
Privately computing influence in regression models
Adam Richardson

LIA, École Polytechnique Fédérale de Lausanne
adam.richardson@epfl.ch

Ljubomir Rokvic
LIA, École Polytechnique Fédérale de Lausanne

ljubomir.rokvic@epfl.ch

Aris Filos-Ratsikas
University of Liverpool

LIA, École Polytechnique Fédérale de Lausanne
Aris.Filos-Ratsikas@liverpool.ac.uk

Boi Faltings
LIA, École Polytechnique Fédérale de Lausanne

boi.faltings@epfl.ch

Abstract

We consider a crowdsourcing data acquisition scenario, such
as federated learning, where a Center C collects data from
a set of agents A, with the aim of training a model. To pre-
serve data privacy, the data is not provided directly, but only
in aggregated and possibly obfuscated form. To protect itself
against low-quality data hidden in the aggregate, the Center
may want to evaluate the effect that incorporating the data has
on its model accuracy. We propose using a notion of influence
to make this evaluation. We assume that either the Center has
an independent test data set or it relies on data held by another
set of agents B. For both linear and logistic regression models,
we present a novel method for approximating this influence.
We show how this protocol can be implemented efficiently
and securely using multiparty computation among A, B, and
C, so that A, B and C can assess the quality of individual data
items held by A and B without acquiring the data itself.

1 Introduction
The success of machine learning depends to a large extent on
the availability of high quality data. For many applications,
data has to be elicited from independent and sometimes self-
interested data providers. A good example is federated learn-
ing (Konečnỳ et al. 2016), where a single center (e.g. a large
company) collects data from a set of agents to jointly learn
a model.

An important aspect of federated learning is to preserve
the privacy of contributed data, and there are several proto-
cols that allow linear and logistic regression models to be
computed without revealing the underlying data. When we
consider using these methods in open systems, the privacy-
preserving process makes it vulnerable to low quality data
contributions. Therefore, it is important that the Center be
able to assess the quality of this data before incorporating
it into the model. A quality score is useful for various pur-
poses, such as rewarding the data provider, filtering out poor
data that would degrade the model, and assessing a data
provider’s reputation.

Figure 1 shows the setting we assume. Agents A and B
each possess private data that is relevant to a model M held
by the Center C. To assess the quality of A’s data, C com-
putes an estimate of how much incorporating A’s data will

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

improve the accuracy of M when evaluated on the data held
by Agent B. In a real setting, there will typically be multiple
agents of type A, and B could also represent multiple agents.

Such a score can be used by A and B to decide which
of their data items are useful to others and thus should be
contributed to the federated model, and which of them are
outliers that might even degrade the common model. An-
other use would be to reward A according to the quality of
the data it is providing.

The challenge we address in this paper is how to obtain
an estimate of this accuracy improvement while preserving
the participants’ privacy. Specifically: A and B would like to
keep their data private from each other and from C.

A clear way of measuring the effect of individual points
on the accuracy of a model is via the notion of influence
(Cook and Weisberg 1980). For a given data point, the in-
fluence quantifies how much the model’s predictions would
change if that point were excluded from the training process.
This allows us to quantify the effect that a single data point
has on the final outcome; we can simply compare the differ-
ence in the model’s empirical risk when it is trained with and
without the point. The empirical risk is defined as simply the
mean of the loss function on some test data set.

For many practical applications, computing the exact in-
fluence is prohibitively inefficient. A more serious issue is
found in the standard federated learning setting: the Center
never obtains the data points from provider A, but only ag-
gregate and possibly obfuscated gradients that help to incor-
porate the data into the model. Computing the influence of
individual points through re-training is generally impossible
using only the gradients.

For this reason, following Koh and Liang [2017], we com-
pute an approximation of the exact influence, based on up-
weighing the training point by a small quantity. Our pro-
posed approximation extends the idea in (Koh and Liang
2017), which (without any modifications) turns out to be in-
sufficient for our purposes. We focus on the tasks of estimat-
ing distributions, linear and logistic regression and show that
the employed approximation is very close to the value of the
exact influence, while achieving a notable improvement in
speed, especially for logistic regression. We show how these
computations can be carried out using multiparty computa-
tion between A, B and C without revealing either A or B’s
data.

Figure 1: The setting in this paper: Agents A and B hold private data that is relevant to a model M held by the Center C. C
wants to know the influence of incorporating A’s data on the test data held by B.

