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Abstract

Fairness and privacy are both significant social norms in ma-
chine learning. In (Hu et al 2019), we propose a distributed
framework to learn fair prediction models while protecting
the privacy of user demographics. However, we did not as-
sume an adversary who tries to infer the hidden demograph-
ics, e.g., with a good intention of building fairer models.

In this paper, we examine vulnerability of the above frame-
work under inference attack and two defense strategies. Un-
der mild assumptions on the attack model, we first propose an
inference strategy and formulate it as an integer programming
(IP) task. We show it achieves high inference accuracy when
sufficient information is exchanged across the distributed par-
ties. Then, we present two defense strategies at one party, one
perturbing its evaluation of model fairness and the other ran-
domizing its process of selecting fair models. We show they
effectively defend the inference, by preventing the IP solver
from returning feasible solutions, without sacrificing a signif-
icant amount of model fairness. Theoretical properties of the
proposed attack and defenses strategies are briefly discussed.

Introduction

Today, fairness and privacy are two significant social norms
in machine learning. Building fair models is part of the latest
national AI R&D strategy plan and has been heavily invested
by NSF and companies such as Amazon. On the other hand,
data privacy protection is being forced in regulations such as
the Europe General Data Protection Regulation (GDPR) and
the latest California Consumer Privacy Act (CCPA).

The problem is that, fairness and privacy are running into
a dilemma, i.e., most existing fair learners require direct ac-
cess to user demographics, while these data are increasingly
restricted to use by privacy regulations. For example, to train
an auto-hiring model with little discrimination against HIV
carriers, most fair learners need the HIV records of all in-
dividuals in the training set. Such sensitive medical records,
however, are known to be extremely restricted to access by
privacy regulations. Even if a company has collected some
records, the record owners can request the company to delete
them (and not to use them in analysis).
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To address the conflict between model fairness and demo-
graphic privacy, two technical solutions are proposed in the
literature, one based on cryptography (Kilbertus et al. 2018)
and the other based on randomization (Hu et al. 2019). Ran-
domization is more efficient, and we derive theoretical guar-
antees on model fairness and accuracy in (Hu et al. 2019).
However, none of the works assumes an adversary who tries
to infer the hidden demographics, e.g., with a good intention
of building fairer models, or a bad intention of conducting
discrimination, or other intentions of using the inferred data
in demographic-sensitive applications.

In this paper, we investigate vulnerability of the proposed
framework in (Hu et al. 2019) against inference attack and
present two defense strategies.

Under mild assumptions on the attack model, we pro-
pose an inference strategy that looks for a set of individ-
ual demographics that are consistent with the information
exchanged between the distributed parties. The inference is
formulated as an integer programming task, and we show
it achieves high accuracy when sufficient information is be-
ing exchanged. We also show its performance can be further
enhanced through inference ensemble.

Then, we propose two strategies to defend the above in-
ference attack. Both strategies are operated at a trusted third
party, which holds the true demographic data, uses them
to evaluate fairness of random models and broadcasts fair
ones. Our first defense strategy perturbs fairness evaluation
and the second strategy randomizes the broadcast — by this
means, the broadcast models are no longer necessarily fair,
which is equivalent to randomizing constraints in the above
integer programming (IP) task. We show both strategies ef-
fectively defend the attack by reducing inference accuracys;
in particular, when randomization is sufficient, they prevent
the standard IP solver from finding any feasible solutions,
without sacrificing significant model fairness and accuracy.

We also briefly discuss the potential theoretical properties
of the proposed inference attack and defense strategies.

The rest of this paper is organized as follows: we first re-
visit our previous framework; then we present the proposed
inference attack and defense strategies respectively; experi-
mental studies and results are presented thereafter, and dis-
cussions are presented at the end.



A Revisit of (Hu et al. 2019)
Notations and Problem Setting

Let (z, s,y) be an individual, where s € R is the sensitive
demographic feature, x € RP? is a vector of p non-sensitive
features and y € R is the label. For example, when studying
racial bias in auto job hiring, (z, s, y) will be an applicant,
s is his race, x is a vector of his non-sensitive features such
as education and experience, and y indicates if he is hired.
Similar to most fairness studies, assume s and y are binary.

