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Abstract

Collecting more data is beneficial in machine learning to gen-
erate models that are less biased. There are many cases in
which pieces of similar data are distributed among organiza-
tions and difficult to integrate these data due to issues involv-
ing privacy and cost. Integrating these distributed data with-
out delivering the original data leads to the concept of data
collaboration, which combines data held by different organi-
zations in a secure manner. We propose a method in which a
distance matrix of the original data obtained using common
data among organizations is shared to learn neighbor infor-
mation of the original data. Specifically, the proposed method
robustly integrates distributed data of as good quality as con-
nected raw data in cases where the amount of data in each or-
ganization is small and the data bias is large. In addition, the
proposed method is applicable to data contaminated by noise.
To demonstrate the effectiveness of the proposed method, we
perform a classification task on open biological data divided
into several pieces and show that the classification results for
divided data are as precise as when all data is available. Fi-
nally, we show that the robustness of the method against noise
improves the anonymity of the original data as a side effect.

Introduction
Due to recent developments in technology for data acquisi-
tion, a huge amount of data can be concentrated in a sin-
gle organization. Therefore, a variety of analyses for those
data can be done within each organization. However, there
are limitations for analyzing data in a single organization.
For example, as for clinical data in hospitals, there are rare
diseases for which the data are imbalanced, and its amount
is small, only in a single hospital. Moreover, there are data
biases among hospitals. To overcome these difficulties, in-
tegrating such small, biased data from different hospitals
should be useful. In reality, clinical data are not central-
ized but distributed among hospitals due to privacy concerns
and communication costs, even if they have a similar data
format. Thus, there is a need for a technique to perform
integrated analysis on distributed data while securing pri-
vacy. One possible technique is secure computation (Chida
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et al. 2014; Du and Atallah 2001; Nikolaenko et al. 2013;
Yao 1986) that uses cryptography. This method makes it
possible to calculate target statistics and values while keep-
ing data confidential. On the other hand, there is an over-
head to be anonymized in the calculation, and the encryption
key should be carefully managed. Another option is feder-
ated learning (Bonawitz et al. 2019; Konečný et al. 2016;
McMahan et al. 2017), which is a method of learning an
integrated model with distributed data. It has been shown
that federated learning can work well even when there are
many parameters to be learned, as in deep learning (McMa-
han et al. 2017). Because the integration of models is under
the condition of limited tasks, it is necessary to learn other
models for other tasks.

Recently, a method of data collaboration analysis has been
proposed, where distributed data can be safely integrated
without using encryption (Imakura and Sakurai 2019). Even
if this method is not using cryptography, it can reduce the
risk of estimating the original data. The method learns a
transformation of data to a low-dimensional space in which
important expressions of the original data, such as neighbor
information, are preserved. This procedure is done indepen-
dently in each organization. Furthermore, it is learned a pro-
jection from such low dimensional data to an intermediate
representation in a shared space for all organizations. The
intermediate representation is provided for all organizations
so that various tasks for integrated data are performed by
means of the representation.

As a useful property of the data collaboration analysis,
it is impossible to restore the original data due to the di-
mensional reduction. Moreover, each organization indepen-
dently reduces the dimension of data to preserve anonymity.
In practice, Takahashi et al. showed that data collaboration
analysis is effective for analyzing clinical data (Takahashi
et al. ). However, in the proposed method, dimensional re-
duction is performed in each organization, which means that
the data is susceptible to bias and that a sufficient amount
of data is required for learning compressed representation.
These could be critical issues for distributed data in cases
where the data is imbalanced and its size is small.

In this study, we propose a method that has properties de-
sirable for practically integrating data, namely by sharing the



Figure 1: Data Collaboration Analysis Overview

distance matrix of an organization’s data. By using anchor
data, which is the data shared by all organizations, it is possi-
ble to estimate the distance between each organization’s data
without sharing the data itself. Then, the top-k nearest neigh-
bor graph defined by these estimated distances is used to get
the integrated features that express the relationships among
all data. The obtained features, called the collaboration rep-
resentation, can preserve important features of the relations
among raw data even if the raw data is not shared directly
in estimation. Furthermore, in the proposed method, the fol-
lowing properties can be obtained, which are discussed in
the following sections.

