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Abstract

Preventing unintentional leakage of information about the
training set has high relevance for medical image segmenta-
tion because medical scans contain particularly sensitive in-
formation. While differential privacy offers mathematically
rigorous protection, the high output dimensionality of seg-
mentation tasks prevents the direct application of state-of-
the-art algorithms such as Private Aggregation of Teacher En-
sembles (PATE). In order to alleviate this problem, we con-
sider the use of dimensionality reduction to map the predic-
tion target into a lower-dimensional latent space to reduce
the required noise level during the aggregation stage. To this
end, we assess the suitability of principal component analy-
sis (PCA) theoretically and autoencoders experimentally on a
brain tumor dataset.

Introduction
Differential privacy (DP) protects participants against an
important class of privacy threats by providing a provable
lower bound of the optimal adversary’s error rate when try-
ing to detect the presence of any single individual (Kairouz,
Oh, and Viswanath 2017). One particular advantage of this
concrete guarantee is that it is interpretable at an operational
level, in contrast to more abstract information-theoretic mea-
sures and best-effort obfuscation schemes . Moreover, it has
been argued that DP may assist in compliance with privacy
legislation, in particular the General Data Protection Regu-
lation in the European Union (Cummings and Desai 2018).

PATE (Papernot et al. 2017; 2018) is a training algorithm
that preserves differential privacy and has several attractive
properties for medical applications. First, it can be used with
decentralized data. This is relevant because aggregating data
from several clinics into a centralized dataset is often not an
option. Instead, each institution can train its own model on
its respective fraction of the dataset. Second, it is model-
agnostic, i.e. it allows the local models to take arbitrary
form. In particular, it allows all hospitals to use different
learning algorithms, e.g. for the purpose of fine-tuning to
differences in measurement protocols or abundance of data.
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Moreover, model size is not penalized which is beneficial for
the training of large neural networks.

On the other hand, PATE does penalize target dimension-
ality. In the case of image segmentation, for instance, a pre-
diction needs to be made for each pixel, meaning that very
few images can be labeled for the student if the cumulative
privacy cost is to be kept below a reasonable threshold. In
our work, we address this limitation by exploiting the cor-
relation between the labels of pixels within a segmentation
map. Just like images, segmentation maps generally show
some coherent spatial structure (e.g. the shape of a tumor;
background), hence the pixel labels are not independently
distributed. By removing this redundancy we can represent
the map as a vector in a lower-dimensional space where less
noise is needed to achieve the same privacy level.

We consider linear and nonlinear methods separately. In
the linear case, we use principal component analysis and
give a simple analytical form for the mean-square error in
the reconstructions, on which the student is trained subse-
quently. This allows us to choose the number of latent vari-
ables optimally such as to find the best trade off between
noise reduction and retention of information. In the nonlin-
ear case, we use an autoencoder on which we perform our
experimental evaluation.

Background
Differential Privacy

A randomized algorithm M : XN → Y is an algorithm
that takes as input N instances from a domain X and out-
puts a sample from a probability distribution over Y . Dif-
ferential privacy requires a randomized algorithm to sam-
ple from similar distributions for adjacent inputs. Here, ad-
jacency is defined via the Hamming distance: Two inputs
x = (x1, . . . , xN ) and x′ = (x′1, . . . , x

′
N ) are said to

be adjacent if there is one index n ∈ {1, . . . , N} such
that xn 6= x′n. We denote the set of all adjacent pairs by
Adj(XN ).

Definition 1 (Differential Privacy (Dwork et al. 2006)). A
randomized algorithm M : XN → Y is said to be (ε, δ)-
differentially private if for all (x, x′) ∈ Adj(XN ) and Y ⊆



Y ,

Pr[M(x) ∈ Y ] ≤ eε Pr[M(x′) ∈ Y ] + δ. (1)

Differential privacy is typically guaranteed by estimating
the influence any single example can have on the algorithm’s
output (the sensitivity) and then adding just enough noise to
obscure this influence.