Let {(z;, si,y:) }i=1,...n be a set of n individuals, where
(x4, Si,y;) is the iy, one. We aim to learn from this set a fair
model f : {x} — {y}, which takes non-sensitive feature x
as input and outputs label y. Importantly, the learner and f
cannot have access to s, because the latter needs to be kept
private, e.g., as required by privacy regulations.

The Framework

We assume the above training set is distributed over a learner
and a third party that can communicate with each other. The
learner holds {(z;,y;)}i=1,....» and is responsible for train-
ing a fair model f. The party holds {s;};=1,...» and can as-
sist the learner via communications that do not reveal s. A
schematic diagram of the framework is in Figure 1.

Let H be the hypothesis set from which f will be learned.
Our framework works as follows.

Algorithm 1 Distributed Fair Machine Learning Framework

1: The learner generates m random hypotheses in H, de-
noted by hq, ..., hpy,.

2: The learner evaluates the predicted labels of each h;
on {(z;)}i=1, .. .n, denoted by Y, = [he(z1), ..., he(zn)],
and sends all Yl, ceey Y, to the third party.

3: The party estimates cov(Y;, s) which is the sample co-
variance between Y; and {si}i=1,...n forevery hy.

yeeey

4: The party sends index ¢ to the learner if cov(f/t, s) < p,
where p is a preset threshold.

5: Let r1,...,r; be the set of indices sent to the learner.
The learner constructs the final model as

f=aihy +...+agh,, )
where a4, . . ., ay are unknown coefficients.

6: The learner optimizes «;’s by minimizing f’s predic-
tion loss on ({4, ¥} )i=1....n-

In this framework, one can further specify (i) hypothe-
sis space H, (ii) the generative distribution in Step 1 and
(iii) the optimizer in Step 6. In (Hu et al. 2019), we spec-
ify four types of f, including linear regression, logistic re-
gression, kernel regression and PCA. All model parameters
are i.i.d. drawn from normal distributions. We optimize un-
known coefficients by least square (for the three regression
models) and variance maximizing (for PCA). In experiment,
we show each plug-in gives a new prediction model which
outperforms its existing non-private counterparts (Calders et
al. 2013; Kamishima et al. 2012; Pérez-Suay et al. 2017;

Training Set {(x, y, s)}

Data Center Third Party

return t if cov[Y,s] < p

Figure 1: Distributed Private Fair Learning Framework

Samadi et al. 2018; Olfat and Aswani 2018) in both fairness
and accuracy across several real-world data sets.

Theoretical Properties

We have derived theoretical properties for the framework in
(Hu et al. 2019). Like most studies, we will evaluate fairness
of model f by a popular notion called statistical parity (SP)
(McNamara, Ong, and Williamson 2017). It is defined as

SP(f) = |p(f(x) = 1|s =1) = p(f(z) = 1[s = 0)[. (2)

Intuitively, SP measures advantaged prediction rates across
different groups (divided by s). If the difference is smaller,
then model prediction is considered to be more fair.

Our following fairness guarantee shows that model f has
a bounded SP. Moreover, it suggests that higher model fair-
ness can be achieved by (i) choosing smaller k or p, or (ii)
working with a balanced demographic distribution.

Theorem 1. In Algorithm 1, if f(x) and s are positively or
negatively quadrant dependent', then

k

SP(f) < VE[|olp 7
p(s=0)p(s=1)

where o is a vector of all coefficients.

3)

Our following accuracy guarantee is derived based on a
slightly modified framework which applies a soft-threshold
policy — in Step 4, the party returns h; with a probability

2
Hhi2géll
are properly chosen constants (depending on the distribution
used to generate random hypotheses in Step 1), and h, is an
ideal model satisfying cov(h., s) = 0. We then have

: 1
proportional to C' Taro; OXP ( ), where C' and o5

Theorem 2. In Algorithm 1, suppose Step 4 adopts the soft-
thresholding policy with properly chosen C and o3. Let
er(f) and ér(f) be the expected and empirical error of f
respectively. If f is linear and ||f|| = ||z|| = 1, then with
probability at least 1 — 40,

—k(f,x)?