1. Robust against biases in data among organizations.

2. The relation, such as k nearest neighbors among all orga-
nizations’ data, is estimated with high accuracy.

3. Anonymity is improved by adding noise.

4. Robust against changes in the scale of raw data and noise.
As a result, it is easy to improve data anonymity.

The rest of this paper proceeds as follows: the data col-
laboration analysis and one of the graph embedding meth-
ods, Node2vec (Grover and Leskovec 2016), are presented
in Section 2. In Section 3, we proposed a novel method of
data collaboration analysis that shares the distance matrix of
each organization’s data with the integrator, that is, an orga-
nization integrates distance matrices and estimates common
features. In Section 4, we evaluate the accuracy of the pro-
posed method for distributed data. Finally, we conclude and
discuss the experimental results and the proposed method in
Section 5.

Preliminaries
Data collaboration analysis with anchor data
In this section, we describe one type of data collabora-
tion analysis proposed in (Imakura and Sakurai 2019). A
schematic illustration is shown in Figure 1. The goal of
data collaboration analysis is estimating a common rep-
resentation of the original data, which are not centralized

but distributed in d different organizations. The method as-
sumes that the i-th organization has ni samples with m-
dimensional data as

Xi = [xi1, xi2, ..., xini
] ∈ Rm×ni , (1 ≤ i ≤ d).

The goal of this method is to compareXi by sharing mapped
data

X̃i = fi(Xi) ∈ Rm̃i×ni .

with the integrator where fi is learned by using each organi-
zation’s data without that of other organizations. Addition-
ally, a common representation, called a collaboration repre-
sentation, is described as follows.

X̂ = [X̂1, X̂2, ..., X̂d] = [g1(X̃1), g2(X̃2), ..., gd(X̃d)] ∈ Rm̂×n.

The collaboration representation is estimated in a com-
mon space in which features in the original data, such as
local neighbors of data in each organization, are preserved.
Here,

∑
i ni = n, and fi is a map which extracts fea-

tures of data as in dimensional reduction methods (Cunning-
ham and Ghahramani 2015). Specifically, LLE (Roweis and
Saul 2000) and LPP (He 2005) are used for preserving local
neighbors of original data. Therefore, it often assumes m̂ <
m. It also assumes that fi(x) 6= fj(x) (i 6= j), since the map
fi is learned in each organization independently. Under the
assumption, gi, satisfying gi(fi(x)) ≈ gj(fj(x)) (i 6= j), is
estimated. Note that X̂i is not an approximation of Xi.

In the remainder of this section, we describe how to esti-
mate gi. In general, estimating gi is difficult, because there
is no common information among the organizations. There-
fore, the data collaboration analysis prepares pseudo-data
called anchor data which is shared among all the organiza-
tions. The anchor data is generated by random numbers or
open data for securing privacy. Let the dimension of the an-
chor data be the same as that of the original data, and the
number of anchor data samples be r. The anchor data is de-
scribed as follows.

Xanc = [xanc
1 , xanc

2 , ..., xanc
r ] ∈ Rm×r



Figure 2: Skip-Gram Model Based Graph Embedding

The data Xanc is shared among all organizations. And, each
organization applies fi to the anchor data. Then, the follow-
ing is obtained:

X̃i
anc

= fi(X
anc) ∈ Rm̃×r.

Since X̃i
anc
, (i = 1, ..., d) are the representations generated

from the same data, both a common space Z ∈ Rm̂×r for
X̃i

anc
and gi to satisfy Z ≈ gi(X̃i

anc
) can be estimated.

In (Imakura and Sakurai 2019), a method to estimate Z
and g by solving the minimal perturbation problem has been
proposed as follows:

min
Z,g1,g2,...,gd

d∑
i=1

‖Z − gi(X̃i
anc

)‖2F.

By assuming that gi is linear, this problem can be solved by
singular value decomposition (SVD), so that Z and g can be
estimated simultaneously. Finally, we obtain X̂i, X̂ by ap-
plying gi to X̃i. If fi is a method preserving local neighbors
such as LPP, local neighbors in the original data are expected
to be preserved in X̂ . Estimating Z and gi can be done by
other methods. For example, Takahashi et al. proposed the
method to estimate Z by a graph embedding method and gi
by feedforward neural network (Takahashi et al. ).

In practice, each organization learns and shares X̃i and
X̃i

anc
with a data integrator. And, using these data, the inte-

grator estimates gi by the above procedure. After estimating
gi, the integrator applies gi to X̃i to generate collaboration
representation X̂ . Finally, this representation is provided to
all organizations. In this way, the data collaboration analysis
is able to learn the map of data to a common space without
centralizing all original data by means of the anchor data.

