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Abstract
We study a model in which a robot executes a plan whilst be-
ing observed. The observer is interested in learning about the
robot and its environment, and processes a sequence of sym-
bols as evidence of the robot’s actual execution. The observer
uses this sequence to draw inferences about the robot’s behav-
ior, including the use of later parts of the evolution to clarify
uncertainty present in earlier parts. We say an estimator that
performs this sort of smoothing uses ‘hindsight.’ We give an
algorithm which examines whether a given plan solves the
planning problem (i.e., is guaranteed to attain a goal state)
while the information learned by the observer satisfies a given
privacy stipulation. Also, we provide an efficient incremental
algorithm that permits search for such private plans. This en-
ables our previous results in planning subject to a filtering
observer to be extended to a smoothing one too, for an im-
portant class of privacy stipulations.

Introduction
As autonomous robots become part of our daily lives, the in-
formation they collect, including what is needed for them to
function correctly, can be both sensitive and valuable. This
information may be leaked in a variety of ways, such as
robot’s status display, logged data, direct observations of ac-
tions executed, etc. This paper examines planning subject to
constraints on information that may be leaked.

Previously, we examined what information could be
learned from observation of plan execution by a filtering ad-
versary, namely, one who uses its current estimate and the
latest observation to construct a new estimate for the current
time [11, 12]. That work gave algorithms to search for plans
which satisfy formal stipulations on information disclosed
to adversaries, under different assumptions about the adver-
sary’s prior knowledge and how robot’s actions and obser-
vations are disclosed. This paper considers a different kind
of adversary: one who may construct estimates for any past
time by playing back all its received observations. Unlike
the filtering adversary who is interested in the current state
and hence only looks forward, the playback adversary may
wish to learn more about its past with the power of hindsight,
operating like a smoother.
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Figure 1 gives a small scenario that shows how the play-
back adversary is capable of violating a user’s privacy,
whereas a filtering adversary, being less powerful, can not.
Consider a robot collecting an item from the mailbox out-
side, and the robot’s plan (essentially its navigation route)
is described in the caption. Further, the robot simply writes
a symbol ‘a’ to the log if it takes an action, and writes a
symbol ‘o’ when an observation is received. Suppose that
the robot is taken to the maintenance department because it
needs an upgrade. The maintenance staff have full access to
the robot’s log and plan, but the owner desires that the pres-
ence or absence of a house guest is never divulged.

The filtering adversary described in [11] never learns
whether there was a guest in the house (because it only has
a stream of alternating a’s and o’s). But the playback adver-
sary knows that the robot was in the master bedroom because
there was a guest, if the robot came out from the bedroom
and did not terminate—which is learned later by considering
the total length of the completed sequence. This paper for-
malizes and examines how to verify whether a stipulation is
satisfied on the information leaked to such playback adver-
saries from the plan, and provides an incremental algorithm
to search for a plan that will respect privacy stipulations.
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Figure 1: To pick up a newly delivered item from the mailbox, a
robot navigates from the living room to the front yard. The robot
can either take a shortcut to enter through the guest bedroom, or
go through the master bedroom to the front yard via the back yard.
But the robot should be obeisant and refrain from entering the guest
bedroom when someone is inside, which is signified by the star.



Problem Description
We examine the three-way relationships shown in Figure 2: a
robot follows a plan to interact with the world, mediated via
a stream of observations and actions, so as to achieve some
goal. Both the plan and action–observation stream may be
partially disclosed to a third party, termed the observer. The
observer is able to play back the stream, and combine it with
its knowledge about the robot’s plan, so as to infer properties
of the interaction. We are interested in examining whether
the stipulations, especially privacy stipulations, are satisfied
on what can be learned by the observer. The problem will be
formalized in terms of procrustean graphs and label maps.

Figure 2: The robot is modeled as a plan to achieve some goal in
the world, and the observer is modeled as an estimator which can
play back the received action–observation stream.

Procrustean graphs, planning problem and plans
We model the world with a procrustean graph (p-graph),
which is an edge-labeled bipartite directed graph capturing
the robot’s interactions with its environment [8]. A robot re-
ceives observations through sensors from its environment,
and then takes actions in the world. A stream of alternating
actions and observations, also called a string or an execu-
tion, causes transitions in the p-graph. Hence, the states of
the p-graph are partitioned into action states and observa-
tion states. For action (observation) states, the set of outgo-
ing edges are labeled with actions (observations). We de-
note the set of vertices in a p-graph G by V (G), the set
of all actions and observations be U(G) and Y (G), respec-
tively. Each p-graph has a set of initial states, denoted as
V0(G) ⊆ V (G). The set of strings that can be successfully
traced in G is called the language of G, denoted L(G). For
any string s ∈ L(G) of length k, it gives a sequence of k+1
states when traced in G. We call this sequence of states a
state trajectory consistent with s, and denote all state trajec-
tories consistent with s in G as TRAJGs .