Finally, we run experiments on several different real
datasets, as well as generated data, and verify our theoret-
ical results.

To our knowledge, we are the first to show that the influ-
ence of individual data points can be computed in a secure
and privacy-preserving manner. Furthermore, the computa-
tion requires no trusted third parties and is efficient enough
for large-scale practical use.

1.1 Related Work
Federated Learning Recently, federated learning has be-
come an alternative method to train models that rely on data
obtained by many different agents (McMahan et al. 2016). In
federated learning, a center coordinates agents who acquire
data and provide model updates to a common model main-
tained by the center. There are many applications in which
federated learning can be used, e.g., training models from
smart phone data or gathering data from IoT devices and
sensors among others. A challenge that the center faces is
how to evaluate the usefulness of an agent’s model update,
while at the same time respecting the agent’s privacy, which
is a very important issue for federated learning.

An important feature of federated learning is that it gener-
ally protects the privacy of the data used for training. There
are generally three types of methods used for achieving this:

1. secure multi-party computation: the model is learnt by
cooperative computation among multiple agents. Each
agent only has access to parts of the data, and does not
have enough information to infer the rest. There exist
many privacy-preserving multi-party computation meth-
ods for performing linear and logistic regression using
vertically split data, generally based on the technique
in (Du, Han, and Chen 2004). The advantage of multi-
party computation is that there is usually little computa-
tional overhead or restriction of the type of data that can
be processed. The disadvantage is that privacy can be bro-
ken by collusion among participating agents or by back-
ground information about their data.

2. homomorphic encryption: each Agent encrypts its data

using a homomorphic encryption scheme such as Pallier
encryption. The model is computed on the encrypted data;
the agents cooperate to decrypt the model but never the
data that was used for training. An example of such a
method can be found in (Phong et al. 2018). The advan-
tage of such methods is that even with background infor-
mation, it is not possible to infer the original data. The dis-
advantage is that it the data has to be mapped to discrete
and finite domains, and that there is often large computa-
tional overhead to computations with the encrypted data.

3. differental privacy: Agents add noise to their data to
make it differentially private. The model is computed us-
ing this noisy data. An example among many is (Geyer,
Klein, and Nabi 2017). The advantage of differential pri-
vacy is that it is impossible for anyone to infer the original
data, even with background information. The disadvan-
tage is that the noise limits the quality of the model that
can be learned.

To avoid the computational overhead of homomorphic en-
cryption, and the inaccuracy associated with differential pri-
vacy, we focus on solutions using multiparty computation in
this paper. We assume that the Agents and the Center are
honest but curious, i.e. they don’t actively attempt to corrupt
the protocol but will try to learn about each other’s data.

Influence functions Influence functions are a standard
method from robust statistics, which were recently used as
a method of explaining the predictions of black box models
(Koh and Liang 2017). They have also been used in the con-
text of fast cross-validation in kernel methods and model ro-
bustness (Liu, Jiang, and Liao 2014) (Christmann and Stein-
wart 2004). So far, there has been no work using influence
functions to provide quality scores for provided data in a
private manner, as we do here.

2 Setting and Foundations
In our setting, there is a Center that wants to learn a model
parametrized by θ, with a non-negative loss function L(z, θ)
on a sample z = (x̄, y). In this paper, we will assume that

the model is a linear or a logistic regression model. The sam-
ples are supplied by a setA of Agents, with agent i providing
point zi = (x̄i, yi). Given a set of dataZ = {zi}ni=1, the em-
pirical risk, which we use as the loss function to minimize,
is R(Z, θ) = 1

n

∑
i L(zi, θ).

Influence functions We would like to characterize the
quality of a data point by a numerical score. The score
should be:

• negative when incorporating the data point will most
likely decrease the quality of the model. This allows the
center to filter out useless data.

• monotone so that a higher score indicates a higher aver-
age accuracy of the resulting model. This allows using the
score as an incentive for agents to provide high-quality
data.

• the sum of the scores for two sets of data points X and Y
that each result in a model of the same accuracy should
be the same. This ensures that the score is a reasonable
measure for choosing among different data providers.

We now show how to use influence functions to satisfy these
criteria. Let Z−j = {zi}i 6=j and let

θ̂ = arg min
θ
R(Z, θ) and θ̂−j = arg min

θ
R(Z−j , θ).