Definition 2 (Sensitivity). The sensitivity of a function f :
XN → RM is defined as

S2(f) = sup
(x,x′)∈Adj(XN )

||f(x)− f(x′)||2. (2)

PATE PATE (Papernot et al. 2017; 2018) is a decentral-
ized differentially private training algorithm for classifica-
tion problems that relies on privacy-preserving knowledge
transfer. The private training set consists of K disjoint sub-
sets, on each of which a so called teacher model is trained.
Subsequently, an additional unlabeled public dataset is la-
beled by the teacher models and a student model is trained
based on the teachers’ predictions. The teacher votes are col-
lected in a histogram upon which noise is added (e.g. using
the Gaussian mechanism) such as to guarantee the desired
level of (ε, δ)-differential privacy. Since the student is only
shown the noisy histograms, the resulting student model also
preserves differential privacy.

Dimensionality Reduction
Principal Component Analysis PCA is an orthonormal
change of basis that decorrelates data points. The basis vec-
tors are called the principal components. PCA is used for
dimensionality reduction by only keeping the first few com-
ponents, i.e. those that explain most of the variability within
the data set. Computationally, the principal components can
be found by an eigendecomposition of the sample covari-
ance matrix.

Formally, if we have a matrix X ∈ RN×d whose rows
are the data points xT1 , . . . , x

T
N ∈ Rd then PCA finds an

orthogonal matrix A ∈ Rd×d whose rows are the principal
components a1, . . . , ad ∈ Rd. If we let Al = (a1, . . . , al)

T

then the low-dimensional representation zn of the n-th point
can be computed as zn = Alxn. The reverse transformation
is computed as x̂n = ATl zn, using the fact that AT = A−1

because A is orthogonal.

Autoencoder Autoencoders are neural networks that have
a bottleneck layer and are trained to approximate the iden-
tity function. The bottleneck layer is the smallest layer in
the network and, in particular, has fewer nodes than the in-
put layer. The layers before the bottleneck layer are called
the encoder, the following layers the decoder. Since the au-
toencoder is trained to output its input, it is forced to learn
a lower-dimensional representation of the input in its bottle-
neck layer that preserves as much information as possible.
The subsequent layers are only a function of the representa-
tion, not of the original input, which excludes the possibility
of skip connections, for instance.

When used for image compression, the autoencoder is
typically a convolutional network, where the encoder re-
duces the spatial resolution with each layer through pooling
and the decoder increases the spatial resolution through up-
sampling. Formally, we represent the encoder by a function
fenc : Rd 7→ Rl and the decoder by fdec : Rl 7→ Rd.

Linear dimensionality reduction in PATE
In this section, we present our dimensionality reduction
scheme in the linear case, which allows for a thorough for-
mal analysis. In particular, we show that due to the well
known properties of PCA, the squared error after reconstruc-
tion has a simple analytical form and the number of principal
components l can be chosen in advance such as to trade off
the loss of signal due to compression against the reduction
of noise optimally.

In the classification version of PATE, teacher predictions
are aggregated by counting the votes for each class and
adding noise on top of the vote counts. While in principle
possible, it would be challenging to apply this approach di-
rectly to segmentation by treating each pixel as a separate
classification problem because a large number of queries
would need to be answered for every single image. Since
the queries are locally highly correlated, this would lead to
an unnecessarily high (estimation of the) privacy loss. In-
stead, we can use PCA to obtain a more compact lower-
dimensional representation so that fewer queries are needed.
The representations are averaged and Gaussian noise is
added. The procedure is detailed in Algorithm 1.
Proposition 1. Algorithm 1 is (ε, δ)-differentially private.

Proof sketch. The algorithm is a repeated application of the
Gaussian mechanism to the aggregation function fagg(x) =
1
K

∑K
k=1Alynk, which has sensitivity

S2(fagg) =
1

K
max

ŷ∈[−1,1]d
||Alŷ||2 (3)

≤
√
d

K
(4)

for teacher predictions ynk ∈ [0, 1]d.
We analyze the cumulative privacy loss over repeated in-

vocations using the composition theorem of Rényi differen-
tial privacy (RDP) (Mironov 2017). The free parameter that
denotes the order of the Rényi divergence can be optimized
analytically. After translating the RDP loss back to the DP
loss, we can see that the corresponding standard deviation to
stay below the chosen loss is

σ =

√
Nd

(√
log δ−1 + ε+

√
log δ−1

)
√

2Kε
. (5)

The full proof is given in the appendix.