A planning problem is a p-graph W with a set of goal
states Vgoal. A plan is a p-graph P with a set of termina-
tion states Vterm. When the plan (P, Vterm) is executed on
the planning problem (W,Vgoal), the plan P receives obser-
vations from the world W and then chooses actions to exe-
cute on W . We say that a plan (P, Vterm) solves a planning
problem (W,Vgoal) if (i) the plan P can handle every ob-
servation from the world W , (ii) every action that the plan
takes is available in the world W and, (iii) when the plan
terminates, the current state of the world is within Vgoal. For
example, a plan that guides the robot from its initial position
to the mailbox is shown in Figure 3.
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Figure 3: The plan that solves the planning problem shown in Fig-
ure 1. The first letter ‘d’, ‘m’, ‘b’, ‘g’, ‘f ’ indicates that the robot
is in the dinning room, master bedroom, back yard, guest bedroom,
or front yard. Action em represents entering master bedroom. The
observation og represents that the guest bedroom is occupied. Oth-
erwise, it gives a generic observation o.

Information disclosure and observer
The robot’s interaction with the world generates a stream of
actions and observations. Such a stream may be disclosed
to the observer only imperfectly, either by design or as a
consequence of real-world fallibility: multiple strings in the
world may look the same to the observer. We use a label
map h to model information disclosure. The label map h
is a function mapping an action or an observation to a new
symbol, this new symbol being disclosed to the observer.

The observer is assumed to know the planning problem
and have some knowledge about the robot’s plan, which is
obtained from a side-channel. The disclosed plan is modeled
as a p-graph, which may encode knowledge that is weaker
than knowing the robot’s exact plan (see [12]). When receiv-
ing any disclosed symbols through the label map, the ob-
server will (1) infer all potential interactions that could hap-
pen in the world according to its prior knowledge, (2) play
back these interactions to identify all consistent state trajec-
tories in the world and, (3) obtain the estimated world states
at each time step. Formally, we have:

Definition 1 (observer’s estimate). Given planning prob-
lem (W,Vgoal), robot’s disclosed plan D, and information
disclosure policy h, when the observer receives a string
x = x1x2 . . . xk,
1) the set of potential strings inferred by the observer is
Sx = h−1(x) ∩ L(W ) ∩ L(D),

2) the set of trajectories consistent with those potential
strings is Tx = ∪s′∈Sx TRAJWs′ .

3) the set of estimated world states Wm
x at time step m

is extracted from these state trajectories, i.e., Wm
x =

∪τ∈Txτ [m], where τ [m] is the mth world state on trajec-
tory τ .

In the above, the set of potential strings Sx is the set of
strings (i) each of which shares image x, (ii) that is a le-
gal execution from the world W and, (iii) may be executed
by the robot’s plan. The estimated trajectories are the ones
that are consistent with some string in Sx. To compute these
consistent trajectories, the observer has to be able to play
back each string in Sx, tracing it in the world graph W . Fi-
nally, the estimated world states at a particular time are the
corresponding ones from all trajectories.

To constrain what the observer learns, we write proposi-
tional formula Φ on the observer’s estimateWt

x. An atomic
symbol v is created for each world state v to denote the fact
that the world state is v; it is evaluated to True if and only
if v included in Wt

x. The negation ¬v represents v 6∈ Wt
x.

With each symbol grounded in this way, we can write the



propositional formulas with these symbols connected by
logic operators NOT, AND, OR, and evaluate them on ob-
server’s estimate.

Now, we have the following satisfaction problem.

Problem: CHECKPLAN
(
(W,Vgoal), (P, Vterm), h,D,Φ

)
Input: A planning problem (W,Vgoal), a plan

(P, Vterm), an information disclosure h, a
disclosed plan D, and a stipulation Φ.

Output: True if (P, Vterm) solves the planning problem
(W,Vgoal) and, ∀s ∈ L(W )∩L(P ), Φ is always
evaluated as True on Wm

h−1◦h(s) for all integer
0 ≤ m ≤ k; False otherwise.

