-party MPC setting and manages to achieve passive
security in case of honest majority.

Machine Learning using SPDZ in fields has been explored
to some extent in (Zheng et al. 2019). But the work only fo-
cuses on linear models. (Chen, Pastro, and Raykova 2019)
is another work on actively secure Machine Learning that
shows some particular machine learning models trained us-
ing SPDZ can match the latency of (Mohassel and Zhang
2017).

Apart from the primarily MPC-based solutions presented
so far, an orthogonal path considers NN evaluation with
some limitations in Trusted Execution Environment like In-
tel SGX. For instance, Chiron (Hunt et al. 2018) which is
vulnerable to covert and side-channel attacks and Slalom
(Tramèr and Boneh 2019) which only allows secure infer-
ences.

Preliminaries

SPDZ is a family of MPC schemes which work on additive-
sharing with information theoretic MACs, providing mali-
cious security for dishonest majority. More specifically, each
Party Pi holds an additive share, αi ∈ Fp of the fixed MAC
key α = α1+...+αn. A value is said to be 〈·〉 shared if each
Party Pi has a tuple (ai, γ(a)i) where ai is an additive share
of a such that a = a1 + ...an and γ(a)i is an additive share
of γ(a) such that γ(a) = αa and γ(a) = γ(a)1+ ..+γ(a)n.
The online-phase of the SPDZ protocol is given in Figure 1.



Figure 1: ΠSPDZ
Online - SPDZ Online Protocol

The set P is the complete set of parties.
Initialise: The parties call preprocessing functionality to ob-
tain enough multiplication triples (〈a〉, 〈b〉, 〈c〉) and input
mask values (rj , 〈rj〉) according to the function being evalu-
ated. If the functionality aborts, the parties output⊥ and abort.
Input: To input xj , party Pj ∈ P takes a mask value
(rj , 〈rj〉), then:

1. Broadcasts ∆← xj − rj
2. Parties compute 〈xj〉 ← 〈rj〉+ ∆

Add: On input (〈x〉, 〈y〉), locally compute 〈x+ y〉 ← 〈x〉+
〈y〉
Multiply: On input (〈x〉, 〈y〉), the parties:

1. Take a multiplication triple (〈a〉, 〈b〉, 〈c〉), compute 〈ε〉 ←
〈x〉 − 〈a〉 and 〈ρ〉 ← 〈y〉 − 〈b〉 and partially open them to
obtain ε and ρ.
Partially opening a share involves each party sending its
own share of the value to every other party and computing
the sum of all the shares available to it, while the corre-
sponding MAC value γ(xi) is kept secret.

2. Set 〈z〉 ← ε · ρ + ε · 〈a〉 + ρ · 〈b〉 + 〈c〉.
Output: To output a share 〈x〉:
1. Check all partially opened values since the last batched

MAC-check, as follows:

• The parties have ids id1, ... idk corresponding to opened
values x1, .. xk

• Parties agree on a random vector r← FRand

(
Fk
q

)
• Party Pi computes c ←

∑k
j=1 rj · xj and γ(c)i ←∑k

j=1 rj · γ (xj)i

• Parties run batched MAC-check on c, where party Pi

inputs c and γ(c)i.

2. If the MAC-check fails, output ⊥ and abort.
3. Open each party Pi’s input sent to every other party Pj , to

compute x ←
∑

i∈P xi. Run MAC-check with party Pi’s
input x and γ(xi), to verify 〈y〉. In case this check fails,
output ⊥ and abort; otherwise output x.

Secure Neural Network Interface
A significant challenge while coming up with Secure NN In-
terface that is efficiently compatible with SPDZ is the choice
of activation function. For instance, non-linear functions like
softmax introduce a computational overhead of converting
from Arithmetic circuit to Yao’s Garbled Circuit for divi-
sion. One way of avoiding this overhead is approximating
the function, but this can result in further loss of accuracy.
Another way can be the use of ReLU function, which in-
volves a relatively cheaper comparison operation. Our plain-
text results on accuracy seem to indicate that ReLU is the
best choice for attaining greater accuracy with less hidden
layers. Thus, our experiments primarily focus on models of
FNN and CNN that use only ReLU in the non-linear layers.