Note that the sensitivity we use for setting the noise mag-
nitude is only an upper bound. In principle, the maximiza-
tion problem in (3) can be solved in polynomial time 1

1If we treat l as constant



Data: K teacher models t1, . . . , tK ; N unlabeled
inputs x1, . . . , xN ; privacy parameters ε, δ;
truncated principal component matrix
Al ∈ Rl×d

Result: Student model
for n = 1 to N do

for k = 1 to K do
Run the teacher model ynk = tk(xn)
Compress the prediction znk = Alynk

end
Draw γn ∼ N (0, σ2I) with

σ =

√
Nd

(√
log δ−1+ε+

√
log δ−1

)
√
2Kε

Aggregate and perturb z̄n = 1
K

∑K
k=1 znk + γn

Recover the segmentation ŷn = ATl z̄n
end
Train the student model on ((xn, ŷn))n=1..N

Algorithm 1: PCA-PATE

by exploiting the structure of Al (Allemand et al. 2001;
Karystinos and Liavas 2010) but we found that the bound
(4) was close to optimal for the dataset we considered.

Utility of PCA
The simplicity of the transformations that are used in PCA
allows us to characterize the squared error after reconstruc-
tion. Let Y = (y1, . . . , yN ) be the i.i.d. zero-centered data
on which PCA is performed with sample covariance ma-
trix Σ̂ = Y Y T /(N − 1). PCA finds the (descendingly or-
dered) eigenvalues λ1, . . . , λd and corresponding eigenvec-
tors A = (a1, . . . , ad)

T of Σ̂. For an unseen point y (the
mean of the teacher predictions) from the same distribution,
the expected error due to aggregation and perturbation is

LPCA = E[||y −AT (πlAy + γ)||22], (6)

where πl is the projection onto the first l entries and γ ∼
N (0, σ2I). After multiplying from the left with A, we can
see that the error decomposes into the removal of informa-
tion due to PCA and noise:

E[||(I − πl)Ay||22] + E[||γ||22] = E

 d∑
j=l+1

(ajy)2

+ lσ2.

Each term in the sum is the variance of y along the respective
principal component, for which λj is an unbiased estimator,
thus LPCA =

∑d
j=l+1 λj + lσ2. We can minimize this er-

ror by choosing the number of principal components l such
that, loosely speaking, only those directions with more sig-
nal than noise are retained:

arg min
l
LPCA = arg min

l∈{1,...,d}

{
λl|λl > σ2

}
. (7)

In (soft) segmentation, y consists of probabilities and in-
dependent Gaussian noise would violate the constraint that
they should sum to 1. Moreover, we are typically interested
in the cross entropy, not the squared error. Therefore, we per-
form the aggregation on the unnormalized logits (e.g. prior

to the softmax layer) instead and normalize afterwards. At
this stage, the scores are often expected to be approximately
Normally distributed, so Gaussian noise should not destroy
utility unnecessarily and the squared error is a meaningful
measure.

Nonlinear dimensionality reduction in PATE
While PCA is highly interpretable and well grounded in sta-
tistical theory, the target may not always be linearly com-
pressible. Furthermore, the arithmetic mean of the low-
dimensional representations also corresponds to a linear op-
eration in the original space, which might not be desired. In
the case of images, for instance, it can lead to blurry results.
If we use an autoencoder instead, we can address both of
these shortcomings and additionally gain more control over
the sensitivity, e.g. by choosing the activation function ap-
propriately in the bottleneck layer.

While the commonly used tanh or logistic functions could
be used to bound the sensitivity, the bound would be im-
posed by an l-cube – that is, by the max-norm – which is an
inefficient use of space when we only need to bound the l2-
norm. For this reason, we choose an activation φ : Rl+1 →
Bl which maps to the unit l-ball Bl = {x ∈ Rl : ||x||2 ≤ 1}.
The first input is used to determine the distance from the
origin and the remaining inputs are normalized by their l2-
norm. A similar activation function has been described in
the context of spherical regression (Liao, Gavves, and Snoek
2019). The distance from the origin is calculated by means
of a scaled logistic function (to approximate the standard
Normal CDF) raised to the (1/l)-th power, the rationale be-
ing that in a uniform distribution over the unit l-ball, the
distance of a randomly chosen point is distributed according
to U1/l where U ∼ Uniform[0, 1]. In summary, we have

φ(o0, . . . , ol) =
o1:l(

exp
(
−o0

√
8/π

)
+ 1
)1/l√∑l

i=1 o
2
i

.