- 4 n 16 7%
er(h) <er(h)+T+ %Ziﬂg(xi)emﬁw, D% (4)

where T is constant depending on {k,n,d}, and g(z;) is a
Sunction of x; depending on k and {f, x;). Further, if
(¢herza)? = 1/4) (II(f,2a)l| =2 +1 <0, (5)
then there exist positive constants c1 and co such that
er(h) < ér(h) + ¢; + O(e™2F). (6)

"This is a common assumption which we empirically verified.



The theorem suggests that bigger k& implies smaller error,
which coincides with the random projection theory (Garg,
Har-Peled, and Roth 2002) we employed in analysis.

Vulnerability of the Framework
Privacy Protection in Adversarial Environment

In (Hu et al. 2019), we assume the learner obeys privacy reg-
ulation and has no malicious attempt. From Figure 1, we see
the framework does protect demographic privacy, because
the only information revealed to the learner is which hypoth-
esis prediction has small covariance with demographic. The
learner has no knowledge on the individual demographic.

In reality, however, the learner may be an adversary who
attempts to infer the hidden demographics based on all ac-
cessible information. Her intention may be malicious, e.g.,
to conduct discriminatory decisions in the given or other ap-
plications. Her intention may also be kind, e.g., to simply
enhance the performance of fair learning. In either case, it is
crucial to examine the vulnerability of our framework under
inference attack and design defense strategies when needed.

The above discussions motivate us to examine vulnerabil-
ity of the distributed private fair learning framework under
inference attack. In the following, we first present an infer-
ence strategy, then present two defense strategies, and at last
discuss their potential theoretical properties.

An Inference Attack on Demographics
The adversary’s goal is to obtain inferred demographic data

§={8%1,...,8.}, @)

where §; is the inferred demographic of individual ;.

We make three assumptions on the adversary’s knowledge
— they can be easily satisfied in reality, e.g., the adversary is
an employee at the learning center (learner).

(i) She has access to the information exchanged between
the learner and the third party, including all prediction vec-

tors Y1, ..., Y,, and returned indices 71, . . ., 7.

(ii) She knows index ¢ is returned iff cov(fft, s) < p.

(iii) She knows the value of p.

Based on the assumptions, a §imple way of inference is to
look for an § that satisfies cov(Y3, §) < p for all returned in-

dices t and cov(Yy/,8) > p for all unreturned indices . We
formulate this as the following integer programming task.

max; 1,

st coo(Y;,8) < p, i=71,... Tk ®
COU(Y]’§)>p7 j:{17"'7m}/{rl7"',rk}7
3 €{0,1}, k=1,...,n,

where ‘/* is set difference; the first line of constraints are
based on returned indices, the second based on unreturned
indices, and the last based on the binary assumption of s.
To enhance performance, we further propose an ensemble
inference strategy using (8) as a building block. Basically,
we bootstrap {}A’i}i:17,,,}m, apply (8) on each subset, and ag-
gregate inference results. Details are shown in Algorithm 2.

In this algorithm, p and q are hyper-parameters.

Algorithm 2 Ensemble Demographic Inference Attack

1: Bootstrap {Y1, ..., Y;,} to generate p subsets of size g.
Denote the i, subsetas YV = {Y;,,..., Y}, }.

2: Apply (8) on each subset Y @ to obtain an inferred de-
mographic set, denoted by §(*).

3: Aggregate 11 ..., 5(P) in a way that, the final inferred
demographic of individual z; is

5 1§~ A(j))
; =S8, 9
e (p =1 ©

where function o rounds any input to its nearest integer.

Defense 1: Perturb Covariance Evaluation (PCE)

Our first strategy is to perturb the covariance evaluation. It
is motivated by the Laplacian mechanism in differential pri-
vacy (Dwork, Roth, and others 2014). Specifically, in Algo-
rithm 1, we replace Step 4 with the following Step 4°.

4’: The party sends ¢ to the learner if cov(Y;,s) < p,

where cov(Yy, s) = cou(Ys, 5) + € is a perturbed covariance
with € ~ N(0, 02) controlled by a hyper-parameter 5.