Node2vec
Node2Vec is one of the methods called graph embedding
(Cai, Zheng, and Chang 2017; Goyal and Ferrara 2017) and
network embedding (Cui et al. 2017), which learns a vec-
tor representation of the graph nodes. Since this method
is able to preserve local feature flexibly by generating a
graph that expresses local features, such as local neighbors
of data. Among the graph embedding methods, DeepWalk
(Perozzi, Al-Rfou, and Skiena 2014) and Node2Vec (Grover
and Leskovec 2016) are methods based on the model for

learning vector representation of words called Skip-Gram
(Mikolov et al. 2013). DeepWalk and Node2Vec apply the
Skip-Gram model to a sequence of graph nodes called a ran-
dom walk, which is generated by a transition of nodes based
on probability and weighted by graph edges. We explain this
procedure as follows.

Let W̃ ∈ Rr×r be the matrix representation of a weighted
graph that has r nodes: ṽi(i = 1, 2, ..., r). And, let the non-
negative edge weight between the s-th node ṽs and the t-th
node ṽt be W̃st, which are the elements of W̃ . The random
walk on the graph is generated by following the distribution
as:

Pr(cj = ṽt|cj−1 = ṽs) =

{πst
C

if W̃st > 0

0 otherwise
.

Here, c0 is the initial node randomly selected from the graph
nodes. cj is j-th node in the random walk,C is a normalizing
constant, and πst is the probability of transition from node
ṽs to ṽt, defined as πst := αpq(cj−2, t)W̃st. αpq is defined
as follows.

αpq(cj−2, t) =


1

p
if dcj−2t = 0

1 if dcj−2t = 1
1

q
if dcj−2t = 2,

where dcj−2t is the number of nodes in the shortest path
from cj−2 to ṽt. Note that dcj−2t must be one of {0, 1, 2}.
Here, p is called the return parameter representing how easy
it is to return to the original node, and q is called the in-
out parameter representing how easy it is to leave cj−2. An
overview of the Skip-Gram model based the graph embed-
ding method is shown in Figure 2. Following this distribu-
tion, nodes are sampled iteratively l times to obtain the ran-
dom walk c0, c1, c2, ..., cl. After generating a sufficient num-
ber of random walks, it can estimate the vector representa-
tion of each node by applying random walks to the Skip-
Gram model. In the context of data collaboration analysis,
Takahashi et al. proposed to use Node2Vec to preserve lo-
cal neighbors by vectorizing a top-k nearest neighbor graph
in which one node has edges to k nearest neighbor nodes
(Takahashi et al. ).



Figure 3: Proposed Method Overview

Proposed Method
Basic concept
In the data collaboration analysis, the anchor data, instead
of the original data that is difficult to share, is used to learn
the transformation to the representation in a common space,
which preserves certain features of the original data, such
as local neighbors. Following this idea, we propose an al-
ternative method for data collaboration analysis. Instead of
sharing X̃ and X̃anc, our method requires each organization
to share a distance matrix whose elements correspond to the
distances between the original data in each organization and
the anchor data with the integrator. According to the distance
matrix, the integrator estimates an integrated distance matrix
whose elements correspond to distances among the original
data in all organizations via the anchor data and also estimate
a top-k nearest neighbor graph among all organizations. Fi-
nally, applying the estimated graph to Node2Vec, we get a
vector representation of all nodes. The overview is shown
in Figure 3. In the framework of data collaboration analysis
(Imakura and Sakurai 2019), our method can be regarded as
using f for mapping from the original data to the distance
matrix between the original data and the anchor data, and g
for mapping from the integrated graph which is expected to
have the top-k nearest neighbors of all nodes to the collabo-
ration representation.

Since there is a risk of inverse estimation of the orig-
inal data by preserving all distances between the original
data and the anchor data, we expect to apply some privacy-
preserving pre-processing (Aggarwal and Philip 2008; Wag-
ner and Eckhoff 2018) to the original data, such as preserv-
ing k-anonymity (Sweeney 2002) or adding noise(Agrawal
and Srikant 2000). In general, data with added noise is use-
less for further analysis, such as machine learning. However,
in the case of the proposed method, it is useful even for the
machine learning task because the proposed method uses in-
formation from the top-k nearest neighbors, which is deter-
mined only by the order of distances. That is, it is robust
against scale and bias by noise. This is described later in
detail.