The hope is then that the autoencoder will learn an approx-
imation to the mapping into this bounded region that pre-
serves the most information.

Algorithm 2 describes our procedure formally. In partic-
ular, we use a 3D convolutional autoencoder for the task
of brain tumor segmentation. The encoder part consists of
3x3x3 convolutional layers with ReLU activations, followed
by max-pooling. The bottleneck layer is a fully-connected
layer with activations as described above. By adding Gaus-
sian noise in this layer even during training, the decoder
observes the same noisy distribution that it will later per-
form its predictions on, even though this would not be nec-
essary from a privacy perspective. The decoder part consists
of convolutions with ReLU activations, followed by trans-
posed convolutions. The output layer uses softmax activa-
tions. Cross-entropy is used as the loss function.
Proposition 2. Algorithm 2 is (ε, δ)-differentially private.

Proof sketch. By construction, the bottleneck activations
have l2 norm at most 1, which leads to a sensitivity bound of
S2(fagg) ≤ 2/K. The remainder of the proof is analogous
to Proposition 1.



Data: K teacher models t1, . . . , tK ; N unlabeled
inputs x1, . . . , xN ; privacy parameters ε, δ;
encoder fenc and decoder fdec

Result: Student model
for n = 1 to N do

for k = 1 to K do
Run the teacher model ynk = tk(xn)
Compress the prediction znk = fenc(ynk)

end
Draw γn ∼ N (0, σ2I) with

σ =

√
2N

(√
log δ−1+ε+

√
log δ−1

)
Kε

Aggregate and perturb z̄n = 1
K

∑K
k=1 znk + γn

Recover the segmentation ŷn = fdec(z̄n)
end
Train the student model on ((xn, ŷn))n=1..N

Algorithm 2: Autoencoded PATE

Experiments
Dataset We evaluate Autoencoded PATE on the brain tu-
mor dataset that is part of the Medical Segmentation De-
cathlon (Simpson et al. 2019). It consists of 750 volumes ac-
quired by magnetic resonance imaging (MRI), 484 of which
are labeled. The data comes from 18 different institutes and
was measured using various clinical protocols. All scans are
registered on the same grid with a spatial resolution of 1
mm3. We use 400 of these as training data, of which 320 are
split evenly across theK = 8 teachers, and 80 are left for the
student (without labels). We use the labels of this partition
to train the autoencoder. The remaining 84 volumes form the
test set. We measure the Dice coefficient (Dice 1945) indi-
vidually for each class and report the average over the three
classes.

Base models For all teachers and the student model, we
use a vanilla 3D U-Net with four layers of pooling, similar
to the nnU-Net (Isensee et al. 2018) which has been shown
to work consistently across a range of medical segmentation
tasks. We train on 64×64×64 patches, on half of which we
perform rotations or mirroring for data augmentation.

Baseline We compare our approach against DP-SGD
(Abadi et al. 2016) applied to the same U-Net as described
above. We clip gradients for each layer at 4 and apply noise
with variance σ2 = 6. We include 400 volumes in the train-
ing set.

Results With the setup as described above, Autoencoded
PATE achieves a Dice score of 0.561 under a privacy budget
of (8, 10−3). On average, the teachers (before aggregation
and perturbation) achieve a Dice score of 0.547. That is, the
student can use the teachers as an ensemble to improve upon
their individual performances, even though noise is added.
This observation is in accordance with the original work on
PATE (Papernot et al. 2017; 2018) on classification datasets.
With DP-SGD, we measure a Dice score of 0.53 under the

same privacy budget. While we have not fine-tuned all hy-
perparameters and architecture choices (neither for PATE
nor for DP-SGD), the relative performance difference is still
meaningful because the same network has been used in all
methods.

Conclusion
In this work, we have explored the use of dimensionality re-
duction to answer high-dimensional queries in the context
of PATE. In the case of PCA, the error can be described an-
alytically and the number of principal components can be
chosen optimally in terms of the mean squared error. For
autoencoders, we have presented a suitable architecture and
activation function for the bottleneck layer that can use the
space that is bounded by the l2 norm efficiently. Experimen-
tally, we have described initial work applying Autoencoded
PATE to brain tumor segmentation. By using simple convo-
lutional networks, we ensured comparability between meth-
ods. However, we expect that higher performance and/or a
lower privacy bound can be achieved with more complex ar-
chitectures, which we intend to address in future work.
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Appendix
Privacy proof
First, we recall the basics of Rényi differential privacy
(RDP) that we will make use of, which have been shown
in (Mironov 2017).