The perturbation will change the set of hypotheses whose
indices are sent to the learner. This will essentially change
the inequality constraints in (8), and thus prevent the solver
from finding accurate solutions or feasible solutions at all.

Defense 2: Soft-Threshold Policy (STP)

Our second strategy is to randomize the index selection pro-
cess. It is motivated by the exponential mechanism in differ-
ential privacy (Dwork, Roth, and others 2014).

Instead of returning ¢ when cov(hy, s) < p, we now return
t with higher probability if cov(hy,s) is smaller (and vice
versa). Specifically, in Algorithm 1, we replace Step 4 with
the following Step 4.

4”: The party sends each index ¢ to the learner with prob-

oy _ 1 ]
ability p(t) = Ttexp(lcov(Ve,s)) "

The randomization will also change the set of hypotheses
whose indices are sent to the learner, and essentially change
the constraints in (8) and the inferred results.

Experiment
Data Preparation

We experimented on two real-world data sets: the Commu-
nity Crime data set and the Credit data set.

The UCI Community Crime data set contains 1993 com-
munities described by 101 features. Community crime rate
is the label and we binarized it into ‘low’ and ‘high’. We
treated a community as minority if its fraction of African-
American residents is greater than 0.5.



The UCI Credit data set contains 30000 users described
by 23 features. Default payment is the label. We treated edu-
cation degree as the sensitive feature and divide individuals
into highly-educated and not-highly-educated.

Both our preprocessed data sets are available at?.

Experiment Design

On Community Crime, we randomly chose 500 instances
for training and 500 for testing. On Credit, we randomly
chose 1000 instances for training and 1000 for testing. When
comparing different methods, we will show results averaged
over 20 random choices of data. When conducting sensitiv-
ity analysis, we will focus on a fixed choice.

We examined three settings of the framework: (i) stan-
dard (no defense), (ii) with PCE defense and (iii) with STP
defense. We chose fair ridge regression as the base model
for the framework (called DFRR), and fixed p = 0.1. We
applied a popular solver (Marinescu and Dechter 2006) to
solve the integer programming task (8).

For each setting, we evaluated performance based on three
metrics: (a) inference attack accuracy, (b) final model pre-
diction fairness and (c) final model prediction accuracy. We
focused on non-ensemble inference attack and defense.

Experimental Results

We first present comparison results. Table 1 shows perfor-
mance averaged over 20 random generations of hypothe-
sis set H but fixed choice of training and testing data. Ta-
ble 2 shows performance averaged over 20 random choices
of training and testing data but fixed hypothesis set H =
{h1,...,hm} (Step 1 in Algorithm 1). In both tables, no-
tation ‘*’ indicates that no feasible solution is found by the
solver in any of the random trials. (Our later sensitive anal-
ysis will explain certain choice of hyper-parameters in these
tables.)

We have several observations.

Observation 1. The standard framework appears vulner-
able to the proposed inference attack, as the inference errors
are around 21%. This further justifies the present study.

Observation 2. The proposed two defense strategies ef-
fectively prevent the attack, as they prevent the solver from
finding any feasible solutions in any trials on both data sets.

Observation 3. Both defense strategies endure a trade-
off between privacy and fairness, as they both have higher
model disparities than the standard framework. This is partly
because our framework guarantees model fairness by only
using ‘fair’ h; to construct f. However, both defense strate-
gies will include certain ‘unfair’ h; for the construction.

Observation 4. STP has more efficient privacy-fairness
trade-off than PCE in most cases.

Observation 5. Neither defense strategy suffers a trade-
off between privacy and accuracy, as all methods have sim-
ilar prediction errors. This is partly because our framework
guarantees model accuracy based on random projection the-
ory, disregarding whether h; is “fair’ or not.

“https://uwyomachinelearning.github.io/

Overall, we see that both defense strategies effectively en-
hance privacy at the cost of fairness but not accuracy, and
STP seems more efficient than PCE.

Sensitivity Analysis

In this section, we analyze performance of the attack and de-
fense strategies. We fixed the choice of training and testing
data, and report results averaged over 20 random generations
of the hypothesis set (same setting as in Table 1).