Sharing B data collaboration analysis baseline
Let the merged d-distributed original data be:
X = [X1, X2, ..., Xd] = [x1, x2, ..., xn] ∈ Rm×n, (1 ≤ i ≤ d).
In the proposed method, we consider the graph with weights
corresponding to the distance of n data in X . Therefore,
we estimate the matrix representation of weighted graph
W ∈ Rn×n and estimate collaboration representation X̂ by
applyingW to the graph embedding method. However, there
is no connection among d data, since they are not able to be
shared as the original data. In this paper, we integrate dis-
tance matrices whose elements correspond to the distances
between the anchor data Xanc and the original data Xi in
each organization,

Bi ∈ Rni×r (1 ≤ i ≤ d)
instead of the original data and X̃i. From this information,
we estimate a matrix W . The element W , e.g., Wst repre-
sents a distance between the s-th data point of X and the
t-th data point of X , in terms of the shortest conditioned
distance via the anchor data. Since the anchor data is shared
over all organizations, the matrix W can be estimated more
precisely by using the anchor data. An overview of the pro-
posed method regarding distance is shown in Figure 4a. Note
that the distances among the same organization’s data can be
estimated without using anchor data. However, we use the
distances via the anchor data to estimate the distance among
the same organization’s data to evaluate fairly with other or-
ganizational data. We assume that the distance takes a posi-
tive value, like the Euclidean distance and the Mahalanobis
distance. Due to the triangle inequality, it is obvious that the
shortest distance between the two data points via the anchor
data includes only one anchor data point. We can determine
the shortest distance via anchor data as follows:

Wst = min
u

(bs(u) + bt(u)) ,

where bs(u) is the distance between xs and the u-th anchor
data point. In this way, the shortest distance can be calcu-
lated by simple summation, and this calculation requires less
computational cost than solving shortest path problems.



Figure 4: a: Distance via Anchor Data, b: Perturbation of Data

After W is estimated, we transform W to have a property
that we want to preserve, such as local neighbors, and ap-
ply Node2Vec to the transformed matrix. In preserving local
neighbors, we transform W to a W k that has only k-NN el-
ements of data and apply the Node2Vec function G to get
X̂ = G(W k). The dimension of collaboration representa-
tion m̂ is a hyperparameter. In this way, we can estimate and
preserve local neighbors among each organization’s data di-
rectly without integrating all original data.

This method has several desirable characteristics; namely,
the proposed method is affected not by selection bias and
data size in each organization but by the total data size in all
organizations. However, there is a risk of inverse estimation
of original data, since the method uses all distances among
the original data and the anchor data. Therefore, we are sup-
posed to add a sufficient amount of noise to the original data,
as in Figure 4b, to reduce the risk. On the other hand, that
noise can reduce the effectiveness of the collaboration repre-
sentation. However, in the proposed method, it is necessary
to estimate only the local neighbors. That is, it is possible
to estimate the relative distance relationship robustly against
adding noise, as described in the Experiments section.

Anchor Data
In the proposed method, the distribution of the anchor data
is critical. The finer the anchor data is placed, the smaller
the estimation error of the distance. Therefore, as in Figure
4a, we consider a lattice of anchor data in each dimension
before adding noise. Let the interval of anchor data in the
l-th dimension be el, such that anchor data in the l-th di-
mension is set at el interval. el is determined based on the
smallest positive distance in the l-th dimension of the orig-
inal data. Similarly, we set anchor data in all dimensions.
Finally, we integrate all dimensions of anchor data using the
Cartesian product. If the anchor data are normalized, taking
values from 0 to 1 in each dimension, the number of data
points is r =

∏m̂
l=1 b

1
el
c. And, we set el = t · distl, where

distl is the minimum positive difference in the l-th dimen-
sion. The parameter t determines the precision of the anchor
data, and in the case of t = 1, there is at least one anchor data
point between any pairs of sample data except for the iden-

tical data. To summarize the above, there are three parame-
ters in the method: k, which means local neighbor range, m̂,
which means dimension of collaboration representation, and
t, which means precision of anchor data.