We will assume that the Center has access to a test set T =
{zk}. The test set may itself reside with another agent B
and be subject to privacy constraints, and we will show later
how to distribute the computation to satisfy these. Then the
influence of zj on the test set is defined as

infl(zj , T, θ) = R(T, θ̂−j)−R(T, θ̂).

We will simply write infl(zj), when T and θ are clear from
the context. We will use the average influence of the data
point on the set of test data as the score of the data point,
and note that:

• when the data point decreases the performance of the
model, the score is negative.

• the score is proportional to the improvement in the loss
function when incorporating the data point.

• we will show later how to scale the score so that the sum
of the scores of a set of data approximates closely the de-
crease in the loss function when incorporating an entire
data set.

Therefore, the influence satisfies our desiderata. However,
computing it by actually updating the model and comparing
the loss functions is not only inefficient, but would require
access to the data, and thus violate privacy constraints. In
the following, we will show how to compute a very close
approximation of the score while respecting the privacy con-
straints.

3 Approximating Influence
The loss functions which we will use are mean squared er-
ror for linear regression and cross-entropy loss for logistic

Figure 2: The exact influence is shown to become computa-
tionally prohibitive for logistic regression with only a mod-
erate number of data points, while the computation time for
the approximate influence increases relatively slowly.

regression. Where yi is the measured value, and ŷi is the
predicted value for xi.

LMSE =
1

n

n∑
i=1

(yi − ŷi)2

LCE = − 1

n

n∑
i=1

(yilog(ŷi) + (1− yi)log(1− ŷi))

Trying to practically implement a scoring-based payment
mechanism imposes a host of challenges. The first is the
computational cost of computing the influence for an agent.
Specifically, we must compute θ̂−j , which would involve
entirely retraining the model. We present an approximation
method based on the method described in (Koh and Liang
2017), which gives the following formula for the influence
of zj on test point ztest:

infl(ztest, zj) =
1

n
∇θL(ztest, θ̂)H

−1
θ ∇θL(z, θ̂)

Where H−1θ is the inverse Hessian computed on all the
model’s training data. This formula is derived by taking
the first term of the Taylor expansion of the empirical risk
with respect to θ, which yields an approximation error of
O(1/n2). However, this approximation has the undesirable
property that the mean influence is 0, by the definition of θ̂
as the solution to

∑
∇θL(z, θ̂) = 0. It thus cannot provide

an unbiased estimate of the true influence, which is positive
in expectation. We obtain a positive average by including the
second order term in the Taylor expansion of the empirical
risk, and thus obtain an estimate that is close to being unbi-
ased. Let ∂θj be the change in theta due to up-weighting a
training point zj , and let Hi be the Hessian computed only
on zi. We have:

∂θj =
1

n
H−1
θ ∇θL(zi, θ̂) +

1

n2
H−1
θ HiH

−1
θ ∇θL(zi, θ̂) (1)

We must also take into account the second order approxi-
mation of the change in the loss on a test point when com-
puting the influence. Rather than approximate the change in
test loss by infl(ztest, z) = (∇θL(ztest, θ̂)) · ∂θ, we take the
second term in the Taylor expansion:

infl(ztest, z) =

(
∇θL(ztest, θ̂) +

1

2
Hθ,ztest · ∂θ

)
· ∂θ (2)

Since the Hessian of a function is defined as ∇2L we
get the Hessian, in matrix form, for mean squared error and
cross-entropy loss in order:

HMSE =
2

n
XTX

HCE =
1

n
XTDX

where D = diag (σ(Xθ)� (1− σ(Xθ))

In general, computing the approximate influence is more
efficient than retraining the model and computing the exact
influence. This is particularly true in the case of logistic re-
gression. Fig. 2 demonstrates how the computation time for
computing the exact influence for logistic regression quickly
blows up with the number of data points, as compared to the
2nd Order Approximate influence. The specific implementa-
tion of the logistic regressor in our experiments is discussed
in Section 6.