An algorithm to check a plan with hindsight
To solve CHECKPLAN, the key is to trace all trajectories
that are consistent for the images of the strings in the plan.
Unhappily there can be many strings such strings. Instead
of computing the beliefs for each string from scratch, we
propose an graph-based algorithm to produce the set of all
beliefs for any string and its extensions. The stipulations are
violated once it is violated on some string in the plan.

A p-graph representing observer’s prior knowledge
First, we construct a p-graph to integrate observer’s prior
knowledge about the planning problem and the disclosed
plan, and then compute the estimated trajectories in this new
graph.

To combine the observer’s prior knowledge about the
world and robot’s plan, we construct a product graph J =
W ⊗ D as the tensor product graph of world W and dis-
closed plan D with initial states V0(W ) × V0(D). The lan-
guage of this joint graph is the set of executions that could
happen in the world and could potentially be taken by the
robot’s plan, i.e., L(J) = L(W ) ∩ L(D). In addition, if we
trace any string s ∈ L(J) in J , take the first part (world
state) of each joint state in the trajectory TRAJJs , and de-
note this new sequence as TRAJJ,Ws , then we will obtain
exactly the same trajectory as tracing s in the world, i.e.,
TRAJJ,Ws = TRAJWs .

Now, instead of computing the trajectories in the world
graph, we can compute it in the joint graph J , essentially
pretending that it is new ‘world’. The observer’s belief is a
set of states in the joint graph.

A graph-based algorithm for CHECKPLAN

To solve CHECKPLAN, we need to check both the solutions
for the planning problem and the stipulations on the dis-
closed information. A tensor product graph is constructed
to examine whether the plan always terminates at a goal
state. To examine the disclosed information, we give an al-
gorithm that incrementally constructs all beliefs which are
learned by the playback observer. In estimation with hind-
sight, the observer is able to playback the observations, re-
fining previous beliefs by eliminating the states from which

Figure 4: A snapshot of the belief history for the playback observer
in Figure 1 when processing the stream ‘oaoaoao’. The vertical
axis shows the observer’s beliefs when part of the stream is re-
ceived. The horizontal axis shows the belief at a particular time in
the history.

subsequent events crash. A illustration of the motivation ex-
ample is shown in Figure 4: when the observer knows that
the robot is currently in the backyard (B) after recieving
‘oaoao’, it also knows that the robot was in the master bed-
room (M ) instead of the guest bedroom (G) at the previous
time step, since the string ‘ao’ crashes onG. Instead of play-
ing back each string in the plan, we conduct a breadth-first
search (BFS) on the belief graph to efficiently simulate the
observer’s estimation process as shown in Algorithm 1.

Firstly, we construct a product graph W ⊗ P to check
whether every termination state in P is paired with some
goal state in W in the product graph (line 1–4). If not, then
the plan does not solve the planning problem. Otherwise, it
does.

The observer is only able to see the strings in h〈J〉, which
is obtained by replacing the labels on the edges in J with
their images after label map h. In h〈J〉, one string may reach
two states non-deterministically. We construct a determin-
istic form J ′ for h〈J〉, following Algorithm 2 in [8] (line
5–6). During this state-determined transformation, states in
h〈J〉 are merged into a single state v′ in J ′ if they are non-
deterministically reached by some string. We say that these
states are the corresponding states for v′. Each state in J ′ is
a belief state, and its corresponding states are included in the
belief. Not all belief states in J ′ will be active and perceived
by the observer, since the plan may not produce those be-
liefs. We construct a product graph J ′ ⊗ h〈P 〉 to mark each
belief state in J ′ as active, if it is paired with some plan state
in the product graph (line 7–8). Stipulations will be evalu-
ated on these active belief states once they are generated.
The plan fails to satisfy the stipulations, if the stipulations
are violated on any active belief.

The active belief states in J ′ only contribute to part of the
beliefs generated by the observer. They will be refined when
the observer can play back its observations. Some states in
the beliefs of past times will be eliminated when there is no
string as an extension of these states to the states in the fron-
tier. We say that these states are not alive. A BFS search on
J ′ is conducted to simulate this playback estimation (line
9–33). Starting from each active belief state Vk in the fron-
tier of the search, we mark each corresponding state in belief
Vk as alive. Then we propagate liveness backward to find the
states in the past beliefs that are not alive. For each transition
Vk−1

x−→ Vk, we mark each state in the belief Vk−1 as alive if



Algorithm 1 CheckP lan((W,Vgoal), (P, Vterm), h,D,Φ)