Experiments

Experiments settings

We apply our method to two popular classification datasets
in the UCI machine learning repository (Dua and Graff
2017), and compare the results with those by the method
proposed in (Imakura and Sakurai 2019) (called the SVD-
based method). In experiments, we use the Iris dataset,
which contains 150 samples in a 4-dimensional dataset
to classify into 3 classes, and the Breast Cancer Wiscon-
sin (original) dataset, which contains 699 samples in a 9-
dimensional dataset to classify into 2 classes. We normal-
ize each feature in each dataset to have a value in the range
from 0 to 1. We evaluate each method regarding pseudo-
distributed datasets, which is given by dividing the original
dataset into 5 datasets. For comparison, we also investigate
the case that all data can be used to train the model, and the
case that only one divided dataset in each organization can
be used.

In the SVD-based method, we assume the first mapping
f as LPP, which is to preserve one nearest neighbor to eval-
uate, even though the sample size is small. In addition, al-
though the dimensionality of the original datasets should be
reduced to protect the security of data by mapping f , the ex-
periments are performed without reducing dimensionality, in
order to investigate the ability of expression. In the proposed
method, we consider the distance as the Euclidean distance,
and Node2Vec preserves the 10 nearest neighbors by setting
W k to have the value one in 10-NN at each data point and
zero for others. We also set p = q = 1, the node sequence
length to 10, the window to 4, the number of random walks
to 1000, and m̂ to 64. We evaluated each method by average
accuracy over 5-fold cross-validation using each collabora-
tion representation as input to a logistic regression with L2
penalty.



Figure 5: a, b: randomly split dataset result (d = 5), c, d: k-means split dataset result (d = 5), anchor data size is represented
by (x) at the label. In a and c, b and d, the same anchor data is shared, respectively. All the results are averages over ten trials.

Results
Accuracy for Distributed Data Let the number of divi-
sions be 5, and generate pseudo independent datasets in two
ways: The first is to divide the original dataset at zrandom
(random split case). The second is to divide the original
dataset by having a bias at each organization. In the latter
case, we use k-means (k = 5) to divide the original dataset
into 5 datasets that have a bias at each dataset (k-means split
case). This makes it possible to conduct experiments in situ-
ations where it is difficult to train general machine learning
models, as the datasets of each organization are biased. Be-
cause in k-means split case, not all divided datasets have all
class samples, we do not experiment in the case only one
divided dataset in each organization can be used.

We set t to be from 25 to 2 by 1, but in the Breast Cancer
Wisconsin (original) dataset, we set t to be from 10 to 2 by 1,
because the size of the anchor data is same as 1 when t ≥ 10.
Furthermore, we also examine the case where anchor data is
generated from the uniform distribution, which has a value
in the range from 0 to 1 as in (Imakura and Sakurai 2019).

The result of the random split case is shown in Figure 5a,
b, and the result of the k-means split case is shown in Figure
5c, d. As shown in Figure 5, the accuracy of the SVD-based
method between the anchor data generated at random, and
the anchor data placed in a lattice does not change much.
The anchor data placed in a lattice can also be the anchor
data of the data collaboration analysis.

Figure 5a and b show that the accuracy of both the pro-
posed method and the SVD-based method tends to improve
with an increase of anchor data size. Furthermore, in both

datasets, it is clear that the accuracy of the proposed method
is much higher than that of the SVD-based method and is as
good as in the case where all data can be obtained.

The major difference between Figure 5a, b, and Fig-
ure 5c, d is that the SVD-based method has a smaller
improvement in accuracy even if t becomes smaller, in-
creasing the amount of anchor data. Because the SVD-
based method estimates collaboration representation from
all mapped datasets, which are mapped by fi learned at each
organization, it is difficult to estimate common manifolds if
the dataset in each organization is largely biased.

On the other hand, in the proposed method, the relation-
ship among each dataset via the anchor data is directly esti-
mated, which means the bias of the dataset in each organiza-
tion has no effect on the accuracy of the collaboration rep-
resentation. Thus, in the case where each organization has
a bias, it turns out that the proposed method can robustly
estimate collaboration representation.

Accuracy for Distributed Noisy Data As a second exper-
iment, noise is added to the original datasets, and the accu-
racy in the case where the raw data is more anonymized by
noise perturbation is investigated.