4 Secure Influence Computation

Algorithm 1: Influence approximation for linear re-
gression

Data: θ̂, Xi, Yi, Xtest, Ytest, Hθ

Result: infl(ztest, zi)
1 C: send H−1θ to A;
2 C: send θ̂ to A, and B;
3 A:∇θL(zi, θ̂)←− 2

nX
T
i (Xiθ̂ − Yi);

4 A: Hθ,zi ←− 2
nX

T
i Xi ;

5 A: ∂θ ←− H−1
θ ∇θL(zi,θ̂)

n +
H−1
θ Hθ,ziH

−1
θ ∇θL(zi,θ̂)
n2 ;

6 A: send ∂θ to C;
7 C: send ∂θ to B;
8 B: Hθ,ztest ←− 2

tX
T
testXtest ;

9 B:∇θL(ztest, θ̂)←− 2
nX

T
test(Xtestθ̂ − Ytest);

10 B: infl(ztest, zi)←−
(∇θL(ztest, θ̂) + 1

2Hθ,ztest · ∂θ) · ∂θ;
11 B: send infl(ztest, zi) to C;
12 C: send infl(ztest, zi) to A;
13 A: send Hi to C;
14 C: update M;
15 C: update Hθ;

Algorithms Our approach in this situation is to divide the
computation so that every party does a part that involves its

Algorithm 2: Influence approximation for logistic
regression

Data: θ̂, Xi, Yi, Xtest, Ytest, Hθ

Result: infl(ztest, zi)
1 C: send H−1θ to A;
2 C: send θ̂ to A, and B;
3 A:∇θL(zi, θ̂)←− 1

nX
T
i (σ(Xiθ̂)− Yi);

4 A: Di ←− diag(σ(Xiθ̂)� (1− σ(Xiθ̂))

5 A: Hθ,zi ←− 1
tX

T
i DiXi ;

6 A: ∂θ ←− H−1
θ ∇θL(zi,θ̂)

n +
H−1
θ Hθ,ziH

−1
θ ∇θL(zi,θ̂)
n2 ;

7 A: send ∂θ to C;
8 C: send ∂θ to B;
9 B: Dtest ←− diag(σ(Xtestθ̂)� (1− σ(Xtestθ̂))

10 B: Hθ,ztest ←− 1
tX

T
testDtestXtest ;

11 B:∇θL(ztest, θ̂)←− 1
nX

T
test(σ(Xtestθ)− Ytest);

12 B: infl(ztest, zi)←−
(∇θL(ztest, θ̂) + 1

2Hθ,ztest · ∂θ) · ∂θ;
13 B: send infl(ztest, zi) to C;
14 C: send infl(ztest, zi) to A;
15 A: send Hi to C;
16 C: update M;
17 C: update Hθ;

private data. First, let us clarify who has what. Agent A has
their own data points zi which need to be evaluated. Center
C has the model parameters θ and the Hessian Hθ computed
from past iterations. Party B has its data points ztest which
will be used to evaluate how beneficial agent A’s data points
zi are to the model M. Analyzing the influence approxima-
tion formula 2, we find out that:

• To compute ∇θL(ztest, θ̂) the data from parties C, and B
is required.

• To compute Hθ,ztest the data from party B is required.

• To compute ∂θ the data from parties A, and C is required.

We will allow party A to compute ∂θ, and Hi. The com-
puted values will then be sent to the center C which will
forward ∂θ to party B. Party B will evaluate the data points
zi using its own test data ztest. Following this party B will
send the computed influence back to the center C. Then cen-
ter C will perform the updates on it’s model if it sees the data
fit.

The data points Xi are an n × d matrix, while the labels
Yi are an n× 1 matrix. The model parameters θ̂ are a 1× d
matrix, while the Hθ is a d× d matrix. The test points Xtest

are a t× d matrix, while the labels Ytest are a t× 1 matrix.
We also assume that n >> d.

Linear regression To be able to compute the influence ap-
proximation we have to define∇θL(zi, θ̂) and Hθ,zi for lin-

ear regression. The formulas are as follows:

∇θL(zi, θ̂) =
2

n
XT
i (Xiθ̂ − Yi)

Hθ,zi =
2

n
XT
i Xi

Algorithm 1 shows a secure implementation on how to eval-
uate data points zi in a linear regression model.

Logistic regression Similar to linear regression we also
need to define ∇θL(zi, θ̂) and Hθ,zi , to be able to compute
the approximate influence. The formulas are as following:

∇θL(zi, θ̂) =
1

n
XT
i (σ(Xiθ)− Yi)

Hθ,zi =
1

n
XT
i DiXi

Di = diag
(
σ(Xiθ̂)� (1− σ(Xiθ̂)

)
The resulting algorithm is Algorithm 2.