Proposition 3 (Gaussian mechanism). Let f : XN → RM
be a function with sensitivity S2(f) and N (µ,Σ) the mul-
tivariate Normal distribution. If γ ∼ N (0, σ2I) then the
mechanism M(d) = f(d) + γ satisfies (α, αS2(f)

2

2σ2 )-RDP
for any α > 1.

Proposition 4 (Composition). If a randomized mechanism
M1 satisfies (α, ε1)-RDP and M2 satisfies (α, ε2)-RDP
then their composition (M1,M2) satisifies (α, ε1 + ε2)-
RDP.

Proposition 5 (From RDP to DP). If a randomized mech-
anism M satisfies (α, ε)-RDP then it also satisfies (ε +
log 1/δ
α−1 , δ)-DP for any 0 < δ < 1.

In the case of PCA, the sensitivity of the aggregation is

S2(fmean) = max
y,y′∈[0,1]K×d

∣∣∣∣∣
∣∣∣∣∣ 1

K
Al

K∑
k=1

(yk − y′k)

∣∣∣∣∣
∣∣∣∣∣ (8)

Since y and y′ are allowed to differ in only one index k, we
can equivalently write

S2(fmean) =
1

K
max

ŷ∈[−1,1]d
||Alŷ|| . (9)

As Al is constructed by removing rows from an orthog-
onal matrix, it acts as a rotation and/or reflection followed
by (d− l) perpendicular projections onto a coordinate axis.
None of these operations can increase the norm of the vector
that is being transformed, hence

S2(fmean) ≤
√
d

K
. (10)

Therefore, for any α > 1, σ > 0,M satisfies (α, αd
2σ2K2 )-

RDP by Prop. 3, which scales to (α, αNd
2σ2K2 )-RDP after N

invocations by Prop. 4, which implies (ε, δ)-DP with

ε =
αNd

2σ2K2
+

log 1/δ

α− 1
(11)

by Prop. 5.
For a fixed δ, we can choose α in (11) such as to minimize

ε. Defining auxiliary variables a = Nd
2σ2K2 , b = log δ−1 and

setting the derivative to zero

dε

dα
= a− b(α− 1)−2

!
= 0

yields

α =

√
b

a
+ 1. (12)

Clearly, α > 1 and is thus a valid minimizer. It is glob-
ally optimal due to the convexity of ε with respect to α. Re-
substituting α into (11):

ε = a+ 2
√
ab (13)

=
Nd

2σ2K2
+

√
2 log δ−1

Nd

σ2K2
. (14)

Finally, we need to know which noise level σ is required
to satisfy DP for given ε, δ. To answer this, we solve (14) for
σ by multiplying both sides with σ2. The resulting quadratic
equation is solved by

σ =

√
Nd

(√
log δ−1 + ε+

√
log δ−1

)
√

2Kε
, (15)

which is the noise level we choose in Algorithm 1.

Activation function
The activation function

φ(o0, . . . , ol) =
o1:l(

exp
(
−o0

√
8/π

)
+ 1
)1/l√∑l

i=1 o
2
i

is designed to give an approximately uniform distribution
over Bl whenever the inputs are standard Gaussians. The
uniform distribution is desirable because it has the highest
information content (entropy) for distributions over bounded
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Figure 1: Comparison of Logistic and Normal distribution
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Figure 2: Samples from the distribution of activations (l =
2) for standard Normal inputs (left) compared to a true
uniform distribution (center) and their absolute difference
(right).

support. The normalization factor
√∑

i o
2
i maps o1:l uni-

formly onto the unit (l − 1)-sphere (Muller 1959) while
exp

(
−o0

√
8/π

)
+1 maps o0 to the Logit-Normal distribu-

tion (Atchison and Shen 1980). For σ2 = 8/π, the Normal
distribution approximates the standard Logistic distribution
well (see Figure 1), thus the corresponding Logit-Normal is
approximately uniform over [0, 1]. Figure 2 shows the dis-
tribution of activations for standard Normal inputs for the
two-dimensional case.