Although the use of ReLU has its benefits, not using

Figure 2: Range of Sigmoid and ReLU

smooth functions that restrict the value of the output, leads
to overflow after just a few operations on the features. This
is because ReLU has no upper bound, whereas functions
like softmax/sigmoid restrict the values of the outputs in the
range of [0, 1], as is evident in Fig. 2. Introducing another set
of comparisons on top of the ReLU functionality for limit-
ing the values can result in comparison operation becoming
the bottleneck of computation.

To overcome this problem, we take help of initializa-
tion techniques popular in Machine Learning. An appro-
priate parameter initialization of Neural Networks can lead
to optimizations being reached in the least time, otherwise
converging to a minima using gradient descent can become
tedious. We use two different initialization techniques for
our weights and biases respectively. For our weights, we
use Xavier Initialization i.e. dividing the randomly initial-
ized values by square root of the number of neurons in the
previous layer. For our biases, we use Zero Initialization i.e.
setting all values to zero. These helped us control the range
of gradient and prevent them from vanishing or exploding
too quickly. Furthermore, this is achieved without introduc-
ing an extra set of comparison operations for each value in
every layer.

Figure 3: Sigmoid function and Least Square Approximation
(Kim et al. 2018)

In case of our FNN model, we have compared the ac-
curacy for ReLU, polynomial approximation and linear ap-
proximation of sigmoid. In the polynomial case, least square
approximations of sigmoid have been used in place of the
sigmoid function, as it is bounded in the interval [0, 1] for a
wider range and thus helps prevents overflow.

g7(x) = b0+b1×(x/8)+b3×(x/8)3+b5×(x/8)5+b7×(x/8)7

(1)
Eq. 1 represents the degree-7 polynomial approximation of



sigmoid, where b0, b1, b3, b5, b7 = (0.5, 1.73496, − 4.19407,
5.43402, − 2.50739).

For the linear approximation, we used the function given
by eq. 2, where c = 0.28.

f(x) = 0.5× (1 + c× x) (2)

Figure 4: Sigmoid Function and Linear Approximation of
Sigmoid

Description of the Model
Fully-connected Neural Network This model uses a
multi-layer perceptron and we evaluate it with 3 different
function as the activation function, namely ReLU, Least-
square approximation of Sigmoid and, Linear approxima-
tion of Sigmoid.

Fully-
Connected:

input image 28×28, connects the incoming 784
nodes to the outgoing 128 nodes i.e.R100×1 ←
R100×784 ·R784×1

Activation: returns the post-nonlinearity values of the input.

Fully-
Connected:

connects the incoming 128 nodes to the outgo-
ing 10 nodes i.e. R10×1 ← R10×100 ·R100×1

Activation: returns the post-nonlinearity values of the input

Convolutional Neural Network The layers in the model
are similar to the one introduced by Chameleon (Riaz et al.
2018). On top of the layers, we involve normalisation of in-
put and weight initialization techniques to keep the output
values in check.

Convolution: input image 28× 28, filter size 5× 5, stride
(2, 2), number of output channels 5 i.e.
R5×196 ← R5×25 ·R25×196

Activation: ReLU function applied to each input

Fully-
Connected:

connects the incoming 980 nodes to the out-
going 100 nodes i.e. R100×1 ← R100×980 ·
R980×1

Activation: ReLU function applied to each input

Fully-
Connected:

connects the incoming 100 nodes to the outgo-
ing 10 nodes i.e. R10×1 ← R10×100 ·R100×1

Experimental Results
We have based our entire implementation on a single frame-
work i.e. MP-SPDZ (MPS N1 Analytics). For the field-
based experiments, we work on 128-bit prime field where
statistical security parameter σ=57. The framework pro-
vides a C++ online-phase implementation of SPDZ based on
SPDZ-2 (Damgård et al. 2013), which is the most recent on-
line protocol for SPDZ. The offline phase implementation is
based on Overdrive (Keller, Pastro, and Rotaru 2018) in Low
Gear which is the most efficient SPDZ preprocessing proto-
col for two parties. For most efficient results in SPDZ2k,

the preprocessing should be based on TinyOT (Nielsen et al.
2012), (Wang, Ranellucci, and Katz 2017) as compared to
the native SPDZ2k triples. Since such an implementation of
SPDZ2k is not available in MP-SPDZ and the native imple-
mentation offers roughly the same experimental numbers as
obtained modulo p for the online phase, we resort to extrap-
olations based on the various experimental results, which we
further explain in the last section.