Maintaining the Hessian Hθ The Hessian matrix Hθ

used in the influence computation depends on the data used
to train the current model. In the federated learning setting,
the Center never has access to this data. However, it can
construct Hθ incrementally by averaging the Hessian ma-
trices Hi that agents construct when they contribute a batch
of training data. Therefore, we require agents to submit not
only the updates to the model parameters, but also the Hes-
sian matrix corresponding to the training data they used.

Security properties Now, let us analyze how much data
was disclosed from every party. Agent A shared ∂θ with
the center C, which results in d equations. Additionally, the
model update gives d equations, and the update to the Hes-
sian Hi provides d2 equations. In total, the agent supplies
d · (d+2) equations involving the n data points contained in
its batch. To ensure that this does not allow backward infer-
ence of the data, which has (d+ 1)× n parameters, the size
of the batch must satisfy:

n >
d(d+ 2)

d+ 1

In most regression models, the dimensionality of the data is
not very large, so this condition is likely to be satisfied.

Regarding the privacy of the data used to train the current
model, the center shares H−1θ with agent A, which results in
d× d equations. Since we assumed that n > d in all rounds
of this process and there are at least n× d variables, there is
again insufficient information to infer the training data.

Finally agent B only shares the resulting approximate in-
fluence, resulting in only 1 leaked equation, while the num-
ber of parameters agent C poses is equal to (d + 1) × t and
thus cannot be derived from this single equation.

We note however that if there is background informa-
tion regarding the data distribution, the information gained
through this process could become sufficient to allow in-
ferences that are correct with high probability. This could
be countered by first transforming the data into a lower-
dimensional embedding that takes this background informa-
tion into account.

5 Batch Processing
Computing the influence approximations requires comput-
ing the inverse of the Hessian matrix, which is a relatively
costly operation. Furthermore, generally an agent will have
multiple data points to contribute, and we would like to eval-
uate the influence of all of them. Thus, it is useful to com-
pute the influence of an entire batch of data points in a single
process.

However, the influence of each data point individually is
likely to overestimate its actual influence when it is incor-
porated as part of an entire batch of data. The reason is that
there may be redundancies among data points that reduce
each data point’s influence.

This does not present a problem when comparing the in-
fluence of data points supplied by the same agent, but would
be important when comparing the quality of batches from
different agents, or using the quality score to determine a
payment. We wish to incorporate a correction factor that
would allow for each data point to be scored as if it were part
of its own batch of one. A general way to determine the cor-
rection factor is to compare the model’s empirical risk before
and after incorporating the model update with the sum of the
influences for the data points in the batch. However, this can
only be done after receiving the model updates for the en-
tire batch. In some cases, it might be important to know the
correction factor beforehand. We now present a theoretical
model that allows to determine the correction factor quite
closely. We restrict ourselves to the case of a linear regres-
sion model, but the analysis can be extended to any model in
which the optimal parameters have a closed form solution.

Let us consider two probability distributions Φ1 and Φ2,
and we assume they describe an input-output relationship
such that Φ(x, y) = q(x)p(y|x), and q1(x) = q2(x). This
assumption merely asserts that the data we are collecting is
drawn from the same domain regardless of the distribution of
the output. Concretely, Φ1 is the distribution of the data used
to derive the current model M , and Φ2 is the distribution of
data held by Agent A.

Distributions Φ1 and Φ2 determine, in expectation, mod-
els M1 and M2 respectively. Let us now define Ri,j as the
expected risk of model Mi evaluated on distribution Φj . Us-
ing the standard mean-squared-error loss function, we have
thatRi,j = Rj,j +E[(Mi−Mj)

2]. Now suppose we sample
N1 points from Φ1 andN2 points from Φ2 to form our train-
ing set {z}. Because the linear regression solution is linear
with respect to y, and q(x) is fixed, then {z} determines in
expectation a model Mc = N1M1+N2M2

N1+N2
. Then when we

evaluate the model, we are only concerned with the error of
the mixed model Mc evaluated on Φ2:

Rc,2 = R2,2 +

(
N1

N1 +N2

)2

E
[
(M2 −M1)2

]
To simplify, we fix N1 = Q as the number of points used

for initialization, we define r = E[(M2 −M1)2], and we let
N2 vary as x. Then we have our expected empirical risk in
terms of x:

R(x) =
Q2r

(Q+ x)2
+R2,2

We can approximate the influence of a data point arriving
after x data points as the negative of the derivative of the

Figure 3: Ratio between Sum of Influences and Change in
Loss with respect to batch. Three curves shown representing
batch sizes of 30, 100, and 300. 500 points used for initial-
ization.

risk:

−∂R
∂x

=
2Q2r

(Q+ x)3

Now we consider batch size b. We can compute the expected
overall change in loss of some arbitrary batch k, with k in-
dexing starting at 1.