1: K =W ⊗ P
2: for (w, r) ∈ K.vertices do
3: if r ∈ Vterm and w 6∈ Vgoal then
4: return False
5: J ←W ⊗D
6: J ′ ← STD(h〈J〉)
7: Q← J ′ ⊗ h〈P 〉
8: active_v = πJ′(Q.vertices)
9: q ← [J ′.initV ertex]

10: visited = []
11: while q is not empty do
12: m← q.pop()
13: add m to visited
14: if m 6∈ active_v then
15: continue
16: if m.correspState violates stipulation Φ then
17: return False
18: p← []
19: for (n, x) ∈ J ′.incoming(m) do
20: add (n, x,m) to p
21: p← [(n, x,m)]
22: while p is not empty do
23: (v′, x, v)← p.pop()
24: bv ← v.correspStates
25: bv′ ← refine(J, v′.correspStates, x, bv)
26: if bv′ violates stipulation Φ then
27: return False
28: if bv! = bv′ and v′ 6∈ J.initStates then
29: for (u, x) ∈ J ′.incoming(v′) do
30: add (u, x, v′) to p
31: for w ∈ m.children() do
32: if w 6∈ visited then
33: add w to q
34: return True

the state transitions to some state in Vk under x in h〈J〉. Oth-
erwise, we mark that it is not alive. We refine belief Vk−1 by
removing all states that are not alive, and construct a new be-
lief V ′k−1 (line 23–25). When none of the states in belief Vk
are eliminated, i.e., V ′k−1 = Vk−1, then we may stop propa-
gating the liveness, since no new beliefs will be generated. If
V ′k−1 is finer than Vk−1, then one must keep propagating the
liveness in V ′k−1 backward (line 28–30). Stipulations must
be evaluated on the refined belief states when they are gen-
erated (line 26–27). The evaluation can stop early when one
of these beliefs violates the stipulations.

An incremental algorithm to search for a plan
We are interested in seeking plans that never disclose infor-
mation to playback observers that violate given stipulations:

Problem: SEARCHPLAN
(
(W,Vgoal), D, h, ?,Φ

)
Input: A planning problem (W,Vgoal), a disclosed plan

D, an information disclosure h, a stipulation Φ.
Output: A plan (P, Vterm), such that

CHECKPLAN
(
(W,Vgoal), D, h, P,Φ

)
= True.

As mentioned in the satisfaction problem, J ′ captures
the observer’s beliefs. We are interested in searching for
a plan which reaches the goal in W and always generates
beliefs in J ′ that satisfy the stipulations. To do this, we
construct a product graph of h−1〈J ′〉 and W , denoted as
T = h−1〈J ′〉 ⊗ W . The joint state in T consists of two
parts: states in h−1〈J ′〉 to examine stipulations and states in
W to examine the goal condition. Next, we conduct a AND-
OR search on T to find a subgraph such that (i) each action
state has a single outgoing edge bearing one action, (ii) each
observation state has outgoing edges bearing all observa-
tions in the world, (iii) all beliefs generated from J ′ in the
subgraph must satisfy stipulations, and (iv) the states even-
tually terminating in the subgraph must give world states all
of which are in the goal region. When constructing the AND-
OR search, we are able to incrementally search for an action
for each action state in the subgraph, and obtain a partial
plan. By calling the CHECKPLAN procedure, we are able to
examine whether stipulations are satisfied on all generated
beliefs of the partial plan. If the partial plan fails to satisfy
the stipulations, then one must backtrack the action choice
just made and choose a different action. This process is re-
peated until a solution is found.

Related work

In the AI and robotics communities, autonomous agents are
modeled as transducers that receive observations from the
environment and choose actions to influence the world. In-
formation such as an agent’s actions and observations could
be leaked to adversaries, which will raise privacy concerns.
Deceptive actions [2, 6] and goal obfuscated plans [3, 4]
have been adopted to hide an agent’s true goal for as long as
possible. Sensor configurations [10], plans [11], and policies
affecting how information is disclosed from the agents [9, 7]
have also been exploited to meet both privacy and utility re-
quirements. In multi-agent settings, privacy-preserving al-
gorithms have also been developed to coordinate distributed
plan search [1, 5].

Summary and future work

We examined the information divulged from plans to an ob-
server with hindsight, and described how an observer may
construct its estimates by combining its prior knowledge
with its observations of the robot’s plan execution. This al-
gorithm enables us to incrementally search for plans that
satisfy privacy stipulations, by extending our previous plan-
ning algorithm subject to a filtering observer. In the future,
we aim to search for plans and information disclosure poli-
cies jointly so that stipulations are satisfied on a playback
observer.
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