First, we examined the impact of m on inference error.
(Recall m is the number of random hypotheses generated
at the learner in Step 1.) Figure 2 shows the result with m.
On the Crime Community data set, we see error decreases
as m increases. This is because bigger m creates more con-
straints for the integer programming task (8) to find a more
accurate solution. Such impact on the Credit data set seems
rather limited, however, which may be because the fewer
constraints are already sufficient for the solver.

Then, we examined performance of the proposed ensem-
ble inference attack strategy. Set m = 600. Results on the two
data sets are shown in Figures 3 and 4 respectively. We see
ensemble improves inference accuracy by around 10% and
converges at 10 bootstraps.

Next, for the PCE defense strategy, we examined the im-
pact of additive noise on the inference error. Results are
shown in Table 3 and 4 respectively. Numbers in the paren-
thesis are the times a feasible solution is found. We have
several observations.

(i) PCE does not reduce inference error. It directly prevent
the solver from finding a feasible solution if sufficient noise
is added. An effective noise level for non-ensemble infer-
ence is oo = 0.1, which prevents inference in most cases.

(i) The effective noise level for ensemble inference is
a bit higher than non-ensemble inference. This is because
bootstrapping has a higher chance of bypassing certain noisy
constraints and finding a feasible solution. This partly justi-
fies that ensemble inference attack is more effective.

(iii) Larger m makes defense easier. This may be because
larger m creates more constraints in the integer program-
ming task, which allows PCE to create more noisy con-
straints to prevent inference.

Finally, for the STP defense strategy, we examined its per-
formance versus different m. Results are shown in Table 5.
We see STP effectively defends most inference.

Application on Other Private Fair Learners

We examined impact of the proposed defense strategies on
other two private fair learners developed in (Hu et al. 2019):
distributed fair logistic regression (DFGR) and distributed
fair PCA (DFPCA). We set m = 600, fixed training and test-
ing data and reported model fairness and error averaged over
20 random generation of the hypothesis set H. (We did not
re-examine inference error as it is somewhat learner inde-
pendent.) Results are shown in Tables 6, 7 and 8 respectively.
We have similar observations. For PCE, we see larger
noise reduces model fairness in general, but the reduction
seems not significant on DFGR and DFPCA (compared with
DFRR). The defense does not sacrifice model accuracy.



Crime Credit
inference error | model disparity | model error inference error | model disparity | model error
No Defense 2103 +.0347 | .1680 £ .0671 | .1422 £.0158 || .2126 £.0301 | .0132 4+.0043 | .2365 £+ .0104
PCE Defense * 2886 + .0751 | .1477 £+ .0122 * .0142 +.0038 | .2396 4+ .0164
STP Defense * .1989 £ .0742 | .1320 £ .0146 * .0139 £ .0036 | .2373 £ .0195

Table 1: Performance of DFRR with fixed data split and random H. (m=300, p = 0.1, PCE has 9 = 0.1)

Crime Credit
inference error | model disparity model error inference error | model disparity | model error
No Defense 2204 £ .0555 | .1849 £ .0857 | .1360 £ .0124 || .2258 £.0596 | .0176 £ .0059 | .2476 + .0134
PCE Defense * 2622 + .0883 | .1308 £ .0129 * .0495 +.0045 | .2430 £+ .0132
STP Defense * 2553 +.0897 | .1280 +.0118 * .0571 +£.0052 | .2398 £ .0124

Table 2: Performance of DFRR with random data split and fixed H. (m=300, p = 0.1, PCE has g5 = 0.1)
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Figure 2: Inference Error versus m.
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Figure 3: Error of Ensemble Inference on Crime Data Set.

Related Work and Discussions

Many inference attack strategies have been proposed in the
literature (Nasr, Shokri, and Houmansadr 2018; Dwork et
al. 2017; Fredrikson, Jha, and Ristenpart 2015; Shokri et al.
2017; Carlini et al. 2018; Wang and Gong 2018; Wei et al.
2018). In this paper, we focus on attribute inference.