∆Rb(k) = R((k − 1)b)−R(kb) =
bQ2r(2Q+ (k − 1)b)2

(Q+ (k − 1)b)2(Q+ kb)2

Now we consider the sum of influences of points in batch
k.

Sb(k) = −b∂R
∂x

∣∣∣∣
(k−1)b

=
2bQ2r

(Q+ (k − 1)b)3
,

Comparing this to the change in risk, we get the following
ratios:

Db(k) =
Sb(k)

∆Rb(k)
=

2(Q+ kb)2

(Q+ (k − 1)b)(2Q+ (2k − 1)b)

By computing these values, the Center can pick an arbitrary
batch size and divide the influence scores by this formula
such that the expected sum of influences is equal to the over-
all change in risk, as in the case of batch size 1.

6 Experimental Results
It is important to verify that the approximation used to de-
termine the influence mirrors the actual influence closely
enough to be a useful scoring measure. It is also not clear
to what extent the model of the distortion caused by batch
processing correctly predicts the true correction factor that
must be applied.

We therefore conducted experiments with synthetic and
real datasets. For training the logistic regressor, we used
gradient descent with momentum, with a learning rate of
0.1 and a momentum of 0.9. The convergence criteria was
|∇θ|L1 < 1

n6 with a cap at 100000 iterations.

Datasets: We start by enumerating the datasets used in our
simulations:

- Linear Generated: We generate linear regression data as
follows: pick an angle θ uniformly in [−π/2, π/2], and a
bias term fromN(0, 1). Using θ and the bias to determine
a linear model, we uniformly sample x ∈ [−1, 1] and de-
termine ground truth ygt values. We then add a noise vari-
able drawn from N(0, 1) to produce observations y.

- Red Wine and White Wine: UCI datasets with 11 attributes
that predict a quality metric. (Cortez et al. 2009)

- Air Quality: A UCI dataset with 15 attributes. We re-
moved 6 attributes because they are either non-predictive
or they have many missing values. We chose ”C6H6(GT)”
as the predicted attribute. (De Vito et al. 2008)

- Logistic Generated: We generate logistic regression data
as follows: pick a slope vector on the unit hyper-sphere
and a crossing point inside the half-unit hyper-cube. The
negative dot product between these determines the bias
term. The bias and slope form a linear model. We uni-
formly sample x ∈ [−1, 1] and run it through this linear
model. We then add a noise variable drawn from N(0, 1),
and finally threshold at 0 to form the logits.

- Banknote Authentication (Forgery): A UCI dataset with 5
attributes that predict whether or not a banknote is forged.
(Dua and Graff 2017)

Approximation Accuracy: We show in Table 1 that on
all datasets, our Second Order Approximation formula
produces better influence estimates in terms of L1 and L2
error than the First Order Approximation presented in Koh
and Liang [2017]. More importantly, this table shows that
the mean influence of the First Order Approximation yields
a value that is close enough to zero to be interpreted as the
result of floating point errors. The one instance this is not
the case, Bank Forgery, this is likely due to the logistic
regressor not converging adequately.

Batch approximation: We ran simulations to estimate the
effect of batch size b on the ratio Db(k). We ran each simu-
lation with 1500 total training points with a varying batch
size. Given a fixed batch size, we ran 10 trials for every
dataset and aggregated them to form a more general esti-
mate of S(k), and ∆R(k). We then took the ratios of these
aggregates and compared against our theoretical results for
Db(k) in Fig. 3. We ran this same simulation with different
numbers of initial points 20, 100, 200, and 500. We have
chosen only to show the case with 500 initial points. The
other simulations show the same relationship.

7 Conclusion
There is increasing interest in federated learning to protect
the privacy of training data for machine learning. However,
this privacy also means that it is no longer possible to ensure
that the training data actually improves the model. Outliers
and inaccurate data can hurt the performance of the model,
and should be excluded. Another issue is that data used for
performing this evaluation may also have to remain private.