Setup We run all experiments in two-party setting, with
each party equipped with an Intel i9-7960X CPU clocked at
2.80 GHz with 128 GB RAM, and running the Arch Linux
operating system. The parties are connected over a 10Gbps
link and present in the same region.

Results in Fields
The following results are highlighted for different experi-
ments conducted on the MNIST dataset for a 128-bit prime
field.

Activation Function In order to compare the performance
of various activation functions as a part of our FNN model,
we present the accuracy attained when all non-linear layers
used the same activation function. The tests were conducted
for 15 epochs, with batch size 128 and learning rate 0.5.

• The accuracy attained in plain-text with sigmoid function
was 95%. Both linear and polynomial approximation in-
cur significant loss of accuracy. (Table 1)

• The use of initialization techniques not only helped us
avoid overflow, but also helped us attain better accuracy
with just one hidden layer as compared to all the other
works that used two hidden layers with more neurons.
For instance, the FNN model of SecureML (Mohassel and
Zhang 2017) with two-hidden layers with 128 neurons
each, managed to attain 93% accuracy while incurring a
loss of 1% as compared to the plain-text model.

• As for the precision, a 13-bit precision in the floating-
point operations is enough to attain results that match the
accuracy associated with the plain-text version.

Function Accuracy
Linearly Approximated Sigmoid 87.50%

Polynomial Approximated Sigmoid 93.60%
ReLU 97.73%

Table 1: Accuracy attained by different activation functions
in Non-linear layer.

Training and Inference We have specified the training
time for one iteration and inference time for a single image
in Table 2. The online phase was run using a single thread.
The number of triples and random bits needed have been
mentioned in multiple of thousand.

• The Low-Gear based preprocessing was run using 16
threads, such that communication per triple turned out to
be 14.922 kbits.



Task NN Offline Phase Online Phase
# triples (k) # random-bits (k) Time (s) Communication (MB) Time (s)

Training FNN 35968 20504 354 1144.32 24.32
CNN 48641 52121 479 1497.60 29.18

Inference FNN 187 122 1.84 5.98 0.11
CNN 260 263 2.56 8.16 0.16

Table 2: Results for Fields for a single iteration in training where batch size is 128 and a single inference

• The major optimization equipped for implementation is
merging the communication of multiple operations into
a single round. This technique is well suited for Deep
Learning in particular, since NNs extensively involve per-
forming the same operation on the entire layer which can
be very slow if a sequential approach is used.

• To attain such parallelism for truncation, we have per-
formed the entire training and testing on integers, where
each value was scaled up by 2precision during input, this al-
lowed us to truncate entire rows of matrices obtained after
each matrix multiplication in one round.

• For training, to attain an accuracy greater than 97% FNN
will require 2000 iterations, with batch size 128 and learn-
ing rate 0.5. Similarly, CNN will require 7000 iterations
with batch size 128 and learning rate 2−5.

Although the numbers presented so far seem promising
when seen with respect to other work in the malicious set-
ting, but they fail to compete with the run-time of privacy-
preserving machine learning in the passive setting. The FNN
evaluation using (Mohassel and Zhang 2017) in rings for
a passive setting is multifolds faster than these results for
fields in active setting. Therefore, we further present a highly
promising extrapolation of our results for a ring-based set-
ting in the next section.

Results for Rings
SPDZ2k (Cramer et al. 2018) is a particular member of
the SPDZ family that supports arithmetic over rings of the
form 2k. The protocol supports arithmetic modulo 2k, which
is correspondent to the native 32-bit/64-bit operations per-
formed in CPUs, thus makes way for highly efficient im-
plementations. The main idea behind the protocol is that it
accepts shares modulo 2k but performs computation over a
larger ring modulo 2k+s where the statistical security param-
eter is σ = s− log(s) and correctness is guaranteed modulo
2k. Due to the presence of many divisors in the ring, MACs
cannot protect integrity of an element x ∈ Z2k+s , but can do
so for its k lower order bits i.e. x mod 2k.