Many attribute inference strategies are developed (Salem
et al. 2018; Li, Shirani-Mehr, and Yang 2007; Fredrikson
et al. 2014). In this paper, we propose an adhoc inference
strategy tailored for the framework. Our presented ensem-
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Figure 4: Error of Ensemble Inference on Credit Data Set

ble inference strategy is motivated by an existing ensemble
inference (Tramer et al. 2017).

Mechanisms to defend inference attacks have also been
widely studied (Saygin, Verykios, and Clifton 2001; Cai et
al. 2016; Jagielski et al. 2018; Aggarwal and Philip 2008).
Our proposed defense strategies are tailored for the attack,
and are largely motivated by the Laplacian and exponential
mechanisms in differential privacy.

Currently, we do not have any theoretical guarantees on
the presented attack and defense strategies. A naive way
to derive an algorithm-independent bound for inference er-
ror may be to identify the number of feasible solutions that
satisfy all constraints in (8) and simply reverse it. Defense
bounds may be derived in a similar fashion as in the Lapla-
cian and exponential mechanisms for differential privacy, al-
though we probably need to tailor the existing theories for
our special framework.

Besides the lacking of theoretical guarantees, we also re-
alize several limitations of the present work. First, our pro-
posed attack strategy is straightforward (albeit most natural)
and based on certain assumptions on the attacker. When the
assumptions are changed, e.g., if there are multiple demo-
graphics governing fairness or if the adversary is an outside
with less information, one may need stronger inference strat-



Table 3: Non-Ensemble Inference Error on the Framework with PCE Defense

m =100

02

m =200

m =300 m = 600

Crime Credit | Crime Credit

Crime Credit | Crime Credit

0 0.298  0.207 | 0.261
0.01 | 0294 0299 | 0.258
0.1 0.289 * *

1 * * *

0.210 0.213 | 0.171  0.190

0228 % * *
* * & *
* * * *

Table 4: Ensemble Inference Error on the Framework with PCE Defense

m =100

m =200

m =300 m = 600

Crime Credit Crime

Credit | Crime Credit | Crime Credit

0 0272  0.189 | 0252
001 | 0284 0.193 | 0256
0.1 | 027(1) * 0.242 (1)

1 * * *

0.183 | 0212 0.181 | 0.142 0.176

0.185 | 0.276  0.174 * 0.157
* * * *
® * * *

Table 5: Inference Error on the Framework with STP Defense

m =100 m =200 m =300 m = 600
Method
Crime Credit Crime Credit | Crime Credit | Crime Credit
Non-Ensemble * * * * * * * ®
Ensemble 0.324 * * * * * *

0.298 (1)

Table 6: Performance with PCE Defense on Crime

o2 =0 o2 = 0.01 o2 = 0.1
SP Err SP Err SP Err
DFGR .056 .189 | .043 216 | .057 .226
DFPCA | .025 .147 | .025 .149 | .029 .148

Method

Table 7: Performance with PCE Defense on Credit

o2 =0 o2 = 0.01 oo = 0.1
Sp Err Sp Err SP Err
DFGR 062 263 | .058 .266 | .069 .268
DFPCA | .067 243 | .081 .244 | .077 .246

Method

egy. Second, although our defense strategies are effective,
they seem to suffer significant trade-off between privacy and
fairness (especially PCE). How to design a more efficient de-
fense strategy with minimal trade-off is an open question.

Conclusion

In this paper, we investigated the vulnerability of our previ-
ously published distributed and private fair learning frame-
work under inference attack. We propose an inference attack

Table 8: Performance with STP on the Two Data Set

Crime Credit
SP Err SP Err
DFGR 099 164 | .068 241
DFPCA | .047 .144 | .081 .206

Method

strategy which is formulated as an integer programming (IP)
task. We also propose two defense strategies PCE and STP
that respectively mimic the Laplacian and exponential mech-
anisms in differential privacy. In experiment, we show the
standard framework is indeed vulnerable to the proposed at-
tack, which achieves 10- 20% inference error. We also show
the proposed defense strategies can effectively prevent the
standard IP solver from finding any feasible solutions. They
also suffer trade-off between privacy protection and fairness,
by increasing some model disparity.
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