Data Type Exact Influence 1st Order Approximation 2nd Order Approximation
Mean Mean L1 Error L2 Error Mean L1 Error L2 Error

Linear
Generated 9.129e-07 5.204e-21 1.792e-06 1.771e-11 9.129e-07 4.883e-12 2.189e-22
Red Wine 2.619e-06 7.744e-15 1.106e-05 8.199e-09 2.619e-06 1.952e-08 3.209e-13

White Wine 2.426e-06 1.665e-14 2.814e-05 1.129e-06 2.481e-06 6.799e-06 1.630e-07
Air Quality 1.377e-05 9.539e-17 3.750e-05 1.652e-06 1.376e-05 5.044e-08 2.598e-11

Logistic
Generated 3.524e-06 6.553e-19 8.584e-06 4.384e-10 3.846e-06 3.283e-06 8.782e-11
Forgery 2.303e-05 -1.397e-05 8.162e-05 2.226e-05 7.188e-06 4.699e-05 1.263e-06

Table 1: Mean of exact influences, 1st, and 2nd order approximations, along with the mean L1 and L2 errors between the
approximations and the exact influences. Linear regression experiments were ran with 1500 training points, while logistic
regression experiments were ran with 500. In all cases, 200 points were used for validation.

We have shown how we can use influence functions and
multiparty computation to obtain a meaningful score that
characterizes the quality of training data. The score can
be used to filter bad data, to recognize good and bad data
providers, and to pay data providers according to the quality
of their data. We have shown how influence can be approxi-
mated and processed in batches for efficiency, and developed
a theory that allows correcting the difference between the in-
fluence and the overall change in loss. We have empirically
validated the theoretical results on multiple datasets.

References
Christmann, A., and Steinwart, I. 2004. On robustness
properties of convex risk minimization methods for pat-
tern recognition. Journal of Machine Learning Research
5(Aug):1007–1034.
Cook, R. D., and Weisberg, S. 1980. Characterizations of an
empirical influence function for detecting influential cases in
regression. Technometrics 22(4):495–508.
Cortez, P.; Cerdeira, A.; Almeida, F.; Matos, T.; and Reis,
J. 2009. Modeling wine preferences by data mining
from physicochemical properties. Decision Support Systems
47(4):547–553.
De Vito, S.; Massera, E.; Piga, M.; Martinotto, L.; and
Di Francia, G. 2008. On field calibration of an elec-
tronic nose for benzene estimation in an urban pollution
monitoring scenario. Sensors and Actuators B: Chemical
129(2):750–757.
Du, W.; Han, Y. S.; and Chen, S. 2004. Privacy-preserving
multivariate statistical analysis: Linear regression and clas-
sification. In Proceedings of the 2004 SIAM international
conference on data mining, 222–233. SIAM.
Dua, D., and Graff, C. 2017. UCI machine learning reposi-
tory.
Geyer, R. C.; Klein, T.; and Nabi, M. 2017. Differentially
private federated learning: A client level perspective. arXiv
preprint arXiv:1712.07557.
Koh, P. W., and Liang, P. 2017. Understanding black-box
predictions via influence functions. In Precup, D., and Teh,
Y. W., eds., Proceedings of the 34th International Confer-
ence on Machine Learning, volume 70 of Proceedings of

Machine Learning Research, 1885–1894. International Con-
vention Centre, Sydney, Australia: PMLR.
Konečnỳ, J.; McMahan, H. B.; Yu, F. X.; Richtárik, P.;
Suresh, A. T.; and Bacon, D. 2016. Federated learning:
Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492.
Liu, Y.; Jiang, S.; and Liao, S. 2014. Efficient approxima-
tion of cross-validation for kernel methods using bouligand
influence function. In International Conference on Machine
Learning, 324–332.
McMahan, H. B.; Moore, E.; Ramage, D.; Hampson,
S.; et al. 2016. Communication-efficient learning of
deep networks from decentralized data. arXiv preprint
arXiv:1602.05629.
Phong, L.; Aono, Y.; Hayashi, T.; et al. 2018. Privacy-
preserving deep learning via additively homomorphic en-
cryption. IEEE Transactions on Information Forensics and
Security 13(5):1333–1345.