The online-phase of a ring-based implementation bene-
fits from two advantages i.e. faster local computation and
reduced communication. The former arises from the elim-
ination of modular reductions. Figure 5 gives a clear pic-
ture of how impactful this elimination can be. It shows the
time for conducting 1000,000 sequential multiplications in
GMP modulo a 128-bit prime for fields and a multiplica-
tion on custom data type using two 64 bit unsigned inte-
gers, modulo 2128 for rings in C++ and highlights around
a 5 times improvement in the ring-based case. The reduced

field

ring 16,282

71,224

C++ Arithmetic Benchmark

Figure 5: Time in microseconds for 1,000,000 multiplication in
C++, using mpz t (modulo 128 bit prime) and custom datatype
modulo 2128

data communication roots from the use of bit-triples, that en-
able computation by sending only k least significant bits of
an element, rather than the entire element in case of SPDZ.
The results of leveraging these two advantages have already
been experimentally shown by (Damgård et al. 2019) for a
protocols of primitives like comparison, bit-decomposition
etc. The online-phase in rings turned out to give a five fold
improvement in computation and an eighty-five fold reduc-
tion in the online communication for the Java implementa-
tion using FRESCO (Fre Alexandra Institute) Framework.
Since benchmarks on Java arithmetic showed similar folds
of improvement in their work as highlighted in Fig. 5, and
the improvement folds of comparison etc. were even better
than multiplication, it can safely be assumed that a C++ im-
plementation of the online-phase in rings would give multi-
fold improvement for the case of NN. Such an improvement
can enable actively secure NN models to match the latency
of SecureML and thus render them even more appropriate
for practical use. As for the offline phase, the TinyOT based
preprocessing in rings does lag behind the LowGear version
in fields, but the gap can be diminished via SHE-based tech-
niques, which can further enable SPDZ based Deep Learn-
ing to compete with the passive versions so far.

Future Work
Apart from obtaining experimental results for NN based on
rings, a direction for further research can be building a SPDZ
library specific to Machine Learning. Since Machine Learn-
ing in itself is a broad field, yet many of its applications in-
volve extensive use of basic computation like matrix multi-
plication, batched operations etc., a library catering to these
in particular can provide a platform for further implementa-
tions and help unify the research in Privacy Preserving Ma-
chine Learning.