The original data is divided into 5 datasets, and t is varied
from 3 to 10 by 0.5 for the Iris dataset and from 3 to 9 by
0.5 for the Breast Cancer Wisconsin (original) dataset where
the anchor data size is larger than 1. Noise is added to each
dimension independently, and each noise is generated from
N (0, ε · distl), where distl is the minimum distance in the
l-th dimension. In order to investigate the dependence of the
accuracy on noise, we place the anchor data before adding



noise to the dataset. After placing the anchor data, we add
the noise and renormalize the dataset from 0 to 1. As shown
in Figure 4b, εsj ∼ N (0, ε · distj) is added to the s-th sam-
ple in the j-th dimensional direction. We evaluate accuracy
by setting ε from 0 to 5 by 0.5 and show the results in Fig-
ure 6. Figure 6a and b are heat maps of the accuracy of the
proposed method for the both datasets, and Figure6c and d
show those of the accuracy of the SVD-based method.

In both the proposed method and the SVD-based method,
it can be seen that the accuracy is better when t is smaller,
as well as when ε is smaller in both datasets. Although in
the Breast Cancer Wisconsin (Original) dataset, the number
of anchor data points is unchanged when t is larger than 5,
the accuracy becomes worse as t becomes smaller for both
methods. This suggests that if the number of anchor data
points is the same, it is preferable to have anchor data with
wider intervals.

It can be seen that the accuracy of the proposed method is
generally superior to that of the SVD-based method, even in
the situation where noise is added. In addition, the proposed
method tends to be more robust against greater noise than
the SVD-based method. One of the reasons for the robust-
ness is that converting the estimated W to a top-k nearest
neighbor graph in the proposed method is not so much af-
fected by additional noise in terms of preserving the relative
distance. In addition, the estimated top-k nearest neighbor
graph does not necessarily need to be close to that obtained
from the original data due to the Node2Vec method, because
there can exist random walks, which may result in two nodes
which are neighbors in the original graph but not neighbors
in the estimated graph. As a result, the neighboring relation
between those nodes can be learned by the Node2Vec.

Furthermore, in the case of Breast Cancer Wisconsin data,
adding a small noise enhances the accuracy of estimation,
but then adding further noise degrades it, as shown in Fig-
ure 6b. This phenomenon occurs because adding an optimal
amount of noise increases paths between neighboring nodes.
It results in a sufficient amount of information about neigh-
boring nodes in the original graph. However, further noise
reduces that neighboring information so that learning fails.

Discussion and Conclusion
In this paper, we proposed an novel framework of data col-
laboration analysis by using the distance matrices via the an-
chor data, which makes it possible to learn a representation
of neighboring relations among data in all organizations. In
this method, each organization shares the distance matrix be-
tween its data and the anchor data with the integrator. Then,
the integrator estimates the top-k nearest neighbors graph to
estimate collaboration representation. In addition, the pro-
posed method is insensitive to biases among data.

On the other hand, the method has a high computational
cost for calculating the distance matrix, so that it is not suit-
able for large datasets. However, the data collaboration anal-
ysis is beneficial in the case where a small amount of data is
distributed among different organizations, and sharing that
data is not possible in terms of protecting privacy. There-
fore, the proposed method is adequate for integrating small
rare data while preserving privacy. Furthermore, in the case

Figure 6: Heat map of accuracy with respect to both t and
ε. a and b show the results of the proposed method, while c
and d show results of the SVD-based method. All results are
averaged over 10 trials.

where the distributed data in each organization is biased,
data collaboration analysis is helpful, but SVD-based analy-
sis cannot easily learn a universal model due to the bias. The
proposed method is robust against data bias and makes data
collaboration analysis possible for that biased data.

Regarding the anonymity of the proposed method, the dis-
tance matrix removes all information for the data except
distance so that it is suitable for guaranteeing anonymity.
Although increasing the number of anchor data points im-
proves the accuracy of estimation for classification, there
is a risk for decryption of the distance matrix once the an-
chor data is leaked. To overcome this drawback, our method
proposes adding noise. That noise does not degrade the ac-
curacy of estimation and also protects privacy as shown in
the experiments. Similarly, pre-processing raw data for guar-
anteeing anonymity, say preserving K-anonymity (Sweeney
2002) before calculating the distance matrix is effective
and applicable for the proposed method. As a further im-
provement, it can be considered applying existing notions
with some theoretical guarantees such as differential privacy
(Dwork 2006; McSherry and Mironov 2009) to our method.
In addition, it is possible to consider practical procedures
such as random shuffling of the index of the distance matrix
and sending the shuffled index with encryption, distinguish-
ing a provider of the anchor data from the data integrator for
avoiding estimation of raw data.
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