References
Barak, A.; Escudero, D.; Dalskov, A.; and Keller, M. 2019. Se-
cure Evaluation of Quantized Neural Networks. IACR Cryptol-
ogy ePrint Archive 2019:131. https://eprint.iacr.org/
2019/131.
Barni, M.; Orlandi, C.; and Piva, A. 2006. A privacy-preserving
protocol for neural-network-based computation. In Proceedings of
the 8th Workshop on Multimedia and Security, MM&#38;Sec ’06,
146–151. New York, NY, USA: ACM.
Chen, V.; Pastro, V.; and Raykova, M. 2019. Secure computation
for machine learning with SPDZ. CoRR abs/1901.00329.
Cramer, R.; Damgård, I.; Escudero, D.; Scholl, P.; and Xing, C.
2018. SPDZ2k: efficient MPC mod 2k for dishonest majority. In
Advances in Cryptology - CRYPTO 2018 - 38th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August
19-23, 2018, Proceedings, Part II, 769–798.
Damgård, I.; Keller, M.; Larraia, E.; Pastro, V.; Scholl, P.; and
Smart, N. P. 2013. Practical Covertly Secure MPC for Dishon-
est Majority – Or: Breaking the SPDZ Limits. In Crampton, J.;
Jajodia, S.; and Mayes, K., eds., Computer Security – ESORICS
2013, 1–18. Berlin, Heidelberg: Springer Berlin Heidelberg.
Damgård, I.; Escudero, D.; Frederiksen, T.; Keller, M.; Scholl, P.;
and Volgushev, N. 2019. New Primitives for Actively-Secure MPC
over Rings with Applications to Private Machine Learning. 2019
2019 IEEE Symposium on Security and Privacy (SP) 1325–1343.
Alexandra Institute. FRESCO - a framework for efficient secure
computation. https://github.com/aicis/fresco.
Gilad-Bachrach, R.; Dowlin, N.; Laine, K.; Lauter, K. E.; Naehrig,
M.; and Wernsing, J. 2016. Cryptonets: Applying neural net-
works to encrypted data with high throughput and accuracy. In
Proceedings of the 33rd International Conference on International
Conference on Machine Learning - Volume 48, ICML’16, 201–210.
JMLR.org.
Hunt, T.; Song, C.; Shokri, R.; Shmatikov, V.; and Witchel, E.
2018. Chiron: Privacy-preserving machine learning as a service.
Juvekar, C.; Vaikuntanathan, V.; and Chandrakasan, A. 2018.
GAZELLE: A low latency framework for secure neural network
inference. In 27th USENIX Security Symposium (USENIX Security
18), 1651–1669. Baltimore, MD: USENIX Association.
Keller, M.; Pastro, V.; and Rotaru, D. 2018. Overdrive: Making
SPDZ great again. In Nielsen, J. B., and Rijmen, V., eds., Advances
in Cryptology – EUROCRYPT 2018, 158–189. Cham: Springer
International Publishing.
Kim, M.; Song, Y.; Wang, S.; Xia, Y.; and Jiang, X. 2018. Secure
logistic regression based on homomorphic encryption: Design and
evaluation. JMIR Med Inform 6(2):e19.
Liu, J.; Juuti, M.; Lu, Y.; and Asokan, N. 2017. Oblivious Neural
Network Predictions via MiniONN Transformations. In Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’17, 619–631. New York, NY, USA:
ACM.
Mohassel, P., and Rindal, P. 2018. ABY3: A Mixed Protocol
Framework for Machine Learning. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Se-
curity, CCS ’18, 35–52. New York, NY, USA: ACM.
Mohassel, P., and Zhang, Y. 2017. Secureml: A system for scalable
privacy-preserving machine learning. 2017 IEEE Symposium on
Security and Privacy (SP) 19–38.
N1 Analytics. MP-SPDZ - versatile framework for multi-
party computation. https://github.com/n1analytics/
MP-SPDZ.

Nielsen, J. B.; Nordholt, P. S.; Orlandi, C.; and Burra, S. S. 2012.
A new approach to practical active-secure two-party computation.
In Safavi-Naini, R., and Canetti, R., eds., Advances in Cryptology
– CRYPTO 2012, 681–700. Berlin, Heidelberg: Springer Berlin
Heidelberg.
Orlandi, C.; Piva, A.; and Barni, M. 2007. Oblivious neural net-
work computing via homomorphic encryption. EURASIP Journal
on Information Security 2007(1):037343.
Riaz, M. S.; Weinert, C.; Tkachenko, O.; Songhori, E. M.; Schnei-
der, T.; and Koushanfar, F. 2018. Chameleon: A hybrid secure
computation framework for machine learning applications. In Pro-
ceedings of the 2018 on Asia Conference on Computer and Com-
munications Security, ASIACCS ’18, 707–721. New York, NY,
USA: ACM.
Rotaru, D., and Wood, T. 2019. Marbled circuits: Mixing arith-
metic and boolean circuits with active security. Cryptology ePrint
Archive, Report 2019/207. https://eprint.iacr.org/
2019/207.
Rouhani, B. D.; Riazi, M. S.; and Koushanfar, F. 2018. DeepSe-
cure: Scalable Provably-Secure Deep Learning. In 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC), 1–6.
Tramèr, F., and Boneh, D. 2019. Slalom: Fast, verifiable and private
execution of neural networks in trusted hardware. In 7th Interna-
tional Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019.
Wagh, S.; Gupta, D.; and Chandran, N. 2018. SecureNN: effi-
cient and private neural network training. IACR Cryptology ePrint
Archive 2018:442.
Wang, X.; Ranellucci, S.; and Katz, J. 2017. Global-scale secure
multiparty computation. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’17,
39–56. New York, NY, USA: ACM.
Zheng, W.; Popa, R. A.; Gonzalez, J. E.; and Stoica, I. 2019. Helen:
Maliciously secure coopetitive learning for linear models. 2019
IEEE Symposium on Security and Privacy (SP).


